PHYSICAL REVIEW B VOLUME 57, NUMBER 15 15 APRIL 1998-|

Scalar-relativistic linear combinations of Gaussian-type-orbitals technique for crystalline solids

J. C. Boettger
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 1 December 1997

The first nonperturbative implementation of scalar relativity in an all-electron linear combinations of
Gaussian-type-orbitals methodology for crystalline solids is reported. Test calculations on fcc gold yield bulk
and one-electron properties that are indistinguishable from results obtained with other all-electron, scalar-
relativistic density-functional techniques. This development paves the way for joint cluster and crystalline
calculations on heavy-atom systems using a single all-electron, full-potential technique.
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The linear combinations of Gaussian-type-orbitals—fittingcompare. For this reason, it is not entirely clear at this time
function (LCGTO-FB technigue is routinely used to perform that the version of scalar relativity being used in the cluster
all-electron, full-potential, density-functional theoffpFT)  calculations is  directly = comparable  with  the
electronic-structure calculations on a wide range of systemsoelling-Harmort* implementation of scalar relativity that is
including isolated clusters of atomsne-dimensiona(1D)  used in most solid-state DFT codes.
periodic polymer chainé2D periodic films® and crystalline In the present work, the HR approximation has been used
solids? This ability to treat periodically extende@rystal- 0 implement scalar-relativity in an existing computer pro-
line) and localizedmoleculay systems on an equal footing 9ram(GTOFR (Ref. 4 designed to perform LCGTO-FF cal-
is one of the primary advantages of the LCGTO-FF methodeulations on crystalline solids and thin filmsToFFhas then
over other existing DFT electronic-structure techniques. Tdeen used to perform the first all-electron, scalar-relativistic
this extent, the LCGTO-FF method may be viewed as &CGTO calculation on a crystalline solid; golthu; Z
“universal” methodology that bridges the often wide gap =79. Since Au has been studied previously with other
between solid-state physics and quantum chemistry. There &galar-relativistic DFT electronic-structure techniqtfes?

a growing need for such a methodology, since many of théhe present results provide the first direct comparison be-
systems that are of the greatest current technological intere&¥een the HR and Koelling-Harmon formulations of scalar-
do not lie entirely within the scope of either discipline and relativity, to our knowledge. This work thus represents an
may be best investigated with an algorithmically consistengssential step in the development of an all-electron, full-
combination of local and extended calculations; e.g., nanoPotential electronic structure technique capable of treating
structures on a surface, heterogeneous catalysts, etc. heavy-atom clusters and crystalline solids on an equal foot-

The value of the LCGTO-FF technique as a “universal” INg.

DFT electronic-structure methodology has been somewhat The development of the scalar-relativistic DFT methodol-
abridged thus far by the absence of any stable technique f&®9y used by HR(Ref. § begins with the four-component
incorporating relativistic effects during calculations on sys-Dirac-Kohn-Sham(DKS) equations?

tems that include heavy atomsThis shortcoming, which @

afflicts nearly all of the fixed-basis-set methods commonly hoksti=[(ca-p+Bmc) +veili= €, (1)
used in quantum chemistry, has long provided one of th‘?/vhere
great challenges facing computational chemistsd those
solid-state physicists who employ similar techniquesl-

though numerous strategies have been suggested over the
years for incorporating relativistic effects into all-electronis the effective one-electron potential formed from the
fixed-basis-set calculatiodsmost practical calculations to nuclear potentiad,,, the classical electronic Coulomb poten-
date have been forced to rely on either perturbation theory dial v., and the DFT exchange-correlati¢XC) potential
some form of relativistic pseudopotential. Uy The eigenvalues of the DKS equations are unbounded,

A major breakthrough on this venerable problem occurredibove and below, since they include both electron and posi-
recently when Haerlen and Rsctf (HR) demonstrated the tron degrees of freedom. Therefore, any attempt to solve the
feasibility of carrying out scalar-relativistic LCGTO-FF cal- DKS equations variationally will lead to the well-known
culations on heavy-atom clusters using an “incomplete” “variational collapse” problem, unless the freedom of the
Douglas-Kroll-Hes§™® transformation; hereafter, the HR ap- basis set used is carefully restricte@his difficulty can be
proximation. Since that time, the scalar-relativistic circumvented by performing some unitary transformation on
LCGTO-FF cluster technigue has been applied to a numbehe DKS equations that approximately decouples the electron
of systems containing heavy atoms with apparent su¢fess.and positron degrees of freedom. For example, it is well
Verification of the validity of those results has been hin-known that the DKS equations can be decoupled to arbitrary
dered, however, by the absence of previous all-electron, fullerder in (p/mc)? via a series of Foldy-Wouthuys€ntrans-
potential, scalar relativistic DFT calculations with which to formations. Unfortunately, the Foldy-Wouthuysen procedure

