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Scalar-relativistic linear combinations of Gaussian-type-orbitals technique for crystalline solids

J. C. Boettger
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 1 December 1997!

The first nonperturbative implementation of scalar relativity in an all-electron linear combinations of
Gaussian-type-orbitals methodology for crystalline solids is reported. Test calculations on fcc gold yield bulk
and one-electron properties that are indistinguishable from results obtained with other all-electron, scalar-
relativistic density-functional techniques. This development paves the way for joint cluster and crystalline
calculations on heavy-atom systems using a single all-electron, full-potential technique.
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The linear combinations of Gaussian-type-orbitals–fitt
function~LCGTO-FF! technique is routinely used to perform
all-electron, full-potential, density-functional theory~DFT!
electronic-structure calculations on a wide range of syste
including isolated clusters of atoms,1 one-dimensional~1D!
periodic polymer chains,2 2D periodic films,3 and crystalline
solids.4 This ability to treat periodically extended~crystal-
line! and localized~molecular! systems on an equal footin
is one of the primary advantages of the LCGTO-FF meth
over other existing DFT electronic-structure techniques.
this extent, the LCGTO-FF method may be viewed as
‘‘universal’’ methodology that bridges the often wide ga
between solid-state physics and quantum chemistry. The
a growing need for such a methodology, since many of
systems that are of the greatest current technological inte
do not lie entirely within the scope of either discipline a
may be best investigated with an algorithmically consist
combination of local and extended calculations; e.g., na
structures on a surface, heterogeneous catalysts, etc.

The value of the LCGTO-FF technique as a ‘‘universa
DFT electronic-structure methodology has been somew
abridged thus far by the absence of any stable technique
incorporating relativistic effects during calculations on sy
tems that include heavy atoms.5 This shortcoming, which
afflicts nearly all of the fixed-basis-set methods commo
used in quantum chemistry, has long provided one of
great challenges facing computational chemists~and those
solid-state physicists who employ similar techniques!. Al-
though numerous strategies have been suggested ove
years for incorporating relativistic effects into all-electro
fixed-basis-set calculations,5 most practical calculations to
date have been forced to rely on either perturbation theor
some form of relativistic pseudopotential.

A major breakthrough on this venerable problem occur
recently when Ha¨berlen and Ro¨sch6 ~HR! demonstrated the
feasibility of carrying out scalar-relativistic LCGTO-FF ca
culations on heavy-atom clusters using an ‘‘incomplet
Douglas-Kroll-Hess7–9 transformation; hereafter, the HR ap
proximation. Since that time, the scalar-relativis
LCGTO-FF cluster technique has been applied to a num
of systems containing heavy atoms with apparent succe10

Verification of the validity of those results has been h
dered, however, by the absence of previous all-electron,
potential, scalar relativistic DFT calculations with which
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compare. For this reason, it is not entirely clear at this ti
that the version of scalar relativity being used in the clus
calculations is directly comparable with th
Koelling-Harmon11 implementation of scalar relativity that i
used in most solid-state DFT codes.

In the present work, the HR approximation has been u
to implement scalar-relativity in an existing computer pr
gram ~GTOFF! ~Ref. 4! designed to perform LCGTO-FF ca
culations on crystalline solids and thin films.GTOFFhas then
been used to perform the first all-electron, scalar-relativis
LCGTO calculation on a crystalline solid; gold~Au; Z
579!. Since Au has been studied previously with oth
scalar-relativistic DFT electronic-structure techniques,12–15

the present results provide the first direct comparison
tween the HR and Koelling-Harmon formulations of scala
relativity, to our knowledge. This work thus represents
essential step in the development of an all-electron, f
potential electronic structure technique capable of trea
heavy-atom clusters and crystalline solids on an equal fo
ing.

The development of the scalar-relativistic DFT method
ogy used by HR~Ref. 6! begins with the four-componen
Dirac-Kohn-Sham~DKS! equations,16

hDKS
~4! c i5@~ca•p1bmc2!1veff#c i5e ic i , ~1!

where

veff5vn1vc1vxc , ~2!

is the effective one-electron potential formed from t
nuclear potentialvn , the classical electronic Coulomb pote
tial vc , and the DFT exchange-correlation~XC! potential
vxc . The eigenvalues of the DKS equations are unbound
above and below, since they include both electron and p
tron degrees of freedom. Therefore, any attempt to solve
DKS equations variationally will lead to the well-know
‘‘variational collapse’’ problem, unless the freedom of th
basis set used is carefully restricted.5 This difficulty can be
circumvented by performing some unitary transformation
the DKS equations that approximately decouples the elec
and positron degrees of freedom. For example, it is w
known that the DKS equations can be decoupled to arbitr
order in (p/mc)2 via a series of Foldy-Wouthuysen17 trans-
formations. Unfortunately, the Foldy-Wouthuysen proced
8743 © 1998 The American Physical Society
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8744 57BRIEF REPORTS
produces operators that are highly singular at the nucl
and, hence, not amenable to an all-electron variational s
tion. Traditional scalar-relativistic solid-state electron
structure techniques12–15 avoid these difficulties by first ob
taining the core orbitals as numerical solutions to
spherically symmetric, quasiatomic, differential equation a
then requiring the valence orbitals to be orthogonal to th
core states, effectively restricting their variational freedo
near the nucleus. Such a solution is not feasible for a fix
basis-set methodology~like LCGTO-FF! that treats the core
and valence electrons on an equal footing.

