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Neutron peak in the extended-saddle-point model of high-temperature superconductors

A. A. Abrikosov
Materials Science Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, Illinois 60439

~Received 22 August 1997!

An explanation is proposed of the maximum at 41 meV in the inelastic spin-flip neutron scattering from
YBa2Cu3O72d, based on the extended-saddle-point model developed by the author in his previous works. It is
shown that for appearance of the maximum in the imaginary part of the spin susceptibility a close proximity of
the Fermi energy to the extended saddle point is necessary. The energy of the maximum is then close to 2Dmax

in agreement with experiment. Theoretical and experimental evidence concerning the energy of the extended
saddle point~flat region! is discussed. Different limiting cases are calculated. A proof is given within the
present model that interaction in the final state is small, and hence, no collective modes are formed. A general
discussion of the experimental situation is presented.
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I. INTRODUCTION

The famous peak observed in inelastic neutron scatte
from single crystals of YBa2Cu3O72d ~YBCO! ~Ref. 1–3!
has several characteristic features:~a! It is observed only in
spin-flip scattering;~b! until now it was observed only in
optimally doped, underdoped, and slightly overdop
YBCO, and in no other material of this kind;~c! it exists
only below Tc in optimally doped samples; in underdope
samples a broad peak is observed also aboveTc ; ~d! the
momentum transfer is approximatelyq5(p,p) in the ab
plane; ~e! the dependence onqz is in favor of a transition
with the change of parity of the double-plane electron wa
function, e. The energy transfer at the peak is close to
meV in optimally doped YBCO and smaller in underdop
samples, at temperatures belowTc ; aboveTc the position of
the peak remains approximately independent on underd
ing. The experimental situation is described in detail in t
latest review papers.4,5

There are principally two different types of explanatio
of this peak. One was proposed by Zhang:6,7 it is a collective
two-electron mode, which can exist in the normal state, bu
is connected to the spin-flip neutron scattering only in
superconducting state. The role of superconductivity is th
can transform an electron into a hole, and therefore, ins
of looking for a collective mode in an electron-hole chann
of the type of the ‘‘second sound,’’ or spin wave, we have
consider the electron-electron, or hole-hole channel.

Another type of explanation was proposed first in Ref
and then developed in more detail by representatives of
same group8 and Levin’s group9 in a somewhat differen
version. The main idea of this approach is that the maxim
results from the singular density of states for a two-parti
excitation, the interaction of quasiparticles in the final sta
which could lead to a collective mode, is relatively small a
can be neglected.

In this paper the maximum will be addressed from t
viewpoint of our theory that is based on the dominant role
extended saddle-point singularities in the electron spect
~see Ref. 10 and references therein!. Our explanation is close
570163-1829/98/57~14!/8656~6!/$15.00
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ideologically to the type described in Refs. 8 and 9, desp
considerable differences of underlying models. According
it, the maximum is close to 2Dmax and results from the fa-
vorable situation with the densities of the initial and fin
states in case, if the Fermi level is sufficiently close to t
extended saddle point.

The importance of this proximity can be understood fro
the following reasoning. The process contributing to the sc
tering cross section is similar to the tunneling current b
tween equal superconductors. It is well known that the t
neling characteristicI (V) at T50 starts with a jump at 2D
and continues to grow; there is no maximum at this po
Therefore the neutron maximum can appear only as a re
of some unusual feature in the electron spectrum, or fr
their interaction. This situation was mentioned in Ref.
where the enhancement in the density of states was du
pair tunneling, and in Ref. 9, where it was ascribed to s
fluctuations.

