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We set up the effective field theories which describe théSsvariant picture of the higf-, cuprates in
various regimes. We use these to geantitativeconclusions concerning the size of &Pbreaking effects.
We consider two applications in detail) the thermodynamic free energy, which describes the phase diagram
and critical behavior, andi) the Lagrangian governing the interactions of the pseudo-Goldstone bosons with
each other and with the electron quasiparticles deep within the ordered phases. We use these effective theories
to obtain predictions for the critical behavior near the possible bicritical point and the pseudo-Goldstone boson
dispersion relations, as well as some preliminary results concerning their contribution to response functions.
We systematically identify which predictions are independent of the microscopic details of the underlying
electron dynamics, and which depend on more model-dependent assumB@63-182808)03509-7

I. INTRODUCTION AND SUMMARY The issue of debate is not whether such a symmetry can
exist, since microscopic models of electron interactions have
One of the remarkable features of high-cuprate mate- been constructédor which an approximate S®) symmetry
rials is the basic connection they display between antiferrodoes relate antiferromagnetic and superconducting phases.
magnetism(AF) and superconductivitfSC). Indeed, any The concern is whether such models are relevant for describ-
convincing theory of these materials must explain this funing the cuprates. Bearing this controversy in mind, in this
damental property. paper we take the existence of the (SOsymmetry as our
Zhand has recently argued for a new perspective on thisstarting point, and concentrate on extracting those conse-
AF-SC connection within the cuprates. He identifies an apguences which follow as much as possible simply from the
proximate S@) symmetry of the one-band Hubbard model existence of the symmetry.
which is believed to describe the dynamics of the pairing As is true foranyphysical systerfi the implications of the
electrons within the Cu-O planes of these materials. ThisSO(5) picture at energies much lower than its intrinsic scale
SQO(5) symmetry contains as subgroups the(3Gymmetry J may be efficiently encoded in terms of a low-energy effec-
of spin rotations(which is spontaneously broken in the AF tive theory. The effective theory which does so will depend
phaseé and the electromagnetic $2) invariance (whose on the symmetries and degrees of freedom which arise in the
breaking defines the SC phasErom Zhang's vantage point low-energy regime, and so can differ depending on the re-
both ordered phases arise once(®0s spontaneously bro- gimes of temperature or doping which are of interest.
ken, and the competition between antiferromagnetism and Of particular interest are those low-energy predictions
superconductivity becomes a “vacuum alignment” problem,which depend only on the symmetries and degrees of free-
in which the direction of the order parameter is fixed bydom of the low-energy theory, and not, say, on the values of
small effects which explicitly break the approximate (S0 the effective low-energy coupling constants. This is because
symmetry. such predictions are robust, in the sense that they are inde-
Evidence for the validity of this picture comes from the pendent of the details of how these symmetries are realized
observation within the SC phésef a collective mode, cen- by the underlying electron dynamics. This robustness obvi-
tered near momentumm({a,w/a), which couples to the ously raises the stakes of the comparison with experiment,
spin-flip channel in neutron-scattering experiments. Its ensince disagreements cannot be attributed to small changes in
ergy gap depends on doping in the same way as d@es microscopic details.
itself, taking the value€=41 meV at optimal doping. This Our goal in the present paper is to pursue the ideas of Ref.
state is understood in Zhang's framework as a pseudct by systematically exploring the low-energy effective theo-
Goldstone bosofpGB),2 whose gap is kept small compared ries which describe it in several regimes. A short summary of
to the underlying electron-electron interaction enerdy, some of our results has been given in Ref. 9. We pause here
=0.1eV, by the S@) symmetry. Such a state is argued to to list some of our conclusions, before going into more de-
be an approximate eigenstate of the Hubbard model Hamittailed discussions in subsequent sections.
tonian in Refs. 4. (1) The phase diagran®©ur first application is to the sys-
Despite its many attractive features, we remark that théem’s phase diagram. In Sec. I, we consider the system’s
validity of these S@b)-based ideas remains controversial, free energy, and use it to reiterate Zhang's description of the
and direct the reader to the literature where the case againgqualitative features of the phase diagram in the temperature-
and in suppoft of these ideas is still being actively made. doping (T-x) plane. We then extend this reasoning to argue
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that thesizeof the phases in this plane are related to the sizelusion of the most general interactions is required to permit
of the S@5) breaking interactions, and so to the gaps for thethe robust inference of the quantitative size of symmetry-
pseudo-Goldstone states. breaking effects.

More precisely, suppose the system HamiltonjanLa- (4) Response function&inally, Sec. IV uses the effec-
grangian density has the forrft{=H,,, + eH,, WhereH;, tive theory to make some prelim_inar_y points concerning the_:
is SQ(5) invariant, ande<1 quantifies the magnitude of the PSeudo-Goldstone boson contributions to electromagnetic
explicit SQ(5) breaking interactions at zero doping. We ar- @nd spin response functions within the AF and SC phases. In
gue below that the gap for the pseudo-Goldstone state in thearticular, the origin within the effective theory, of the
AF phase is€az=O(€*2J), while that in the SC phase is pseudp—Goldstone pole in the SC-phase spin response is
Esc=0(€33). We learn the size of from the observed 41 identified.
meV gap of the SC phase:~0.01. Both the Nel tempera-
ture at zero dopingTy), and the SC critical temperature at Il. IMPLICATIONS FOR THERMODYNAMICS
optimal doping T,), are predicted to to be of ordef’J, _
leading to the(correc) expectation that these should be of In terms of the underlying electrons, the ordered AF and
order 100 K. SC phases of the high; systems are distinguished by non-

Similar statements hold for the doping required at zercZero values for the order parametefg,(io®)¢ ;) and
temperature to destroy the AF order and enter the SC regimé¥p + oo 1), Wherep is an electron momentun@= (/a,

This transition is predicted for dopings of ordeg= e/ m/a) and ¢® denotes the Pauli matrices. Long-wavelength
=10%. In addition, a potential “mixed” phas@1X), which ~ variations of these quantities can therefore be described by
is both AF and SC in nature, can arise between the purely Sthe fields:

and AF phases, again over a range of dopings which is of

order €'*~10%. The superconducting phase itself is ex-  ng(K)= gy, (ioo) -, and nd(K)ey), o iy,

pected to extend out to dopings for which the (SQnvari- D
ance is no longer a good approximation.

Although the O(1) prefactors to these estimates arewherek is much smaller than eithgr or Q.
model dependent, and so will vary from material to material, In Zhang's framework, in addition to the $8xSQ(2)
the general shape of the resulting phase diagram should tgymmetry of spin and electromagnetic gauge transformations
shared by all highF, systems, and seems to agree reasonablihere are approximate symmetries which rotageand ng,
well with the typical experimental phase diagrai. into one another. To represent this symmetry it is convenient

(2) Critical behavior The highT. systems differ from to groupng andns into a real, five-dimensional quantity
traditional superconductors in that they display critical be-
havior within a few degrees df .. This critical behavior is
the topic of Sec. Il C. The S@G)-invariant scheme predicts
the usual scaling behavior for the transitions from the SC or
AF regimes into the disordered phase. It makes different presn which the extended symmetry acts by matrix multiplica-
dictions for the vicinity of a potential bicriticglor tetracriti-  tion on the left:n— On, whereO is an arbitrary five-by-five
cal) point which is expected should the SC and AF phasesrthogonal matrix. This identifies the electromagnetid 30O
coexist for some temperatures and dopings. Zhang has aand spin S@) subgroups as the block-diagonal combina-
gued that one is attracted here to an(S@nvariant fixed tions:
point, based on th&e=2+ ¢ expansion ford-dimensional
nonlinearc models. We point out here an alternative possi- SQOQ2) 0
bility where the stable fixed point weakly breaks G =( 0 qu)).
based on thal=4— e expansion, and compute the critical
exponents in this picture.

