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Comparison between two models of dephasing in mesoscopic systems
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Two phenomenological models have been proposed in mesoscopic systems to study the role of inelastic
scattering on the phase coherent motion of electrons. In the first one, du&it@Bwne adds a voltage probe
into the systentor in the scattering matrjx The second model invokes the compler optica) potential in the
system Hamiltonian. Studying a simple geometry of a metallic loop in the presence of Aharonov-Bohm
magnetic flux, we show that the two probe conductance is symmetric in the reversal of the magnetic field in
Buttiker's approach. Whereas the two probe conductance within the complex potential model is asymmetric in
the magnetic flux reversal contrary to the expected beha\&@163-18208)00115-5

During the last two decades, the study of transport inpredictions based on the phase coherent transport theory, a
mesoscopic systems has been actively pursued owing to inguantitative comparison at finite temperatures requires the
mense interest from technological as well as fundamentdbss of phase coherence be included in the theory. There are
viewpoints'~® Mesoscopic systems are structures made ofwo widely used phenomenological models that have been
metallic or semiconducting material on a nanometer scaleproposed for this purpose. In the first method due tttiBer,

The length scale associated with the dimensions in these sygne introduces a fictitious voltage probe in the scattering
tems is much smaller than the inelastic mean free path or thatrix ®*14 The voltage probe breaks the phase coherence
phase breaking lengttL(;). The phase breaking lengtor by removing electrons from the phase coherent motion in the
phase coherence length,, is the average diffusion length mesoscopic system and subsequently reinjecting them with-
between the two inelastic collisions. Typically, scales out any phase relationship. The treatment based on the volt-
with the temperaturd in a power-law form, i.e.L ;=T P  age probe metho@hich serves as an inelastic scattgteas

(p lies in the range 12 At low enough temperature when been extended to include the realistic physics of inelastic
the system sizé is much smaller than the phase breakingprocesses occurring uniformly in spat&o simulate inelas-
lengthL ,, an electron maintains phase coherence across th& scattering another method makes use of compbeop-
entire sample. The mesoscopic sample should be treated asi@al) potentialst®>~” In that case the Hamiltonian becomes
guantum scatterer. Here shape of the sample, quantization abn-Hermitian and thus the particle number is not conserved.
energy levels, and discreteness of charge play a major rolén these studies the absorption is identified as the spectral
Thus mesoscopic systems have provided an opportunity fogeight lost in the inelastic channels. As an example, in the
exploring truly quantum mechanical effects beyond atomiccase of one-dimensional double barrier structures the ab-
realm. In the quantum-phase coherent transport regime claserbed part is assumed to tunnel through both the left and the
sical Ohm’s law breaks dowrin the sense that if one adds right hand sides of the barriers in proportion to the transmis-
two resistors having resistan€q andR, in series then the sion coefficient of each barrier, and this is added to the co-
total resistanc® of the system is no longer a sum of the two herent transmission to get the overall transmission
resistancesk, and R, (R#R;+R,). Apart from this in  coefficient'® It should be noted that in the presence of imagi-
lower dimensions resistance is a non-self-averaging quantityary potentials the temporal coherence of the wave is pre-
in that the resistance fluctuations over the ensemble of maserved in spite of absorption, which causes a particle non-
roscopically identical samples dominates the ensembleonserving scattering process. The absorption is to be
averag€:*'°The quantum resistance of a sample depends onnderstood as a depletion of the coherent amplitude by the
the details of the relative position of scatterers. Thus thdnelastic process. Problems related to the use of complex
mesoscopic system is characterized by the sample specifpotentials have been discussed in the earlier literdfar@A
global resistance. However, as the temperature increases, irecent study identifies the limit in which these two models of
elastic scattering effects start dominating, leading to the losdephasing are equivalent and the distribution of conductance
of phase coherence. If the sample size is larger thathe in that limit has been calculatéd.

sample breaks up dynamically into mutually incoherent do- In our present study we analyze both these models in the
mains of size_;, with transport within each domain remain- presence of magnetic flux, and show that these two models
ing phase coherent. Here the self-averaging property of thkead to qualitatively different results for the symmetry of the
resistance is automatically realized and classical additivity ofwo-probe conductance in the presence of magnetic field. In
resistance is restored, i.R=R;+R,. In the phase coherent Blittiker's approach of voltage probe, two probe conductance
transport regime several, often counterintuitive, new experiis symmetric in the reversal of magnetic field as has been
mental results have been obtaifidtand have been success- observed experimentalfyHowever, the model based on the
fully explained within a Landauer—Biiker formalism for dc  complex potential makes the two-probe conductance asym-
transportt!-12 metric in the magnetic field reversal contrary to the expected

Although experiments on mesoscopic samples confirm theehavior®
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FIG. 1. A metallic loop connected to three reservoirs in the 0.40
presence of magnetic fluk.

To this end we consider a simple geometry of a one-
dimensional metallic ring in the presence of Aharonov-Bohm
(AB) flux as shown in Figs. 1 and 2. In Fig. 1 we have
attached an additional lead at poinbn the upper arm of the
loop that acts as a voltage probe. In Fig. 2 we have intro- 0.00 ¢ Yy 000 314 28
duced aés-function optical potential of strengthv at the ' ’ o ' ’
same poini in the upper arm that acts as an absorber. The
length of the upper arm is+ p and that of the lower arm is FIG. 3. The plots ofg (dotted ling and gg (solid line) vs
r. The total circumference of the loop lis=1+p+r. a=27l .

