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Fermi-fluid description of the half-filled Landau level
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We present a many-body approach to calculate the ground-state properties of a system of electrons in a
half-filled Landau level. Our starting point is a simplified version of the recently proposed trial wave function
where one includes the antisymmetrization operator to the bosonic Laughlin state. Using the classical plasma
analogy, we calculate the pair-correlation function, the static structure function, and the ground-state energy in
the thermodynamic limit. These results are in good agreement with the expected beha\ij@r%at
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The fractional quantum Hall effe€FQHE),* which is un-  even number of fictitious magnetic flux quanta pointing in
derstood to be due to condensation of electrons to uniquhe direction opposite to the external magnetic field. In a
incompressible states as a result of electron correlafidns, mean-field approximatiorino interparticle interactionthe
fails to explain the odd behavior of even-denominator fillingaverage fictitious field cancels the real magnetic field and as
fractions that lie right in the middle of all the observed a result the transformed fermions experience no net field.
FQHE filling factors. It has been experimentally establishedThey then form a gapless Fermi liquid. Subsequent experi-
that atv= 3 the system is metalligHerev= ¢on./B, where  mental observatior of the geometric resonance of the qua-
¢o=hcle, n,is the mean electron density, aBdis an ex-  siparticle cyclotron orbits with the acoustic waves, and simi-
ternally applied magnetic fiel[dThe seemingly metallic be- lar geometrical resonances found in antidot arrays, indicated
havior observed in transport measuremémias confirmed the existence of a Fermi surfaceiat 3. These experiments
in subsequent surface acoustic wave experiments where frovided strong support for the theoretical picture of HLR.
was found that, contrary to the case of odd-denominator fillHowever, fluctuations beyond the mean-field theory, which
ing factors where the conductivity is reduced, at the half-are essential to explain transport and other long-wavelength
filled Landau level the conductivity is in fact enhancdBar-  results and are expected just to renormalize the Fermi-liquid
lier theoretical attempts to understand the nature ofithe  parameters, instead are found to cause divergences. The situ-
1 state, largely pioneered by Halpétiand later by other§;®  ation has not improved mucf.
remained mostly inconclusive. While it was known from Parallel to the above approach, there is an ongoing effort
those theoretical works that thestate is compressible, the to develop a microscopic approachite 3 based on the idea
exact nature of the state remained unclear. For exampl@f having an improved Laughlin-like wave function as a
working with up to ten electrons in a periodic rectangularstarting point. One way to do that is to include the antisym-
geometry and the exact diagonalization of the few-electrommetrization operator to the Laughlin state and have a trial
Hamiltonian in the lowest Landau level, Halddrieund that ~ wave function®*
the excitation spectrum is particle number dependent, the
ground-state energy was never at the zero total momentum _ A2 _ 2i4 2
(contrary to what g(J)yne expects in a uniform-density liquid \If—P,_,_,_detl\/Ii];[j (zi=2) exp{ Ek 12 /4/‘)]' )
and no clear physical picture could be extracted from those ) o
numerical results. The ground-state enefigyfact, the low- Here 79,_,_,__|s the lowest-Landau-level projection operator.
est energywas also dependent on the electron number andne matrix M has elements that are plane waves,

extrapolation of the energies to an infinite system led tdVlij=€" ", [k|<ke. A plane-wave state is a reasonable
Eo~—0.46%% ¢/, (Ref. 3 [here /y=(fic/leB)¥? is the choice for the bound state of zeros and electrons when the

vector iskg=[4mn,/s]*?=1/\/s/,, wheres is the spin de-
3 . o 2 generacy. For a fully spin-polarized system 1. Because of
‘ﬂ'-_iE[j (zi=7) ex;{—; 12 /4/0]’ @D the projection operatorz,—2(d/dz) and therefore the
plane-wave factors act as operators on the Jastrow factor
where z=x+1iy is the electron position and=1/m de- where, as a result, the zeros ¢f are displaced>'* The
scribes a system of particles obeying Bose statisticefe2 ~ wave function(2) is supposed to have the right statistics and
and cannot be used for the fermion system without any furfight correlations to describe the Fermi-liquid properties at
ther modification. v=3 and is found to provide a good description of a small-
In order to explain the anomalous resultsvat3, a very  size system av= 3. However, in those numerical studies
intriguing theory was proposed by Halperin, Lee, and Readf the few-electron systems the “Fermi” pair-correlation
(HLR).X® This theory describes the compressible evenfunction on a sphere was found to have distinct long-range-
denominator states in terms of a transformation that repretype oscillations unlike the dominant short-range order
sents each electron as a Chern-Simons fermion carrying geresent in a fluid and also not present in the Laugtilbo-
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son”) state. Further, it is reasonable to question the reliabil-
ity of a few-electron system result when we are to describe e 1.0 - LT
gapless Fermi liquid. The pair-correlation function and the 7
structure function for the stat€?) are the most essential g,(x) /17 9e(x)
building blocks for any further development in the theory of | /
a compressible fluid. The nature of the correlation functions i/
in the thermodynamic limit, the effective mass, and collec- /i
tive excitations, which are related to those correlation func-< ! 1.05
tions, therefore needs careful attentidn. 05 | /
In this work we have attempted to fill in for some of those
open questions by appealing to the ingenuity of the original
Laughlin approach, where one is able to map the electron: L /
onto a classical plasma and make use of the established fol ;
malism to calculate various physical quantities. To develop /
such a many-body scheme to deal with the wave fund@pn 0.0 7 A ) ) . A ) ) )
that includes the projection operator is, however, a nontrivial 0.0 1.0 2.0 3.0 4.0 5.0
problem. In our approach, we start with a simplified problem X
and drop the projection operator from E@): The wave