(3) Pseudo-Goldstone boson spectrisext, Sec. Il ap-
plies S@5) to the underlying Hamiltonian for energies, tem-
peratures, and dopings corresponding to the ordered phas
and obtains the properties of the pseudo-Goldstone modes. 5
As was emphasized elsewhérgince there are more features 0= q( 7
to these gap spectra than there are parameters in the general 0
effective theory, it is possible to predict low-energy relations
among the various features of the dispersion relations foHere q=2 is the electric charge of the order parameter in
these states. units of the electron charge abdre a basis of three-by-three

Model-independent, weak-coupling conclusions do notgenerators of S@).
appear to be possible for the disordered phase, although in- The resulting SC) symmetry is simultaneously subject
ferences regarding this phase may be made by making mote two kinds of breaking. On one hand it is broken explicitly
specific use of additional assumptions concerning the microtbut weakly to the exact SG)XSO(2) subgroup by the
scopic dynamics. electron Hamiltonian, and on the other hand, it is spontane-

Our pGB Lagrangian differs in detail from that proposedously broken to S@). What follows in this section spells
by Zhang, since it involves a few more terms. Although theyout our assumptions concerning how this symmetry mani-
completely agree for qualitative purposes, we argue the infests itself in thermodynamic functions.

: 2

(©)

We denote byT, the Hermitian, antisymmetric five-by-five
matrices which generate $&), with the special cases of the
gsenerators of S@) and S@3) represented by

0
, andT=< t)' (4)
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A. Thermodynamic potentials breaking termfg,. For a slowly varying order parameter we

Given this picture, we may write the free-energy density may use a derivative expansionfofleading to the following
as the sum of an SG)-invariant termf,,, and a small S®)  most general expressions for time-independenandng:

IBfinv:Uinv+W|(|+)(VanQ' VanQ+ Vang- Vang) + u|(|+)(nQ' VanQ+ Ng- Vans)z""W(LH(VCnQ' Vch+ Veng-Veng)
+U (g Veng+ N Veng) 2+ -+,

)

Bf = vt W) (Vang: Vang—Vans Vang) +uf ' (Ng- Vang—ng- Vang)?+w! (Veng: Veng—Vens: Veny)

+U{ (g Veng—ng- Veng) 2+ uf®ng- Vangng- Vang+u'ng- Vengng- Veng+ -+

Here B=1KkT, and the ellipses represent terms involving take in what followse=0.01. It is this small parameter which

more derivatives than two. The coefficient functions,,, ultimately determines the size of the different phases in the
vep, W, Wi, ul=0 andu(*? are potentially arbitrary system’s phase diagram.
functions of the S@)XSQ(2) invariants ng-Nng and ng Nonzero doping The second source of explicit $8&)

-ng. They depend as well on the two thermodynamic vari-breaking in Eq.(6) is the chemical potentiak, which is
ables: temperature and dopigmore about this dependence introduced to describe the doping of high-systems away
below). Keeping in mind the anisotropy of the cuprate sys-from half filling. This breaks S() becauseu couples only
tems, separate coefficients are included for derivatiges, to electric charge, which is just one of the ten(Syenera-
=X,y, parallel to the copper oxide planes, and thasez,  tors. For thermodynamic applications it is more convenient
perpendicular to this plane. For simplicity we assume rotatg trace the dependence of the free energy on the number
tional symmetry within the planes. These expressi@ts 5  density of charge carriens rather thang, and so we define
differ from that of Refs. 1, 11 in three ways. Besides work-¢o dopingx by n=x/V, with V the volume of a unit cell. In
ing @n the isotropic limit, these authorét) impose the con- typical highT, systems at zero temperatures 10% is char-
straintns- Ns+ Ng- anl’ (2) I,<eep or]ly_three of the !owest acteristic of the AF phase, while 0six=<0.4 is representa-
terms in an expansion of te's andu’s in powers of fields, tive of the SC phas¥. To explore the implications of these

and (3) keep only quadratic terms in the potential (Their . . .
guartic interactions arise from the chemical-potential depent—WO sources of symmetry breaking we consider first the clas

dence of the terms involving two derivatives nf.) We sical p_hase_ transitions which are implied by the choice of an
comment further on these differences as they arise at subsg-o(s) invariant order parameter.
guent points in the text.

In the limit of SQO(5) invariancevg,=w! ) =w{")=u{")

_ . ) B. Classical phase transitions
=u{=u®=u(®=0, and each of the remaining functions P

Vinys W(f)' Wﬁ+), u(j), anduﬁ” depend only on the com- For a class!cal phase transitior) the free-energy Qengity,
binationn-n=nq-Ng+Ng- Ng. f(x,T,ng,ny), is assumed to admit a Taylor expansion in

The predictive power of the approximate symmetryPowers ofng andng nearng=ns=0. This assumption of
comes from computing observables perturbatively in theanalyticity at zero field is known to fail in the vicinity of a
small symmetry-breaking interactions. Doing so requires &ritical point, where the long-distance fluctuations can cause
quantitative characterization of the size of the symmetryf to acquire a singular dependence on its arguments. For
breaking terms irf. We imagine, therefore, the microscopic temperatures closer t®. than a few degrees, the resulting

electronic Hamiltonian to have the generic form critical behavior is poorly described by a classical discus-
sion. Unlike traditional superconductors, the correlation
H=Hpy+€Hsp— 19, (6) length in highT . systems is sufficiently small to permit criti-

cal behavior to be observed, although typically only within a

whereH,,, preserves S(®) symmetry, whileHy, andu @  few degrees off 2

both break itu here is the chemical potential for the electric ~ For these reasons we expect a classical analysis to be

chargeQ. We takeu=0 to correspond to half filling. adequate for the purposes of identifying the overall size oc-
Notice that S@5) symmetry is explicitly broken in two cupied by the various phases within the phase diagram in the

different ways in Eq(6), and so there are two different pa- T-x plane. We investigate the implications of &Dfor the

rameters,e and u, which govern the symmetry-breaking critical behavior in Sec. 1l C below.

terms in the free energf. We start by rederiving Zhang's treatment of classical
Zero doping Things are simplest at half filling, for which phase transitions. Our addition to his argument is the quan-

=0 and so only one S@)-breaking parameter existg:  tifying of the size of the symmetry-breaking effects in this

Based on our later discussion of the spectrum of the gap ianalysis. Consider therefore expanding the potentiab

the pseudo-Goldstone boson spectrum in the SC phase, vgeiartic order in the order parameteng, andng:
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TABLE |. The possible minima of the free-energy density A A
each distinguished by the sign of, andv,,. Two possibilities P P
arise if both of these parameters are negative, depending on the sign N
taken by the quartic coupling. k>0, defines a minimum for N
which both|ng| and|ng| are nonzero. k<0, then there are both scC AF 9> sC AF g
AF- and SC-type minima, separated by an energy barrier. The cor-
responding phase diagram in the-g plane is given for both
choices fork in Fig. 1. MX
Phase Minimum Conditions k>0 k<0

_ _ FIG. 1. The phase diagram for the free-energy function de-

23;2?!5:;ucto¢30) |r|1nfa|é0|r;ﬁ| |=00 Zzozg'zozzg scribed in the text in thep-g plane, wherep is the S@5)-

. TS 20~ 702 symmetric, andy is the S@5) breaking, quadratic couplings in the
Ar.1t|ferromagnet(AF) gl =0, [ng|#0 v20>0,v02<0 free energy. The thin lines represent second-order transition lines,
Mixed (MX) Ingl#0, [ngl #0200, v,<0, k>0 while the fat line is a first-order phase boundary. The two possibili-

ties portrayed are distinguished by the sign of the quartic cougling
in the free energy.

