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Ground-state energy of the Hubbard model: Cluster-perturbative results

Maciej M. Maśka*
Department of Theoretical Physics, Silesian University, Uniwersytecka 4, 40–007 Katowice, Poland

~Received 7 October 1997!

When electron correlations are important it is often necessary to use numerical methods to solve the
Hamiltonian for a finite system~cluster! ‘‘exactly.’’ Unfortunately, such methods are restricted to small
systems. We propose to combine the ‘‘exact’’ numerical diagonalization for small clusters with the perturba-
tive calculations to take into account the intracluster as well as intercluster interactions.
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I. INTRODUCTION

Since the discovery of high–Tc superconductivity,1 the
behavior of strongly correlated electronic systems remain
central problem in contemporary condensed-matter phys
In spite of considerable effort devoted to the analysis of th
systems, it is clear that the necessary theoretical skills
tools to deal with strongly correlated fermion systems
lacking. There are no exact solutions except in one dim
sion ~e.g., thet-J model is exactly solved by the Bethe
ansatz method forJ52t2!, and approximate analytic tech
niques have been known to lead to qualitatively incorr
predictions. The fundamental obstacle which appears in
analytical approaches is the difficulty in handling the stro
correlations in a satisfactory way. Moreover, in mean-fi
calculations it is necessary to makea priori assumptions
about the ground-state properties.

Therefore, most work on models with strongly correlat
electrons has been done using numerical techniques. Am
others, variational calculations,3 various realizations of quan
tum Monte Carlo simulations,4 and an exact diagonalizatio
of small systems5 are used to obtain the properties of the
models.

Unfortunately, numerical methods also meet some ser
problems. The main difficulty in the quantum Monte Car
calculations is the famous sign problem, which reduces
usage of this method at low temperatures and at the ph
cally interesting densities. The minus sign problem does
arise in the diagonalization procedures, based on the Lan¨s
method6 and its modifications,7 where all quantities~static
and dynamical! can be computed from the ground state. R
gretfully, the Lanczo¨s technique is limited to small cluster
by the rapid increase of the size of the Hilbert space with
number sites. Typically the calculations are performed o
434 cluster with periodic boundary conditions for one ho
two holes, or an arbitrary number of holes. With respect
the infinite lattice, this corresponds to an investigation
only a small number of points in the Brillouin zone. Ther
fore, the overall shapes of the energy bands cannot be d
mined precisely, and the influence of the cluster size on
eigenstates of the Hamiltonian can be important. The dif
ences between results obtained for a finite cluster, and
values for an infinite lattice, are known asfinite-size correc-
tions. It is often difficult to extrapolate the finite-cluster da
to the thermodynamic limit, and in certain cases it can le
570163-1829/98/57~15!/8755~4!/$15.00
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to erroneous theoretical predictions. The corrections often
not decrease monotonically with the increase of the num
of sites, mainly due to varying cluster geometries. Thus
estimation of finite-size corrections by direct comparison
clusters of different sizes is difficult. Moreover, often on
cannot compare different clusters with the same filling,
the number of sites as well as the number of electrons
integers.

There are various methods of minimizing the finite-si
corrections. The most obvious one, the increase of the siz
the cluster, is strongly limited by the available time a
memory of present-day computers. However, there h
been some recent attempts to attack this problem, e.g.,
diagonalization of the Hamiltonian in a reduced Hilbe
space.8 Another approach to finite-size effects is based o
specific treatment of boundary conditions. Usually, when
hopping term in the Hamiltonian makes a particular jump o
of the cluster, it is mapped back into the cluster through
translation without any change of the wave function. Ho
ever, in order to reduce the finite-size effects, twisted bou
ary conditions are sometimes used, i.e., the phase of
wave function is changed when the electron hops from
site to another. Then the properties of a larger system ma
found by forming an average over smaller systems with d
ferent boundary conditions.9 In another method the boundar
conditions are randomized by varying the magnitude rat
than the phase of the ‘‘boundary’’ hopping.

The aim of the present work is to evaluate the groun
state energy of the Hubbard Hamiltonian by employing
another approach to the cluster calculations. Instead of
plying some kind of boundary condition, we propose
mimic the infinite lattice by treating the electron hoppin
into or from a cluster as a small perturbation, and carry
out the summation of the perturbation series.

