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SO„5… invariance and effective field theory for high-Tc superconductors
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We set up the effective field theories which describe the SO~5!-invariant picture of the high-Tc cuprates in
various regimes. We use these to getquantitativeconclusions concerning the size of SO~5! breaking effects.
We consider two applications in detail:~i! the thermodynamic free energy, which describes the phase diagram
and critical behavior, and~ii ! the Lagrangian governing the interactions of the pseudo-Goldstone bosons with
each other and with the electron quasiparticles deep within the ordered phases. We use these effective theories
to obtain predictions for the critical behavior near the possible bicritical point and the pseudo-Goldstone boson
dispersion relations, as well as some preliminary results concerning their contribution to response functions.
We systematically identify which predictions are independent of the microscopic details of the underlying
electron dynamics, and which depend on more model-dependent assumptions.@S0163-1829~98!03509-7#
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I. INTRODUCTION AND SUMMARY

One of the remarkable features of high-Tc cuprate mate-
rials is the basic connection they display between antife
magnetism~AF! and superconductivity~SC!. Indeed, any
convincing theory of these materials must explain this fu
damental property.

Zhang1 has recently argued for a new perspective on t
AF-SC connection within the cuprates. He identifies an
proximate SO~5! symmetry of the one-band Hubbard mod
which is believed to describe the dynamics of the pair
electrons within the Cu-O planes of these materials. T
SO~5! symmetry contains as subgroups the SO~3! symmetry
of spin rotations~which is spontaneously broken in the A
phase! and the electromagnetic SO~2! invariance ~whose
breaking defines the SC phase!. From Zhang’s vantage poin
both ordered phases arise once SO~5! is spontaneously bro
ken, and the competition between antiferromagnetism
superconductivity becomes a ‘‘vacuum alignment’’ proble
in which the direction of the order parameter is fixed
small effects which explicitly break the approximate SO~5!
symmetry.

Evidence for the validity of this picture comes from th
observation within the SC phase2 of a collective mode, cen
tered near momentum (p/a,p/a), which couples to the
spin-flip channel in neutron-scattering experiments. Its
ergy gap depends on doping in the same way as doeTc
itself, taking the valueE.41 meV at optimal doping. This
state is understood in Zhang’s framework as a pseu
Goldstone boson~pGB!,3 whose gap is kept small compare
to the underlying electron-electron interaction energy,J
.0.1 eV, by the SO~5! symmetry. Such a state is argued
be an approximate eigenstate of the Hubbard model Ha
tonian in Refs. 4.

Despite its many attractive features, we remark that
validity of these SO~5!-based ideas remains controversi
and direct the reader to the literature where the case aga5

and in support6 of these ideas is still being actively mad
570163-1829/98/57~14!/8642~14!/$15.00
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The issue of debate is not whether such a symmetry
exist, since microscopic models of electron interactions h
been constructed7 for which an approximate SO~5! symmetry
does relate antiferromagnetic and superconducting pha
The concern is whether such models are relevant for desc
ing the cuprates. Bearing this controversy in mind, in t
paper we take the existence of the SO~5! symmetry as our
starting point, and concentrate on extracting those con
quences which follow as much as possible simply from
existence of the symmetry.

As is true foranyphysical system,8 the implications of the
SO~5! picture at energies much lower than its intrinsic sc
J may be efficiently encoded in terms of a low-energy effe
tive theory. The effective theory which does so will depe
on the symmetries and degrees of freedom which arise in
low-energy regime, and so can differ depending on the
gimes of temperature or doping which are of interest.

Of particular interest are those low-energy predictio
which depend only on the symmetries and degrees of f
dom of the low-energy theory, and not, say, on the values
the effective low-energy coupling constants. This is beca
such predictions are robust, in the sense that they are i
pendent of the details of how these symmetries are real
by the underlying electron dynamics. This robustness ob
ously raises the stakes of the comparison with experim
since disagreements cannot be attributed to small chang
microscopic details.

Our goal in the present paper is to pursue the ideas of R
1 by systematically exploring the low-energy effective the
ries which describe it in several regimes. A short summary
some of our results has been given in Ref. 9. We pause
to list some of our conclusions, before going into more d
tailed discussions in subsequent sections.

(1) The phase diagram: Our first application is to the sys
tem’s phase diagram. In Sec. II, we consider the syste
free energy, and use it to reiterate Zhang’s description of
qualitative features of the phase diagram in the temperat
doping (T-x) plane. We then extend this reasoning to arg
8642 © 1998 The American Physical Society
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57 8643SO~5! INVARIANCE AND EFFECTIVE FIELD THEORY . . .
that thesizeof the phases in this plane are related to the s
of the SO~5! breaking interactions, and so to the gaps for
pseudo-Goldstone states.

More precisely, suppose the system Hamiltonian~or La-
grangian! density has the formH5Hinv1eHsb, whereHinv

is SO~5! invariant, ande!1 quantifies the magnitude of th
explicit SO~5! breaking interactions at zero doping. We a
gue below that the gap for the pseudo-Goldstone state in
AF phase isEAF5O(e1/2J), while that in the SC phase i
ESC5O(e1/3J). We learn the size ofe from the observed 41
meV gap of the SC phase:e;0.01. Both the Ne´el tempera-
ture at zero doping (TN), and the SC critical temperature
optimal doping (Tc), are predicted to to be of ordere1/2J,
leading to the~correct! expectation that these should be
order 100 K.

Similar statements hold for the doping required at z
temperature to destroy the AF order and enter the SC reg
This transition is predicted for dopings of orderxc.e1/2

.10%. In addition, a potential ‘‘mixed’’ phase~MX !, which
is both AF and SC in nature, can arise between the purely
and AF phases, again over a range of dopings which is
order e1/2.10%. The superconducting phase itself is e
pected to extend out to dopings for which the SO~5! invari-
ance is no longer a good approximation.

Although the O(1) prefactors to these estimates a
model dependent, and so will vary from material to mater
the general shape of the resulting phase diagram shoul
shared by all high-Tc systems, and seems to agree reasona
well with the typical experimental phase diagram.10

(2) Critical behavior: The high-Tc systems differ from
traditional superconductors in that they display critical b
havior within a few degrees ofTc . This critical behavior is
the topic of Sec. II C. The SO~5!-invariant scheme predict
the usual scaling behavior for the transitions from the SC
AF regimes into the disordered phase. It makes different p
dictions for the vicinity of a potential bicritical~or tetracriti-
cal! point which is expected should the SC and AF pha
coexist for some temperatures and dopings. Zhang has
gued that one is attracted here to an SO~5!-invariant fixed
point, based on thed521e expansion ford-dimensional
nonlinears models. We point out here an alternative pos
bility where the stable fixed point weakly breaks SO~5!,
based on thed542e expansion, and compute the critic
exponents in this picture.

(3) Pseudo-Goldstone boson spectrum: Next, Sec. III ap-
plies SO~5! to the underlying Hamiltonian for energies, tem
peratures, and dopings corresponding to the ordered ph
and obtains the properties of the pseudo-Goldstone mo
As was emphasized elsewhere,9 since there are more feature
to these gap spectra than there are parameters in the ge
effective theory, it is possible to predict low-energy relatio
among the various features of the dispersion relations
these states.

Model-independent, weak-coupling conclusions do
appear to be possible for the disordered phase, althoug
ferences regarding this phase may be made by making m
specific use of additional assumptions concerning the mi
scopic dynamics.

Our pGB Lagrangian differs in detail from that propos
by Zhang, since it involves a few more terms. Although th
completely agree for qualitative purposes, we argue the
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clusion of the most general interactions is required to per
the robust inference of the quantitative size of symmet
breaking effects.

(4) Response functions: Finally, Sec. IV uses the effec
tive theory to make some preliminary points concerning
pseudo-Goldstone boson contributions to electromagn
and spin response functions within the AF and SC phases
particular, the origin within the effective theory, of th
pseudo-Goldstone pole in the SC-phase spin respons
identified.

