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Fermi-fluid description of the half-filled Landau level
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We present a many-body approach to calculate the ground-state properties of a system of electrons in a
half-filled Landau level. Our starting point is a simplified version of the recently proposed trial wave function
where one includes the antisymmetrization operator to the bosonic Laughlin state. Using the classical plasma
analogy, we calculate the pair-correlation function, the static structure function, and the ground-state energy in
the thermodynamic limit. These results are in good agreement with the expected behavior atn5
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The fractional quantum Hall effect~FQHE!,1 which is un-
derstood to be due to condensation of electrons to un
incompressible states as a result of electron correlation2,3

fails to explain the odd behavior of even-denominator filli
fractions that lie right in the middle of all the observe
FQHE filling factors. It has been experimentally establish
that atn5 1

2 the system is metallic.~Heren5f0ne /B, where
f05hc/e, ne is the mean electron density, andB is an ex-
ternally applied magnetic field.! The seemingly metallic be
havior observed in transport measurements4 was confirmed
in subsequent surface acoustic wave experiments whe
was found that, contrary to the case of odd-denominator
ing factors where the conductivity is reduced, at the ha
filled Landau level the conductivity is in fact enhanced.5 Ear-
lier theoretical attempts to understand the nature of then5
1
2 state, largely pioneered by Halperin6 and later by others,7–9

remained mostly inconclusive. While it was known fro
those theoretical works that the12 state is compressible, th
exact nature of the state remained unclear. For exam
working with up to ten electrons in a periodic rectangu
geometry and the exact diagonalization of the few-elect
Hamiltonian in the lowest Landau level, Haldane7 found that
the excitation spectrum is particle number dependent,
ground-state energy was never at the zero total momen
~contrary to what one expects in a uniform-density liqui!,
and no clear physical picture could be extracted from th
numerical results. The ground-state energy~in fact, the low-
est energy! was also dependent on the electron number
extrapolation of the energies to an infinite system led
E0'20.465e2/el 0 ~Ref. 3! @here l 05(\c/eB)1/2 is the
magnetic length#. The Laughlin wave function2

cL5)
i , j

~zi2zj !
mexpH 2(

k
uzku2/4l 0

2J , ~1!

where z5x1 iy is the electron position andn51/m de-
scribes a system of particles obeying Bose statistics form52
and cannot be used for the fermion system without any
ther modification.

In order to explain the anomalous results atn5 1
2, a very

intriguing theory was proposed by Halperin, Lee, and Re
~HLR!.10 This theory describes the compressible ev
denominator states in terms of a transformation that re
sents each electron as a Chern-Simons fermion carryin
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even number of fictitious magnetic flux quanta pointing
the direction opposite to the external magnetic field. In
mean-field approximation~no interparticle interaction! the
average fictitious field cancels the real magnetic field and
a result the transformed fermions experience no net fi
They then form a gapless Fermi liquid. Subsequent exp
mental observation11 of the geometric resonance of the qu
siparticle cyclotron orbits with the acoustic waves, and sim
lar geometrical resonances found in antidot arrays, indica
the existence of a Fermi surface atn5 1

2. These experiments
provided strong support for the theoretical picture of HL
However, fluctuations beyond the mean-field theory, wh
are essential to explain transport and other long-wavelen
results and are expected just to renormalize the Fermi-liq
parameters, instead are found to cause divergences. The
ation has not improved much.12

Parallel to the above approach, there is an ongoing ef
to develop a microscopic approach ton5 1

2 based on the idea
of having an improved Laughlin-like wave function as
starting point. One way to do that is to include the antisy
metrization operator to the Laughlin state and have a t
wave function13,14

C5PLLLdetM)
i , j

~zi2zj !
2expH 2(

k
uzku2/4l 0

2J . ~2!

Here PLLL is the lowest-Landau-level projection operato
The matrix M has elements that are plane wave
Mi j 5eiki•r j , uku,kF . A plane-wave state is a reasonab
choice for the bound state of zeros and electrons when
effective magnetic field is zero.13 For n5 1

2, the Fermi wave
vector iskF5@4pne /s#1/251/Asl 0, wheres is the spin de-
generacy. For a fully spin-polarized systems51. Because of
the projection operator,z̄i→2(]/]zi) and therefore the
plane-wave factors act as operators on the Jastrow fa
where, as a result, the zeros ofcL are displaced.13,14 The
wave function~2! is supposed to have the right statistics a
right correlations to describe the Fermi-liquid properties
n5 1