An alternative approach, which does not generate sing
operators, uses the Douglas-Kroll-Hess transformation7–9 to
decouple the DKS equations to second order in the exter
field veff . This procedure yields the two-componen
external-field projector~EFP! equations

hEFP
~2! f i5e if i , ~3!

hEFP
~2! 5Ep1Ap@veff1RpveffRp#Ap2 1

2 ~EpW21W2Ep

12WEpW!,

where

Ep5c~p21m2c2!1/2. ~4!

Ap5FEp1mc2

2Ep
G1/2

, ~5!

Rp5Kps•p, ~6!

Kp5c/~Ep1mc2!, ~7!

andW can be expressed in momentum space as

Wp,p85Ap~Rp2Rp8!Ap8Fveff~p,p8!

Ep1Ep8
G , ~8!

where veff(p,p8) is the momentum-space representation
ve f f . As written, the EFP equations are fully relativistic,
the sense that they include mass-velocity, Darwin, and s
orbit coupling corrections. Throughout the remainder of t
work, it will be assumed that all of the spin-orbit couplin
terms in Eq.~3! are neglected to obtain the scalar-relativis
EFP approximation.~A detailed discussion of the separatio
of the relativistic corrections into scalar-relativistic and sp
orbit coupling terms has been presented elsewhere,18 and
will not be repeated here.!

Analytical evaluation of the GTO matrix elements for th
momentum-space operators in Eq.~3! has not proven to be
practical thus far. This difficulty can be circumvented
using an approximate momentum-space representation
tained by diagonalizing the nonrelativistic kinetic-ener
matrix.19 First, the matrix elements ofp•vp and p3vp
~which are required even for scalar-relativistic EFP calcu
tions! are evaluated along with the usual nonrelativistic m
trix elements. Next, the nonrelativistic kinetic-energy mat
is diagonalized to obtain approximate eigenfunctions ofp2,
and all the matrices are transformed to this approximate
mentum space. Since the operatorsEp , Ap , andKp are di-
agonal in momentum space, they can be obtained trivi
from the p2 eigenvalues. These basic components are t
s,
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used to build the more complicated matrix elements need
such asApRpvRpAp . Finally, all of the matrices are back
transformed to the original GTO representation.

The most serious drawback to the procedure descri
above is that the transformations for the two-electron in
grals are very demanding computationally. HR found th
they could achieve a substantial reduction in the resou
required for their calculations by using an ‘‘incomplete
Douglas-Kroll-Hess transformation which only affects t
kinetic-energy and nuclear potential terms in the DKS eq
tions. They also dropped all terms in the resulting EFP eq
tion that involvedp3vnp. A recent series of test calculation
on isolated atoms18 found that the HR approximation pro
duces one-electron eigenvalues for the chemically active
lence states that differ little from those obtained with t
complete scalar relativistic Douglas-Kroll-Hess transform
tion.

The present implementation of HR scalar-relativity
GTOFF was tested by carrying out a series of nonrelativis
and scalar-relativistic calculations on fcc Au. The calcu
tions employed a very rich 20s16p12d8f primitive orbital
basis set, derived from Gropen’s20 19s14p10d5f atomic ba-
sis, which was very loosely contracted into 15s12p9d4f
scalar-relativistic and nonrelativistic orbital basis sets us
coefficients obtained from paramagnetic atom calculatio
The electron density was fitted variationally with 18s-type
GTO’s, while the XC integral kernels were least squares
ted with 15s-type GTO’s.21 The local-density approximation
~LDA ! XC parametrization of Hedin and Lundqvist22 was
employed for all of the calculations. All Brillouin zone~BZ!
integrations were carried out on a uniform 83838 mesh
with 29 irreduciblek points using a Gaussian broadening
20 m Ry. Test calculations using a sparser 63636 mesh
with 16 irreducible points indicate that the present results
well converged with respect to the BZ mesh density. T
self-consistent-field cycle was iterated until the total ene
was converged to less than 0.01 m Ry.