II. IMPLICATIONS FOR THERMODYNAMICS

In terms of the underlying electrons, the ordered AF a
SC phases of the high-Tc systems are distinguished by no
zero values for the order parameters^cp( is2)c2p& and
^cp1Q

† sacp&, wherep is an electron momentum,Q5(p/a,
p/a) and sa denotes the Pauli matrices. Long-waveleng
variations of these quantities can therefore be described
the fields:

nQ~k!}cp1k~ is2!c2p and ns
a~k!}cp1Q1k

† sacp ,
~1!

wherek is much smaller than eitherp or Q.
In Zhang’s framework, in addition to the SO~3!3SO~2!

symmetry of spin and electromagnetic gauge transformat
there are approximate symmetries which rotatenQ and ns ,
into one another. To represent this symmetry it is conven
to groupnQ andns into a real, five-dimensional quantity

n5S nQ

ns
D , ~2!

on which the extended symmetry acts by matrix multiplic
tion on the left:n→On, whereO is an arbitrary five-by-five
orthogonal matrix. This identifies the electromagnetic SO~2!
and spin SO~3! subgroups as the block-diagonal combin
tions:

O5S SO~2! 0

0 SO~3!
D . ~3!

We denote byTa the Hermitian, antisymmetric five-by-five
matrices which generate SO~5!, with the special cases of th
generators of SO~2! and SO~3! represented by

Q5qS s2

0D , and T5S 0

t D . ~4!

Here q52 is the electric charge of the order parameter
units of the electron charge andt are a basis of three-by-thre
generators of SO~3!.

The resulting SO~5! symmetry is simultaneously subjec
to two kinds of breaking. On one hand it is broken explicit
~but weakly! to the exact SO~3!3SO~2! subgroup by the
electron Hamiltonian, and on the other hand, it is sponta
ously broken to SO~4!. What follows in this section spells
out our assumptions concerning how this symmetry ma
fests itself in thermodynamic functions.
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A. Thermodynamic potentials

Given this picture, we may write the free-energy densitf
as the sum of an SO~5!-invariant termf inv and a small SO~5!
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breaking termf sb. For a slowly varying order parameter w
may use a derivative expansion off , leading to the following
most general expressions for time-independentnQ andns :
b f inv5v inv1wi
~1 !~¹anQ•¹anQ1¹ans•¹ans!1ui

~1 !~nQ•¹anQ1ns•¹ans!
21w'

~1 !~¹cnQ•¹cnQ1¹cns•¹cns!

1u'
~1 !~nQ•¹cnQ1ns•¹cns!

21••• ,
~5!

b f sb5vsb1wi
~2 !~¹anQ•¹anQ2¹ans•¹ans!1ui

~2 !~nQ•¹anQ2ns•¹ans!
21w'

~2 !~¹cnQ•¹cnQ2¹cns•¹cns!

1u'
~2 !~nQ•¹cnQ2ns•¹cns!

21ui
~0!nQ•¹anQns•¹ans1u'

~0!nQ•¹cnQns•¹cns1••• .
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Here b51/kT, and the ellipses represent terms involvi
more derivatives than two. The coefficient functions,v inv ,
vsb, w'

(6) , wi
(6) , u'

(6,0) , andui
(6,0) are potentially arbitrary

functions of the SO~3!3SO~2! invariants nQ•nQ and ns
•ns . They depend as well on the two thermodynamic va
ables: temperature and doping~more about this dependenc
below!. Keeping in mind the anisotropy of the cuprate sy
tems, separate coefficients are included for derivativesa
5x,y, parallel to the copper oxide planes, and those,c5z,
perpendicular to this plane. For simplicity we assume ro
tional symmetry within the planes. These expressions~Eq. 5!
differ from that of Refs. 1, 11 in three ways. Besides wo
ing in the isotropic limit, these authors:~1! impose the con-
straint ns•ns1nQ•nQ51, ~2! keep only three of the lowes
terms in an expansion of thew’s andu’s in powers of fields,
and ~3! keep only quadratic terms in the potentialv. ~Their
quartic interactions arise from the chemical-potential dep
dence of the terms involving two derivatives ofnQ .! We
comment further on these differences as they arise at su
quent points in the text.

In the limit of SO~5! invariance,vsb5w'
(2)5wi

(2)5u'
(2)

5ui
(2)5u'

(0)5ui
(0)50, and each of the remaining function

v inv , w'
(1) , wi

(1) , u'
(1) , andui

(1) depend only on the com
binationn•n5nQ•nQ1ns•ns .

The predictive power of the approximate symme
comes from computing observables perturbatively in
small symmetry-breaking interactions. Doing so require
quantitative characterization of the size of the symme
breaking terms inf . We imagine, therefore, the microscop
electronic Hamiltonian to have the generic form

H5Hinv1eHsb2mQ, ~6!

whereHinv preserves SO~5! symmetry, whileHsb and m Q
both break it.m here is the chemical potential for the electr
chargeQ. We takem50 to correspond to half filling.

Notice that SO~5! symmetry is explicitly broken in two
different ways in Eq.~6!, and so there are two different pa
rameters,e and m, which govern the symmetry-breakin
terms in the free energyf :

Zero doping: Things are simplest at half filling, for which
m50 and so only one SO~5!-breaking parameter exists:e.
Based on our later discussion of the spectrum of the ga
the pseudo-Goldstone boson spectrum in the SC phase
-
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-

se-

e
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take in what followse.0.01. It is this small parameter whic
ultimately determines the size of the different phases in
system’s phase diagram.

Nonzero doping: The second source of explicit SO~5!
breaking in Eq.~6! is the chemical potentialm, which is
introduced to describe the doping of high-Tc systems away
from half filling. This breaks SO~5! becausem couples only
to electric charge, which is just one of the ten SO~5! genera-
tors. For thermodynamic applications it is more conveni
to trace the dependence of the free energy on the num
density of charge carriersn rather thanm, and so we define
the dopingx by n5x/V, with V the volume of a unit cell. In
typical high-Tc systems at zero temperature,x&10% is char-
acteristic of the AF phase, while 0.1&x&0.4 is representa-
tive of the SC phase.10 To explore the implications of thes
two sources of symmetry breaking we consider first the c
sical phase transitions which are implied by the choice of
SO~5! invariant order parameter.

B. Classical phase transitions

For a classical phase transition the free-energy dens
f (x,T,nQ ,ns), is assumed to admit a Taylor expansion
powers ofnQ and ns near nQ5ns50. This assumption of
analyticity at zero field is known to fail in the vicinity of a
critical point, where the long-distance fluctuations can ca
f to acquire a singular dependence on its arguments.
temperatures closer toTc than a few degrees, the resultin
critical behavior is poorly described by a classical disc
sion. Unlike traditional superconductors, the correlati
length in high-Tc systems is sufficiently small to permit criti
cal behavior to be observed, although typically only within
few degrees ofTc .12

For these reasons we expect a classical analysis to
adequate for the purposes of identifying the overall size
cupied by the various phases within the phase diagram in
T-x plane. We investigate the implications of SO~5! for the
critical behavior in Sec. II C below.

We start by rederiving Zhang’s treatment of classic
phase transitions. Our addition to his argument is the qu
tifying of the size of the symmetry-breaking effects in th
analysis. Consider therefore expanding the potentialv to
quartic order in the order parameters,nQ andns :
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v5v001
1

2
~v20nQ•nQ1v02ns•ns!1

1

4
@v40~nQ•nQ!2

1v22nQ•nQns•ns1v04~ns•ns!
2#1••• , ~7!

where the coefficientsv jk are regarded as functions of th
thermodynamic variablesx and T, as well as the smal
symmetry-breaking parametere. This potential corrects a mi
nor error13 in the potential in the original version of Ref. 9
although none of the results of this reference are altered
this change. Particle-hole symmetry further impliesv jk must
also satisfyv jk(2x)5v jk(x), if T ande are held fixed. Al-
ternatively, the same conclusion is also drawn in later s
tions by considering the free energy to be a function om
rather thanx, and using the antisymmetry ofQ. See also
Ref. 9.

Next divide this expression into its SO~5!-invariant and
-breaking parts,v5v inv1vsb, where

v inv5v001
r

2
~nQ•nQ1ns•ns!1

l

4
~nQ•nQ1ns•ns!

21••• ,

vsb5
g

2
~nQ•nQ2ns•ns!1

k

4
~nQ•nQ2ns•ns!

2

1
h

4
@~nQ•nQ!22~ns•ns!

2#1••• . ~8!

The parameters in these expressions are related as foll
v025r2g, v205r1g, v405l1k1h, v045l1k2h and
v225l2k.