1 1 5
v=voot 7 (Vadg N vosNs) + 7 [V4d(Ng o) phase boundaries define second-order transitions. The four
5 phase boundaries intersect at a tetracritical point, which is
+TU22NQ  NQNs* Ns+vg4(Ns-Ng) ]+ -+, (7)  defined byp=g=0. Whenk<0 there are only three phases,
with the antiferromagneti¢AF) and superconductingSC)
regions meeting at a first-order transition. This phase bound-
ary intersects the second-order boundaries with the disor-
dered phaséN) at a bicritical point, again gga=g=0. The
icture which emerges is the semiclassical phase diagram

where the coefficients;, are regarded as functions of the
thermodynamic variablex and T, as well as the small
symmetry-breaking parameterThis potential corrects a mi-
nor errof® in the potential in the original version of Ref. 9,
although none of the results of this reference are altered bg ) )
escribed in Ref. 1.

this change. Particle-hole symmetry further |mphx-:;§ must More information becomes available, however, once the

also satisfyv i (—Xx)=vj(x), if T ande are held fixed. Al- o .
ternatively, the same conclusion is also drawn in later Secgependence of the transition regions on the small symmetry-

tions by considering the free energy to be a functionuof breaking quantitye=0.01 is included. To see this, imagine

; : examiningu in the vicinity of half filling, wherex<1. Keep-
S\é?eg thanx, and using the antisymmetry @. See also ing in mind that all S@6) breaking interactions must vanish

if both x and e do, and thab, must be even functions of,

Next divide this expression into its $&-invariant and we write in this limit

-breaking partsy =v,,t+vg,, Where
9= €got g+ gux*+ e,

p A )
iv=VooT 5 (Ng-Ng+Ng-Ng)+ — (Ng-Ng+Ng-Ng)*+ -+,
V= voot 3 (Mo No ™ NsrNe) * 7 (Mg Mo Narny h=eho+hpx?+hgx*+ -+,

g ( ' k ( 2 k= ekg+ Kox2+ kgx+- -+, 9
Usp== (Ng-Ng—Ng-Ng) + — (Ng-Ng—Ng-N
2T T4 T e where the coefficients of this expansion are function§ of
h which can be unsuppressed by additional powers of x.
+7 [(Ng-Ng)?—(ng-ng)?]+--- . 8 Since the SC)-invariant couplings need not vanish with
either e or x, for them we instead write

The parameters in these expressions are related as follows:
Voo=p—0, 020:p+g, U40:)\+k+ h, 004:)\+k_h and

U22:,)\__ k ) ) o . The S@5)-invariant quadratic term must be handled more
Minimization of this potential gives four kinds of phases carefully, however. This is because real highsystems are

depending on whether; and/orng vanish at the minimum. 4 niterromagnets at zero temperature and doping, and so we
These four alternatives are controlled, in first approximationy, ;e the important additional informatian(T=x=0)>0

by the signs of the coefficients of the two quadratic termsg 4 voxT=x=0)<0. Equivalently this implies:g(T=x
v,yoandug,, as outlined in Table I. The case where both =0)>0 and —g(T=x=0)<p(T=x=0)<g(T=x=0)
andv g, are negative further subdivides into two alternativesich is only consistent withg(T=x=0)=0(e) if p(T:

which are distinguished by the sign of the quartic coupling,:X:O) is alsoO(e€). We take, therefore, at zero tempera-
k. If k>0 then bothng| and|n4| are nonzero at the mini-

A=NgHF A2+ N X+ (10

mum, while ifk<<O then two types of minima coexist, which ture

differ according to whether it i$ng| or [ng| which is non- p=€po+ poX2t paxit e (12)
zero. Wherk<<0 these two minima are separated by an en-

ergy barrier. Transition dopings These expansions determine the do-

The corresponding phase diagram, in i plane, is mains of doping over which the various phases are possible,
drawn in Fig. 1. Wherk>0 there are four phases, and all so long as« is small. For temperatures below théélliégem-
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perature, and so for which go<py<go, definex,r as the 1 T 1

doping above which the AF order is lost,r is then deter- o(e/?)

mined by the requirement that,= p—g=0, for which Egs. N N

(10) and(11) imply AF AF

AF
XleF:_E Po— 90 +O(62). (12) m \ sc sc
p2_92 X X X

0(61/2) Mx

So long as both numerator and denominator are both order k>0 k<O

. > . . . — l/
unity, and p2=Jz, WE SE€ th.e predlctl_on i%-=O(e™) FIG. 2. The phase diagram for the free-energy function de-
=10%, which agrees well with what is observed for real __ . . . . _

scribed in the text in the temperature-doping plane. As for Fig. 1,

hlgh.'TC. systems. . . . the thin lines represent second-order transition lines, while the fat
Similarly, a superconducting phase arises for dOpIng§ine is a first-order phase boundary. The two possibilities for which

greater tharxsc, defined as the value of for whichv 0= the AF and SC phases coexist are distinguished by the sign of the
p+9=0. Again Egs.(10) and(11) give quartic couplingk in the free energy.
2 pPotJo 2 other effects. For example, very anisotropic systems are ef-
Xgc= — € T +O(E ), (13) . . . . . (£) (=,0)
p>t+0; fectively two dimensional, in which case}™’, u}”"~—0,

implying T.—0.
) We are thus led to the phase diagram of Fig. 2 in the
numerator and denominator at¥1) andp,+g,<0. temperature-doping plane, which reproduces well the generic

. 4 .
, If we instead work toO(x") in vy, then a second root featres of the phase diagram for real highsystems.
Xgc can develop beyond which superconductivity is again

lost. As is easy to see, this second root arisesx<feO(1),
and so lies outside of the domain of the smakxpansion,
and forx potentially large enough to invalidate the approxi-  Since the symmetry of the order parameter has important
mate S@5) symmetry. Notice that this implies that the opti- implications for the critical exponents, and since some criti-
mal doping, X,,—defined as the doping for whicli; is  cal behavior is experimentally accessible for the cuprates, we
largest—is alsa@D(1), and so isunsuppressed by powers of pause to explore critical phenomena more carefully here.
€. As is well known, ind<4 dimensions the Gaussian fixed
Finally, if xae>Xgc, and ifk>0, then dopings satisfying point is unstable in the infrared, and so the critical exponents
Xsc<X<Xar give both a superconductor and an antiferro-are controlled by some other infrared fixed point of the
magnet(as in the MX phaseat zero temperature. This phase renormalization group. In the absence of more reliable meth-
can extend over a range of dopings which is at most as largeds, one is reduced to expanding about either the upger (
as Xar— Xsc=0(€'?). Otherwise, ifk<0, the AF to SC =4) or lower [d=2) critical dimensions. Our approach here
transition is first order. is to expand in powers af—4, and we do so for both the
Transition temperaturesSimilar arguments may be ap- critical lines separating the disorderéd) phase from the
plied to estimate the size of the critical temperatures for thethers, as well as for the bi- or tetracritical point should these
various ordered phases if tfie dependence of the coeffi- lines meet. We imagine in what follows that all five of the
cients in v is known. In mean-field theory the large- fields inngandng are free to fluctuate. Our treatment of the
temperature limit of the temperature dependence of the fretetracritical point therefore differs from Zhang's, since he
energy may be argued on dimensional grounds. For l&rge draws his conclusions for this point using the nonlinear
in d dimensions, the quadratic coefficiengsandg, are pro- model, for whichng-ns+nq-ng=1, based on an expansion
portional toT2, with a prefactor that can b®(1) for p, but ~ aboutd=2
which is suppressed by or x2 for g. Along the critical line the S(®) picture implies the usual
For sufficiently largeT it follows that eventuallyp  O(N)-invariant infrared fixed points, wheri=3 for the
>|g|, implying a transition to the disordered phadé. The ~ Neéel transition, andN=2 (XY universality®) for the super-
transition temperature as a function of doping may be esticonducting transition. Due to the relevance of the electro-
mated by asking when tHE? contribution is the same size as magnetic coupling, the SC transition crosses over fi¥
is the zero-temperature values ferandg. Since the zero- Universality to that of a charged fluid, although undetectably
temperature limits of botp andg are suppressed by powers close toT .®Both are covered by the usual result to leading
of € and/orx?, the transition temperaturg, is predicted to ~order in the expansion ia=4—d:
be smaller than might be expected based on the underlying