function is then a simple product of the Slater determinant FIG. 1. Pair-correlation functiong(x) as a function of
and the Laughlin function for thé state, x=r/R (R=+y2m/,) for the noninteracting systerg,(x) [Eq.
(7)], the Laughlin staté€l) for a Bose systerg, (x), and the Fermi

stategg(x) [EQ. (3)]. A blowup of the region around unity is given
Ve=detMy =Dy . (3 in the inset.

Our justification for that somewhat radical step is that in our

choice of the trial wave function? the only job of the [We(ry, ... rol?=]1 erlurprutyl
Slater determinan® is to makeW( antisymmetric. When =

®=1, the wave function describes the correlated boson o

(Laughlin) fluid and wheny, =1 the wave function de- :_1;[ e~ i) 5
scribes the noninteracting Fermi system. Although we no =

longer have any explicit projection to the lowest Landau
level, the Laughlin wave function, in particular the analytic
part of the wave function, already describes the correlations

in the lowest Landau level. Also, since we are intefeSte‘bF(r12)=N(N—l)ngf d?rg---d?ry
primarily in the correlation functions, structure functions,

etc., it should perhaps still be an acceptable step to drop the
X ex —2 ut(rij)>/ f d2Nr
i<j

and the corresponding pair-correlation function

projection operator, especially since the form &1 is cho-
sen to be of the same form hg, |? (see below. We wish to
add here that for a Fermi liquid in trebsenceof a magnetic
field, a division of labor as for the two functions in E@) is Xexpg — >, ut(rij)>r (6)
entirely justified. <)

Once the choice of the wave functi¢B) is made the next whereN is the particle number
guestion is how we deal with. We have already stated that i

we are mostly interested in the pair-correlation functions The advantage of our choice of E) is that one can
where information aboujtb|?2 is all that needs to be known now use established methods such as the celebrated mapping

- . . of Laughlin’s wave function1) to a one-component classi-
or, more specifically, we need to constraih|? to be posi- 9 (1) P

A6 s : ;
tive definite. One available choice in the literatiirhat was cal plasmef‘, which determines the () or, equivalently,

; : L the pair-correlation functiog, (r). In order to perform simi-
quite successful in describing the correlated electron systems . o )
) NP . ar calculations fou,(r)=uy(r) +u,(r) we first have to de-
in the absence of an external magnetic field is to write

termineu,(r) and then follow the plasma analogy to solve
for uy(r). In a completely degenerate idgaloninteracting
two-dimensional Fermi system the exact two-body radial dis-
2 20¢ ..
Z [D(ry, ... )| ~i1;[j (i), tribution functiong,(r) can be calculated to be

— 2

()= @ 91(1)=1-[233(ker)/Ker 7, Y
whereJ;(ker) is the Bessel function of the first kind of order
where the set of spin coordinates is denoted cayThis  one. Since we are considering a fully spin polarized system,
means that we expandb|? and retain only the two-body g,(r) vanishes at the origin due to the Pauli exclusion prin-
term, which is then approximated by a Jastrow-type functionciple (Fig. 1). The corresponding ideal gas static structure
This allows us to write the square of the total wave functionfunction obtained from the two-dimensional Fourier trans-
as form of Eq. (7) is'’
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FIG. 2. Static structure factd®(q) as a function ofg=kR for q

the noninteracting systef(q) [Eqg. (8)], the Laughlin staté1) for FIG. 3. Difference between the Fermi and Bose functitas
a Bose systenf5, (q), and the Fermi stat&g(q) [Eg. (3)]. A gairs(X) vs x and(b) Syi¢+(q) Vs q.
blowup of the region around unity is given in the inset.

