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Neutron peak in the extended-saddle-point model of high-temperature superconductors

A. A. Abrikosov
Materials Science Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, lllinois 60439
(Received 22 August 1997

An explanation is proposed of the maximum at 41 meV in the inelastic spin-flip neutron scattering from
YBa,Cu:0,_ ;5 based on the extended-saddle-point model developed by the author in his previous works. It is
shown that for appearance of the maximum in the imaginary part of the spin susceptibility a close proximity of
the Fermi energy to the extended saddle point is necessary. The energy of the maximum is then dgge to 2
in agreement with experiment. Theoretical and experimental evidence concerning the energy of the extended
saddle point(flat region is discussed. Different limiting cases are calculated. A proof is given within the
present model that interaction in the final state is small, and hence, no collective modes are formed. A general
discussion of the experimental situation is presented.
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I. INTRODUCTION ideologically to the type described in Refs. 8 and 9, despite
considerable differences of underlying models. According to
The famous peak observed in inelastic neutron scattering, the maximum is close to £,,,« and results from the fa-

from single crystals of YB#&u0;_s (YBCO) (Ref. 1-3  vorable situation with the densities of the initial and final
has several characteristic featurém: It is observed only in  states in case, if the Fermi level is sufficiently close to the
spin-flip scattering;(b) until now it was observed only in extended saddle point.
optimally doped, underdoped, and slightly overdoped The importance of this proximity can be understood from
YBCO, and in no other material of this kindg) it exists  the following reasoning. The process contributing to the scat-
only below T, in optimally doped samples; in underdoped tering cross section is similar to the tunneling current be-
samples a broad peak is observed also abbye(d) the  tween equal superconductors. It is well known that the tun-
momentum transfer is approximatety=(w, ) in the ab  nejing characteristi¢(V) at T=0 starts with a jump at 2
plane; (e) the dependence oq, is in favor of a transition  hq continues to grow: there is no maximum at this point.

with the change of parity of the double-plane electron Wavery, o etore the neutron maximum can appear only as a result
function, e. The energy transfer at the peak is close to 41

) . i of some unusual feature in the electron spectrum, or from
meV in optimally doped YBCO and smaller in un.d.erdopedtheir interaction. This situation was mentioned in Ref. 8,
samples, at temperatures beldw; aboveT, the position of h the enhancement in the density of states was due to
the peak remains approximately independent on underdopy o ¢ € € . 1y ; .
ing. The experimental situation is described in detail in twoP &' tun_nellng, and in Ref. 9, where it was ascribed to spin
latest review papers® fluctuations. -

There are principally two different types of explanations /e Will show (Sec. IV) that within the framework of our
of this peak. One was proposed by Zh&rgt is a collective model the interaction of qua3|part|clgs in the final s'Fate is too
two-electron mode, which can exist in the normal state, but iveéak and does not lead to a formation of a collective mode.
is connected to the spin-flip neutron scattering only in the
superconducting state. The role of superconductivity is that it
can transform an electron into a hole, and therefore, instead Il. GENERAL FORMULA
of looking for a collective mode in an electron-hole channel,
of the type of the “second sound,” or spin wave, we have to We will first consider a one-layer model, which is suffi-
consider the electron-electron, or hole-hole channel. cient for description of the momentum dependence in the
Another type of explanation was proposed first in Ref. 3plane, and comment on theg, dependence later. The mag-
and then developed in more detail by representatives of theetic neutron-scattering cross section is proportional to the
same group and Levin’s group in a somewhat different imaginary part of the spin susceptibility, and the latter is
version. The main idea of this approach is that the maximundescribed by two diagrams presented in Fig. 1. The maxi-
results from the singular density of states for a two-particle
excitation, the interaction of quasiparticles in the final state, G

F
which could lead to a collective mode, is relatively small and * + + -
can be neglected.
In this paper the maximum will be addressed from the
F

viewpoint of our theory that is based on the dominant role of - G
extended saddle-point singularities in the electron spectrum
(see Ref. 10 and references thejelur explanation is close FIG. 1. First-order diagrams for the spin susceptibility.