and soxsc is also predicted to b®(e*?)=10%, so long as

C. Critical behavior

electronic scales]=0.1 eV=1000 K. At zero doping only Uy & +0(s?) }_2_ N+2 10(s?)

controls the size of symmetry breaking, so theeNempera- 87> N+8 el LT NF8° e

ture Ty is expected to be (15
Ty=0(eV23)=100 K. (14 wherev, denotes the fixed-point value of,, for the N/SC

transition(or of vy, for the N/AF transition. Very near the
Once again this is the right order of magnitude for the cu-critical point (and so in this section onjywe ignore the
prates. Of course, these estimates can be further reduced bystem’s anisotropy and rescale all fields to canonically nor-
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malize the derivative terms in the free energyis the stan- 9 1 —
dard critical exponent for the correlation length, which di- (M @) =29+ 75 {[(N+4)h, —2nk, ]p
*

verges like¢é~t~" ast=T/T.,—1—0. There is indeed good
experimental evidencg that v for the N/SC transition, is +[4\, +2(N+2)k, —nh, Ig},
given as predicted foXY universality.

The fixed-point behavior in the bicriticdbr tetracritical
region differs qualitatively from that found along the two
critical lines. This is because tf@(N)-invariant fixed point S _
is stable only forN<4—0(e), and so does not apply for +[4N(N-2)?—n?(N-4)]g}. 17)
N=5. The fixed point appropriate fdi=5 may be found  the principal directions of the flow, and the corresponding

be compared with previous treatmefftsys well as with the approximation by

approximate analytic expressions given below.

_ A N /)2
= 29+4(N—2){ 3n(N-4)p

In order to identify the fixed points it is useful to consider 3n(ﬁ—4)2 \
a model for which the fielcdhy spans anNg-dimensional p+=p— AN(N— 2)(8_,\0/9’
space, anthg spans a space dfly dimensions. The free
energy is assumeq to t(é(Ns)xQ(NQ) invarignt. In _this n[(ﬁ— 8)2—48]\
case useful approximate expressions for the fixed points may p_~g— /p (18
be derived in an expansion in powers & Ns—Ng over ANIN-2)(8—N)
N=Ng+Ng. In the case of present interedt=3 andN,  and:
=2, and so the parametafN=1/5 is reasonably small. — —
The stable fixed points which emerge at leading order in i% _ 6N e i% N(N-2) e (19)
e=4—d then are(i) the O(N)-invariant fixed point, forN vy N+32 " v NP+ 32

<4; (ii) the “decoupled” fixed poinffor which (v5,), =0],

for (Ns+2)(Ng+2)>36; and(iii) a third fixed point for
intermediate values dfls andNg, . It is this third fixed point
which is appropriate foNs=3 andNg=2, and it gives

For N=5 andn=1 these becomp ,=p—0.01% andp_
=g+0.22, while v, =0.68 andv_=0.58.

The largest of these exponents defines the temperature
exponent, v=v,=0.68. The scaling form for the free-
energy densityf =t~ 9" F(p_ /t?), defines the crossover ex-

— onent,¢, which is given by¢=v, /v_. We have
A h, n(N-4) K ponent.¢ aven byg= v
a2 "o g T, to gz 2N, NP+ 2N+ 64

(16) ¢ 2(N2— 3N+ 32) =12

(20

o o Since ¢>1, the two critical lines approach the bicritical
wherexg=¢/(N°+32). ForN=5,n=1 andd=3 these ex-  point tangent to one another, and to the lipe=0—or,
pressions agree well with the values we obtained numericallgquivalently, to the lineg= (n[ (N—8)?— 48]/4N(N—2)(8
to linear order in e \,/(4m%)~0.141, h,/(47%)  —N)) p=0.22.
~0.005 73, andk, /(47?)~0.0340. Notice the hierarchy It would obviously be of great interest to examine experi-
h, <k, <\, which is satisfied at this fixed point, and is mentally the critical behavior at the bicritical point, since this
consistent with approximate $&) invariance, albeit with would more decisively distinguish the symmetries of the or-
some symmetry-breaking couplings which are larger thargler parameter at this point. Unfortunately, to our knowledge,
0O(1%) of their SQ5)-invariant counterparts. there is currently no experimental information concerning

Since the picture of how the critical lines merge near thethis critical behavior, likely due to the disorder which is in-
bicritical point differs somewhat from that of Ref. 1, we next troduced in this region by the doping process.
present this in more detail. The running of the two quadratic

couplings,p andg, in the far infrared is given near the fixed lll. THE NONLINEAR SIGMA MODEL:
point by PSEUDO-GOLDSTONE MODES

More microscopically, another regime for which &p
P 1 invariance provides definite quantitative predictions is deep
Pl _ N within the ordered phases. Here the low-energy dynamics is
—| =—2p+—== {[2(N+2)\, +4k, —nh
('u 6#)* PT 1672 {r2( M * «lp governed by the Goldstone, and pseudo-Goldstone modes,
together with their interactions with the other low-energy

+[(ﬁ+4)h*—2n)\*]g}, degrees of freedom. Much can be said about these low-
\ energy properties because low-energy Goldstone-boson dy-
__ 0 NN namics is largely determined purely by the pattern of spon-
2p+ 24AN(N—-2
P aN-2) {[24NN-2) taneous symmetry breakifig/ -8
= — The present section is devoted to developing the quanti-
—n“(N-4)]p+[(N-8)°—48]ng}, tative description of this regime. Section IIl A first describes

17
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the most general low-energy effective Lagrangian for thisgeneralized to the anisotropic case. Other couplings, such as
phase, which is then used in Sec. Ill B to determine the dise™'9,,As- (d,AsX djNg), are also possible in specific dimen-
persion relations for the pseudo-Goldstone bosons thensions(in this cased=2).
selves. Their interactions are used in Sec. IV to draw pre- Fewer terms appear in E(21) than in Eq.(5) because of
liminary conclusions about their contributions to responsghe constraining: ng+ Ng-No=1 which is enforced in Eg.
functions in the AF and SC phases, which also involves thei{21) put not in Eq.(5). Should the “length” of the SCF)-
interactions with the low-energy electronlike quasiparticles.breaking order parameter also describe a propagating mode
in the low-energy system, as might be appropriate near the
A. The effective Lagrangian critical point, then this constraint may be relaxed. Since this
mode isnot guaranteed to be in the low-energy theory far
away from the phase boundaries—unlike the pseudo-
o . oldstone states—we do not include it further in this section.
dom which involve energies larger than some scaléeNe o : .
Far from the critical region the correlation length perpen-

wish to write down the effective Lagrangian governing the . .
degrees of freedom which remain at still lower energies. AI_dlcular to the planes becomes smaller than half the interplane