g, (x) for the Laughlin state is plotted in Fig. 1. The ground-

E[sinflKJrK(l_Kz)l/z]’ k<1 state energy corresponding to that state s
S(k)={ 7 (8) E_=-0.48®%e/,. The pair-correlation function corre-
1, Kk>1, sponding to staté3) is denoted bygg(x) in Fig. 1. Clearly,

_ ) ~ the “Fermi hole” is not much affected by the introduction of
wherex=k/2kg . For smallx, S,(«) increases linearly with  the L aughlin correlation function, but marked deviations of
K (Flg 2. Given these two fUnCUOnS,H(r) now can be gF(X) from gl(x) occur near the maximum @L(X)'

obtained f3rom inverting the hypernetted-chaiHNC) The static structure functionS(q) vs q for the various
equation$™ cases are shown in Fig. 2. As with the pair-correlation func-

2 tions, S;(q) corresponds to the ideal system res8k(q) is

uy(r)=—Ing(r)+ iﬂ%] (9)  the present result for the Fermi-fluid std® at v=3, and

Ne Si(k) S.(q) is the structure function for the Laughlin stat®).

Interestingly, for smalt we find thatSc(q) is different from
1g? and therefore the intra—Landau-level excitation spec-
@ trum in this case should not have a ddprhe difference
F(k)=27-rj rdrF(r)Jq(kr), between the present results and the Laughlin results,
0 9aitr=9r(X) —gL(x) andSyirr=Se(aq) —S.(q), is plotted in
1 Fig. 3. These are oscillatory functions with a ra:jp;i‘dly decreas-
e ing amplitude. In finite-size system calculatiofisa sinu-
F(n= wao kdk F(k)Jo(kr), soidal oscillation ingg;s(X) was taken as an indication of a
Fermi-fluid behavior. We note that the correlation functions
whereJo(kr) is the Bessel function of the first kind of order for the nonideal system show many fewer oscillations around
zero. . . unity in accordance with the properties of a uniform density
The implication of Eqs(7)—(9) is that in the two-body fluid (inset of Fig. 2 and therefore the difference in correla-
level, ¢(r) in Eq. (4) can be chosen such that we reproducetion functions is also rapidly damped. Interestingy;;(k)
the exact two-body radial distribution function and the staticde\,e|ops a positive peak slightly beldw-2k- and a nega-
structure factor corresponding to tffiell determinant We  {jye peak beyond thak. Finally, we find the ground-state
note thatu(r) is a numerically strictly decreasing function, energy for the staté3) and for the Coulomb potential to be
but~it is a long-ranged functionbecause for small E-=—0.44&% e/, which is very different from the energy
a, u(qQ)=Fu(r))~q 1. Therefore, one needs to pay of the Laughlin statds, but very close to the energy value
particular attention to the long- and short-range behaviors of, extrapolated for an infinite system from the finite-size
uy(r) (Ref. 15 while solving the HNC equations for the system results mentioned in the introduction. This agreement
one-component plasma. In our numerical calculations weéetween the energy of the sta® and the estimat&, is a
have used the dimensionless varialkesr/R and g=kR, strong indication that our Fermi-liquid description has the
where R=2m/, is the ion-disk radiu$. The method of right correlations and correct statistics needed to describe a
deriving the HNC equations fau,(x) is similar to that for ~ Fermi-liquid behavior av= 3.
u,(x) and with proper choice of the long- and short-range In summary, our simplified choic) of the ground-state
functions''® a numerically rapidly convergent set of equa- wave function for the Fermi-fluid state at=3 has led to a
tions is obtained that leads ¢ (x) and its Fourier transform microscopic approach where we can calculate the physical
Se(q). In the case ofl(x) =0, the pair-correlation function quantities in the thermodynamic limit. The pair-correlation

where F denotes the two-dimensional Fourier transform
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function, the structure function, and the ground-state energgimilar to the Laughlin-like wave functiofbut with correct
are in good agreement with the expected behavior=at. statisticg. Hence our choice of Eq5), which is formally
This approach can also be suitably modified to calculate thgimilar to the Laughlin approach, should be a suitable ap-
one-body density matrix and the nature of the off-diagonabroximation for the full wave functio2). This is supported
long-range ordet] which will provide more information by our numerical results presented here.

about the Fermi nature of the proposed state. In defense of

our choice of Eq(3), we should mention that the wave func-

tion that would result from the operation &, will be a I would like to thank Pekka Pietilaen for helpful discus-
wave function in the lowest Landau level and therefore besions. | also thank Peter Fulde for his kind hospitality.
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