We will show ~Sec. IV! that within the framework of our
model the interaction of quasiparticles in the final state is
weak and does not lead to a formation of a collective mo

II. GENERAL FORMULA

We will first consider a one-layer model, which is suffi
cient for description of the momentum dependence in
plane, and comment on theqz dependence later. The mag
netic neutron-scattering cross section is proportional to
imaginary part of the spin susceptibility, and the latter
described by two diagrams presented in Fig. 1. The ma

FIG. 1. First-order diagrams for the spin susceptibility.
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57 8657NEUTRON PEAK IN THE EXTENDED-SADDLE-POINT . . .
mum can be expected for the momentum componentx~q!
with q in the plane connecting points with the maximal va
ues of the superconducting energy gap that correspond to
vicinities of the extended saddle points, denoted in Ref. 10
‘‘ a’’ and ‘‘ b’’; this momentum is close toQ5(p,p).

We will see that opposite signs of the order paramete
these points are extremely important. This was already m
tioned in Ref. 3, and it was stressed there that it provides
independent argument in favor ofd-type symmetry of the
order parameter, which is free from many objections to ot
determinations.

In the temperature technique the diagrams of Fig. 1 c
respond to

x~ iV,Q!52T(
v

E dpxdpy~2p!22d21@Ga~v,px!Gb~v

2V,py!1Fa
1~v,px!Fb~v2V,py!#

52T(
v

E dpxdpy~2p!22d21

3
~ iv1ja!~ iv2 iV1jb!1DaDb

@v21«a
2#@~v2V!21«b

2#
. ~1!

We defined herex without the factormB
2 ~it has the di-

mensionality of the density of states! and used the fact that in
the singular regions ‘‘a’’ and ‘‘ b’’ the spectrum is quasi-one
dimensional ~see Ref. 10!: namely, ja'px

2/2ma2m1a ,jb

'py
2/2mb2m1b ,m1a,b being the chemical potential with re

spect to the corresponding extended saddle-point singula
d is the period along thec axis. As usual,«a,b

2 5ja,b
2

1Da,b
2 . For simplicity we will consider a tetragonal meta

i.e., the masses and chemical potentials we will assume t
equal, and theD’s differing only by sign.

Performing the summation overv52pT(n1 1
2 ), and an

analytical continuation to real frequencies,iV→V1 id, we
obtain

x5E dpxdpy~2p!22d21F tanh~«a/2T!

4«a

3S ~«a1ja!~«a2V1jb!2D2

~«a2V2 id!22«b
2

1
~«a2ja!~«a1V2jb!2D2

~«a1V1 id!22«b
2 D

1
tanh~«b/2T!

4«b
S ~«b1V1ja!~«b1jb!2D2

~«b1V1 id!22«a
2

1
~«b2V2ja!~«b2jb!2D2

~«b2V2 id!22«a
2 D G . ~2!
he
s

at
n-
n

r

r-

ty;

be

Since the integrals overdpx anddpy are symmetric, we can
make a substitutionja�jb in the second term and write bot
terms asF(V1 id)1F(2V2 id). If the chemical potential
m1 were large compared to other energy scales (;D), we
could simply cancel out the odd terms containingja,b .

However, as we will see below, the maximum inx9 ap-
pears as a result of the proximity to the singularity, i.e.,m1

u5D. The justification of this assumption is a delicate m
ter. Band-structure calculations based on the local-den
approximation ~LDA ! method for TlBa2CaCu2O7,

11

HgBa2CuO4, HgBa2CaCu2O6, and HgBa2Ca2Cu3O8,
12 show

that the Fermi energy is close to the extended-saddle-p
singularity but not necessarily so close thatm1uD. How-
ever, these calculations do not take into account the inte
tion of quasiparticles. This interaction can be of princip
importance, as seen from the observed metal-insulator t
sition in cuprates not predicted by the LDA calculation
There is also a possibility of the so-called ‘‘fermion conde
sation’’ due to interaction of quasiparticles, predicted by
Khodel et al. ~see Ref. 13 and references therein!, which
leads to the appearance of flat regions of the spectrum a
Fermi level. Under such circumstances it is better to rely
experimental data. However, even this is not always the
est thing to do. For high-Tc materials the only existing
method is angle resolved photoemission~ARPES!. This is a
surface probe, and in order to reflect correctly the proper
of the bulk material, the surface of the sample must be id
i.e., contain no structural defects and no charge. That th
not always the case was shown recently, when the ARP
data for Sr2RuO4 were compared with the results of de Haa
van Alphen measurements~see Ref. 14!. A great discrepancy
for the Fermi surface was found, which is most probably d
to the charge on the surface of the sample, which displa
the chemical potential. The only reliable substance
Bi2Sr2CaCu2O8, which can be cleaved along a plane betwe
two BiO planes connected by weak Van-der-Waals forc
For this material the value obtained form1 was indistinguish-
able from zero.15