though this effective Lagrangian cannot yet be derived frompPacing, and we take the system _to _be approximately two
the microscopic physics, we are guaranteed to capture i@imensional, corresponding to the linfit =0. (A more de-
physics so long as we use timeost general possibléa- tailed modelmg of the dlmenS|on_aI c_ross_over_wnhm the con-
grangian involving the low-energy modes and respecting alfext of Bose-Einstein condensation is given in Ref) 19
of the symmetrie§. imagine working in this limit in what follows, and so from
When a g|0ba| symmetré is Spontaneous]y broken to a here on drop the redundant SUbSCI‘ipft’ ‘from the coeffi-
subgroupH the self-couplings and spectrum of the resultingcient functionsD, E, andF.
(pseudoy Goldstone states is described at low energies by Couplings to long-wavelength electromagnetic fields
the nonlinearc model for the quotient spac&/H.®1"18 are incorporated in the effective theory through the usual
When G=S0O(5) andH=S0(4) this implies the lowest substitutiond,ng— (d,—ieA,Q)nqg. [A special case of this
terms in the derivative expansion of the Lagrangian for thiscoupling is the dependence on the chemical poteniial
system are completely determined by two constants. Ofvhich enters £ through the replacement;ng— (4,
course, more possibilities arise once explicit(Sbreaking —iepQ)ng .20.24 For distances shorter than the electromag-
interactions are introduced. netic screening lengtta=eqf,, this electromagnetic cou-
The most general such Lagrangian involving two or fewerpjing includes the Coulomb interactions of the pseudo-
derivatives is again built from the fields andnq, but with  Go|dstone bosons. It is important to realize, however, that
the important difference, relative to Sec. Il A, that these nowpe strongshort-rangedCoulomb interactions need not be

satisfy the constraims: ns+ng-No=1, since we are inter- ¢ ded in this way, since these are integrated out to arrive
ested in only the Goldstone and pseudo-Goldstone modes. £ in the first place. Although strong microscopic interac-

Thetabéencée c1£1‘£io£pinng,£the re.fr?lt takes a form which is siMigiong 5,ch as these would complicate the derivation ofthe
arto q.(5), L= Liny+ Lsp, Wi from first principles, they play no role when usidgat low

Imagine, then, that andx are chosen to lie within one of

energies.
ff An important consequence of these observations now fol-
EinVZE (g ding+ diNg: diNg) lows. When using the Lagrangian of EQ1), the key obser-

vation is that all of the interactions aguaranteedto be
weak at low energies, justifying a perturbative treatment.
This is because all interaction terms are suppressed by either
a derivative or a small S@) breaking parameter or both. In
particular, the pseudo-Goldstone spectrum may be obtained
from £ in mean-field theory by expanding in fluctuations
about minima of the potential.

For later purposes a useful parametrizatiahich identi-
cally solves the constrainig-ng+ns-ns=1) is given by

2
I
- (Vang-Vang+Vang Vang)

2
— 5 (VeNg:Veng+ Vens: Veng) ++-
(21)

Lg=—V+TIAdNG: N+ Bdng: dins+ C(Ng- diNg)?]

_ ff[DuVanQ' VaNo+EVans Vans polar coordinates on the four-sphere:
+E. Vg Vens+F, (ng- Veng)?] + 0s ¢ ona cosp
1 VehNg Vg L(nQ- ch) ] ) nQ=0036 Sin¢)’ nszsin0 sinasin,B , (22)
cosa

wheref,, f,, andf, are constants, whil&/, A, , B, ,

C,.. Dy, E., andF,  are potentially arbitrary func-

tions of the S@)XSQ(2) invariants ng-ng and ng-Ng. (although care is required to properly handle those points
They also can depend on the temperafiirsince this can where these coordinates are singulém terms of these vari-
appear inf through the process of integrating out the high-ables, and including a chemical potential, the Lagrangian
energy modes(Our notation here follows that of Ref. 9, becomes
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f2
L=—-V+ % [(1+2A sir® 6+2B cog 6+ 2C sir? 6 cog 6)(d,0)%+ (1+2A)cog 0(d,p+equ)?

f2
+(1+ 2B)sir? 6((d;a)?+sir? a(&tﬁ)z)]—%[(HZD Sir? 0+ 2E cog 6+ 2F sir? 6 cos 6)(V ,6)?
+(1+2D)cog 6(V )%+ (1+2E)sir? 0((V )%+ sir? a(V,8)%)]+--- , (23

where all coefficient functions are to be regarded as funcand
tions of cog é.
To this point we have not yet used much information ~A=Ag+A; coS 0, B=Bg+A,cos 6, C=Cy,
concerning the nature or size of the explicit symmetry break-
ing. This we now do by making an assumption as to how the D=Do+D;cos 6, E=Eg+D,cos 6, F=F,,

symmetry-breaking terms transform under (50 Since (27)
there are two types of symmetry breaking, a choice must bgor the coefficient functions in Eq23). Notice that the terms
made for each. proportional to co56 in A and B are identical, as are the

Doping Doping has been incorporated into the effectivecorresponding terms iB andE. Expanding in powers of
theory through the chemical potential We return to the  and, the constants in Eq§26) and(27) start off linear ine
connection betweep andx in Sec. Il C below. andu?: Aj=APe+A"u2+ - | etc. The only exceptions to

Intrinsic breaking Symmetry breaking also occurs at half ;s statement arBy, Eqx e (N0 u? term), Co, Fox u? (N0 €
e e eotome s o (e andVs~ VEe s ™ VI, Furhermore, sice

[ — . u [ ; ; P~
with the simplest possible “order parametef! which th? 'U“ZnQ-'nQ term_ |n_V arises from SUbStltu“ng?taﬁt
transforms a a 5 by 5matrix under S@b). That is, choose _Ie’“? 2|nz the kl!’]etIC term _for N, We have_ V_2 -
’ —1/2f;e“g“ to leading order. Higher powers @f originate

M= e diag(3,3;-2,— 2,— 2). . C 2 e
The Lagrangian is then the most general function of thefrom terms in£ which !nvolve more tha_m two denvqnves.
In this way we arrive at an effective Lagrangian very

) n . .
fieldsn=(;2), ©Q, andM, subject to the following SG)  gimijar to that of Ref. 1(in the isotropic limit. The main
transformation property: difference here is the power counting of the symmetry-
- _— breaking terms. Reference 1 keeps terms quadratig iand
£(0n,0uQ0',0MOY)=L(n,nQ,M), (24) has three susceptibility parameters controlling the time-
whereO is an S@5) transformation. derivative terms, and three stiffness constants governing the
The utility of identifyingQ andM may be seen whed is  SPatial derivatives. Although a quadratic scalar potential cap-
expanded in powers of the small quantitiesnd .. SinceM ~ tures the leading order ig, it does not appear that a three-
andQ always appear premultiplied by these small numbersParameter derivative term corresponds to any fixed order in
this expansion restricts the kinds of symmetry breaking®' #"-
which can arise order by order, which in turn constrains the

possibled dependence of the coefficient functionsdn B. Pseudo-Goldstone dispersion relations
For example, a term in the scalar potential involving 2 e now turn to the calculation of the pseudo-Goldstone
powers ofn must have the following form: boson dispersion relations. The scalar potential of 8)
has three types of extrema:
vV, = C
" mJ%&(om <kn,|§é(o,0> alp ko o (1) 6,=0 or m;
X[n"(eM) 1 (uQ)?1n]---[nT(eM)*n(1Q)?'mn]. T 37
(25 (2) fo=7 or 5
Only even powers o) enter here due to its antisymmetry, _ - TN
and the ternk;=1;=0 is excluded from the sums due to the (3) 6o where c=cosf, satisfiesV'(c”)=0.

constraintn'n=1. ExpandingZ to low order in the S(%) This leads to the four classical ordered phases found in Sec.

breaking parameters and u necessarily also implies keep- 11 B. (i) SC phase: extremuifi) is a minimum, and?2) is a

ing only the lowest powers oiQ-nQ=cos’- finV. maximum; (i) AF phase:(2) is a minimum, and(l) is a
Similar conclusions may be obtained for the other coeffi-maximum;(iii) MX phase: both(1) and(2) are maxima, and

cient functions in the Lagrangian of E1). Working to  (3) is a minimum; or(iv) metastable phase: botl) and(2)

O(€?,eu?, 1 in V, and toO(e,u?) in the two-derivative  are minima, and3) is a maximum. This analysis becomes

terms then gives identical to that of Sec. Il B iV is assumed to be quartic in
1 cos, as was done in Ref. 9.