2 and is found to provide a good description of a sma
size system atn5 1

2.
14 However, in those numerical studie

of the few-electron systems the ‘‘Fermi’’ pair-correlatio
function on a sphere was found to have distinct long-ran
type oscillations unlike the dominant short-range ord
present in a fluid and also not present in the Laughlin~‘‘bo-
8812 © 1998 The American Physical Society
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son’’! state. Further, it is reasonable to question the relia
ity of a few-electron system result when we are to describ
gapless Fermi liquid. The pair-correlation function and t
structure function for the state~2! are the most essentia
building blocks for any further development in the theory
a compressible fluid. The nature of the correlation functio
in the thermodynamic limit, the effective mass, and colle
tive excitations, which are related to those correlation fu
tions, therefore needs careful attention.13

In this work we have attempted to fill in for some of tho
open questions by appealing to the ingenuity of the origi
Laughlin approach, where one is able to map the electr
onto a classical plasma and make use of the established
malism to calculate various physical quantities. To deve
such a many-body scheme to deal with the wave function~2!
that includes the projection operator is, however, a nontri
problem. In our approach, we start with a simplified proble
and drop the projection operator from Eq.~2!: The wave
function is then a simple product of the Slater determin
and the Laughlin function for the12 state,

CF5detMcL5FcL . ~3!

Our justification for that somewhat radical step is that in o
choice of the trial wave functionCF the only job of the
Slater determinantF is to makeCF antisymmetric. When
F51, the wave function describes the correlated bo
~Laughlin! fluid and whencL51 the wave function de-
scribes the noninteracting Fermi system. Although we
longer have any explicit projection to the lowest Land
level, the Laughlin wave function, in particular the analy
part of the wave function, already describes the correlati
in the lowest Landau level. Also, since we are interes
primarily in the correlation functions, structure function
etc., it should perhaps still be an acceptable step to drop
projection operator, especially since the form ofuFu2 is cho-
sen to be of the same form asucLu2 ~see below!. We wish to
add here that for a Fermi liquid in theabsenceof a magnetic
field, a division of labor as for the two functions in Eq.~3! is
entirely justified.

Once the choice of the wave function~3! is made the next
question is how we deal withF. We have already stated tha
we are mostly interested in the pair-correlation functio
where information aboutuFu2 is all that needs to be know
or, more specifically, we need to constrainuFu2 to be posi-
tive definite. One available choice in the literature15 that was
quite successful in describing the correlated electron syst
in the absence of an external magnetic field is to write

(
s

uF~r1 , . . . ,rN!u2')
i , j

f2~r i j !,

f~r !5e2uI ~r !/2, ~4!

where the set of spin coordinates is denoted bys. This
means that we expanduFu2 and retain only the two-body
term, which is then approximated by a Jastrow-type functi
This allows us to write the square of the total wave funct
as
l-
a

e

f
s
-
-

l
ns
or-
p

l

t

r

n

o

s
d

he

s

s

.

uCF~r1 , . . . ,rN!u25)
i , j

e2[uL~r i j !1uI ~r i j !]

5)
i , j

e2ut~r i j ! ~5!

and the corresponding pair-correlation function

gF~r 12!5N~N21!ne
2E d2r 3•••d2r N

3expS 2(
i , j

ut~r i j ! D Y E d2Nr

3expS 2(
i , j

ut~r i j ! D , ~6!

whereN is the particle number.
The advantage of our choice of Eq.~5! is that one can

now use established methods such as the celebrated ma
of Laughlin’s wave function~1! to a one-component class
cal plasma,3,16 which determines theuL(r ) or, equivalently,
the pair-correlation functiongL(r ). In order to perform simi-
lar calculations forut(r )5uL(r )1uI(r ) we first have to de-
termineuI(r ) and then follow the plasma analogy to solv
for ut(r ). In a completely degenerate ideal~noninteracting!
two-dimensional Fermi system the exact two-body radial d
tribution functiongI(r ) can be calculated to be17

gI~r !512@2J1~kFr !/kFr #2, ~7!

whereJ1(kFr ) is the Bessel function of the first kind of orde
one. Since we are considering a fully spin polarized syst
gI(r ) vanishes at the origin due to the Pauli exclusion pr
ciple ~Fig. 1!. The corresponding ideal gas static structu
function obtained from the two-dimensional Fourier tran
form of Eq. ~7! is17

FIG. 1. Pair-correlation functiong(x) as a function of
x5r /R (R5A2ml 0) for the noninteracting systemgI(x) @Eq.
~7!#, the Laughlin state~1! for a Bose systemgL(x), and the Fermi
stategF(x) @Eq. ~3!#. A blowup of the region around unity is given
in the inset.
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SI~k!5H 2

p
@sin21k1k~12k2!1/2#, k,1

1, k.1,

~8!

wherek5k/2kF . For smallk, SI(k) increases linearly with
k ~Fig. 2!. Given these two functions,uI(r ) now can be
obtained from inverting the hypernetted-chain~HNC!
equations15,3

uI~r !52 lngI~r !1
1

ne
FH @SI~k!21#2

SI~k! J , ~9!

whereF denotes the two-dimensional Fourier transform

F~k!52pE
0

`

r dr F ~r !J0~kr !,

F~r !5
1

2pE0

`

k dk F~k!J0~kr !,

whereJ0(kr) is the Bessel function of the first kind of orde
zero.