If m1uD, integrations over positive and negative valu
of j are not symmetric, and the integrals in Eq.~2! can be
transformed in the following way:

E
2`

` dpy

2p
F~jb!→E

2m1

` ~2m!1/2F~jb!djb

2p~jb1m1!1/2

5E
0

` ~2m!1/2F~jb!djb

2p~jb1m1!1/2

1E
0

m1 ~2m!1/2F~2jb!djb

2p~m12jb!1/2 . ~3!

We are actually interested only in the imaginary part ofx,
namely,x9. This part can be obtained from Eq.~2! as result-
ing from semiresidues of the integral overjb after the sub-
stitution ja�jb in the second term. We get
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x95~2m!1/2E
2`

` dp

2pd

tanh~«/2T!

4« Fsgn~«2V!u@~«2V!22D2#

uj~«2V!u S «~«2V!1juj~«2V!u2D2

@m11uj~«2V!u#1/2

1
«~«2V!2juj~«2V!u2D2

@m12uj~«2V!u#1/2 u~m12uj~«2V!u! D2
1

uj~«1V!u S «~«1V!1juj~«1V!u2D2

@m11uj~«1V!u#1/2

1
«~«1V!2juj~«1V!u2D2

@m12uj~«1V!u#1/2 u~m12uj~«1V!u! D G . ~4!

Herep[px , and allj and« are functions ofp; uj(«2V)u5@(«2V)22D2#1/2. The integral overdp we transform according
to Eq. ~3! and pass from the integration over positivej to integration over«:

E
0

a

dj5E
D

@a21D2#1/2 «d«

@«22D2#1/2. ~5!

Since we consider positiveV, and«.D, «1V will always be larger thanD. What concerns«2V, there are two options
either«2V.D, or «2V,2D, i.e.,D,«,V2D, and this meansV.2D. Only the latter integrals are responsible for t
maximum ofx9, since the others depend smoothly onV aroundV52D. We can, therefore, significantly reduce the calc
lations considering only these terms that we denotexm9 . For simplicity we will putT50. After that, using the symmetry of th
integrand with respect to the transformation«→V2«, we obtain

xm9 5
m

2pd E
0

V/22D

drF ~V/2!22r21D2

uj~V/22r!uuj~V/21r!u S 1

@m11uj~V/22r!u#1/21
u~m12uj~V/22r!u!
@m12uj~V/22r!u#1/2D S 1

@m11uj~V/21r!u#1/2

1
u~m12uj~V/21r!u!
@m12uj~V/21r!u#1/2D2S 1

@m11uj~V/22r!u#1/22
u~m12uj~V/22r!u!
@m12uj~V/22r!u#1/2D S 1

@m11uj~V/21r!u#1/2

2
u~m12uj~V/21r!u!
@m12uj~V/21r!u#1/2D G . ~6!

This part of the susceptibility is zero atV,2D and starts from a finite value atV52D10.

