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Comparison between two models of dephasing in mesoscopic systems
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~Received 1 October 1997!

Two phenomenological models have been proposed in mesoscopic systems to study the role of inelastic
scattering on the phase coherent motion of electrons. In the first one, due to Bu¨ttiker, one adds a voltage probe
into the system~or in the scattering matrix!. The second model invokes the complex~or optical! potential in the
system Hamiltonian. Studying a simple geometry of a metallic loop in the presence of Aharonov-Bohm
magnetic flux, we show that the two probe conductance is symmetric in the reversal of the magnetic field in
Büttiker’s approach. Whereas the two probe conductance within the complex potential model is asymmetric in
the magnetic flux reversal contrary to the expected behavior.@S0163-1829~98!00115-5#
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During the last two decades, the study of transport
mesoscopic systems has been actively pursued owing to
mense interest from technological as well as fundame
viewpoints.1–8 Mesoscopic systems are structures made
metallic or semiconducting material on a nanometer sc
The length scale associated with the dimensions in these
tems is much smaller than the inelastic mean free path or
phase breaking length (Lf). The phase breaking length~or
phase coherence length! Lf is the average diffusion lengt
between the two inelastic collisions. TypicallyLf scales
with the temperatureT in a power-law form, i.e.,Lf5T2p

(p lies in the range 1–2!. At low enough temperature whe
the system sizeL is much smaller than the phase breaki
lengthLf , an electron maintains phase coherence across
entire sample. The mesoscopic sample should be treated
quantum scatterer. Here shape of the sample, quantizatio
energy levels, and discreteness of charge play a major
Thus mesoscopic systems have provided an opportunity
exploring truly quantum mechanical effects beyond atom
realm. In the quantum-phase coherent transport regime c
sical Ohm’s law breaks down6 in the sense that if one add
two resistors having resistanceR1 andR2 in series then the
total resistanceR of the system is no longer a sum of the tw
resistancesR1 and R2 (RÞR11R2). Apart from this in
lower dimensions resistance is a non-self-averaging qua
in that the resistance fluctuations over the ensemble of m
roscopically identical samples dominates the ensem
average.6,9,10The quantum resistance of a sample depends
the details of the relative position of scatterers. Thus
mesoscopic system is characterized by the sample spe
global resistance. However, as the temperature increase
elastic scattering effects start dominating, leading to the
of phase coherence. If the sample size is larger thanLf the
sample breaks up dynamically into mutually incoherent
mains of sizeLf , with transport within each domain remain
ing phase coherent. Here the self-averaging property of
resistance is automatically realized and classical additivity
resistance is restored, i.e.,R5R11R2. In the phase coheren
transport regime several, often counterintuitive, new exp
mental results have been obtained1–8 and have been succes
fully explained within a Landauer–Bu¨ttiker formalism for dc
transport.11,12

Although experiments on mesoscopic samples confirm
570163-1829/98/57~15!/8809~3!/$15.00
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predictions based on the phase coherent transport theo
quantitative comparison at finite temperatures requires
loss of phase coherence be included in the theory. There
two widely used phenomenological models that have b
proposed for this purpose. In the first method due to Bu¨ttiker,
one introduces a fictitious voltage probe in the scatter
matrix.6,13,14 The voltage probe breaks the phase cohere
by removing electrons from the phase coherent motion in
mesoscopic system and subsequently reinjecting them w
out any phase relationship. The treatment based on the
age probe method~which serves as an inelastic scatterer! has
been extended to include the realistic physics of inela
processes occurring uniformly in space.6 To simulate inelas-
tic scattering another method makes use of complex~or op-
tical! potentials.15–17 In that case the Hamiltonian become
non-Hermitian and thus the particle number is not conserv
In these studies the absorption is identified as the spe
weight lost in the inelastic channels. As an example, in
case of one-dimensional double barrier structures the
sorbed part is assumed to tunnel through both the left and
right hand sides of the barriers in proportion to the transm
sion coefficient of each barrier, and this is added to the
herent transmission to get the overall transmiss
coefficient.16 It should be noted that in the presence of ima
nary potentials the temporal coherence of the wave is p
served in spite of absorption, which causes a particle n
conserving scattering process. The absorption is to
understood as a depletion of the coherent amplitude by
inelastic process. Problems related to the use of comp
potentials have been discussed in the earlier literature.18–20A
recent study identifies the limit in which these two models
dephasing are equivalent and the distribution of conducta
in that limit has been calculated.17