0163-1829/98/5(1.4)/86566)/$15.00 57 8656 © 1998 The American Physical Society



57 NEUTRON PEAK IN THE EXTENDED-SADDLE-POIN . .. 8657

mum can be expected for the momentum componggl  Since the integrals ovetp, anddp, are symmetric, we can
with g in the plane connecting points with the maximal val- make a substitutiog, = £, in the second term and write both
ues of the superconducting energy gap that correspond to therms asF(Q +i6)+F(—Q—ié). If the chemical potential
vicinities of the extended saddle points, denoted in Ref. 10 a)al were |arge Compared to other energy Sca[egxq, we
“a” and " b”; this momentum is close t@Q=(m, ). could simply cancel out the odd terms containifg, .

We will see that opposite signs of the order parameter at yowever, as we will see below, the maximum jfi ap-
t_hese pomts are extrgmely important. This was .alread'y MeNsears as a result of the proximity to the singularity, e,
tioned in Ref. 3, and it was stressed there that it provides aLg \ e justification of this assumption is a delicate mat-

independent argument in favor dftype symmetry of the ter. Band-structure calculations based on the local-density

order parameter, which is free from many objections to Othe%pproximation (LDA) method for TIBaCaCyO,,t
determinations.

. , . HgBa,Cu0Q,, HgBa,CaCyOg, and HgBaCa,Cu;0g, % show
reslgotr:]de tt(v)amperature technique the diagrams of Fig. 1 Corthat the Fermi energy is close to the extended-saddle-point
singularity but not necessarily so close that=A. How-
ever, these calculations do not take into account the interac-
tion of quasiparticles. This interaction can be of principle
X(i0,Q)=-T> f dp,dpy(2m) " 2d [ Ga(w,py) Gp(w importance, as seen from the observed metal-insulator tran-
@ sition in cuprates not predicted by the LDA calculations.
There is also a possibility of the so-called “fermion conden-
—Q,py) +F; (@,p)Fp(0—Q,py)] sation” due to interaction of quasiparticles, predicted by V.
Khodel et al. (see Ref. 13 and references thejgiwhich
leads to the appearance of flat regions of the spectrum at the
_ o Fermi level. Under such circumstances it is better to rely on
- _Tg f dp.dpy(27) d experimental data. However, even this is not always the saf-
est thing to do. For high-, materials the only existing
method is angle resolved photoemissi&RPES. This is a
(io+&)(Io—1Q+ &) +AzA, q)  surface probe, and in order to reflect correctly the properties
[w2+ 85][(w—Q)2+ gﬁ] (@) of the bulk material, the surface of the sample must be ideal,
i.e., contain no structural defects and no charge. That this is
not always the case was shown recently, when the ARPES
data for SJRuQ, were compared with the results of de Haas-
van Alphen measuremen(see Ref. 14 A great discrepancy
for the Fermi surface was found, which is most probably due
to the charge on the surface of the sample, which displaces
. o _the chemical potential. The only reliable substance is
spc_ect to the cprrespondmg exten_ded saddle-pmgt S'ngma”%izerCaCLtog, which can be cleaved along a plane between
d S the period along thec axis. As usual,e3p=E  two BIO planes connected by weak Van-der-Waals forces.
+A3 . For simplicity we will consider a tetragonal metal, For this material the value obtained fof was indistinguish-
i.e., the masses and chemical potentials we will assume to bgyle from zerd®
equal, and the\'s differing only by sign. If u,=A, integrations over positive and negative values

Performing the summation OVWZZTfT(”“L%), and an  of £ are not symmetric, and the integrals in E) can be
analyt|ca| continuation to real frequenc|e§2%ﬂ+|5, we transformed in the fo”owing way:

obtain

We defined hergy without the factor,ué (it has the di-
mensionality of the density of stajesnd used the fact that in
the singular regions &” and “ b” the spectrum is quasi-one
dimensional (see Ref. 10 namely, &~ p§/2ma— M1a:&p
~p§/2mb—,ulb 'M14p bEINg the chemical potential with re-

tanh(e4/2T) = dp, = (2m) YR (&p)dé,
s, fﬁm oy F(§b)—>f#1 Dt p) 2

X= f dpxdpy(zw)_zd_l

(8a+§a)(8a_ﬂ+§b)_A2
(sa—Q—ié‘)z—sg

_J” (2m) 2R (&p)dé,
=)o 2atEtun™

o 2m(&pt

n (sa_ga)(8a+ﬂ_§b)_A2
(ea+Q+i6)2—&2

12 _
+JM1 (2m)7F(— &) dép 3

0 2m(py— &) 12
tanh &,/2T)
+
48b

(ep+Q+ &) (ept &) —A?
(ep+Q+i6)%—&2

We are actually interested only in the imaginary parkof

namely,x”. This part can be obtained from E@Q) as result-

} 2) ing from semiresidues of the integral ov&y after the sub-
stitution £,= ¢, in the second term. We get