The implication of Eqs.~7!–~9! is that in the two-body
level, f(r ) in Eq. ~4! can be chosen such that we reprodu
the exact two-body radial distribution function and the sta
structure factor corresponding to thefull determinant. We
note thatuI(r ) is a numerically strictly decreasing function
but it is a long-ranged function@because for smal
q, ũ I(q)[F„uI(r )…;q21]. Therefore, one needs to pa
particular attention to the long- and short-range behavior
ut(r ) ~Ref. 15! while solving the HNC equations for th
one-component plasma. In our numerical calculations
have used the dimensionless variablesx5r /R and q5kR,
where R5A2ml 0 is the ion-disk radius.3 The method of
deriving the HNC equations forut(x) is similar to that for
uL(x) and with proper choice of the long- and short-ran
functions3,15 a numerically rapidly convergent set of equ
tions is obtained that leads togF(x) and its Fourier transform
SF(q). In the case ofuI(x)50, the pair-correlation function

FIG. 2. Static structure factorS(q) as a function ofq5kR for
the noninteracting systemSI(q) @Eq. ~8!#, the Laughlin state~1! for
a Bose systemSL(q), and the Fermi stateSF(q) @Eq. ~3!#. A
blowup of the region around unity is given in the inset.
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gL(x) for the Laughlin state is plotted in Fig. 1. The groun
state energy corresponding to that state
EL520.480e2/el 0. The pair-correlation function corre
sponding to state~3! is denoted bygF(x) in Fig. 1. Clearly,
the ‘‘Fermi hole’’ is not much affected by the introduction o
the Laughlin correlation function, but marked deviations
gF(x) from gI(x) occur near the maximum ofgL(x).

The static structure functionsS(q) vs q for the various
cases are shown in Fig. 2. As with the pair-correlation fu
tions,SI(q) corresponds to the ideal system result,SF(q) is
the present result for the Fermi-fluid state~3! at n5 1

2, and
SL(q) is the structure function for the Laughlin state~1!.
Interestingly, for smallq we find thatSF(q) is different from
1
2 q2 and therefore the intra–Landau-level excitation sp
trum in this case should not have a gap.18 The difference
between the present results and the Laughlin resu
gdi f f5gF(x)2gL(x) andSdi f f5SF(q)2SL(q), is plotted in
Fig. 3. These are oscillatory functions with a rapidly decre
ing amplitude. In finite-size system calculations,14 a sinu-
soidal oscillation ingdi f f(x) was taken as an indication of
Fermi-fluid behavior. We note that the correlation functio
for the nonideal system show many fewer oscillations arou
unity in accordance with the properties of a uniform dens
fluid ~inset of Fig. 1! and therefore the difference in correla
tion functions is also rapidly damped. Interestingly,Sdi f f(k)
develops a positive peak slightly belowk;2kF and a nega-
tive peak beyond thatk. Finally, we find the ground-state
energy for the state~3! and for the Coulomb potential to b
EF520.448e2/el 0, which is very different from the energy
of the Laughlin stateEL but very close to the energy valu
E0, extrapolated for an infinite system from the finite-si
system results mentioned in the introduction. This agreem
between the energy of the state~3! and the estimateE0 is a
strong indication that our Fermi-liquid description has t
right correlations and correct statistics needed to describ
Fermi-liquid behavior atn5 1

2.
In summary, our simplified choice~3! of the ground-state

wave function for the Fermi-fluid state atn5 1
2 has led to a

microscopic approach where we can calculate the phys
quantities in the thermodynamic limit. The pair-correlatio

FIG. 3. Difference between the Fermi and Bose functions~a!
gdi f f(x) vs x and ~b! Sdi f f(q) vs q.



n

e
c

p-

57 8815BRIEF REPORTS
function, the structure function, and the ground-state ene
are in good agreement with the expected behavior atn5 1

2.
This approach can also be suitably modified to calculate
one-body density matrix and the nature of the off-diago
long-range order,19 which will provide more information
about the Fermi nature of the proposed state. In defens
our choice of Eq.~3!, we should mention that the wave fun
tion that would result from the operation ofPLLL will be a
wave function in the lowest Landau level and therefore
rgy

the
al

of
-

be

similar to the Laughlin-like wave function~but with correct
statistics!. Hence our choice of Eq.~5!, which is formally
similar to the Laughlin approach, should be a suitable a
proximation for the full wave function~2!. This is supported
by our numerical results presented here.
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