Total energies and electronic band structures were ca
lated scalar relativistically at six lattice constants rang
from 7.4 to 7.9 bohr, and nonrelativistically at six lattic
constants ranging from 7.8 to 8.3 bohr. In each case, co
sive energies were obtained by subtracting the total energ
an isolated, spin-polarized atom. The cohesive energies w
then fitted with a modified version of the universal equati
of state23 to obtain the zero-pressure lattice constanta0, bulk
modulusB, and pressure derivative of the bulk modulusB8
for fcc Au. The standard deviations for the fits were both le
than 4 m Ry, demonstrating the good numerical stabili
achieved withGTOFF.

The nonrelativistic and scalar-relativistic LCGTO-FF r
sults obtained here are compared in Table I with results fr
three previous all-electron, full-potential scalar-relativis
calculations using either the full-potential linearize
augmented-plane-wave~FLAPW! method13,15 or the full-
potential linearized muffin-tin-orbital~FLMTO! method14.
Also shown are the experimental values listed in Ref.
Comparison of the nonrelativistic and scalar-relativis
LCGTO-FF results reveals the large impact that relativ
has on the lattice constant~6%! and bulk modulus~57%! of
fcc Au. In comparison, the differences between the vario
scalar-relativistic results in Table I are quite small. In fa
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the 0.4→0.6% reduction in the LCGTO-FF lattice consta
relative to the other calculations may simply be due to
substantially richer orbital basis set employed here. T
present scalar-relativistic LCGTO-FF result fora0 exhibits
the expected LDA-induced lattice contraction relative to
experimental value.

An additional nonrelativistic LCGTO-FF calculation wa
carried out at a lattice constant of 7.7 bohr to allow a dir
comparison of the scalar-relativistic and nonrelativistic o
electron eigenvalues near the experimental equilibriu
Three particularly interesting locations in the occupied ba
structure of Au are the bottom of thes band (Esb ; at G), the
bottom of thed bands (Edb ; at L or X), and the top of thed
bands (Edt ; at W); for a more detailed discussion of th
band structure of fcc Au, see Ref. 12. In Table II the curr
nonrelativistic and scalar-relativistic LCGTO-FF results f
these three band-energies, relative to the Fermi energy
compared with results from an earlier scalar-relativis
APW calculation.12 ~Unfortunately, the full-potential calcu
lations did not list any eigenvalues with which
compare.13–15! Once again, comparison of the nonrelativis
and scalar-relativistic results reveals large relativistic effe
on fcc Au. The most important qualitative change in the ba

TABLE I. The lattice constant (a0; bohr!, bulk modulus (B;
GPa!, and pressure derivative of the bulk modulus (B8) for fcc Au
obtained here with nonrelativistic~NR! and scalar-relativistic~SR!
LCGTO-FF calculations are compared with previous all-electr
full-potential scalar-relativistic calculations and experimental v
ues quoted by Ref. 13.

Source a0 B B8
NR LCGTO-FF Present 8.077 112 5.62

SR LCGTO-FF Present 7.633 196 5.49
SR FLAPW Ref. 13 7.66 198
SR FLMTO Ref. 14 7.68 193
SR FLAPW Ref. 15 7.67 205

Experiment Ref. 13 7.67 172
e
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structure is a more than 2-eV lowering of thes band relative
to the bottom of thed bands. In addition, the overall width o
the d bands is increased by more than 15% due to a rela
istic delocalization of thed states. The small differences be
tween the two sets of scalar-relativistic results in Table II
no greater than would be expected given the differences
tween the methods used; full-potential LCGTO-FF
muffin-tin APW.

The results presented in Tables I and II clearly dem
strate that the HR scalar-relativistic LCGTO-FF techniqu
as implemented inGTOFF, produces results that are near
indistinguishable from the results obtained with other a
electron, scalar-relativistic DFT electronic-structu
techniques.12–15The current results therefore provide supp
for the overall reliability of the heavy-atom cluster calcul
tions that have already been carried out using the HR
proximation. In addition, the HR approximation must now
viewed as a viable, and fully independent, alternative to
implementation of scalar relativity11 used in most other
solid-state electronic-structure codes. Based on these res
it should be possible to carry out the first joint solid-sta
physics and quantum-chemistry calculations on heavy-a
systems~including films and polymers! using a single all-
electron, full-potential electronic-structure technique.

Helpful communications with N. Ro¨sch and S. B. Trickey
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the U. S. Department of Energy.
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TABLE II. Band energies for fcc Au from nonrelativistic~NR!
and scalar-relativistic~SR! LCGTO-FF calculations (a57.70 bohr!
are compared with results from a scalar-relativistic APW calcu
tion ~Ref. 12!. All-energies are given in eV relative to the Ferm
energy. (Esb , bottom of thes band;Edb , bottom of thed band;
Edt , top of thed band.!

Esb Edb Edt

NR LCGTO-FF 8.35 8.11 3.10

SR LCGTO-FF 10.01 7.44 1.59
SR APW 9.92 7.22 1.33
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