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Energy gap in the bilayer: Understanding the failure
of the Singwi-Tosi-Land-Sjolander approximation

G. Kalman
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02167

K. I. Golden
Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05401

~Received 19 November 1997!

We demonstrate that the conflicting predictions of the STLS~Singwi-Tosi-Land-Sjolander! and the quasilo-
calized charge approximations concerning the lack of, or the existence of, an energy gap, respectively, in the
collective excitation spectrum of an electronic bilayer can be traced to a formal defect of the STLS scheme
which renders it inappropriate for the analysis of thek→0 behavior of collective modes in binary systems. We
conclude that in addition to the cogent physical reasons that mitigate in favor of its existence, the structural
isomorphism between the bilayer and binary systems also mandates an energy gap in the former.
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Electronic bilayer systems consisting of two quasi-tw
dimensional electron or hole gases separated by a fixed
tanced in a double quantum well have been of intense
terest in recent years. Another class of layered syste
electronic superlattices, consisting of a large number of e
distant layers, exhibit similar physical features. Such syste
can now be routinely fabricated through modern semic
ductor nanotechnology. Relatively highr S @5a/aB ; a
5(1/np)1/2 is the interparticle distance within a layer,aB

5\«/e2m* is the Bohr radius# values have been1 or are
expected to be achieved. In this strong-coupling regimer S

@1), layered systems exhibit remarkable features, both
the static and dynamic levels.2–26 One of the issues unde
investigation is the structure of collective excitations
strongly coupled bilayer systems where the conventio
random-phase approximation~RPA! is inapplicable. Earlier
approaches were based on focusing on intralayer correla
while ignoring interlayer correlations.3,12,16 The unphysical
consequences of this inconsistent approach are by now
realized.4,16,17Within the realm of a more consistent approx
mation there have been two major approaches to this p
lem. One approach consists of applying the well-establis
STLS ~Singwi-Tosi-Land-Sjolander! ~Refs. 27–29! approxi-
mation to the problem.2–5,19,26The other approach is base
on the more recent QLC ~quasilocalized charge!
method.11–14,16–18The predictions of the two methods a
quite different. In particular, the QLC method predicts t
existence of a finite energy gap~v.0 for k50! in the exci-
tation spectrum of the out-of-phase modes: no such en
gap appears as the result of the STLS calculations. This
per addresses the question of the origin of this discrepan

It is well known that the electronic bilayer can be mapp
onto a single two-component two-dimensional layer.12 Thus
we focus on the formal description of a multicomponent s
tem of charged particles, possibly with a neutralizing ba
ground. Using a matrix formalism in species space,30 the
dielectric matrix can be expressed quite generally in term
the screening functionu~kv!:
570163-1829/98/57~15!/8834~4!/$15.00
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«~kv!512w~k!x0~kv!$12u~kv!x0~kv!%21. ~1!

u~kv! is related to the more customary ‘‘mean-field’’G~kv!
by uAB(kv)5wAB(kv)GAB(kv). x0,AB(kv) is the partial
density response matrix30,31 for the noninteracting system
~and thus diagonal in species space!; the interaction potentia
w~k! is not necessarily pure Coulombic, since it may abs
other features of the interaction.

The screening functionu~k! is static~i.e., independent of
v! both in the STLS and in the QLC approximations. T
two approximation schemes also agree with each othe
that u~k! is determined as a functional of the equilibriu
pair correlation functionh(r ) or its Fourier transformh(k).
Where they deviate from each other is both the underly
physical picture and the precise functional dependence
u~k! on h(k).

The fundamental assumption of the STLS approximat
is that even when the system is outside equilibrium due to
external perturbation, particle correlations are well appro
mated by their equilibrium value. The resulting express
for u~k! is27–29

uAB~k!5
1

V (
q

k•q

k2 wAB~q!hAB~k2q! ~STLS! ~2!

We are interested in thek→0 behavior of the collective
excitations of the system: thus we analyzeu(k→0). Con-
sider first a three-dimensional binary system~say, a binary
ionic mixture32,33! with pure Coulomb interaction

wAB~k!5
4pe2

k2 ZAZB , ~3!

whereeZA andeZB are the species charges. We focus on
k→0 limit of u~k!. One finds for the diagonal and off
diagonal terms

uAA~k→0!5
2

3p
e2ZA

2E
0

`

dqhAA~q! ~STLS!, ~4!
8834 © 1998 The American Physical Society
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uAB~k→0!5
2

3p
e2ZAZBE

0

`

dqhAB~q! ~STLS!

~AÞB!. ~5!