(ep—Q— &) (ep— &) — A2
(ep—Q—i6)°—¢2
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e dp tanK(e/2T) [sgre—Q)6[(e—Q)2—A2] [e(e— Q)+ & &(e— Q)| — A2

e e [&e— )] ( it ée— )T
s(s—Q)—EIS(s—Qﬂ—AZg( Ll —Q)I))— 1 e(e+Q)+E&&(e+Q)|—A2
[ui—[€e—)[]72 77188 €T [ut]Ee+ Q)17
8(8+Q)—§|§(8+Q)|—A2
[u1—|&(e+Q)[1°

Herep=p,, and all£ ande are functions op; |£(e — Q)|=[(e — Q)?— A?]*2 The integral ovedp we transform according
to Eq.(3) and pass from the integration over posit&#o integration ovek:

9(#1—|§(8+Q)|)”- (4)

fad _f[azwz]lfz ede .
S N P ©

Since we consider positiv@, ande>A, £+ Q will always be larger thah. What concerng — (), there are two options:
eithere —Q>A, ore—Q<—A, i.e,,A<e<Q-—A, and this mean§)>2A. Only the latter integrals are responsible for the
maximum of y”, since the others depend smoothly @raround() =2A. We can, therefore, significantly reduce the calcu-
lations considering only these terms that we dengie For simplicity we will putT=0. After that, using the symmetry of the
integrand with respect to the transformation- () — e, we obtain

,_ Mo [or-a (Q12)%—p*+ A2 1 . e(m—lg(Q/Z—p)D) 1
Xm=2md Jo  TPlEQR= &2+ p)] \ [ +EQ2=p)[T7 " [~ €02 p)[T7)\ [ua + [E(Q727+ p)[ 172
0(u1—|§(0/2+p>|>)_( 1 ~ 0(u1—|§(9/2—p>|>)( 1
(1= 16Q2+p) 1) \[pa+[EQ2=p)[T [pa— 62— p) 1Y\ [ 1+ |E(QI2+p) [T

~ 0(m-|§(9/2+p>|>) (6)
[n1—|E(Q12+p)[1¥?] |

This part of the susceptibility is zero &<2A and starts from a finite value & =2A+0.

[ll. LIMITING CASES

In the caseu;>) and A, all denominators in the square brackets of Hi). become equal t(p}’z, the first product
becomes equal to 44 and the second vanishes. We are left with an integral, which starts with a juf@p-2A and then
continues to grow witl{2; there is no trace of a maximum. In the opposite linait,= 0, the terms with th&'s vanish, and we

come to an integral
m [Q2-A (Q12)2—p?+ A2

Xm=27d Jo d”([(Q/z—p>2—A2]3"‘[<0/2+p>2—

AT [(Q2—p)?= A" H[(QI2+p)? =A% Y). (7)

The limiting values are m [A+(A2+ p2)l2AL2

[F(l/4)]2 A 12 Xm™ V2md Ml(AZ—’—Mi)lM
. m (2,”.)1/2 (Q_2A> y O<Q_2A<A XI 2[(A2+M%)1/2_A] 9
nard | em® [a| "o-rem gy ©
AT B . s | bt th i .
(8) one takes Into account that the quaSIPartIC e energy Is
e=[(p/2m— pu1)*+A%", (10

and the full dependence is presented in Figw2 remind
that x;,=0 at)<2A). or the same witlp, , one sees that it has a minimal valie
The infinity at ) =2A disappears, ifu, is finite. There at px=t(2m,u1)l}/2 and also a maximum i3+ A?)Y2 at

appears, however, another singularity. It is associated witp,=0. At these values there are maxima in the 1-particle
the simultaneous vanishing of the denominators in ®y.  density of states. The excitation energ@:AJr[,uf
|£(Q2—p)| ™t and [uy—|&(Q/2+p)|[1” Y2 This happens +A2]Y2 means that the transition occurs with excitation of
for p=0Q/2—A, andQ=A+[ui+A%]Y2 After some cal- an electron near the minimum in the vicinity of one extended
culations we obtainy;, in this vicinity; saddle point and a hole near the maximum in the vicinity of
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FIG. 2. Plot of xj, X 2ard/m, as function of (}/2A)—1 in the
caseu,=0.

the other saddle point. One can easily see that®his not a
threshold. Such a singularity makes sensey fis compa-

rable withA. Otherwise it is moved far away from the inter-
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FIG. 3. Plot ofx, X 27rd/m, as function of6=(Q/A—2)Y2in
the casey=u,/A=0.1.