Vefi=UnF Vet Uyes 2
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produces operators that are highly singular at the nucleusised to build the more complicated matrix elements needed,
and, hence, not amenable to an all-electron variational solisuch asA,RwvRyA,. Finally, all of the matrices are back-
tion. Traditional scalar-relativistic solid-state electronic- transformed to the original GTO representation.
structure techniqué$*® avoid these difficulties by first ob- The most serious drawback to the procedure described
taining the core orbitals as numerical solutions to aghove is that the transformations for the two-electron inte-
spherically symmetric, quasiatomic, differential equation andyrals are very demanding computationally. HR found that
then requiring the valence orbitals to be orthogonal to thosehey could achieve a substantial reduction in the resources
core states, effectively restricting their variational freedomyequired for their calculations by using an “incomplete”
near the nucleus. Such a solution is not feasible for a fixedpouglas-Kroll-Hess transformation which only affects the
basis-set methodologlike LCGTO-FF that treats the core kinetic-energy and nuclear potential terms in the DKS equa-
and valence electrons on an equal footing. _ tions. They also dropped all terms in the resulting EFP equa-
An alternative approach, which does not generate singulajon that involvedp X v ,p. A recent series of test calculations
operators, uses the Douglas-Kroll-Hess transformét?olm on isolated atont§ found that the HR approximation pro-
decouple the DKS equations to second order in the externalices one-electron eigenvalues for the chemically active va-
field ves. This procedure yields the two-component, jence states that differ little from those obtained with the

external-field projectofEFP equations complete scalar relativistic Douglas-Kroll-Hess transforma-
tion.
e = € i ) i i ivity i
The present implementation of HR scalar-relativity in

GTOFF was tested by carrying out a series of nonrelativistic

(2) — _1 2 2
hege= EP+AP[U9ff+ RPUEffRP]AP 2(EpW +WTE, and scalar-relativistic calculations on fcc Au. The calcula-

+2WEW), tion_s employgd a very rich 206p12d8f primitive o_rbital

basis set, derived from Gropeffs19s14p10d5f atomic ba-

where sis, which was very loosely contracted intos13p9d4f
E, = c(p2+ m?c?) 2 @) scalar-relativistic and nonrelativistic orbital basis sets using
p ' coefficients obtained from paramagnetic atom calculations.

E +ma]12 The electron density was fitted variationally with &8ype
A= p—} , (5 GTO'’s, while the XC integral kernels were least squares fit-

2E, ted with 15s-type GTO’s?! The local-density approximation

(LDA) XC parametrization of Hedin and Lundqtwas

Rp=Kpo-p, ©®) employed for all of the calculations. All Brillouin zon®2)

szc/(Eermcz), @ integrations were carried out on a uniformrk8x8 mesh

with 29 irreduciblek points using a Gaussian broadening of
andW can be expressed in momentum space as 20 m Ry. Test calculations using a sparsex @<6 mesh
with 16 irreducible points indicate that the present results are
well converged with respect to the BZ mesh density. The
' (8) self-consistent-field cycle was iterated until the total energy
was converged to less than 0.01 m Ry.
wherevew(p,p’) is the momentum-space representation of Total energies and electronic band structures were calcu-
ver- As written, the EFP equations are fully relativistic, in lated scalar relativistically at six lattice constants ranging
the sense that they include mass-velocity, Darwin, and spirfrom 7.4 to 7.9 bohr, and nonrelativistically at six lattice
orbit coupling corrections. Throughout the remainder of thisconstants ranging from 7.8 to 8.3 bohr. In each case, cohe-
work, it will be assumed that all of the spin-orbit coupling sive energies were obtained by subtracting the total energy of
terms in Eq.(3) are neglected to obtain the scalar-relativistican isolated, spin-polarized atom. The cohesive energies were
EFP approximation(A detailed discussion of the separation then fitted with a modified version of the universal equation
of the relativistic corrections into scalar-relativistic and spin-of staté® to obtain the zero-pressure lattice constagtbulk
orbit coupling terms has been presented elsewlfesmyd  modulusB, and pressure derivative of the bulk moduBis
will not be repeated here. for fcc Au. The standard deviations for the fits were both less
Analytical evaluation of the GTO matrix elements for the than 4 u Ry, demonstrating the good numerical stability
momentum-space operators in Eg) has not proven to be achieved withcToFr
practical thus far. This difficulty can be circumvented by The nonrelativistic and scalar-relativistic LCGTO-FF re-
using an approximate momentum-space representation obults obtained here are compared in Table | with results from
tained by diagonalizing the nonrelativistic kinetic-energythree previous all-electron, full-potential scalar-relativistic
matrix1® First, the matrix elements op-vp and pXvp  calculations using either the full-potential linearized
(which are required even for scalar-relativistic EFP calculaaugmented-plane-wavé~LAPW) method®®® or the full-
tions are evaluated along with the usual nonrelativistic ma-potential linearized muffin-tin-orbitalFLMTO) method*.
trix elements. Next, the nonrelativistic kinetic-energy matrix Also shown are the experimental values listed in Ref. 13.
is diagonalized to obtain approximate eigenfunctionp®f Comparison of the nonrelativistic and scalar-relativistic
and all the matrices are transformed to this approximate md-CGTO-FF results reveals the large impact that relativity
mentum space. Since the operathys, A,, andK, are di- has on the lattice consta(f%) and bulk modulug57%) of
agonal in momentum space, they can be obtained triviallfcc Au. In comparison, the differences between the various
from the p? eigenvalues. These basic components are thescalar-relativistic results in Table | are quite small. In fact,