The important feature of the above relations is that both
diagonal and the off-diagonal elements ofu~k! approach a
constant~negative! k-independent value in thek→0 limit.

Consider now the system of our principal interest, an el
tronic bilayer, consisting of two two-dimensienal~2D! elec-
tron layers in a neutralizing background, separated from e
other by distanced. The system can be mapped onto a sin
2D layer with two ‘‘components.’’12 The corresponding po
tentials are

w11~k!5w22~k!5
2pe2

k
,

~6!

w12~k!5
2pe2

k
e2kd,

and, in thek→0 limit, the diagonal and off-diagonal ele
ments ofu~k! assume the form

uAA~k→0!5 1
2 e2E

0

`

dqhAA~q!, ~7!

uAB~k→0!5 1
2 e2E

0

`

dqe2qdhAB~q! ~STLS! ~AÞB!.

~8!

Next we turn to exhibiting the calculation ofu~k! in the QLC
approximation. The approximation is a dynamical one, t
focuses on the oscillatory motion of the quasilocalized p
ticles trapped in local potential fluctuations. The resulti
general expression foru~k! is given again in terms of the
pair-correlation function34

uAB~k!5
1

V (
q

~k•q!2

k4 H wAB~q!hAB~k2q!

2dAB(
C

wAC~q!hAC~q!J ~QLC!. ~9!

We now consider the two cases as before, in thek→0 limit.
For binary mixtures one finds

uAA~k→0!52
4pe2ZAZB

V (
q

~k•q!2

k4q2 hAB~q!

51
4p

3

e2ZAZB

k2 ~QLC!, ~10!

uAB~k→0!51
4pe2ZAZB

V (
q

~k•q!2

k4q2 hAB~q!

52
4p

3

e2ZAZB

k2 ~QLC! ~AÞB!.

~11!
e

-

ch
e

t
r-

The second line follows from (1/V)(qhAB(q)5hAB(r 50)
521 for a repulsive Coulomb interaction. Similarly, for
bilayer system, one has

uAA~k→0!52
e2

2

1

k2 E
0

`

dq qe2qdhAB~q!

52uAB~k→0! ~QLC! ~AÞB!.
~12!

The precise value of the integral in Eq.~11! depends onh(k)
but it is certainly finite. The obvious and profound differen
between the STLS equations~4!, ~5!, ~7!, and ~8! and the
QLC equations~10!, ~11!, and ~12!, respectively, is, then
that in thek→0 limit the latter expressions become infini
while the former remain bounded. In order to see the imp
cations of this difference we now analyze the dispersion
lation for the longitudinal collective modes. The dispersi
relation is obtained from the

i«~k,v!i50 ~13!

condition. Forx0(k,v) we adopt the high-frequency

xAB~k,v!5dAB

n

m

k2

v2 ~14!

expression, which can also be interpreted as the expres
resulting from the neglect of the random motion of the p
ticles.

Consider first the binary mixture: the combination of Eq
~1!, ~3!, ~4!, ~5!, ~13!, and ~14! yields „vp

2

54pe2@(Z1
2n1 /m1)1(Z2

2n2 /m2)#…

v25vp
21O~k2! ~STLS! ~15!

for the STLS approximation, whereas the combination
Eqs.~1!, ~10!, ~11!, ~13!, and~14! yields

v25vp
21dv2~Z2 /Z1 ,m2 /m1 ,n2 /n1!1O~k2! ~QLC!

~16!

for the QLC approximation. The significant difference b
tween Eqs.~15! and ~16! is manifested by the finite fre
quency shiftdv2 in k→0 limit in the QLC description~the
precise value ofdv2, which is positive, is not relevant here
the interested reader can find the corresponding expres
and the discussion in Ref. 34!; in contrast, no such shif
appears in the STLS approximation.

It is now not surprising that for the case of the bilayer
similar result ensues. For the STLS approximation, Eqs.~1!,
~6!, ~7!, ~8!, ~13!, and ~14! combine into~ns is the surface
density!

v25
2pe2nsd

m
k21O~k2! ~STLS! . ~17!

This is the well-known RPA out-of-phase plasma acous
mode, softened by the negativeO(k2) correlational correc-
tion. This result was reported in Refs. 2, 3, 4, 5, and 26.
contrast, the QLC calculation via Eqs.~1!, ~11!, ~12!, and
~13! leads to
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v25v2~0!1
2pe2nsd

m
k21O~k2!, ~QLC! ~18!

where the leading term is thek-independentv2(0)

v2~0!52
e2n

m E
0

`

dq q2e2qdh12~q!. ~19!