II. FUNDAMENTALS OF THE
CLUSTER-PERTURBATIVE „CP… METHOD

The idea of the present approach is to divide the infin
lattice into small exactly soluble clusters, and consider
transfer between the clusters as a perturbation~see Fig. 1!.
The Hamiltonian of the system consists of two parts:

Ĥ5Ĥcl1V̂, ~1!
8755 © 1998 The American Physical Society
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where

Ĥcl5(
I 51

N

ĤI ~2!

is the sum of the cluster Hamiltonians, and

V̂5(̂
IJ&

V̂IJ ~3!

describes the hopping between nearest-neighboring clus
N denotes the number of clusters.

The cluster HamiltonianĤI(I 51,...,N) operates on the
I th cluster’s Hilbert spaceHI(ĤI :HI→HI) and the Hilbert
space of the whole system is a direct product of the clust
Hilbert spacesH5H1^H2^ • • • ^HN . Taking the size of
the clusters relevant for numerical diagonalization, we
able to separately solve the cluster Hamiltonians. Now
order to model the infinite lattice, we turn on the interclus
electronic transfer. The operator that moves electrons
tween clustersI andJ (IandJ are neighboring clusters! op-
erates in a direct product of the Hilbert spaces of clusteI
andJ:

V̂IJ :HI ^HJ→HI ^HJ . ~4!

Assuming that the intercluster hopping energy is small co
pared to the distances between levels in the cluster’s s
trum, we can perform perturbation calculations, where
states of the HamiltonianĤcl will be the zeroth-order ap
proximation.

Let $uf i
I&%,i 50,1, . . . denote the set of states of theI th

cluster, and $e i% the corresponding energy leve
(e0<e1<e2< • • • ). Then

uF$ i 1 ,i 2 ,..,iN %&5uf i 1
1 & ^ uf i 2

2 & ^ . . . ^ uf iN
N & ~5!

is an eigenstate ofĤcl corresponding to the energy

E$ i 1 ,i 2 ,..,iN %5e i 1
1e i 2

1¯1e iN
. ~6!

The corrections to the ground-state energyE0 in the nth
order of the perturbationV̂ are calculated summing the Gold
stone diagrams

FIG. 1. The lattice divided into clusters.Ĥcl are the cluster

Hamiltonians, andV̂ is the terms describing the hopping betwe
clusters.
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DEn5^F0uV̂S 1

E02Ĥcl

V̂D n21

uF0&conn, n51,2, . . . ,

~7!

where uF0&[uf0
1& ^ uf0

2& ^ • • • ^ uf0
N& is the ground state

of the HamiltonianĤcl .

III. APPLICATION OF THE CP FORMALISM TO
TWO-DIMENSIONAL HUBBARD MODEL

On a simple square lattice,DEn vanishes for oddn since
the perturbationV̂ transfers an electron from one cluster to
neighboring one, and it needs an even number of jump
return the electron to the outgoing cluster creating the gro
state again. The lowest-order nonvanishing contribution
the ground-state energyDE2 is given by

DE25 (
i 1 ,i 2 ,..,iN

8
z ^F0uV̂uF$ i 1 ,i 2 ,..,iN %& z2

E02E$ i 1 ,i 2 ,..,iN %
, ~8!

where the prime means summing over all states exclud
the ground state. In the case of a simple square lattice,
symmetry of the lattice allows to simplify this expressio
leading to

DE25 2N(
i 1 ,i 2

8
z^F$0,0%uV̂12uF$ i 1 ,i 2%& z2

2 e02e i 1
2e i 2

. ~9!

The operatorV̂12 is given by

V̂1252t(
s

~a3,1,s
† a4,2,s1a2,1,s

† a1,2,s!1H.c., ~10!

where we have used two indices for the creation and ann
lation operators: the first indicates the position of a s
within the cluster, and the second index is the number of
cluster. In Fig. 2 the solid lines connecting clusters 1 an
represent different terms of the operatorV̂12 @Eq. ~10!#.

The matrix element̂F$0,0%uV̂12uF$ i 1 ,i 2%& can be expressed

in terms of ^f0ual ,suf i& and ^f0ual ,s
† uf i& (s5↑,↓; l

51,..,M, whereM is the number of sites in the cluster!,
whereal ,s(al ,s

† ) creates~annihilates! an electron with spins
on the l th site in the cluster. Thus all the calculations r
quired to evaluate the second-order correction are perfor
within Hilbert space of a size equal to the size of Hilbe
space of a single cluster.

FIG. 2. The hopping term which transfers electrons betwe

clusters 1 and 2 (V̂12).
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In the same manner, we are able to take into account
fourth-order correctionDE4. While the computational poten
tial required to perform such calculations is much larg
~mainly due to a summation over a large number of interm
diate states!, the Hilbert space is still the same as in t
zeroth order. The general formula for the fourth-order c
rection is too complicated to be presented here. Instead,
3 shows all the diagrams that contribute toDE4 in the case
of a simple square lattice.