(9)

"__
Xm”™

m\/i(

vIv2 )
In .
wdy

| yIv2—- 4|

esting region. Since it is logarithmic, it can be rounded by an the limit 6—y—0 the second integral in Eq11b) is
finite temperature, disorder, or simply by the deviation of theequal tosr, and hence, at this poing,, has a discontinuity.

real band from the idealized flat behavior.
In the case)/A —2<1, u,/A<1, Eq.(6) transforms into

m 1 dz
X,r:'lzzﬂ_da J;) (1_22)1/2 {[7/5—’—(1_2)1/2]71/2

+[yl 86— (1—-2)Y2 " VB[ yl 5+ (1+2)¥2] 722
+[yl6—(1+2)¥?~ V2, (119

if 5=(Q/A—2)"2<y/v2, where y=u /A, z=pl(QI2
—A);

m 1 dz
X:",nzzﬂ,d& ( J;) (1_22)1/2 {[7/6—’—(1_2)1/2]71/2

+[y/6—(1—2)Y2 7 V3 yl 5+ (1+2)1?) 712

(¥18)2—1 dz _
+f0y a—pmilyer (1=

+ 18- (1-2) Y2 Y3yl 56— (1+2)¥9 712,

(11b
if v>8&>vIv2;

" __ m
Xm_271'd5

! dZ 1/29-1/2
0 (1_22)1/2[7/5+(1_Z) 2]

1 dz
X[’y/5+(1+2)1/2]_1/2+j T oI
1-(y15)2 (1—2°)

x[y/a—(l—z)lfz]1’2[y/5+(1+z)1’2]1’2),

(119

if 6> .
According to(9), xr, has a logarithmic singularity a8
=yIV2:

The plot of x;,(8) for y=0.1 is presented in Fig. 3. Similar
results were obtained in Refs. 16 and 17 for a somewhat
different model.

The complicated form presented in Fig. 3 differs from a
simple maximum, since it contains a threshold Aténhd a
subsequent maximum, Exactly such a form was observed in
recent detailed measuremehfsr optimally doped and un-
derdoped samples. As far as | know, this form appeared only
in Refs. 16 and 17 and in the present calculation.

Now we turn to the dependence gp. The experimental
resultd® indicate that if the dependence of the cross section
is represented as a superposition of terms, proportional to
sirf(mq,c) and cod(mq,C), wherec is the distance between
the two layers forming a Cufbilayer, the maximum ap-
pears only in the term, proportional to &nq,c). This is
evidence that the tunneling between these layers is impor-
tant, and the transition takes place between electron states of
different parity with respect to permutation of the planes.
The only paper, where this issue was addressed theoretically,
is Ref. 9, and the explanation is rather complicated.

Actually, the same can be described in different terms,
namely, that the maximum appears only when the neutron
interacts with the electron spin fluctuation that is odd with
respect to permutation of spins in both layers. Indeed, if we
introduce odd and even operators

=2 YA+ ), Yo=2"YAh— i),

then

i o — s o= b oot g o e

The odd fluctuation corresponds to the odd spin wave in the
antiferromagnetic phase. Contrary to the even spin wave, it
has no gap, and this is quite natural, since the exchange
interaction between spins is invariant with respect to rota-
tion, and in the ground state the spins of the nearest Cu
atoms in the bilayer have opposite directions. In the metallic
phase there is no antiferromagnetic order, and hence, no spin
waves. That means that a spin wave decays rapidly into other
excitations. The only exception is the odd fluctuation with
zero exchange energy, and this is the one which corresponds
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F - o e r% 3 F ‘ (16) can be expressed in terms &f In the caseu;<<A, we
M T R . obtain (see Ref. 2Dg~ (A/m)¥2«~2. Substituting into the
O P L expression(16) we get
- _é——é—l._ 1 — L

G _ <— —L—% G -

) - - (Am)12 K?/m
FIG. 4. Diagram for the spin susceptibility with interaction of I~ K n max (Q,uq,A)) (163

electrons in the final state.