Minimization of this potential gives four kinds of phase
depending on whetherns and/ornQ vanish at the minimum.
These four alternatives are controlled, in first approximati
by the signs of the coefficients of the two quadratic term
v20 andv02, as outlined in Table I. The case where bothv20
andv02 are negative further subdivides into two alternativ
which are distinguished by the sign of the quartic couplin
k. If k.0 then bothunQu and unsu are nonzero at the mini
mum, while ifk,0 then two types of minima coexist, whic
differ according to whether it isunsu or unQu which is non-
zero. Whenk,0 these two minima are separated by an
ergy barrier.

The corresponding phase diagram, in ther-g plane, is
drawn in Fig. 1. Whenk.0 there are four phases, and a

TABLE I. The possible minima of the free-energy densityv
each distinguished by the sign ofv02 and v20. Two possibilities
arise if both of these parameters are negative, depending on the
taken by the quartic coupling,k. k.0, defines a minimum for
which bothunSu and unQu are nonzero. Ifk,0, then there are both
AF- and SC-type minima, separated by an energy barrier. The
responding phase diagram in ther2g plane is given for both
choices fork in Fig. 1.

Phase Minimum Conditions

Normal ~N! unQu5unSu50 v20.0, v02.0
Superconductor~SC! unQuÞ0, unSu50 v20,0, v02.0
Antiferromagnet~AF! unQu50, unSuÞ0 v20.0, v02,0
Mixed ~MX ! unSuÞ0, unQuÞ0 v20,0, v02,0, k.0
y

c-

s:

,
,

s
,

-

phase boundaries define second-order transitions. The
phase boundaries intersect at a tetracritical point, which
defined byr5g50. Whenk,0 there are only three phase
with the antiferromagnetic~AF! and superconducting~SC!
regions meeting at a first-order transition. This phase bou
ary intersects the second-order boundaries with the di
dered phase~N! at a bicritical point, again atr5g50. The
picture which emerges is the semiclassical phase diag
described in Ref. 1.

More information becomes available, however, once
dependence of the transition regions on the small symme
breaking quantitye.0.01 is included. To see this, imagin
examiningv in the vicinity of half filling, wherex!1. Keep-
ing in mind that all SO~5! breaking interactions must vanis
if both x ande do, and thatv jk must be even functions ofx,
we write in this limit

g5eg01g2x21g4x41•••,

h5eh01h2x21h4x41•••,

k5ek01k2x21k4x41••• , ~9!

where the coefficients of this expansion are functions oT
which can be unsuppressed by additional powers ofe or x.

Since the SO~5!-invariant couplings need not vanish wit
eithere or x, for them we instead write

l5l01l2x21l4x41••• . ~10!

The SO~5!-invariant quadratic term must be handled mo
carefully, however. This is because real high-Tc systems are
antiferromagnets at zero temperature and doping, and so
have the important additional informationv20(T5x50).0
and v02(T5x50),0. Equivalently this implies:g(T5x
50).0 and 2g(T5x50),r(T5x50),g(T5x50),
which is only consistent withg(T5x50)5O(e) if r(T
5x50) is alsoO(e). We take, therefore, at zero temper
ture

r5er01r2x21r4x41••• . ~11!

Transition dopings: These expansions determine the d
mains of doping over which the various phases are poss
so long asx is small. For temperatures below the Ne´el tem-

ign

r-

FIG. 1. The phase diagram for the free-energy function
scribed in the text in ther-g plane, wherer is the SO~5!-
symmetric, andg is the SO~5! breaking, quadratic couplings in th
free energy. The thin lines represent second-order transition li
while the fat line is a first-order phase boundary. The two possib
ties portrayed are distinguished by the sign of the quartic couplink
in the free energy.
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perature, and so for which2g0,r0,g0 , definexAF as the
doping above which the AF order is lost.xAF is then deter-
mined by the requirement thatv025r2g50, for which Eqs.
~10! and ~11! imply

xAF
2 52eS r02g0

r22g2
D1O~e2!. ~12!

So long as both numerator and denominator are both o
unity, and r2.g2 , we see the prediction isxAF5O(e1/2)
.10%, which agrees well with what is observed for re
high-Tc systems.

Similarly, a superconducting phase arises for dopin
greater thanxSC, defined as the value ofx for which v205
r1g50. Again Eqs.~10! and ~11! give

xSC
2 52eS r01g0

r21g2
D1O~e2!, ~13!

and soxSC is also predicted to beO(e1/2).10%, so long as
numerator and denominator areO(1) andr21g2,0.

If we instead work toO(x4) in v20, then a second roo
xSC8 can develop beyond which superconductivity is ag
lost. As is easy to see, this second root arises forx.O(1),
and so lies outside of the domain of the small-x expansion,
and forx potentially large enough to invalidate the appro
mate SO~5! symmetry. Notice that this implies that the op
mal doping, xopt—defined as the doping for whichTc is
largest—is alsoO(1), and so isunsuppressed by powers o
e.

Finally, if xAF.xSC, and if k.0, then dopings satisfying
xSC,x,xAF give both a superconductor and an antifer
magnet~as in the MX phase! at zero temperature. This phas
can extend over a range of dopings which is at most as la
as xAF2xSC5O(e1/2). Otherwise, if k,0, the AF to SC
transition is first order.

Transition temperatures: Similar arguments may be ap
plied to estimate the size of the critical temperatures for
various ordered phases if theT dependence of the coeffi
cients in v is known. In mean-field theory the large
temperature limit of the temperature dependence of the
energy may be argued on dimensional grounds. For largT
in d dimensions, the quadratic coefficients,r andg, are pro-
portional toT2, with a prefactor that can beO(1) for r, but
which is suppressed bye or x2 for g.

For sufficiently largeT it follows that eventuallyr
.ugu, implying a transition to the disordered phase~N!. The
transition temperature as a function of doping may be e
mated by asking when theT2 contribution is the same size a
is the zero-temperature values forr and g. Since the zero-
temperature limits of bothr andg are suppressed by powe
of e and/orx2, the transition temperatureTc is predicted to
be smaller than might be expected based on the underl
electronic scales,J.0.1 eV.1000 K. At zero doping onlye
controls the size of symmetry breaking, so the Ne´el tempera-
ture TN is expected to be

TN5O~e1/2J!.100 K. ~14!

Once again this is the right order of magnitude for the
prates. Of course, these estimates can be further reduce
er

l
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ge

e

ee
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-
by

other effects. For example, very anisotropic systems are
fectively two dimensional, in which casew'

(6) , u'
(6,0)→0,

implying Tc→0.
We are thus led to the phase diagram of Fig. 2 in

temperature-doping plane, which reproduces well the gen
features of the phase diagram for real high-Tc systems.

C. Critical behavior

Since the symmetry of the order parameter has impor
implications for the critical exponents, and since some cr
cal behavior is experimentally accessible for the cuprates
pause to explore critical phenomena more carefully here

As is well known, ind,4 dimensions the Gaussian fixe
point is unstable in the infrared, and so the critical expone
are controlled by some other infrared fixed point of t
renormalization group. In the absence of more reliable me
ods, one is reduced to expanding about either the upped
54) or lower (d52) critical dimensions. Our approach he
is to expand in powers ofd24, and we do so for both the
critical lines separating the disordered~N! phase from the
others, as well as for the bi- or tetracritical point should the
lines meet. We imagine in what follows that all five of th
fields inns andnQ are free to fluctuate. Our treatment of th
tetracritical point therefore differs from Zhang’s, since
draws his conclusions for this point using the nonlinears
model, for whichns•ns1nQ•nQ51, based on an expansio
aboutd52.14

Along the critical line the SO~5! picture implies the usua
O(N)-invariant infrared fixed points, whereN53 for the
Néel transition, andN52 ~XY universality15! for the super-
conducting transition. Due to the relevance of the elect
magnetic coupling, the SC transition crosses over fromXY
universality to that of a charged fluid, although undetecta
close toTc .15 Both are covered by the usual result to leadi
order in the expansion in«542d:

v*
8p2 5

«

N18
1O~«2!,

1

n
522

N12

N18
«1O~«2!,

~15!

wherev* denotes the fixed-point value ofv40 for the N/SC
transition~or of v04 for the N/AF transition!. Very near the
critical point ~and so in this section only! we ignore the
system’s anisotropy and rescale all fields to canonically n

FIG. 2. The phase diagram for the free-energy function
scribed in the text in the temperature-doping plane. As for Fig
the thin lines represent second-order transition lines, while the
line is a first-order phase boundary. The two possibilities for wh
the AF and SC phases coexist are distinguished by the sign o
quartic couplingk in the free energy.
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malize the derivative terms in the free energy.n is the stan-
dard critical exponent for the correlation length, which d
verges likej;t2n as t[T/Tc21→0. There is indeed good
experimental evidence12 that n for the N/SC transition, is
given as predicted forXY universality.