The lines between clustersI andJ represents a perturba
tion V̂IJ that moves an electron between these clusters~in
both directions, fromI to J as well as fromJ to I ). The
interaction in Eq.~7! operates on the ground state, and a
result also produces the ground state. Therefore, only
grams of the forms of loops contribute to the ground-st
energy and, for example, the following diagram does
appear in the fourth order:h→h→h→h→h. The sim-
plest diagram~a! gives the contribution which can be writte
explicitly as

DE4
a5GA (

i 1 ,i 2
(
j 1 , j 2

(
k1 ,k2

^F$0,0%uV̂12uF$ i 1 ,i 2%&

3^F$ i 1 ,i 2%uV̂12uF$ j 1 , j 2%&

3
^F$ j 1 , j 2%uV̂12uF$k1 ,k2%&^F$k1 ,k2%uV̂12uF$0,0%&

~2e02e i 1
2e i 2

!~2e02e j 1
2e j 2

!~2e02ek1
2ek2

!
.

~11!

A contribution from each diagram is multiplied by the fact
which reflects the symmetry of the diagram and the latti
for example, there are four diagrams of type a~obtained by
rotating diagram a around site 1 by 90°!, and each one con
sists of two sites, so thatGa52.

Equations for contributions from other diagrams are m
complicated; for example, diagram b includes the followi
processes:

1→2,2→3,3→2,2→1, 1→2,3→2,2→3,2→1,

2→1,2→3,3→2,1→2, 2→1,3→2,2→3,1→2,

1→2,2→3,2→1,3→2, 1→2,3→2,2→1,2→3,

2→1,2→3,1→2,3→2, 2→2,3→2,1→2,2→3,

whereI→J describes the hopping from clusterI to clusterJ.

FIG. 3. The diagrams which contribute to the fourth-order c
rections.
he

r
-

-
ig.

a
a-
e
t

;

e

The summation over all intermediate states is a difficu
the most time-consuming task. In order to reduce the co
putational effort, we have explicitly exploited various sym
metries of the model. For example, calculating the ma
element^F$ i 1 ,i 2%uV̂12uF$ j 1 , j 2%&, conservation of the numbe

of particles reduces the subspace of statesuF$ j 1 , j 2%& to

(HN( i 1)11^HN( i 2)21) % (HN( i 1)21^HN( i 2)11), where HN

denotes a subspace of the cluster’s Hilbert space withN
electrons, andN(km) is the number of electrons in thekth
state on themth cluster.

IV. RESULTS AND DISCUSSION

The second- and fourth-order corrections to the grou
state energy were calculated for different values ofU/t ~for
n51). The results, presented in Figs. 4 and 5, are compa
with the energies obtained by exact diagonalization of
Hamiltonian for a 434 system with periodic boundar
conditions.10 In Ref. 10 the Hubbard Hamiltonian is writte
in particle-hole symmetric form, so the ground-state energ

-

FIG. 4. The second- and fourth-order corrections to the grou
state energy.

FIG. 5. The comparison of ground-state energy calculated u
the CP approach with the result of Lanczo¨s diagonalization of a
434 system.
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for n51 are shifted byU/4 ~per site!.
Generally, apart from the region ofU/t<1, where the

perturbation series does not converge, the results from b
these approaches are in agreement. The calculations
performed on IBM RS/6000 workstations, whereas diagon
ization of 434 clusters requires much larger computing f
cilities ~see, e.g., Ref. 5!. The advantage of the CP approac
comparing to the exact diagonalization of larger systems
the lack of memory limitations. With the increase of th
order only the computational time increases, whereas the
of the diagonalized matrices is constant. Of course, t
method, in contradiction to the standard Lanczo¨s approach,
does not allow a calculation of the dynamical properties o
n

oth
ere
l-
-
,
is

e
ize
is

a

given Hamiltonian. The formalism can be directly applie
systems described by other than Hubbard Hamiltonians
the t-J model.

The most attractive application of the CP formalism is
study of the hole-hole effective interaction. Performing
culations for a system with one and two holes in one clu
while all the other clusters are withn51, we can calcula
the two-hole binding energy:D5E ~two holes! 1E022 E
~one hole!. Work in this direction is in progress. However
the case of a doped cluster we have to perform the ca
tions for a degenerated spectrum, where the CPU
memory usage is much larger. This scheme can be di
extended to a study of the nature of ground states o
undoped and doped systems.
a,
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