_ L Superconducting phasé\n expansion about the super-

V=Vo+V; cos’ 0+ 7 Va cos' 6, (26) conducting mimimumg,=0, gives the dispersion relations
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in this phase for the four bosons. The result is a spin triplet Within the AF phase the pseudo-Goldstone boson gap is

of pseudo-Goldstone modes for which
E(k)=[c?k*+ 212, (28)

with the phase speed)ss(SC), and gap£es(SC)=E5¢
given to lowest order in SGB) breaking parameters by

f2
Cher(SO)= 13 [1+2(E(1) ~B(1))]
t

f2
= 2 [1+2(Eo=Bo) +2(D,—Ay)],
‘ (29

) —2V'(1) —2(V,y+Vy)
&sc= £2 = £2
t t

In both of these results the first equation uses the general
effective theory, Eq(23), while the second equality incorpo-

rates the additional information of EqR6) and (27).

The remaining fieldp describes &ona fidegapless Gold-
stone mode. Its dispersion relati@{k) is a more compli-
cated function ofc’k? and equ whose forn?! is not re-
quired here. Its phase veIocitg?EcéB(SC), is given by

f2
C&a(SC)= 13 [1+2(D(1)~A(1))]
t

f2
= f{z [14+2(Dg—Ag)+2(Dy—Ar)].  (30)

Recall in these expressions théfcos 6) includes anyu-

dependent contributions coming from the kinetic terms, or
their higher-derivative counterparts, and a prime denotes dif-

ferentiation with respect to co$.

Antiferromagnetic phaseExpanding about the AF mini-
mum gives the usual two magnons satisfying dispersion re-

lation (28), with

f2 f2
Cs(AF) = 13 [1+2(E(0) ~B(0))]= 13 [1+2(Eo—Bo)],
t t
(3D
E25(AF)=0.

seen to fall linearly withu?: 3~ EA-(0) was— w?], where
mar represents the doping for which one leaves the AF re-
gime. SimilarlygéC varies quadratically withu?. By elimi-
nating parameters of the Lagrangian in favor of properties of
the gap as a function g we find the relations of Ref. 9:

2
8AF(O)
siF<m=—MiF [par— 121,

2
esc(opY)
esdm)= 5. (M= péc ) Ruop— 1),
» (34)
ear(0) 5 e5dopY)
M,?-\F /-Lgpt ,

2 2
par=udc +O0(e?),

where uq, here denotes the chemical potential correspond-
ing to the maximum gaggsc. We expect this to occur at
optimal doping,uqp= s (Xopy -

Similarly, the phase velocities for all modes in both SC
and AF phases are equal to one another, an‘dltqz, in the
strict SQ5)-invariant limit. (The parameter$, and f, are
related to the compressibility and magnetic penetration depth
in the next section.The O(&) corrections to this limit also
satisfy some model-independent relations, which follow by
eliminating parameters from the above expressions:

céB<sc>—cSGB<AF>=c§GB(SC>—céB<AF>=0(e>.( )
35

C. The connection betweerx and u

The previous expressions giving the dependence of physi-
cal quantities in terms of the chemical potentialvould be
more useful if expressed in terms of the physically measured
quantity, the doping. This relation is determined implicitly
in the present section.

The dependencg(x) is found by adjustingu to ensure
that the net electric charge equalsharge carriers per unit

The remaining two states form a pair of electrically chargedg|. This must be done differently in the AF and SC phases.

pseudo-Goldstone bosons satisfying
E.(k)=[c?k*+ &4+ equ, (32
with

i i
Choa(AF) = £z [1+2(D(0) ~A(0)]= £z [1+2(Do—Ao)],
t t

2V'(0) 2V,

Err=EpeplAF) = —z— =~z (33)
t t

In both phases the total charge is carried by both the
charged pseudo-Goldstone statasd the ordinary electron-
like quasiparticles responsible for conduction. The existence
of these electronlike quasiparticles at low energies in the SC
phase is demanded by the evidence in favor @f.a ,>-wave
gap in the cuprate superconductéf§.hese experiments ar-
gue for the existence of ungapped states due to the nodes of
thed,2_,2-wave gap function, which cannot be provided by
the four pseudo-Goldstone modes. In the AF phase these
degrees of freedom correspond to ordinary unpaired elec-
trons.

AF phase In the AF phase the charge is carried by a

These expressions imply the simple formulas of Refmixture of electrons and charged pseudo-Goldstone states.

9: &2 =m?—ku?, and E3=—m?+ ku?— Eu®, wherem?
=2V%/f2+0(€?), k=-2VoYf2+0(e)=€?q’>+0(e),
and £=2V39f2+0(e).

The condition of equilibrium between these two types of
charge carriers implies their electric chemical potentials must
be equal, and so the defining condition fo¢x) becomes
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ex (= =Xop=O(1), and soXgu/Xar=0(e Y. But since u

(Pem>57=fo do{Ne(@)[Ne(p) —Ne(—p)] ex 3 \{\//%hin the SC phase, we seqpr~uar(Xopt/Xar) ™
=0(e™).

+ Ng(w)[ng(m) —ng(—w)1}, (36) Together with the previous results, Eq84), these ex-

) . pressions imply thafgc(x) is quadratic in the variablg?
where/ Vg and NV, respectively, denote the density of statesc. 213 gimilarly, the gap in the SC phase at optimal doping
for fermions and bosons. For weakly interacting bosond in s rejated to the AF gap at zero doping by
spatial dimensions, whose dispersion relationEfs= k2c?
+£&2, the density of states is given explicitly bywg
=[Qq4/(27)91k9"2E/c?, whereQg is the solid angle swept Esdlopt)= Hopt Ear(0)=0(&2)). (39
out by a vector ind spatial dimensiongso (),=27 and QZMAF
Q;=41). The Bose-Einstein distributions are given by
nF(M)l: [e(w—e,u)/kT+ 1]—1 and nB(M) — [e(w—qe,u)/kT
1]

For smallu it is the fermions which dominantly contrib-
ute to p, and the dependencd «) which results is(for d
=2 space dimensiondinear: xocu/J. This linear depen-
dence changes onge becomes of order the scalar gap at IV. RESPONSE FUNCTIONS
zero doping£¢(0)=O(e*), since at this point the scalar | order to measure the properties of these pseudo-
charge density varies strongly with signaling the transition  o|gdstone particles, it is necessary to understand how they
to the condense(SC) phase. _ contribute to the spin and electromagnetic response functions

Section Il B showed the doping for which one exi&®  of the materials. This is the topic of the present section.
low temperaturgfrom the AF phase to be, in order of mag- gecause these particles are weakly coupled, their response
nitude, x=x,r=0(e*?). We see that this corresponds to @ may be computed perturbatively.
chemical potential whose size jg=pae=0(='4). [An As we shall see, it shall become important for these pur-
identical conclusion regarding the sizeof may be drawn  poses also to understand how the pseudo-Goldstone states
from the condition for Bose-Einstein condensatiop:  couple to the other degrees of freedom in the low-energy

This last equation, together with the interpretation of the 41
meV state as the pseudo-Goldstone boson of the SC phase,
and the underlying electronic scale-0.1 eV, give the order

of magnitude of the symmetry-breaking parametet1%.