III. LIMITING CASES

In the casem1@V and D, all denominators in the square brackets of Eq.~6! become equal tom1
1/2, the first product

becomes equal to 4/m1 and the second vanishes. We are left with an integral, which starts with a jump atV52D and then
continues to grow withV; there is no trace of a maximum. In the opposite limit,m150, the terms with theu’s vanish, and we
come to an integral

xm9 5
m

2pd E
0

V/22D

drS ~V/2!22r21D2

@~V/22r!22D2#3/4@~V/21r!22D2#3/42@~V/22r!22D2#21/4@~V/21r!22D2#21/4D . ~7!
i

is

cle

of
ed
of
The limiting values are

xm9 5
m

4pd H @G~1/4!#2

~2p!1/2 S D

V22D D 1/2

, 0,V22D!D

~2p!3/2

@G~1/4!#2 S D

V D 1/2

, V@D,

~8!

and the full dependence is presented in Fig. 2~we remind
that xm9 50 at V,2D!.

The infinity at V52D disappears, ifm1 is finite. There
appears, however, another singularity. It is associated w
the simultaneous vanishing of the denominators in Eq.~6!:
uj(V/22r)u21 and @m12uj(V/21r)u#21/2. This happens
for r5V/22D, and V5D1@m1

21D2#1/2. After some cal-
culations we obtainxm9 in this vicinity;
th

xm9 '
m

&pd

@D1~D21m1
2!1/2#D1/2

m1~D21m1
2!1/4

3 lnS 2@~D21m1
2!1/22D#

uV2@~D21m1
2!1/21D#u D . ~9!

If one takes into account that the quasiparticle energy

«5@~px
2/2m2m1!21D2#1/2, ~10!

or the same withpy , one sees that it has a minimal valueD
at px56(2mm1)1/2 and also a maximum (m1

21D2)1/2 at
px50. At these values there are maxima in the 1-parti
density of states. The excitation energyV5D1@m1

2

1D2#1/2 means that the transition occurs with excitation
an electron near the minimum in the vicinity of one extend
saddle point and a hole near the maximum in the vicinity
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57 8659NEUTRON PEAK IN THE EXTENDED-SADDLE-POINT . . .
the other saddle point. One can easily see that thisV is not a
threshold. Such a singularity makes sense, ifm1 is compa-
rable withD. Otherwise it is moved far away from the inte
esting region. Since it is logarithmic, it can be rounded b
finite temperature, disorder, or simply by the deviation of
real band from the idealized flat behavior.

In the caseV/D22!1, m1 /D!1, Eq.~6! transforms into

xm9 5
m

2pdd E
0

1 dz

~12z2!1/2 $@g/d1~12z!1/2#21/2

1@g/d2~12z!1/2#21/2%$@g/d1~11z!1/2#21/2

1@g/d2~11z!1/2#21/2%, ~11a!

if d[(V/D22)1/2,g/&, where g[m1 /D, z5r/(V/2
2D);

xm9 5
m

2pdd S E
0

1 dz

~12z2!1/2 $@g/d1~12z!1/2#21/2

1@g/d2~12z!1/2#21/2%@g/d1~11z!1/2#21/2

1E
0

~g/d!221 dz

~12z2!1/2 $@g/d1~12z!1/2#21/2

1@g/d2~12z!1/2#21/2%@g/d2~11z!1/2#21/2D ,

~11b!

if g.d.g/&;

xm9 5
m

2pdd S E
0

1 dz

~12z2!1/2 @g/d1~12z!1/2#21/2

3@g/d1~11z!1/2#21/21E
12~g/d!2

1 dz

~12z2!1/2

3@g/d2~12z!1/2#21/2@g/d1~11z!1/2#21/2D ,

~11c!

if d.g.
According to ~9!, xm9 has a logarithmic singularity atd

5g/&:

FIG. 2. Plot ofxm9 32pd/m, as function of (V/2D)21 in the
casem150.
a
e

xm9 '
m&

pdg
lnS g/&

ug/&2du
D . ~98!

In the limit d→g20 the second integral in Eq.~11b! is
equal top, and hence, at this pointxm9 has a discontinuity.
The plot ofxm9 (d) for g50.1 is presented in Fig. 3. Simila
results were obtained in Refs. 16 and 17 for a somew
different model.