Ueff(p:p/)

W, ,,=A,(R,—R r)A ’
p.p P( p p p Ep+Ep/
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TABLE |. The lattice constantdy; bohn, bulk modulus B;
GP3, and pressure derivative of the bulk moduliss ) for fcc Au
obtained here with nonrelativisti®NR) and scalar-relativisti¢SR)

8745

TABLE 1. Band energies for fcc Au from nonrelativistitNR)
and scalar-relativisti€SR) LCGTO-FF calculationsgd=7.70 bohy
are compared with results from a scalar-relativistic APW calcula-

LCGTO-FF calculations are compared with previous all-electrontion (Ref. 12. All-energies are given in eV relative to the Fermi
full-potential scalar-relativistic calculations and experimental val-energy. Eg,, bottom of thes band;Ey,, bottom of thed band;

ues quoted by Ref. 13.

Eg¢, top of thed band)

Source ag B B’ Eqp Edb Eqgt

NR LCGTO-FF Present 8.077 112 5.62 NR LCGTO-FF 8.35 8.11 3.10

SR LCGTO-FF Present 7.633 196 5.49 SR LCGTO-FF 10.01 7.44 1.59
SR FLAPW Ref. 13 7.66 198 SR APW 9.92 7.22 1.33

SR FLMTO Ref. 14 7.68 193

SR FLAPW Ref. 15 767 205 structure is a more than 2-eV lowering of thdand relative

_ to the bottom of thel bands. In addition, the overall width of

Experiment Ref. 13 7.67 172

the 0.4-0.6% reduction in the LCGTO-FF lattice constant
relative to the other calculations may simply be due to th
substantially richer orbital basis set employed here. Th

present scalar-relativistic LCGTO-FF result fag exhibits

the expected LDA-induced lattice contraction relative to the

experimental value.

An additional nonrelativistic LCGTO-FF calculation was
carried out at a lattice constant of 7.7 bohr to allow a direct
comparison of the scalar-relativistic and nonrelativistic one
electron eigenvalues near the experimental equilibriu
Three particularly interesting locations in the occupied ban

structure of Au are the bottom of tleeband Egy,; atl'), the
bottom of thed bands Eqp,; atL or X), and the top of thel

bands Eg4;; at W); for a more detailed discussion of the
band structure of fcc Au, see Ref. 12. In Table Il the curren

t

thed bands is increased by more than 15% due to a relativ-
istic delocalization of thel states. The small differences be-
tween the two sets of scalar-relativistic results in Table Il are

do greater than would be expected given the differences be-
dween the methods used; full-potential LCGTO-FF vs

muffin-tin APW.

The results presented in Tables | and Il clearly demon-
strate that the HR scalar-relativistic LCGTO-FF technique,
as implemented iIrGTOFF, produces results that are nearly
indistinguishable from the results obtained with other all-
scalar-relativistic  DFT  electronic-structure
techniques?~1>The current results therefore provide support

electron,

4or the overall reliability of the heavy-atom cluster calcula-

ions that have already been carried out using the HR ap-
proximation. In addition, the HR approximation must now be
viewed as a viable, and fully independent, alternative to the
implementation of scalar relativity used in most other
solid-state electronic-structure codes. Based on these results,

nonrelativistic and scalar-relativistic LCGTO-FF results for it should be possible to carry out the first joint solid-state

these three band-energies, relative to the Fermi energy, are | qi : )
. . 22 " physics and quantum-chemistry calculations on heavy-atom
compared with results from an earlier scalar-relativistic

APW calculationt? (Unfortunately, the full-potential calcu- systems(including films and polymejsusing a single all-
lations _did not. list any eige,nvalues with which  to electron, full-potential electronic-structure technique.

compare:3~19 Once again, comparison of the nonrelativistic ~ Helpful communications with N. Rszh and S. B. Trickey
and scalar-relativistic results reveals large relativistic effectare gratefully acknowledged. This work was supported by

on fcc Au. The most important qualitative change in the bandhe U. S. Department of Energy.
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