The fixed-point behavior in the bicritical~or tetracritical!
region differs qualitatively from that found along the tw
critical lines. This is because theO(N)-invariant fixed point
is stable only forN,42O(«), and so does not apply fo
N55. The fixed point appropriate forN55 may be found
numerically, and the results obtained agree where they
be compared with previous treatments,16 as well as with the
approximate analytic expressions given below.

In order to identify the fixed points it is useful to consid
a model for which the fieldns spans anNs-dimensional
space, andnQ spans a space ofNQ dimensions. The free
energy is assumed to beO(Ns)3O(NQ) invariant. In this
case useful approximate expressions for the fixed points
be derived in an expansion in powers ofn[Ns2NQ over
N̄5Ns1NQ . In the case of present interestNs53 andNQ

52, and so the parametern/N̄51/5 is reasonably small.
The stable fixed points which emerge at leading orde

«542d then are~i! the O(N̄)-invariant fixed point, forN̄
,4; ~ii ! the ‘‘decoupled’’ fixed point@for which (v22)* 50#,
for (NS12)(NQ12).36; and ~iii ! a third fixed point for
intermediate values ofNS andNQ . It is this third fixed point
which is appropriate forNS53 andNQ52, and it gives

l*
4p2 '8l0 ,

h*
4p2 '

n~N̄24!

N̄22
l0 ,

k*
4p2 '2~N̄24!l0 ,

~16!

wherel0[«/(N̄2132). ForN̄55, n51 andd53 these ex-
pressions agree well with the values we obtained numeric
to linear order in «: l* /(4p2)'0.141, h* /(4p2)
'0.005 73, andk* /(4p2)'0.0340. Notice the hierarch
h* !k* !l* which is satisfied at this fixed point, and
consistent with approximate SO~5! invariance, albeit with
some symmetry-breaking couplings which are larger th
O(1%) of their SO~5!-invariant counterparts.

Since the picture of how the critical lines merge near
bicritical point differs somewhat from that of Ref. 1, we ne
present this in more detail. The running of the two quadra
couplings,r andg, in the far infrared is given near the fixe
point by

S m
]r

]m D
*

522r1
1

16p2 $@2~N̄12!l* 14k* 2nh* #r

1@~N̄14!h* 22nl* #g%,

522r1
l0

4~N̄22!
$@24N̄~N̄22!

2n2~N̄24!#r1@~N̄28!2248#ng%,
~17!
an

ay

n

lly

n

e

c

S m
]g

]m D
*

522g1
1

16p2 $@~N̄14!h* 22nk* #r

1@4l* 12~N̄12!k* 2nh* #g%,

522g1
l0

4~N̄22!
$23n~N̄24!2r

1@4N̄~N̄22!22n2~N̄24!#g%. ~17!

The principal directions of the flow, and the correspondi
scaling exponents, near the fixed point are given to go
approximation by

r1'r2S 3n~N̄24!2

4N̄~N̄22!~82N̄!
D g,

r2'g2S n@~N̄28!2248#

4N̄~N̄22!~82N̄!
D r ~18!

and:

1

n1
'22

6N̄

N̄2132
«,

1

n2
'22

N̄~N̄22!

N̄2132
«. ~19!

For N̄55 andn51 these becomer1.r20.017g and r2

.g10.22r, while n1.0.68 andn2.0.58.
The largest of these exponents defines the tempera

exponent, n5n1.0.68. The scaling form for the free
energy density,f 5t2dnF(r2 /tf), defines the crossover ex
ponent,f, which is given byf5n1 /n2 . We have

f'
N̄212N̄164

2~N̄223N̄132!
.1.2. ~20!

Since f.1, the two critical lines approach the bicritica
point tangent to one another, and to the liner250—or,
equivalently, to the lineg5(n@(N̄28)2248#/4N̄(N̄22)(8
2N̄)) r.0.22r.

It would obviously be of great interest to examine expe
mentally the critical behavior at the bicritical point, since th
would more decisively distinguish the symmetries of the
der parameter at this point. Unfortunately, to our knowled
there is currently no experimental information concerni
this critical behavior, likely due to the disorder which is in
troduced in this region by the doping process.

III. THE NONLINEAR SIGMA MODEL:
PSEUDO-GOLDSTONE MODES

More microscopically, another regime for which SO~5!-
invariance provides definite quantitative predictions is de
within the ordered phases. Here the low-energy dynamic
governed by the Goldstone, and pseudo-Goldstone mo
together with their interactions with the other low-ener
degrees of freedom. Much can be said about these l
energy properties because low-energy Goldstone-boson
namics is largely determined purely by the pattern of sp
taneous symmetry breaking.8,17,18

The present section is devoted to developing the qua
tative description of this regime. Section III A first describ
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8648 57C. P. BURGESS AND C. A. LU¨ TKEN
the most general low-energy effective Lagrangian for t
phase, which is then used in Sec. III B to determine the
persion relations for the pseudo-Goldstone bosons th
selves. Their interactions are used in Sec. IV to draw p
liminary conclusions about their contributions to respon
functions in the AF and SC phases, which also involves th
interactions with the low-energy electronlike quasiparticle

A. The effective Lagrangian

Imagine, then, thatT andx are chosen to lie within one o
the ordered phases, and integrating out all degrees of
dom which involve energies larger than some scaleL. We
wish to write down the effective Lagrangian governing t
degrees of freedom which remain at still lower energies.
though this effective Lagrangian cannot yet be derived fr
the microscopic physics, we are guaranteed to capture
physics so long as we use themost general possibleLa-
grangian involving the low-energy modes and respecting
of the symmetries.8

When a global symmetryG is spontaneously broken to
subgroupH the self-couplings and spectrum of the resulti
~pseudo-! Goldstone states is described at low energies
the nonlinears model for the quotient spaceG/H.8,17,18

When G5SO(5) andH5SO(4) this implies the lowes
terms in the derivative expansion of the Lagrangian for t
system are completely determined by two constants.
course, more possibilities arise once explicit SO~5! breaking
interactions are introduced.

The most general such Lagrangian involving two or few
derivatives is again built from the fieldsnS andnQ , but with
the important difference, relative to Sec. II A, that these n
satisfy the constraintnS•nS1nQ•nQ[1, since we are inter-
ested in only the Goldstone and pseudo-Goldstone mode
the absence of doping, the result takes a form which is s
lar to Eq.~5!, L5Linv1Lsb, with

Linv5
f t

2

2
~] tnQ•] tnQ1] tnS•] tnS!

2
f i

2

2
~¹anQ•¹anQ1¹anS•¹anS!

2
f'

2

2
~¹cnQ•¹cnQ1¹cnS•¹cnS!1••• ,

~21!

Lsb52V1 f t
2@A] tnQ•] tnQ1B] tnS•] tnS1C~nQ•] tnQ!2#

2 f i
2@D i¹anQ•¹anQ1Ei¹anS•¹anS

1F i~nQ•¹anQ!2#2 f'
2 @D'¹cnQ•¹cnQ

1E'¹cnS•¹cnS1F'~nQ•¹cnQ!2#1••• ,

where f t , f i , and f' are constants, whileV, Ai ,' , Bi ,' ,
Ci ,' , D i ,' , Ei ,' , and F i ,' are potentially arbitrary func-
tions of the SO~3!3SO~2! invariants nQ•nQ and nS•nS .
They also can depend on the temperatureT since this can
appear inL through the process of integrating out the hig
energy modes.~Our notation here follows that of Ref. 9
s
-
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.
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l-

its
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s
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r

In
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-

generalized to the anisotropic case. Other couplings, suc
emnl]mnW S•(]nnW S3] lnW S), are also possible in specific dimen
sions~in this cased52!.

