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Ground-state energy of the Hubbard model: Cluster-perturbative results
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When electron correlations are important it is often necessary to use numerical methods to solve the
Hamiltonian for a finite systeniclustey “exactly.” Unfortunately, such methods are restricted to small
systems. We propose to combine the “exact” numerical diagonalization for small clusters with the perturba-
tive calculations to take into account the intracluster as well as intercluster interactions.
[S0163-182698)03915-7

[. INTRODUCTION to erroneous theoretical predictions. The corrections often do
not decrease monotonically with the increase of the number
Since the discovery of highF; superconductivity, the  of sites, mainly due to varying cluster geometries. Thus the
behavior of strongly correlated electronic systems remains &stimation of finite-size corrections by direct comparison of
central problem in contemporary condensed-matter physic§.|USteI‘S of different sizes is difficult. Moreover, often one
In spite of considerable effort devoted to the analysis of thesgéannot compare different clusters with the same filling, as
systems, it is clear that the necessary theoretical skills anée number of sites as well as the number of electrons are
tools to deal with strongly correlated fermion systems aréntegers.
lacking. There are no exact solutions except in one dimen- There are various methods of minimizing the finite-size
sion (e.g., thet-J model is exactly solved by the Bethe- corrections. The most obvious one, the increase of the size of
ansatz method fod=2t?), and approximate analytic tech- the cluster, is strongly limited by the available time and
niques have been known to lead to qualitatively incorrectmnemory of present-day computers. However, there have
predictions. The fundamental obstacle which appears in theeen some recent attempts to attack this problem, e.g., the
analytical approaches is the difficulty in handling the strongdiagonalization of the Hamiltonian in a reduced Hilbert
correlations in a satisfactory way. Moreover, in mean-fieldSPace. Another approach to finite-size effects is based on a
calculations it is necessary to malmpriori assumptions SDECiﬁC treatment of boundary conditions. Usually, when the
about the ground-state properties. hopping term in the Hamiltonian makes a particular jump out
Therefore, most work on models with strongly correlatedof the cluster, it is mapped back into the cluster through a
electrons has been done using numerical techniques. Amoriganslation without any change of the wave function. How-
Others, variational Ca|cu|atioﬁ3(arious realizations of quan- ever, in order to reduce the finite-size effects, twisted bound-
tum Monte Carlo simulation$and an exact diagonalization ary conditions are sometimes used, i.e., the phase of the
of small systentsare used to obtain the properties of thesewave function is changed when the electron hops from one
models. site to another. Then the properties of a larger system may be
Unfortunately, numerical methods also meet some seriouf®und by forming an average over smaller systems with dif-
problems. The main difficulty in the quantum Monte Carlo ferent boundary conditiorsin another method the boundary
calculations is the famous sign problem, which reduces th€onditions are randomized by varying the magnitude rather
usage of this method at low temperatures and at the physthan the phase of the “boundary” hopping.
cally interesting densities. The minus sign problem does not The aim of the present work is to evaluate the ground-
arise in the diagonalization procedures, based on the Lanczétate energy of the Hubbard Hamiltonian by employing yet
method and its modification$,where all quantitiegstatic ~ another approach to the cluster calculations. Instead of ap-
and dynamicalcan be computed from the ground state. Re-Plying some kind of boundary condition, we propose to
gretfully, the Lancze technique is limited to small clusters mimic the infinite lattice by treating the electron hopping
by the rapid increase of the size of the Hilbert space with thénto or from a cluster as a small perturbation, and carrying
number sites. Typically the calculations are performed on #ut the summation of the perturbation series.
4X 4 cluster with periodic boundary conditions for one hole,
two holes, or an arbitrary number of holes. With respect to
the infinite lattice, this corresponds to an investigation of Il. FUNDAMENTALS OF THE
only a small number of points in the Brillouin zone. There- CLUSTER-PERTURBATIVE (CP) METHOD

fore, the overall shapes of the energy bands cannot be deter- The idea of the present approach is to divide the infinite
mined precisely, and the influence of the cluster size on theyttice into small exactly soluble clusters, and consider the

eigenstates of the Hamiltonian can be important. The differtransfer between the clusters as a perturbatsee Fig. L
ences between results obtained for a finite cluster, and itfhe Hamiltonian of the system consists of two parts:

values for an infinite lattice, are known #site-size correc-
tions It is often difficult to extrapolate the finite-cluster data o
to the thermodynamic limit, and in certain cases it can lead H=Hgt+V, (1)
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FIG. 1. The lattice divided into clustersﬂd are the cluster