=Epr(0).] system. For this reason we also write down the electron/
We see that since the chemical potential depends linearlyseudo-Goldstone particle couplings in this section.
on doping within the AF regime, Eq$34) imply a linear The starting point for calculating the response functions is
dependence afa¢(x) on x*: to identify the dependence on thgseudo} Goldstone
bosons of the spin and electromagnetic currents. These are
EiF(O) very easily obtained, to lowest order in the derivative expan-

2 _ 2 2
Ear(X)= XiF (Xap—X). (37 sion, by constructing the corresponding Noether currents us-

ing the Lagrangian of Eq21):
Corrections to this linearity irx? arise as the SC phase is . R
approached sincg no longer varies linearly witlk near the  pem=— ff(1+2A)anﬁth, Pspin= f2(1+2B)ngX dis,
point where the bosons condense. jlo=—f4(1+2D))neQVng,
SC phase Deep within the SC phase we assume the

charge density to be dominated by thg condensate. Writ- 2 g2 - -
ing the potential asv(n)~(1/2)(m2— »2)n2+ (1/24)g2n* Jspin= ~ fi(1+2E)nsx Vns, (40)
[where v=equf,, mM?=2V,(u=0)~2V3%, and g _ )
=12V,(u=0)~12v3%?], we see&p.) is given by Jem=f1(1+2D)ngQVcng,
> 2 - >
eqx Vv 6eqfv jin=—f1(1+2E,)ngX V,ns.
(pem=—y"=-271 = gzt (v2=m?), (39 o
n=ng Because the pseudo-Goldstone bosons are weakly

PR S NP S . coupled, correlations of these currents may be be directly
where ?Ot._B(V m )/g_ m'”'m'fesz\’/-e_’;]f"i,;ja‘fg to t.?e evaluated for free bosong, and ng plus perturbative cor-
aiymp 7 'gf 3 e;qiressmgs ’iN (f% X W/ 15)Vf )2( " !f rections. This perturbative evaluation conveniently organizes
92<Pen-> ( tm3) »and  y—m~gx/( m)ex the contributions to the response according to which states
9 pem/ (6fm*)<1.

. . are responsible. The following sections give some examples
In the case of interest we hayéor d=2 space dimen- P g g P

f such calculations.
siong f,=0(1), m*=0(J?), and g?=0(s2J), and so O oo caicuiatons
90X pem! (6f M) =xe2?/(6V3%). Taking J=0.1eV andV

~(10 A)Z we find 6112=10"°, leading to A. High-energy contributions

0% pem/(6f M%) =1Pxe?=10x. Since this is much Even though the effective Lagrangian only contains as
greater than unity whex=xgc=0(e'?), it follows that degrees of freedom the states which actually appear in the
woext within the SC phase. low-energy spectrum, it nonetheless carries the information

We may now determine the size pfat optimal doping. as to how states at higher energies contribute to response
We found in Sec. Il B that optimal doping occurs far  functions. The contributions of higher-energy states are in-
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The result for the SC electromagnetic and the AF spin

x _______ x response, obtained by summing the pole and the high-energy
contributions, is
FIG. 3. The Feynman diagram which produces the Goldstone
pole contribution to the current-current correlation function. The =10 {[per(X1),pem(0)])as
dashed lines represent pGB propagation.
J’ d’kdew .
— jwt+ik-x

2m? ©

Ame?q?(1+2A) ke,
corporated as they are integrated out to produce the effective — 02+ K2C2 i yow
Lagrangian itself, and so their contribution to correlation

functions may be read directly from the Lagrangian. =1 0(){[P&i(X.1), P 0) e
More precisely, imagine coupling to a long-wavelength 42kd

electromagnetic field\, or to a fictitious fieldsi coupling to — f ﬁw g iwt+ik-x

spin, by making the substitutiod;,no— (9, —ieQA,)ng or (2m)

Ao Ng— (9,—iTaS2)Ng, With T, andQ the matrix generators

of SO(3) and S@2), as defined in Eq4). The high-energy
contribution to the electromagnetic and spin response may
th(_an be_obtamed by d|ﬁere£1t|at|ng the e_ffecuve Lag_ran_glanWhere Co=Ca(SC) ande,=Cag(AF). 7o and vy repre-
twice with respect tA,, o s,, . The resulting correlation is sents small damping contributions to the pGB dispersion re-
proportional tos%(x—x')8(t—t’), as would be expected for ping P P

2 mode which fluctuates on a scale much shorter than thI tions. For the spin-spin correlatior, denotes the normal-
. . ed eigenvector of the gap matrix corresponding to the GB
over which the response is computed.

Making this substitution for the electromagnetic respons direction whose pole is being computed. Notice ES)

. : ereproduce Eqsi41) and(42) in the limit w,k—0.
fsgst;g tglzcrt?igf;itrlgerr’]?r?etflztrllon(bcriegct)?nalrzgg_;q%p?nes Of course, Eqs(43) are not specific to S@)-invariant
ctri Ing 9 P 1orl ' physics, since they also hold fany antiferromagnet or su-
These are given by

perconductor. This is because they simply contain the impli-
cations of the Goldstone bosons associated with spontane-

(i) :47M0ezquﬁ(1+2D)nQ_nQ, ously broken SCB) or SQ?2) invariance. As a result,
he

y (14 2B)f2K2c2(nsTan) (7 TpNs)
— 0+ K2 yq0

} : (43

\? although they provide a good description of the response in
these phasé$?*this is not a real test of SG) symmetry.
1 For the same reasons, neither are such responses detailed
(_2) :47732q2ft2(1+ 2A)Ng-Ng, (41  tests of the explicit models in which they are usually derived.
a/ e It is the contributions of th@seudeGoldstone states in both
phases which provide more interesting information. After
where g is the magnetic permeability of the material. The pausing to address a puzzle concerning the pseudo-
result in the ground state is obtained by using the ground6oldstone pole in the spin response of the SC phase, we
state configurationsig-ng=1(SC) orng-ng="0 (AF). close by describing some of the features of the pGB re-
Similarly, the spin response obtained in this way gives theponse.
high-energy contribution to the paramagnetic susceptibility:

(xan)nem 2f2(1+ZB)n TTon 42) C. Pseudo-Goldstone poles: A puzzle
Xablhe™ KTt Statbls It was the contribution to neutron scattering of the spin-
where i is the magnetic moment of the pseudo-GoldstondTiPlet pGB state in the SC phase which originally motivated
bosons. These depend on temperature, only through the wel{k SA@5) picture. Since neutrons couple to electron spins,
dependence of coefficients, f,, A, B, andD. the S@5) interpretation of the neutron-scattering experi-
ments requires the pGB to contribute a resonance to the spin-
response functions.
This immediately leads to a puzzle. The spin-triplet pGB
The next simplest contributions to response functions teontributes a pole similar to Eq&3) to three S@5) currents
compute are the poles which occur in the correlation of thdZhang's# operatorswhich are spontaneously broken in the
currents for spontaneously brokdapproximate symme- SC phase. But Fig. 3 doasot produce a pole in the SC
tries, due to the contribution of the correspondipgeudo}  spin-response function in the SC phase, because the symme-
Goldstone states. This includes the superconducting contri¥y of spin rotations is not broken in this phase. The puzzle is
bution to the electromagnetic response in the supercorhow such a pseudo-Goldstone pole can arise as a resonance
ductor, and the magnon contribution to the spin response im the SC spin-correlation function. This section sketches
the antiferromagnet, in addition to the pseudo-Goldstone boRow this puzzle is resolved within the effective field theory
son couplings to the additional $8&) generators which ro- framework.
tate the spin and charge degrees of freedom into one another. The difficulty with producing a pGB pole in the spin-
These are given in perturbation theory by the Feynman grapborrelation function lies in the observation tha,, of Egs.
of Fig. 3, which describes the direct creation and destructiorf40) involves onlyevenpowers of the boson fields. The
of the Goldstone boson from the ground state by the currergame is true of the interactions in the effective Lagrangian
of interest. Eq. (21) and so it is difficult to generate a graph of the form