The first factor in this expression is very small—this is the
to the neutron maximum. Although this argument is rathefasis of our model—and the log cannot be so large, as to
qualitative, it is sufficient to demonstrate that the’gim ,c) ~ MmakelIl~1. Therefore, in this casbi<1. In the opposite
dependence has nothing to do with superconductivity andmiting ~ case, u;>A  (see Ref. 2D g
cannot serve as an argument for selection of the proper mi= (#1/mM)*2x~2/In(u1/A). Hence, in this case

croscopic concept.
P P T Gum) 2 I mxmax (©.,4)])

IV. ABSENCE OF A COLLECTIVE MODE K IN(eq/A)

e"l'he first factor here is small, and again, the other factor
annot compensate it. Therefore, in this cHsis also small.
So we see that in both cases the equalibal cannot be
satisfied. Therefore, the interaction of quasiparticles in the
final state is insufficient for formation of a collective mode.

(16b)

Let us check the existence of a collective mode. Consid
the diagram of Fig. 4. The inner part is a Bethe-Salpeter typ
chain, and its pole could lead to collective mode. The re
peated element is

d3k k2 \"
H:gTwEMOJ a7 W) Ga(— o+, —px V. DISCUSSION
The parameten in all our formulas corresponds to the
+Ky) Gyl — 01— XQ,py— k), (12) P P

maximal gap. It can be found as the voltage at the maximum
where we inserted the interaction used in our previous papef8 the tunneling conductance. For optimally doped YBCO it

(see, e.g., Ref. 19 corresponds to 19—25 me¥/ The value is somewhat sample
dependent but, anyhow A2fits the generally accepted en-
K2 \D ergy of the neutron maximum, 41 meV. If we use our inter-
V(k,w1)=—g P O(wo—|wq)); (13)  pretation of Fig. 3 for the initial rise of”, observed in Ref.

5, then A will be somewhat smaller, but fon,=<A the

heren=1, andw, is the characteristic phonon frequency. It intérpretation of tunneling data is not so straightforward.
responds to energies much larger tharthis will be con-  the same data for other substances. Such measurements were
. . 22

firmed below, and therefore, only the Green functions of the Performed by Fonget al” on underdoped YBCO, and the
normal metal were left in Eq12). After substitution of these ~ €nergy of the maximum varied proportional T@. Unfortu-

Green functions nately, no reliable data oA exist for such samples. It is
important, however, to remind that our calculations were
Gap=[i w_(piy/Zm)_Ml]—l, (14)  based on the ideas of the BCS theory. If this theory describes

correctly the highf cuprates, and this is likely for optimally
summation oveiw,, continuation to rea{), and taking into doped and overdoped samples, thewmaries proportional to
account that due to the presence in the diagram of Fig. 4 of . and can be defined from the maximum of the tunneling
two F functions, only values opxyy~(2m,u1)1’2, (2mA)*2  conductance vs voltage curve. For underdoped samples the

<k are important, we obtain validity of the BCS-type approach is doubtful. This is most
clearly seen from the data on underdopegdIBICaCyOg_ 5
»dk, [ k? \" dkdk,2m(27) 2 (BSCCO where the ARPES experiments demonstrated the
H:gfo 27 | K2+ k2 f K+k2+2m(Q—2py) +io existence of a pseudogap. Recently it was sHowmat for
z Y ! (15  such samples the voltage corresponding to the maximum of
the tunneling conductance first increases with underdoping,
The second integral is logarithmic in the region contrary toT, and then starts to fall. For overdoped samples
both quantities decrease monotonically with overdoping.
k2~ k2> ki +ko>max Q,uq,A). One has to take into account that the neutron maximum was
) found only in YBCO, whereas the above mentioned
Therefore, by order of magnitude pseudogap measurements were performed on BSCCO. Nev-
2 ertheless, there are indications of a pseudogap in YBCO in
I1~gmk In k“Im . (16 the form of a “spin gap.”zl4 .
max (Q,uq,A) Since the neutron maximum disappears abbyéwe are

not speaking here about the broad maximum in underdoped
After summation of all diagrams of the type presented insamples abové ) it is definitely connected with the exis-
Fig. 4 we get a geometric progression, and the pole will be atence of superconductivity, and the location of the maximum
I[I=1. On the other hand, the interaction constgrin Eq.  does not correspond to the binding energy of “preformed
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pairs,” if this concept for the pseudogap is correct. Thencomplete solution of the problem requires further work, both
what is it, and could there be any other possible measureexperimental and theoretical.

ments of this energy? A possible interpretation is that the
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