In other words, there is an energy gapv~0! at k50, whose
value is determined by Eq.~19!. This is the result obtained in
Refs. 12, 13, 14, 16, and 17 for the case of an infinite su
lattice, and in Refs. 12 and 18 for the case of a bilayer.

It now remains to determine which one of the two resu
quoted can be regarded as providing a credible descriptio
the collective mode behavior of the bilayer. We contend t
there are at least two reasons that show that the QLC
proach is correct, while the STLS is not. The first is that
QLC expression for«~kv! satisfies the third frequency mo
ment sum rule,34–37 while the similar STLS expression doe
not. This can be easily shown by comparing the coefficie
of the v24 terms in the high-frequency expansion of«~kv!
as constructed with the STLS and QLC expressions given
u~k! by Eqs.~2! and ~8!, respectively, with the expressio
given in the literature~see, e.g., Refs. 32 and 33!. This dif-
ference between the STLS and QLC schemes is signifi
since satisfaction of the third frequency moment sum r
has been recognized38 as an important criterion in the con
struction of an acceptable dynamic approximation.

The second reason to accept the QLC prediction as
rect is that the correlational upward frequency shift of t
plasmon mode in a binary ionic mixture is a known featu
of such systems, and has been verified by comp
simulations.32,33 It should be clear from the line of argume
followed in this paper that from the formal point of view th
energy gap in the bilayer and the frequency shift in the
nary mixture are closely related to each other and the latte
fact may be regarded as an ‘‘upward shift’’ of the RP
v(k50)50 frequency.

The inability of the STLS~or of any static mean field!
scheme to satisfy both low- and high-frequency~third fre-
quency moment! sum rules was recognized a long tim
ago.39 The consequences of this inconsistency are, howe
not the same for all physical systems. While it seems c
that the STLS scheme is seriously deficient as far as
description of the dynamics of two-component systems
concerned, at the same time it is well known to be qual
tively quite reliable for a single component system, such
the electron gas. When applied to the problem of the p
mon dispersion in the latter, both the STLS and QL
reproduce—albeit with different numerical coefficients—t
negative plasmon dispersion which has been identified b
le
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experimentally40 and through molecular dynamic
simulations.41 Thus, whereas the third frequency mome
sum rule is violated by the STLS scheme both for sing
component and multicomponent systems, the conseque
for the former are mild, but for the latter quite dramatic.

A further comment concerns the fact that the QLC is
approximation scheme which is valid in the strong-coupli
regime, i.e., for high enoughr s(5a/aB) or G(5e2/akBT)
values, where local order, making quasilocalization possi
has already set in~this can be estimated to be aroundr s
;6, or G;10!. In fact, a perturbation calculation forG,1,
performed for the binary mixture,35,36,42 indicates dv
;G2/3, quite in contrast to theG-independentdv discussed
here. Thus one can conjecture that in the same fashio
similar scenario would prevail in the case of the bilay
ensuring a smooth transition from the RPA to the stro
coupling regime; at the same time this expected scen
implies that a small but finite energy gap would exist ev
for G values well below the QLC regime.

Finally, we wish to emphasize that in addition to the fo
mal reasoning put forward in this paper to show the corre
ness of the QLC formalism leading to the energy gap, th
exist cogent physical arguments12–14,18that explain its exis-
tence. These are not repeated here, since the purpose o
paper has been only to clarify the formal reasons that lea
the result discussed. One may also relate the appearan
this gap to the existence of other gapped excitations in m
body systems which are certainly not uncommon. Collect
modes due to long range forces, such as the th
dimensional plasmon, and the optical frequencies of io
and other crystals constitute one class of examples; oth
such as the superconducting or excitonic gaps are gene
by the formation of bound pairs in the ground state; a gap
the collective mode spectrum can also be due to a fi
energy jump in the single-particle energy spectrum, a co
mon occurrence in magnetized systems~cf. Ref. 43!. The
physical origin of the gap in the bilayer~or in the superlat-
tice! seems to be different from any of the above mec
nisms and should be sought in the spatial nonuniformity
the system.

In conclusion, we have shown that the STLS approxim
tion scheme is structurally incapable of generating finite f
quency shifts atk50, even in cases where the existence
such a shift is well established; thus any prediction based
the STLS scheme concerning thek50 behavior of collective
modes in a bilayer should be regarded as unreliable. We h
also shown that the prediction of the QLC approximation
a finite energy gap atk50 in the collective-mode spectrum
is an unavoidable formal consequence of the structure
has already led to the description of well-understood a
experimentally verified effects in other situations.
v.
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