Fewer terms appear in Eq.~21! than in Eq.~5! because of
the constraintnS•nS1nQ•nQ51 which is enforced in Eq.
~21!, but not in Eq.~5!. Should the ‘‘length’’ of the SO~5!-
breaking order parameter also describe a propagating m
in the low-energy system, as might be appropriate near
critical point, then this constraint may be relaxed. Since t
mode isnot guaranteed to be in the low-energy theory f
away from the phase boundaries—unlike the pseu
Goldstone states—we do not include it further in this secti

Far from the critical region the correlation length perpe
dicular to the planes becomes smaller than half the interp
spacing, and we take the system to be approximately
dimensional, corresponding to the limitf'50. ~A more de-
tailed modeling of the dimensional crossover within the co
text of Bose-Einstein condensation is given in Ref. 19.! We
imagine working in this limit in what follows, and so from
here on drop the redundant subscript ‘‘i’’ from the coeffi-
cient functionsD, E, andF.

Couplings to long-wavelength electromagnetic fiel
are incorporated in the effective theory through the us
substitution]anQ→(]a2 ieAaQ)nQ . @A special case of this
coupling is the dependence on the chemical potentialm,
which enters L through the replacement] tnQ→(] t

2iemQ)nQ .20,21# For distances shorter than the electroma
netic screening length,a5eq ft , this electromagnetic cou
pling includes the Coulomb interactions of the pseud
Goldstone bosons. It is important to realize, however, t
the strongshort-rangedCoulomb interactions need not b
included in this way, since these are integrated out to ar
at L in the first place. Although strong microscopic intera
tions such as these would complicate the derivation of thL
from first principles, they play no role when usingL at low
energies.

An important consequence of these observations now
lows. When using the Lagrangian of Eq.~21!, the key obser-
vation is that all of the interactions areguaranteedto be
weak at low energies, justifying a perturbative treatme
This is because all interaction terms are suppressed by e
a derivative or a small SO~5! breaking parameter or both. I
particular, the pseudo-Goldstone spectrum may be obta
from L in mean-field theory by expanding in fluctuation
about minima of the potentialV.

For later purposes a useful parametrization~which identi-
cally solves the constraintnQ•nQ1nS•nS51! is given by
polar coordinates on the four-sphere:

nQ5cosuS cosf
sin f D , nS5sin uS sin a cosb

sin a sin b
cosa

D , ~22!

~although care is required to properly handle those po
where these coordinates are singular!. In terms of these vari-
ables, and including a chemical potential, the Lagrang
becomes
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L52V1
f t

2

2
@~112A sin2 u12B cos2 u12C sin2 u cos2 u!~] tu!21~112A!cos2 u~] tf1eqm!2

1~112B!sin2 u„~] ta!21sin2 a~] tb!2
…#2

f i
2

2
@~112D sin2 u12E cos2 u12F sin2 u cos2 u!~¹au!2

1~112D !cos2 u~¹af!21~112E!sin2 u„~¹aa!21sin2 a~¹ab!2
…#1••• , ~23!
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where all coefficient functions are to be regarded as fu
tions of cos2 u.

To this point we have not yet used much informati
concerning the nature or size of the explicit symmetry bre
ing. This we now do by making an assumption as to how
symmetry-breaking terms transform under SO~5!. Since
there are two types of symmetry breaking, a choice mus
made for each.

Doping: Doping has been incorporated into the effecti
theory through the chemical potentialm. We return to the
connection betweenm andx in Sec. III C below.

Intrinsic breaking: Symmetry breaking also occurs at ha
filling, with strengthe. The resulting symmetry-breaking pa
tern is SO~5!→SO~3!3SO~2!. We assume this to be don
with the simplest possible ‘‘order parameter’’M which
transforms as a 5 by 5matrix under SO~5!. That is, choose
M5e diag(3,3,22,22,22).

The Lagrangian is then the most general function of
fields n5(nS

nQ), mQ, andM , subject to the following SO~5!

transformation property:

L~On,OmQOT,OMOT!5L~n,mQ,M !, ~24!

whereO is an SO~5! transformation.
The utility of identifyingQ andM may be seen whenL is

expanded in powers of the small quantitiese andm. SinceM
andQ always appear premultiplied by these small numbe
this expansion restricts the kinds of symmetry break
which can arise order by order, which in turn constrains
possibleu dependence of the coefficient functions inL.

For example, a term in the scalar potential involving 2n
powers ofn must have the following form:

V~n!5 (
~k1 ,l 1!Þ~0,0!

••• (
~kn ,l n!Þ~0,0!

Ck1l 1 ,...,kn ,l n

3@nT~eM !k1~mQ!2l 1n#•••@nT~eM !kn~mQ!2l nn#.

~25!

Only even powers ofQ enter here due to its antisymmetr
and the termki5 l i50 is excluded from the sums due to th
constraintnTn51. ExpandingL to low order in the SO~5!
breaking parameterse and m necessarily also implies keep
ing only the lowest powers ofnQ•nQ5cos2 u in V.

Similar conclusions may be obtained for the other coe
cient functions in the Lagrangian of Eq.~21!. Working to
O(e2,em2,m4) in V, and toO(e,m2) in the two-derivative
terms then gives

V5V01V2 cos2 u1
1

2
V4 cos4 u, ~26!
c-

-
e

e

e

s,
g
e

-

and

A5A01A2 cos2 u, B5B01A2 cos2 u, C5C0 ,

D5D01D2 cos2 u, E5E01D2 cos2 u, F5F0 ,
~27!

for the coefficient functions in Eq.~23!. Notice that the terms
proportional to cos2 u in A and B are identical, as are the
corresponding terms inD andE. Expanding in powers ofe
andm, the constants in Eqs.~26! and~27! start off linear ine
andm2: Ai5Ai

10e1Ai
01m21••• , etc. The only exceptions to

this statement areB0 , E0}e ~no m2 term!, C0 , F0}m2 ~no e
term!, andV45V4

20e21V4
11em21V4

02m4. Furthermore, since
the m2nQ•nQ term in V arises from substituting] t→] t

2 iemQ in the kinetic term for nQ , we have V2
015

21/2f t
2e2q2 to leading order. Higher powers ofm originate

from terms inL which involve more than two derivatives.
In this way we arrive at an effective Lagrangian ve

similar to that of Ref. 1~in the isotropic limit!. The main
difference here is the power counting of the symmet
breaking terms. Reference 1 keeps terms quadratic innQ and
has three susceptibility parameters controlling the tim
derivative terms, and three stiffness constants governing
spatial derivatives. Although a quadratic scalar potential c
tures the leading order ine, it does not appear that a three
parameter derivative term corresponds to any fixed ordere
or m2.

B. Pseudo-Goldstone dispersion relations

We now turn to the calculation of the pseudo-Goldsto
boson dispersion relations. The scalar potential of Eq.~23!
has three types of extrema:

~1! u050 or p;

~2! u05
p

2
or

3p

2
;

~3! u0 where c5cosu0 satisfiesV8~c2!50.

This leads to the four classical ordered phases found in S
II B. ~i! SC phase: extremum~1! is a minimum, and~2! is a
maximum; ~ii ! AF phase:~2! is a minimum, and~1! is a
maximum;~iii ! MX phase: both~1! and~2! are maxima, and
~3! is a minimum; or~iv! metastable phase: both~1! and~2!
are minima, and~3! is a maximum. This analysis become
identical to that of Sec. II B ifV is assumed to be quartic i
cosu, as was done in Ref. 9.

Superconducting phase: An expansion about the supe
conducting mimimum,u050, gives the dispersion relation
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in this phase for the four bosons. The result is a spin trip
of pseudo-Goldstone modes for which

E~k!5@c2k21E2#1/2, ~28!

with the phase speed,cpGB
2 ~SC), and gap,EpGB

2 ~SC)[ESC
2 ,

given to lowest order in SO~5! breaking parameters by

cpGB
2 ~SC)5

f i
2

f t
2 @112„E~1!2B~1!…#

5
f i

2

f t
2 @112~E02B0!12~D22A2!#,

~29!

ESC
2 5

22V8~1!

f t
2 5

22~V21V4!

f t
2 .

In both of these results the first equation uses the gen
effective theory, Eq.~23!, while the second equality incorpo
rates the additional information of Eqs.~26! and ~27!.