The complicated form presented in Fig. 3 differs from
simple maximum, since it contains a threshold at 2D and a
subsequent maximum, Exactly such a form was observe
recent detailed measurements5 for optimally doped and un-
derdoped samples. As far as I know, this form appeared o
in Refs. 16 and 17 and in the present calculation.

Now we turn to the dependence onqz . The experimental
results18 indicate that if the dependence of the cross sect
is represented as a superposition of terms, proportiona
sin2(pqzc) and cos2(pqzc), wherec is the distance betwee
the two layers forming a CuO2 bilayer, the maximum ap-
pears only in the term, proportional to sin2(pqzc). This is
evidence that the tunneling between these layers is im
tant, and the transition takes place between electron state
different parity with respect to permutation of the plane
The only paper, where this issue was addressed theoretic
is Ref. 9, and the explanation is rather complicated.

Actually, the same can be described in different term
namely, that the maximum appears only when the neut
interacts with the electron spin fluctuation that is odd w
respect to permutation of spins in both layers. Indeed, if
introduce odd and even operators

ce5221/2~c11c2!, c05221/2~c12c2!,

then

c1
1sc12c2

1sc25ce
1sc01c0

1sce .

The odd fluctuation corresponds to the odd spin wave in
antiferromagnetic phase. Contrary to the even spin wave
has no gap, and this is quite natural, since the excha
interaction between spins is invariant with respect to ro
tion, and in the ground state the spins of the nearest
atoms in the bilayer have opposite directions. In the meta
phase there is no antiferromagnetic order, and hence, no
waves. That means that a spin wave decays rapidly into o
excitations. The only exception is the odd fluctuation w
zero exchange energy, and this is the one which correspo

FIG. 3. Plot ofxm9 32pd/m, as function ofd[(V/D22)1/2 in
the caseg[m1 /D50.1.



e

an
m

id
yp
re

pe

It
co

he

4

in
e

he
s to

tor

the
e.

e
um
it

le
-
r-

ve
were

e

re
ibes

ing
the

st

the

of
ing,
les
ng.
was
ed
Nev-

in

ped
-
um
ed

of

8660 57A. A. ABRIKOSOV
to the neutron maximum. Although this argument is rath
qualitative, it is sufficient to demonstrate that the sin2(pq zc)
dependence has nothing to do with superconductivity
cannot serve as an argument for selection of the proper
croscopic concept.

IV. ABSENCE OF A COLLECTIVE MODE

Let us check the existence of a collective mode. Cons
the diagram of Fig. 4. The inner part is a Bethe-Salpeter t
chain, and its pole could lead to collective mode. The
peated element is

P5gT (
uv1u,v0

E d3k

~2p!3 S k2

k21k2D n

Ga~2v1v1 ,2px

1kx!Gb~v2v12xQ,py2ky!, ~12!

where we inserted the interaction used in our previous pa
~see, e.g., Ref. 19!:

V~k,v1!52gS k2

k21k2D n

u~v02uv1u!; ~13!

heren>1, andv0 is the characteristic phonon frequency.
was assumed that the main part of the sum and integral
responds to energies much larger thanD ~this will be con-
firmed below!, and therefore, only the Green functions of t
normal metal were left in Eq.~12!. After substitution of these
Green functions

Ga,b5@ iv2~px,y
2 /2m!2m1#21, ~14!

summation overv1 , continuation to realV, and taking into
account that due to the presence in the diagram of Fig.
two F functions, only values ofpx,y;(2mm1)1/2, (2mD)1/2

!k are important, we obtain

P5gE
0

` dkz

2p S k2

kz
21k2D nE dkxdky2m~2p!22

kx
21ky

212m~V22m1!1 id
.

~15!

The second integral is logarithmic in the region

kz
2;k2@kx

21ky
2@max~V,m1 ,D!.

Therefore, by order of magnitude

P;gmk lnF k2/m

max ~V,m1 ,D!G . ~16!