Hamiltonians, andv is the terms describing the hopping between

clusters.

where

N
Ho= 2 H) 7
is the sum of the cluster Hamiltonians, and
V=> Vv, 3

(19)

BRIEF REPORTS

FIG. 2. The hopping term which transfers electrons between
clusters 1 and 2\(;,).
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Ill. APPLICATION OF THE CP FORMALISM TO
TWO-DIMENSIONAL HUBBARD MODEL

On a simple square latticA E,, vanishes for oddh since

the perturbatiorV/ transfers an electron from one cluster to a
neighboring one, and it needs an even number of jumps to

describes the hopping between nearest-neighboring clustef&turn the electron to the outgoing cluster creating the ground

N denotes the number of clusters.
The cluster Hamiltonian:h(lzl,...,/\/) operates on the
Ith cluster's Hilbert spacé,(H,:H,—H,) and the Hilbert

space of the whole system is a direct product of the cluster’s

Hilbert spaces{=H;®H,® - - - ® H,,. Taking the size of

state again. The lowest-order nonvanishing contribution to
the ground-state energyE, is given by

|<CDO|\7|(I){i1,i2,..,iN}>|2
Eo=Efii,,.iy

o=

AE >

ERPRY

: ®

the clusters relevant for numerical diagonalization, we are

able to separately solve the cluster Hamiltonians. Now, irwhere the prime means summing over all states excluding
order to model the infinite lattice, we turn on the interclusterthe ground state. In the case of a simple square lattice, the
electronic transfer. The operator that moves electrons beymmetry of the lattice allows to simplify this expression,
tween cluster$ andJ (landJ are neighboring clusterep-  leading to

erates in a direct product of the Hilbert spaces of clusters

andJ: KPi00lVid @y, i)

2€y— €, €

AE;= 2/\/'2,

i1,

©)

2

\,\/|\]:H|®HJ‘>H|®HJ- (4)

Assuming that the intercluster hopping energy is small com- The operatoVy, is given by
pared to the distances between levels in the cluster's spec-
trum, we can perform perturbation calculations, where the
states of the Hamiltonialﬁ-ld will be the zeroth-order ap-
proximation.

Let {|¢!)},i=0,1,... denote the set of states of thth
cluster, and {¢} the corresponding energy levels
(eo<e€1=<e€y<---). Then

Vio=—t> (a)1,842,% a5 1,810, +H.C., (10
g

where we have used two indices for the creation and annihi-
lation operators: the first indicates the position of a site
within the cluster, and the second index is the number of the
cluster. In Fig. 2 the solid lines connecting clusters 1 and 2

represent different terms of the operatop, [Eq. (10)].

R S o L P L1 E7 S B ) , ;
’ ’ The matrix elemen¢®{o,0}|vlz|d){il,iz}) can be expressed
is an eigenstate dfl, corresponding to the energy in terms of (ol |¢i) and (golal ) (o=1,1;l
=1,..M, where M is the number of sites in the cluster
Efiy iy i =€, Te, T te . (6)  wherea, ,(a,) creategannihilate$ an electron with spinr

The corrections to the ground-state eneigy in the nth

order of the perturbatiol are calculated summing the Gold-
stone diagrams

on thelth site in the cluster. Thus all the calculations re-
quired to evaluate the second-order correction are performed
within Hilbert space of a size equal to the size of Hilbert
space of a single cluster.
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FIG. 3. The diagrams which contribute to the fourth-order cor-
rections.

AE,/Nt

In the same manner, we are able to take into account the
fourth-order correctiord E,. While the computational poten-
tial required to perform such calculations is much larger . . .
(mainly due to a summation over a large number of interme- 0 5 llj(/’t 15 20
diate states the Hilbert space is still the same as in the
zeroth order. The general formula for the fourth-order cor- FIG. 4. The second- and fourth-order corrections to the ground-
rection is too complicated to be presented here. Instead, Figtate energy.