In our present study we analyze both these models in
presence of magnetic flux, and show that these two mo
lead to qualitatively different results for the symmetry of t
two-probe conductance in the presence of magnetic field
Büttiker’s approach of voltage probe, two probe conductan
is symmetric in the reversal of magnetic field as has b
observed experimentally.6 However, the model based on th
complex potential makes the two-probe conductance as
metric in the magnetic field reversal contrary to the expec
behavior.6
8809 © 1998 The American Physical Society
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To this end we consider a simple geometry of a o
dimensional metallic ring in the presence of Aharonov-Bo
~AB! flux as shown in Figs. 1 and 2. In Fig. 1 we ha
attached an additional lead at pointx on the upper arm of the
loop that acts as a voltage probe. In Fig. 2 we have in
duced ad-function optical potential of strengthiV at the
same pointx in the upper arm that acts as an absorber. T
length of the upper arm isl 1p and that of the lower arm is
r . The total circumference of the loop isL5 l 1p1r .

The two-probe phase coherent conductance of a me
copic sample at zero temperature is given by the Landa
formula11

G5S e2

h DT, ~1!

where T is the transmission probability for carriers
traverse the sample. Here the transmission probability
taken at the Fermi energy. From Eq.~1! we introduce a di-
mensionless conductanceg5(h/e2)G5T.

To study the effect of dephasing in the presence of
flux via Büttiker’s approach we consider a mesoscopic op
ring connected to three electron reservoirs at chemical po
tial m1, m2 , and m3 as shown in Fig. 1. An AB fluxf is
present at the center. We focus on the situation when
third lead is used as a voltage probe to measure the chem
potentialm3. The net current in the third lead is zero. If w
denote transmission probabilities of carriers incident in le
j to reach leadi by Ti j ( i , j 51,2,3), then the two-probe
conductance~in the dimensionless units! of the AB ring is
given by6

gB5T211
T31T23

T311T32
. ~2!

We see that the two port conductance is a sum of two pa
The first partT21 arises due to those electrons that trave
the ring without ever entering into the third reservoir; th
corresponds to the elastic transmission probability. The s
ond part, i.e.,T31T23/(T311T32), describes electrons tha

FIG. 1. A metallic loop connected to three reservoirs in t
presence of magnetic fluxF.

FIG. 2. A metallic loop connected to two reservoirs in the pr
ence of a magnetic fluxF and ad-function imaginary potentialiV.
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emanate from port 1, reach reservoir 3 where their ene
and phases are randomized, and from reservoir 3 in an a
tional step reach reservoir 2. In this sense the third lead c
nected to the reservoir acts like an inelastic scatterer.

In the presence of absorbing potential~Fig. 2! the sum of
transmission (T) and reflection coefficient (R) is not unity.
The absorption coefficient is given byA512T2R. In this
model of dephasing the absorbed part is assumed to be
emitted to the right and left in proportion to the transmissi
coefficient at the right and left hand side of the absorber
our case absorbed flux of particles is re-emitted equally
both sides of the absorber and consequently the dimens
less conductance in this model is given by

gi5T1A/2. ~3!

To calculate conductancesg, gB , andgi we need to know
transmission and reflection coefficients. To calculate th
we follow our earlier method of quantum waveguide tran
port on networks.21–24Our calculation is for a noninteractin
system of electrons. We set units ofh, e, andm to be unity.
We do not assume any particular form for the scattering m
trix for the junctionsJ1, J2 , andJ3, but scattering at junc-
tions follows from first principles using quantum mechanic
We have imposed Griffith’s boundary conditions~conserva-
tion of current! and single valuedness of the wave functio
at the junctions. After calculating different transmission a
reflection coefficients we substitute them back into Eqs.~2!
and~3! to get the analytical expressions for the conductan
gB andgi . However, the analytical expressions are too lo
to be reproduced here. In the following we present our
sults graphically.