The two-probe phase coherent conductance of a mesos- . .
copic sample at zero temperature is given by the Landauémanate from port 1, reach reservoir 3 where their energy

0.20

formulatt and phases are randomized, and from reservoir 3 in an addi-
tional step reach reservoir 2. In this sense the third lead con-
2 nected to the reservoir acts like an inelastic scatterer.
G= (F)T’ (2) In the presence of absorbing potentiglg. 2) the sum of

transmission T) and reflection coefficientR) is not unity.

where T is the transmission probability for carriers to The absorption coefficient is given ly=1—T—R. In this
traverse the sample. Here the transmission probability isnodel of dephasing the absorbed part is assumed to be re-
taken at the Fermi energy. From Ed) we introduce a di- emitted to the right and left in proportion to the transmission
mensionless conductange=(h/e?)G=T. coefficient at the right and left hand side of the absorber. In

To study the effect of dephasing in the presence of ABour case absorbed flux of particles is re-emitted equally on
flux via Buittiker's approach we consider a mesoscopic operboth sides of the absorber and consequently the dimension-
ring connected to three electron reservoirs at chemical poteriess conductance in this model is given by
tial wq, mo, and ug as shown in Fig. 1. An AB fluxg is
present at the center. We focus on the situation when the gi=T+A/2. (3
third lead is used as a voltage probe to measure the chemical
potential us. The net current in the third lead is zero. If we TO calculate conductances gg, andg; we need to know
denote transmission probabilities of carriers incident in leadransmission and reflection coefficients. To calculate them
j to reach lead by T;; (i,j=1,2,3), then the two-probe We follow our earlier method of quantum waveguide trans-

conductancein the dimensionless unjtof the AB ring is  Port on network$!~>*Our calculation is for a noninteracting

given by system of electrons. We set unitstofe, andm to be unity.
We do not assume any patrticular form for the scattering ma-
T31To3 trix for the junctionsJ,, J,, andJs, but scattering at junc-
9= Tar TaTTsz (2 tions follows from first principles using quantum mechanics.

We have imposed Giriffith’s boundary conditiof@nserva-
We see that the two port conductance is a sum of two partsion of currenj and single valuedness of the wave functions
The first partT,; arises due to those electrons that traverseat the junctions. After calculating different transmission and
the ring without ever entering into the third reservoir; this reflection coefficients we substitute them back into Has.
corresponds to the elastic transmission probability. The seeand(3) to get the analytical expressions for the conductances
ond part, i.e.,T5;T23/(Ta+ T3y, describes electrons that g, andg;. However, the analytical expressions are too long
to be reproduced here. In the following we present our re-
sults graphically.
! ? In Fig. 3 we plot the dimensionless conductagdglotted

U, K, line) andgg (solid line) as a function of the dimensionless
flux a=2m¢/pg, Where pp=hcle is the elementary flux
quantum. We choos&lL=5, |/L=0.15, p/L=0.3, and
r/L=0.55. Bothg andgg oscillate with a periods, and are

FIG. 2. A metallic loop connected to two reservoirs in the pres-Symmetric with respect to the field reversal as expected for
ence of a magnetic flusb and as-function imaginary potentiaV.  the two-probe conductance. Agg includes the effect of
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FIG. 4. The plots ofg (dotted ling and g; (solid line vs
a=2m ¢l dg.

dephasing due to an additional voltage probe, the amplitud

of oscillations ingg is smaller than that observed fgr the

phase coherent conductance. This is expected from the fal

8811

function of @. The length parameter values are the same as
used for Fig. 3. The strength of the imaginary potential in
evaluatingg; is taken to be/L=3. Bothg andg; are peri-
odic in flux with a period¢,. The amplitude of oscillations

in g; is smaller than that observed fogr. However,g; is
asymmetric in field reversal in contrast to the expected be-
havior. This also follows from our analysis of the symme-
tries of the transmission and reflection coefficients under the
field reversal in the presence of complex potential)(
namely,T(V,®)#T(V,— ¢) andR(V,¢)=R(V,— ¢).

In conclusion we have compared two phenomenological
models for dephasing in mesoscopic systems in the presence
of Aharonov-Bohm flux. The model due to Biker based on
addition of voltage probe to simulate inelastic scattering
leads to the two-probe conductance that is symmetric in
magnetic field. On the other hand the model based on the use
of the complex potential leads to two-probe conductance,
which is asymmetric in the magnetic field, contrary to the
expectation based on experimental as well as theoretical pre-
dictions. We would also like to emphasize that the use of
imaginary potentials is justified in the case of optical wave
propagation in an absorbing or a lasing medigrandom
dielectric media In the electromagnetic wave propagation

e bosonic nature of light quanfahoton$ brings in both
eatures, namely, amplification as well as attenuation as the
photon number is not conservéy?’

that inelastic effects reduce the amplitude of conductance The authors thank Professor N. Kumar and Professor P.

oscillations(or interference effecis
In Fig. 4 we plotg (dotted ling and g; (solid line) as a

A. Mello for several useful discussions on related issues in
mesoscopic systems.
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