3 shows all the diagrams that contributeA&, in the case
of a simple square lattice. The summation over all intermediate states is a difficult,
The lines between clustetsandJ represents a perturba- the most time-consuming task. In order to reduce the com-

tion V,; that moves an electron between these clusiers Putational effort, we have explicitly exploited various sym-
both directions, from to J as well as fromJ to I). The  Metries of the model. For example, calculating the matrix

interaction in Eq.7) operates on the ground state, and as aelement(CI){ilYi2}|\712|<1>{j1,12}>, conservation of the number
result aI?ohprc;duces :hle ground Stl;':lte- Therr]efore, 03')’ diggf particles reduces the subspace of sta@s ;) to
grams of the forms of loops contribute to the ground-stat ‘ _ . . ’
energy and, for example, the following diagram does no%HN('l)”@HN('Z)_l)@(HN('l)_l@)HNf'Z)”.)' where Tin
appear in the fourth ordef]—[——[—[. The sim- denotes a subspace of the cluster’'s Hilbert space With

plest diagrania) gives the contribution which can be written €l€ctrons, andN(ky,) is the number of electrons in thh
explicitly as state on themth cluster.

AE2=FA.E E E <(D{0,O}|V12|(D{il,i2}> IV. RESULTS AND DISCUSSION
"1z J12 kake The second- and fourth-order corrections to the ground-
state energy were calculated for different valuedJéf (for
n=1). The results, presented in Figs. 4 and 5, are compared
with the energies obtained by exact diagonalization of the
Hamiltonian for a 4<4 system with periodic boundary
conditions®® In Ref. 10 the Hubbard Hamiltonian is written

in particle-hole symmetric form, so the ground-state energies

X(Dyi iy Vid P i)

(@ ipV1d P i Py it Vid Prog)

X .
(2e0— €, —€,)(2€0— €j, — €],)(2€0— €, — €,)

11
A contribution from each diagram is multiplied by the factor 1% —=
which reflects the symmetry of the diagram and the lattice; ~
. . =20 r ~
for example, there are four diagrams of typéoatained by ~ RN
rotating diagram a around site 1 by 90and each one con- 25| T~ AN
sists of two sites, so thdt,=2. SN
Equations for contributions from other diagrams are more. -30 ¢ AN
complicated; for example, diagram b includes the following % AN
processes: W3S ~
~ \\
1— 2,2—> 3,3—> 2,2—> 1, 1— 2,3—> 2,2—> 3,2—> 1, T cluster 2x2 with 4" order corrections
s | T cluster 2x2 with 2" order corrections ~ \\
i — - cluster 2x2 with periodic b.c. ~ N
2—1,2-3,3-2,1-2, 2-13-2,2-3,1-2, — — cluster 4x4 with periodic b.c. A
_5'00,0 5.0 10.0 15.0 20.0

1—-2,2—-3,2—-1,3-2,

2—1,2—3,1-2,3-2,

wherel — J describes the hopping from clusteto clusterJ.

1-2,3-2,2—1,2—3,

2—2,3-2,1-2,2—3,

Uit

FIG. 5. The comparison of ground-state energy calculated using
the CP approach with the result of Lanszdiagonalization of a
4X 4 system.
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for n=1 are shifted byJ/4 (per sitg. given Hamiltonian. The formalism can be directly applied to
Generally, apart from the region d@d/t<1, where the Systems described by other than Hubbard Hamiltonians, e.g.,
perturbation series does not converge, the results from botiiet-J model. o o
these approaches are in agreement. The calculations were The most attractive application of the CP formalism is the
performed on IBM RS/6000 workstations, whereas diagonalStudy Of the hole-hole effective interaction. Performing cal-
ization of 4x 4 clusters requires much larger computing f5. Culations for a system with one and two holes in one cluster,

S while all the other clusters are with=1, we can calculate
cilities (;ee, e.g., Ref.)5The advaptage of the CP approach,.the two-hole binding energy\ =E (two holes +Ey— 2 E
comparing to the exact diagonalization of larger systems, igone hole. Work in this direction is in progress. However, in
the lack of memory limitations. With the increase of the the case of a doped cluster we have to perform the calcula-
order only the computational time increases, whereas the siafons for a degenerated spectrum, where the CPU and
of the diagonalized matrices is constant. Of course, thisnemory usage is much larger. This scheme can be directly
method, in contradiction to the standard Lar&approach, extended to a study of the nature of ground states of the
does not allow a calculation of the dynamical properties of aundoped and doped systems.
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