In Fig. 3 we plot the dimensionless conductanceg ~dotted
line! and gB ~solid line! as a function of the dimensionles
flux a52pf/f0, where f05hc/e is the elementary flux
quantum. We choosekL55, l /L50.15, p/L50.3, and
r /L50.55. Bothg andgB oscillate with a periodf0 and are
symmetric with respect to the field reversal as expected
the two-probe conductance. AsgB includes the effect of

-

FIG. 3. The plots ofg ~dotted line! and gB ~solid line! vs
a52pf/f0 .
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dephasing due to an additional voltage probe, the ampli
of oscillations ingB is smaller than that observed forg, the
phase coherent conductance. This is expected from the
that inelastic effects reduce the amplitude of conducta
oscillations~or interference effects!.7

In Fig. 4 we plotg ~dotted line! and gi ~solid line! as a

FIG. 4. The plots ofg ~dotted line! and gi ~solid line! vs
a52pf/f0.
de

fact
ce

function of a. The length parameter values are the same
used for Fig. 3. The strength of the imaginary potential
evaluatinggi is taken to beVL53. Both g andgi are peri-
odic in flux with a periodf0. The amplitude of oscillations
in gi is smaller than that observed forg. However,gi is
asymmetric in field reversal in contrast to the expected
havior. This also follows from our analysis of the symm
tries of the transmission and reflection coefficients under
field reversal in the presence of complex potential (iV),
namely,T(V,f)ÞT(V,2f) andR(V,f)5R(V,2f).

In conclusion we have compared two phenomenologi
models for dephasing in mesoscopic systems in the prese
of Aharonov-Bohm flux. The model due to Bu¨ttiker based on
addition of voltage probe to simulate inelastic scatteri
leads to the two-probe conductance that is symmetric
magnetic field. On the other hand the model based on the
of the complex potential leads to two-probe conductan
which is asymmetric in the magnetic field, contrary to th
expectation based on experimental as well as theoretical
dictions. We would also like to emphasize that the use
imaginary potentials is justified in the case of optical wa
propagation in an absorbing or a lasing medium~random
dielectric media!. In the electromagnetic wave propagatio
the bosonic nature of light quanta~photons! brings in both
features, namely, amplification as well as attenuation as
photon number is not conserved.25–27
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14M. Büttiker, Phys. Rev. B33, 3020~1986!.
15A. D. Stone and P. A. Lee, Phys. Rev. Lett.54, 1196~1985!.
16Y. Zohta and H. Ezawa, J. Appl. Phys.72, 3584~1992!.
17P. W. Brouwer and C. W. J. Beenakker, Phys. Rev. B55, 4695

~1997!.
18A. Rubio and N. Kumar, Phys. Rev. B47, 2420~1993!.
19A. M. Jayannavar, Phys. Rev. B49, 14 718~1994!.
20Abhijit Kar Gupta and A. M. Jayannavar, Phys. Rev. B52, 4156

~1995!.
21A. M. Jayannavar and P. S. Deo, Phys. Rev. B49, 13 685~1994!;

Mod. Phys. Lett. B8, 301 ~1994!; Phys. Rev. B51, 10 175
~1995!.

22P. S. Deo and A. M. Jayannavar, Phys. Rev. B50, 11 629~1994!;
Mod. Phys. Lett. B7, 1045~1993!.

23T. P. Pareek, P. S. Deo, and A. M. Jayannavar, Phys. Rev. B52,
14 657~1995!.

24T. P. Pareek and A. M. Jayannavar, Phys. Rev. B54, 6376
~1996!.

25P. Pradhan and N. Kumar, Phys. Rev. B50, 9644~1994!.
26Z. Q. Zhang, Phys. Rev. B52, 7960~1995!.
27Sandeep K. Joshi and A. M. Jayannavar, Phys. Rev. B56, 12 038

~1997!.