The remaining fieldf describes abona fidegapless Gold-
stone mode. Its dispersion relationE(k) is a more compli-
cated function ofc2k2 and eqm whose form,21 is not re-
quired here. Its phase velocity,c2[cGB

2 ~SC), is given by

cGB
2 ~SC)5

f i
2

f t
2 @112„D~1!2A~1!…#

5
f i

2

f t
2 @112~D02A0!12~D22A2!#. ~30!

Recall in these expressions thatV(cos2 u) includes anym-
dependent contributions coming from the kinetic terms,
their higher-derivative counterparts, and a prime denotes
ferentiation with respect to cos2 u.

Antiferromagnetic phase: Expanding about the AF mini
mum gives the usual two magnons satisfying dispersion
lation ~28!, with

cGB
2 ~AF)5

f i
2

f t
2 @112„E~0!2B~0!…#5

f i
2

f t
2 @112~E02B0!#,

~31!

EGB
2 ~AF)50.

The remaining two states form a pair of electrically charg
pseudo-Goldstone bosons satisfying

E6~k!5@c2k21E2#1/26eqm, ~32!

with

cpGB
2 ~AF)5

f i
2

f t
2 @112„D~0!2A~0!…#5

f i
2

f t
2 @112~D02A0!#,

EAF
2 5EpGB

2 ~AF)5
2V8~0!

f t
2 5

2V2

f t
2 . ~33!

These expressions imply the simple formulas of R
9: EAF

2 5m22km2, and ESC
2 52m21km22jm4, wherem2

[2V2
10e/ f t

21O(e2), k[22V2
01/ f t

21O(e)5e2q21O(e),
andj[2V4

02/ f t
21O(e).
t

ral

r
if-

e-

d

f.

Within the AF phase the pseudo-Goldstone boson ga
seen to fall linearly withm2: EAF

2 'EAF
2 (0)@mAF

2 2m2#, where
mAF represents the doping for which one leaves the AF
gime. SimilarlyESC

2 varies quadratically withm2. By elimi-
nating parameters of the Lagrangian in favor of properties
the gap as a function ofm we find the relations of Ref. 9:

«AF
2 ~m!5

«AF
2 ~0!

mAF
2 @mAF

2 2m2],

«SC
2 ~m!5

«SC
2 ~opt!

mopt
4 ~m22mSC2

2 !~2mopt
2 2m2),

~34!

«AF
2 ~0!

mAF
2 52

«SC
2 ~opt!

mopt
2 ,

mAF
2 5mSC2

2 1O~«2!,

wheremopt here denotes the chemical potential correspo
ing to the maximum gapESC. We expect this to occur a
optimal doping,mopt5m(xopt).

Similarly, the phase velocities for all modes in both S
and AF phases are equal to one another, and tof t

2/ f i
2, in the

strict SO~5!-invariant limit. ~The parametersf t and f i are
related to the compressibility and magnetic penetration de
in the next section.! The O(«) corrections to this limit also
satisfy some model-independent relations, which follow
eliminating parameters from the above expressions:

cGB
2 ~SC!2cpGB

2 ~AF!5cpGB
2 ~SC!2cGB

2 ~AF!5O~«!.
~35!

C. The connection betweenx and m

The previous expressions giving the dependence of ph
cal quantities in terms of the chemical potentialm would be
more useful if expressed in terms of the physically measu
quantity, the dopingx. This relation is determined implicitly
in the present section.

The dependencem(x) is found by adjustingm to ensure
that the net electric charge equalsx charge carriers per uni
cell. This must be done differently in the AF and SC phas

In both phases the total charge is carried by both
charged pseudo-Goldstone states,and the ordinary electron-
like quasiparticles responsible for conduction. The existe
of these electronlike quasiparticles at low energies in the
phase is demanded by the evidence in favor of adx22y2-wave
gap in the cuprate superconductors.22 These experiments ar
gue for the existence of ungapped states due to the node
the dx22y2-wave gap function, which cannot be provided b
the four pseudo-Goldstone modes. In the AF phase th
degrees of freedom correspond to ordinary unpaired e
trons.

AF phase: In the AF phase the charge is carried by
mixture of electrons and charged pseudo-Goldstone sta
The condition of equilibrium between these two types
charge carriers implies their electric chemical potentials m
be equal, and so the defining condition form(x) becomes
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^rem&[
ex

V 5E
0

`

dv$NF~v!@nF~m!2nF~2m!#

1NB~v!@nB~m!2nB~2m!#%, ~36!

whereNF andNB , respectively, denote the density of stat
for fermions and bosons. For weakly interacting bosons id
spatial dimensions, whose dispersion relation isE25k2c2

1E2, the density of states is given explicitly byNB
5@Vd /(2p)d#kd22E/c2, whereVd is the solid angle swep
out by a vector ind spatial dimensions~so V252p and
V354p!. The Bose-Einstein distributions are given b
nF(m)5@e(v2em)/kT11#21 and nB(m)5@e(v2qem)/kT

21#21.
For smallm it is the fermions which dominantly contrib

ute to r, and the dependencex(m) which results is~for d
52 space dimensions! linear: x}m/J. This linear depen-
dence changes oncem becomes of order the scalar gap
zero doping,EAF(0)5O(«1/2J), since at this point the scala
charge density varies strongly withm, signaling the transition
to the condensed~SC! phase.

Section II B showed the doping for which one exits~at
low temperature! from the AF phase to be, in order of mag
nitude,x5xAF5O(«1/2). We see that this corresponds to
chemical potential whose size ism[mAF5O(«1/2J). @An
identical conclusion regarding the size ofmAF may be drawn
from the condition for Bose-Einstein condensation:m
>EAF(0).#

We see that since the chemical potential depends line
on doping within the AF regime, Eqs.~34! imply a linear
dependence ofEAF

2 (x) on x2:

EAF
2 ~x!5

EAF
2 ~0!

xAF
2 ~xAF

2 2x2!. ~37!

Corrections to this linearity inx2 arise as the SC phase
approached sincem no longer varies linearly withx near the
point where the bosons condense.

SC phase: Deep within the SC phase we assume
charge density to be dominated by thenQ condensate. Writ-
ing the potential asV(n)'(1/2)(m22n2)n21(1/24)g2n4

@where n[eqm f t , m2[2V2(m50)'2V2
10«, and g2

512V4(m50)'12V4
20«2#, we seê rem& is given by

^rem&[
eqx

V 52
]V

]mU
n5n0

5
6eq ftn

g2 ~n22m2!, ~38!

where n056(n22m2)/g2 minimizes V. This leads to the
asymptotic expressions n'(g2x/6Vf t)

1/3}x1/3 if
g2^rem&/(6 f tm

3)@1, and n2m'gx/(12Vf tm
2)}x if

g2^rem&/(6 f tm
3)!1.

In the case of interest we have~for d52 space dimen-
sions! f t5O(1), m25O(«J2), and g25O(«2J), and so
g2^rem&/(6 f tm

3).x«1/2/(6VJ2). Taking J.0.1 eV andV
.(10 Å)2 we find 6VJ2.1025, leading to
g2^rem&/(6 f tm

3).105x«1/2.104x. Since this is much
greater than unity whenx*xSC5O(«1/2), it follows that
m`x1/3 within the SC phase.

We may now determine the size ofm at optimal doping.
We found in Sec. II B that optimal doping occurs forx
t

ly

e

5xopt5O(1), and so xopt/xAF5O(«21/2). But since m
}x1/3 within the SC phase, we seemopt;mAF(xopt/xAF)1/3

5O(«1/3).
Together with the previous results, Eqs.~34!, these ex-

pressions imply thatESC
2 (x) is quadratic in the variablem2

}x2/3. Similarly, the gap in the SC phase at optimal dopi
is related to the AF gap at zero doping by

ESC~opt!5
mopt

A2mAF

EAF~0!5O~«1/3J!. ~39!

This last equation, together with the interpretation of the
meV state as the pseudo-Goldstone boson of the SC ph
and the underlying electronic scaleJ.0.1 eV, give the order
of magnitude of the symmetry-breaking parameter:«.1%.

IV. RESPONSE FUNCTIONS

In order to measure the properties of these pseu
Goldstone particles, it is necessary to understand how t
contribute to the spin and electromagnetic response funct
of the materials. This is the topic of the present secti
Because these particles are weakly coupled, their resp
may be computed perturbatively.