After summation of all diagrams of the type presented
Fig. 4 we get a geometric progression, and the pole will b
P51. On the other hand, the interaction constantg in Eq.

FIG. 4. Diagram for the spin susceptibility with interaction
electrons in the final state.
r

d
i-

er
e
-

rs

r-

of

at

~16! can be expressed in terms ofD. In the casem1!D, we
obtain ~see Ref. 20! g;(D/m)1/2k22. Substituting into the
expression~16! we get

P;
~Dm!1/2

k
lnS k2/m

max ~V,m1 ,D! D . ~16a!

The first factor in this expression is very small—this is t
basis of our model—and the log cannot be so large, a
make P;1. Therefore, in this caseP!1. In the opposite
limiting case, m1@D ~see Ref. 20! g
;(m1 /m)1/2k22/ln(m1 /D). Hence, in this case

P;
~m1m!1/2

k

ln$k2/@m3max ~V,m1 ,D!#%

ln~m1 /D!
. ~16b!

The first factor here is small, and again, the other fac
cannot compensate it. Therefore, in this caseP is also small.
So we see that in both cases the equationP51 cannot be
satisfied. Therefore, the interaction of quasiparticles in
final state is insufficient for formation of a collective mod

V. DISCUSSION

The parameterD in all our formulas corresponds to th
maximal gap. It can be found as the voltage at the maxim
in the tunneling conductance. For optimally doped YBCO
corresponds to 19–25 meV.21 The value is somewhat samp
dependent but, anyhow, 2D fits the generally accepted en
ergy of the neutron maximum, 41 meV. If we use our inte
pretation of Fig. 3 for the initial rise ofx9, observed in Ref.
5, then 2D will be somewhat smaller, but form1uD the
interpretation of tunneling data is not so straightforward.

In order to have a further check it would be fine to ha
the same data for other substances. Such measurements
performed by Fonget al.22 on underdoped YBCO, and th
energy of the maximum varied proportional toTc . Unfortu-
nately, no reliable data onD exist for such samples. It is
important, however, to remind that our calculations we
based on the ideas of the BCS theory. If this theory descr
correctly the high-Tc cuprates, and this is likely for optimally
doped and overdoped samples, thenD varies proportional to
Tc and can be defined from the maximum of the tunnel
conductance vs voltage curve. For underdoped samples
validity of the BCS-type approach is doubtful. This is mo
clearly seen from the data on underdoped Bi2Sr2CaCu2O82d
~BSCCO! where the ARPES experiments demonstrated
existence of a pseudogap. Recently it was shown23 that for
such samples the voltage corresponding to the maximum
the tunneling conductance first increases with underdop
contrary toTc , and then starts to fall. For overdoped samp
both quantities decrease monotonically with overdopi
One has to take into account that the neutron maximum
found only in YBCO, whereas the above mention
pseudogap measurements were performed on BSCCO.
ertheless, there are indications of a pseudogap in YBCO
the form of a ‘‘spin gap.’’24

Since the neutron maximum disappears aboveTc ~we are
not speaking here about the broad maximum in underdo
samples aboveTc! it is definitely connected with the exis
tence of superconductivity, and the location of the maxim
does not correspond to the binding energy of ‘‘preform
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57 8661NEUTRON PEAK IN THE EXTENDED-SADDLE-POINT . . .
pairs,’’ if this concept for the pseudogap is correct. Th
what is it, and could there be any other possible meas
ments of this energy? A possible interpretation is that
spin fluctuation corresponding to zero exchange energy
q50 ~with q defined with respect to the antiferromagne
wave vector! has a long correlation length, and it is meas
ing not the local pseudogap but the averaged quantity c
acterizing the supercurrent. A definite answer can be gi
only by a theory incorporating the pseudogap. Therefore,
h-
r,
e-
e
nd

-
r-
n
e

complete solution of the problem requires further work, bo
experimental and theoretical.
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