As we shall see, it shall become important for these p
poses also to understand how the pseudo-Goldstone s
couple to the other degrees of freedom in the low-ene
system. For this reason we also write down the electr
pseudo-Goldstone particle couplings in this section.

The starting point for calculating the response functions
to identify the dependence on the~pseudo-! Goldstone
bosons of the spin and electromagnetic currents. These
very easily obtained, to lowest order in the derivative exp
sion, by constructing the corresponding Noether currents
ing the Lagrangian of Eq.~21!:

rem52 f t
2~112A!nQQ] tnQ , rspin5 f t

2~112B!nW S3] tnW S ,

jem
i

52 f i
2~112D i!nQQ¹nQ ,

j¢spin
i

52 f i
2~112Ei!nW S3¹nW S , ~40!

j em
z 5 f'

2 ~112D'!nQQ¹cnQ ,

jWspin
z 52 f'

2 ~112E'!nW S3¹cnW S .

Because the pseudo-Goldstone bosons are we
coupled, correlations of these currents may be be dire
evaluated for free bosonsnQ and nS plus perturbative cor-
rections. This perturbative evaluation conveniently organi
the contributions to the response according to which sta
are responsible. The following sections give some examp
of such calculations.

A. High-energy contributions

Even though the effective Lagrangian only contains
degrees of freedom the states which actually appear in
low-energy spectrum, it nonetheless carries the informa
as to how states at higher energies contribute to respo
functions. The contributions of higher-energy states are
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corporated as they are integrated out to produce the effec
Lagrangian itself, and so their contribution to correlati
functions may be read directly from the Lagrangian.

More precisely, imagine coupling to a long-waveleng
electromagnetic fieldAm or to a fictitious fieldsm

a coupling to
spin, by making the substitution:]anQ→(]a2 ieQAa)nQ or
]anS→(]a2 iTasa

a)nS , with Ta andQ the matrix generators
of SO~3! and SO~2!, as defined in Eq.~4!. The high-energy
contribution to the electromagnetic and spin response m
then be obtained by differentiating the effective Lagrang
twice with respect toAm or sm

a . The resulting correlation is
proportional todd(x2x8)d(t2t8), as would be expected fo
a mode which fluctuates on a scale much shorter than
over which the response is computed.

Making this substitution for the electromagnetic respon
leads to the magnetic penetration depth along the planl
and the electric screening length~or compressibility! a.
These are given by

S 1

l2D
he

54pm0e2q2f i
2~112D !nQ•nQ ,

S 1

a2D
he

54pe2q2f t
2~112A!nQ•nQ , ~41!

wherem0 is the magnetic permeability of the material. Th
result in the ground state is obtained by using the grou
state configurations:nQ•nQ51 (SC) ornQ•nQ50 (AF).

Similarly, the spin response obtained in this way gives
high-energy contribution to the paramagnetic susceptibili

~xab!he5ms
2f t

2~112B!nSTaTbnS , ~42!

wherems is the magnetic moment of the pseudo-Goldsto
bosons. These depend on temperature, only through the w
dependence of coefficientsf t , f i , A, B, andD.

B. Goldstone poles

The next simplest contributions to response functions
compute are the poles which occur in the correlation of
currents for spontaneously broken~approximate! symme-
tries, due to the contribution of the corresponding~pseudo-!
Goldstone states. This includes the superconducting co
bution to the electromagnetic response in the superc
ductor, and the magnon contribution to the spin respons
the antiferromagnet, in addition to the pseudo-Goldstone
son couplings to the additional SO~5! generators which ro-
tate the spin and charge degrees of freedom into one ano
These are given in perturbation theory by the Feynman gr
of Fig. 3, which describes the direct creation and destruc
of the Goldstone boson from the ground state by the cur
of interest.

FIG. 3. The Feynman diagram which produces the Goldst
pole contribution to the current-current correlation function. T
dashed lines represent pGB propagation.
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The result for the SC electromagnetic and the AF s
response, obtained by summing the pole and the high-en
contributions, is

2 iu~ t !^[rem~x,t !,rem~0!#&GB

5E d2kdv

~2p!2 e2 ivt1 ik•xF4pe2q2~112A! f t
2k2csc

2

2v21k2csc
2 2 igscv

G ,
2 iu~ t !^@rspin

a ~x,t !,rspin
b ~0!#&GB

5E d2kdv

~2p!2 e2 ivt1 ik•x

3F ~112B! f t
2k2caf

2 ~nSTah!~hTbnS!

2v21k2caf
2 2 igafv

G , ~43!

where csc[cGB~SC) andcaf[cGB~AF). gsc and gaf repre-
sents small damping contributions to the pGB dispersion
lations. For the spin-spin correlation,h denotes the normal
ized eigenvector of the gap matrix corresponding to the
direction whose pole is being computed. Notice Eqs.~43!
reproduce Eqs.~41! and ~42! in the limit v,k→0.

Of course, Eqs.~43! are not specific to SO~5!-invariant
physics, since they also hold forany antiferromagnet or su-
perconductor. This is because they simply contain the im
cations of the Goldstone bosons associated with spont
ously broken SO~3! or SO~2! invariance. As a result
although they provide a good description of the respons
these phases23,24,10this is not a real test of SO~5! symmetry.
For the same reasons, neither are such responses de
tests of the explicit models in which they are usually derive
It is the contributions of thepseudo-Goldstone states in both
phases which provide more interesting information. Af
pausing to address a puzzle concerning the pseu
Goldstone pole in the spin response of the SC phase,
close by describing some of the features of the pGB
sponse.

C. Pseudo-Goldstone poles: A puzzle

It was the contribution to neutron scattering of the sp
triplet pGB state in the SC phase which originally motivat
the SO~5! picture. Since neutrons couple to electron spi
the SO~5! interpretation of the neutron-scattering expe
ments requires the pGB to contribute a resonance to the s
response functions.

This immediately leads to a puzzle. The spin-triplet pG
contributes a pole similar to Eqs.~43! to three SO~5! currents
~Zhang’sp operators! which are spontaneously broken in th
SC phase. But Fig. 3 doesnot produce a pole in the SC
spin-response function in the SC phase, because the sym
try of spin rotations is not broken in this phase. The puzzle
how such a pseudo-Goldstone pole can arise as a reson
in the SC spin-correlation function. This section sketch
how this puzzle is resolved within the effective field theo
framework.

The difficulty with producing a pGB pole in the spin
correlation function lies in the observation thatrW spin of Eqs.
~40! involves onlyevenpowers of the boson fieldnS . The
same is true of the interactions in the effective Lagrang
Eq. ~21! and so it is difficult to generate a graph of the for

e
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of Fig. 4, which would generate a resonant contribution
the spin-correlation function. The ‘‘blobs’’ of Fig. 4 repre
sent any graphs which can produce the triplet state star
from quasiparticles created by the spin densityrW spin.

In our opinion the resolution of this puzzle comes fro
the couplings of the pseudo-Goldstone bosons to the e
tronlike quasiparticles in the SC phase. As stated earlier,
existence of these quasiparticles can be inferred from
evidence fordx22y2-wave pairing, since some of these e
periments indicate the existence of gapless excitations in
SC phase. These excitations must bein addition to the four
Goldstone and pGB states of the SC phase.

To see how these quasiparticles can help with the puz
suppose them to have the quantum numbers of electrons
to have couplings that are weak, so that their propagatio
approximately described by the Lagrangian densityL0

5*ddpcp
†@ i ] t2Ep#cp . Herecp5(cp↓

cp↑) destroys a quasiparti

cle which propagates with dispersionv5Ep , as is described
by L0 . Standard arguments25 can now be used to identify
those interactions which are the most important in the lo
wavelength limit. Goldstone boson couplings are all irr
evant~in the renormalization-group sense! in this limit, but
the least irrelevant of their couplings to the electronic qua
particles involve the emission and absorption of a sin
Goldstone particle. The resulting electron Lagrangian den
which describes this is

Lint5E ddpddk@gS~p,k!cp1k
† sW cp•nW Q~k!

1gQ~p,k!cp1k
† ~ is2!c2p* nQ~k!#1H.c. ~44!

This interaction is least irrelevant for special regions of m
mentum of the quasiparticle pairs,25 such as when the ne
momentum of the pair is close to zero.

Notice that an expectation value fornQ introduces a qua-
siparticle gap, proportional togQ^nQ&, so a dx22y2-wave
symmetry of the gap restricts howgQ(p,k) can depend on
momenta lying on the Fermi surface. Approximate SO~5!
invariance relates the couplinggQ(p,k) to gS(p,k), and so
implies a similardx22y2-wave symmetry forgS(p,k).

The principal observation at this juncture is that the
quasiparticles contribute quadratically to the spin dens
rW elspin}*ddpcp

†sW cp , and so the coupling of Eq.~44! intro-
duces a pGB pole into the spin-correlation function throu
the Feynman graph of Fig. 4, with the blobs represent
quasiparticle loops. Even though this graph does not aris
leading order in perturbation theory, the singular shape of
pole permits it to dominate the lower orders for energies
momenta which are related by the pGB dispersion relatio

FIG. 4. The Feynman diagram which produces the pole con
bution to the spin-correlation function in the SC phase due to
spin-triplet pseudo-Goldstone state. The blobs represent ferm
loops, while the dashed line represents pseudo-Goldstone b
propagation.
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D. Pseudo-Goldstone boson response

Away from special features, such as the poles just d
cussed, the dominant contribution made by pseu
Goldstone bosons to response functions arises through
Feynman graph of Fig. 5.

At zero frequency and momentum transfer this graph c
tributes a temperature- and doping-dependent contributio
the response functions, which are precisely those due to
noninteracting gas of bosons having the dispersion rela
of the pseudo-Goldstone states. Since this dispersion rela
is ‘‘relativistic,’’ the results are those of a gas of relativist
bosons.26

In the SC phase one finds in this way the thermal pa
magnetic susceptibility due to the spin-triplet pGB’s:

xpGB~SC)5
2ms

2Vd

~2pc!d E
0

`

dx
xd23

E

3@x21~d22!E2#nB~m50!. ~45!

RecallVd is the solid angle swept out by a vector ind spatial
dimensions~V252p, V354p!, and the boson dispersio
relation isE25x21E2, for x5kc. As in previous sections
nB(m)5@eb(E2eqm)21#21 denotes the Bose-Einstein distr
bution function. The thermal electric screening length due
the charged pGB’s of the AF phase is given by a very sim
expression:

S 1

aD
pGB

~AF)5
4pe2q2Vd

~2pc!d E
0

`

dx
xd23

E
@x21~d22!E2#

3@nB~m!1nB~2m!#. ~46!

Both xpGB~SC) and (1/a)pGB~AF) are therefore seen to b
exponentially activated,}e2bE, for kT!E, and to vary as
Td21 for kT@E. Their contribution to the specific heat pe
unit volumecv of the corresponding phases is also expon
tially small for kT!E, and varies asTd for kT@E. Unfortu-
nately, the exponential suppression makes thisT dependence
difficult to detect at low temperatures, while the largeT
power-law behavior only applies, as derived, forT much
greater than the pGB gap, and yet small enough that
sample remains in the ordered phase.

The dynamic response function of a relativistic bose g
is also known for nonzero frequencies and momenta.27 This
carries considerably more information about the pseu

i-
e
on
on

FIG. 5. The Feynman diagram which produces the pseu
Goldstone boson contribution to the electromagnetic response in
AF phase.
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8654 57C. P. BURGESS AND C. A. LU¨ TKEN
Goldstone boson response, although the differentiation of
pGB contributions from other degrees of freedom is eas
at low frequencies. We close by presenting some prelimin
remarks concerning this response, and defer a more det
application to experiments to a later publication.

Because of its electric charge, the pGB state of the
phase cannot contribute to a diagram of the form of Fig
and so give a pole at low temperatures in the electromagn
response. Figure 5 nevertheless does produce some s
dependence on frequency, due to the singularity it imp
near the threshhold for producing pairs of pGB’s. Below t
threshhold the electromagnetic response from Fig. 5 is pu
real, while it is complex above. As a result, for temperatu
T*EAF the pGB’s contribute zero to the conductivity fo
frequencies below thresholdv&2EAF , but the conductivity
then grows steeply beyond this threshold. The implicatio
of the resulting expressions for electromagnetic scatte
from cuprates in the AF phase will be reported elsewher29

E. The disordered phase

Many of the results obtained above for pseudo-Goldst
bosons deep in the ordered phases might also be expect
apply in the disordered phase. If so, the wealth of exp
ments available there would permit many more detailed t
of SO~5! symmetry. Applications to the normal phase a
also theoretically appealing, since a number of striking f
tures might be expected within the SO~5! picture, including
two of the more striking implications pointed out in Ref.
the explanation for the pseudogap, and of the connection
successful scaling analysis of the temperature dependen
NMR relaxation times.28 Furthermore, the absence of spo
taneous breaking of SO~5! also implies that the boson con
tribution to correlation functions of the SO~5! currents,
j a
m(x)—with a51,...,10 labeling the SO~5! generators—are

very simply related in the SO~5!-invariant limit: ^ j a
m j b

n&
}dab . Tantalizingly it also might lead to a resistivity whic
is linear in temperature under certain circumstances.9

In this section we make somecaveatsconcerning the use
of the effective Lagrangians of previous sections in the d
ordered phase. Our main point is to emphasize that con
sions drawn from the effective Lagrangian involvingnQ , nS
~and possibly electronic quasiparticles! are not protected in
the disordered phase by the general low-energy constrain
Goldstone’s theorem, and so are necessarily more depen
on assumptions made about the details of the underly
electronic interactions. Although this makes these pred
tions no longer simply consequences of the symme
breaking pattern, they can nevertheless be worthwhile
sources of more detailed information about this underly
microscopic physics. We next describe some of the way
which model dependence can enter predictions made for
disordered phase using the boson Lagrangians describe
this paper.

(1) Degrees of freedom: First, the system’s real degrees
freedom need not be as assumed, since no general princ
require the existence of low-energy bosonic states descr
by nQ andnS if no spontaneous symmetry breaking occu
An exception might be in the immediate vicinity of the tra
sition line into one of the ordered phases, since continuit
this line would require the gap for the pseudo-Goldsto
e
st
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states of the disordered phase to still be small in the orde
phase. The deeper one moves into the disordered phase
less one would generically expect the boson gaps to rem
small compared to the intrinsic scaleJ.

Furthermore, since the four pseudo-Goldstone sta
should fill out a linear representation of the unbroken SO~5!
of the disordered phase, fluctuations in the modulus of
five-dimensional vectorn should also appear in the low
energy spectrum. This argues that the effective Lagrang
of interest is of the form considered here for the free ener
@Eq. ~5! supplemented by time-derivative terms# rather than
as was used for the pseudo-Goldstone bosons of the ord
phases@Eq. ~21!#. These differ through the relaxation of th
constraintnS•nS1nQ•nQ51, due to the fluctuations in the
magnitude of SO~5!-breaking order parametern.

(2) Weak coupling: Even if the boson degrees of freedo
exist at low energy, they need not be weakly coupled si
~unlike Goldstone bosons! they are not required to decoup
at low energies. It is noteworthy, however, that for weak
coupled systems the electron-boson interactions given in
~44! are the only couplings between the electrons and bos
which can be marginal or relevant~in the RG sense of Refs
25!. By contrast, there are a number of self-couplings amo
the bosons which can be relevant or marginal in the infrar
Of course, the existence of strong couplings among the l
energy degrees of freedom does not necessarily invali
the use of the effective Lagrangian, it could just complica
the extraction of its predictions.

(3) Bose-Einstein condensation: Even if the previous as-
sumptions should apply to a particular system, it is still tr
that a weakly coupled version of electrons and bosons ca
provide a good description for the cuprates in the disorde
phase for dopings larger than optimal. This is because if
bosonsnQ are supposed to appear at low energies, an
their couplings are weak, then the relationm(x) between
chemical potential and doping should be reasonably well
scribed, as in Sec. III C, by a gas of free bosons and e
trons. But this description always implies Bose-Einstein co
densation for sufficiently large dopings, since for lar
enoughx the bosons always ‘‘win’’ and, by condensing
dominate the expression for the electric charge density. T
cannot describe the observeddecreaseof the critical super-
conducting temperature with increasing doping, above o
mal doping.

Further work is necessary to better explore these impl
tions for the normal phase, and to more clearly ident
which predictions of the effective Lagrangian for this pha
are model specific, and which are more robust conseque
of the symmetry-breaking pattern.
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