B. Goldstone poles
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FIG. 4. The Feynman diagram which produces the pole contri- '/ \
bution to the spin-correlation function in the SC phase due to the
spin-triplet pseudo-Goldstone state. The blobs represent fermion x x
loops, while the dashed line represents pseudo-Goldstone boson \ I
propagation. \ /
\ R4
of Fig. 4, which would generate a resonant contribution to \s ~— e =

the spin-correlation function. The “blobs” of Fig. 4 repre-
sent any graphs which can produce the triplet state starting FIG. 5. The Feynman diagram which produces the pseudo-
from quasiparticles created by the spin denﬁ@Mn- Goldstone boson contribution to the electromagnetic response in the
In our opinion the resolution of this puzzle comes fromAF phase.
the couplings of the pseudo-Goldstone bosons to the elec-
tronlike quasiparticles in the SC phase. As stated earlier, the
existence of these quasiparticles can be inferred from the Away from special features, such as the poles just dis-
evidence ford,2_2-wave pairing, since some of these ex- cussed, the dominant contribution made by pseudo-
periments indicate the existence of gapless excitations in th&oldstone bosons to response functions arises through the
SC phase. These excitations mustibedditionto the four  Feynman graph of Fig. 5.
Goldstone and pGB states of the SC phase. At zero frequency and momentum transfer this graph con-
To see how these quasiparticles can help with the puzzleributes a temperature- and doping-dependent contribution to
suppose them to have the quantum numbers of electrons, attte response functions, which are precisely those due to the
to have couplings that are weak, so that their propagation isoninteracting gas of bosons having the dispersion relation
approximately described by the Lagrangian densfly  of the pseudo-Goldstone states. Since this dispersion relation
=fddpcg[iat— EplCp- Herecp:(zz) destroys a quasiparti- is “relativistic,” the results are those of a gas of relativistic

. o . . . bosong®
cle which propagates with dispersien=E,, as is described In the SC phase one finds in this way the thermal para-

by £,. Standard argumerffscan now be used to identify ; e ) .
those interactions which are the most important in the Iong-m"’lgnetlc susceptibility due to the spin-triplet pGB’s:

D. Pseudo-Goldstone boson response

wavelength limit. Goldstone boson couplings are all irrel- 2120y (= x93

evant(in the renormalization-group sense this limit, but Xpce(SC)= 2;" f dx =

the least irrelevant of their couplings to the electronic quasi- (2m¢)" Jo

particles involve the emission and absorption of a single X[x2+ (d=2)E21Na( u=0 45

Goldstone particle. The resulting electron Lagrangian density [ ( JE Ing(1=0). “9
which describes this is Recall(} is the solid angle swept out by a vectordrspatial

dimensions(Q,=2, Q3=4), and the boson dispersion

relation isE?=x?+ &2, for x=kc. As in previous sections,

gim:f d9pdk[gs(p,K)C] ., (oCp- No(K) nB(_,u)=[eﬁ(_E‘eq")—1]‘1 denotes the Bose-Einstein distri-
bution function. The thermal electric screening length due to
+gQ(p,k)c;§+k(i az)c’ian(k)]Jr He.  (44) the charged pGB's of the AF phase is given by a very similar

expression:
This interaction is least irrelevant for special regions of mo- |1 4me?q?Qy (= x973 5 5
mentum of the quasiparticle paf$such as when the net || (AF)= “2m0¢ o dx —— [X"+(d=2)E]
momentum of the pair is close to zero. PGB

Notice that an expectation value fog, introduces a qua- X[ng(w)+ng(—w)]. (46)
siparticle gap, proportional t@o(ng), S0 ad,z_2-wave
symmetry of the gap restricts hogy(p,k) can depend on Both xce(SC) and (14) ,cg(AF) are therefore seen to be
momenta lying on the Fermi surface. Approximate(50O exponentially activatedxe ¢, for kT<E, and to vary as
invariance relates the couplirg,(p,k) to gs(p.k), and so T91 for kT>£. Their contribution to the specific heat per
implies a similard,2_2-wave symmetry fogs(p,k). unit volumec, of the corresponding phases is also exponen-
The principal observation at this juncture is that thesetially small forkT<¢&, and varies a3 for kT>&. Unfortu-
quasiparticles contribute quadratically to the spin densitypately, the exponential suppression makes Thifependence
5e,spino<fddpc;§6cp, and so the coupling of Eq44) intro-  difficult to detect at low temperatures, while the larfe-
duces a pGB pole into the spin-correlation function throughpower-law behavior only applies, as derived, fbrmuch
the Feynman graph of Fig. 4, with the blobs representingreater than the pGB gap, and yet small enough that the
guasiparticle loops. Even though this graph does not arise sample remains in the ordered phase.
leading order in perturbation theory, the singular shape of the The dynamic response function of a relativistic bose gas
pole permits it to dominate the lower orders for energies ands also known for nonzero frequencies and moméhthis
momenta which are related by the pGB dispersion relation.carries considerably more information about the pseudo-
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Goldstone boson response, although the differentiation of thetates of the disordered phase to still be small in the ordered
pGB contributions from other degrees of freedom is easiegbhase. The deeper one moves into the disordered phase, the
at low frequencies. We close by presenting some preliminarjess one would generically expect the boson gaps to remain
remarks concerning this response, and defer a more detaileghall compared to the intrinsic scale
application to experiments to a later publication. Furthermore, since the four pseudo-Goldstone states
Because of its electric charge, the pGB state of the AFshoyld fill out a linear representation of the unbroken0
phase cannot contribute to a diagram of the form of Fig. 4f the disordered phase, fluctuations in the modulus of the
and so give a pole at low temperatures in the electromagnetig,e_gimensional vecton should also appear in the low-
Ejespondse. Flguref > neverthedless doﬁs prodl:cg some Slt,m@ﬂergy spectrum. This argues that the effective Lagrangian
ependence on frequency, due to the singu a’mty It Impli€$y¢ interest is of the form considered here for the free energy,
near the threshhold for produplng pairs of pGB S. Bel_ow this Eq. (5) supplemented by time-derivative terhtather than
threshhold the electromagnetic response from Fig. 5 is purel s was used for the pseudo-Goldstone bosons of the ordered

real, while it is complex above. As a result, for temperatures ) :
T=&ue the pGB's contribute zero to the conductivity for phasedEq. (21)]. These differ through the relaxation of the

frequencies below thresholdl<2&,¢, but the conductivity ~CONStraiNtns:Ns+Ng-Ng=1, due to the fluctuations in the

then grows steeply beyond this threshold. The implicationdn@gnitude of SCb)-breaking order parameter
of the resulting expressions for electromagnetic scattering (2) Weak couplingEven if the boson degrees of freedom

from cuprates in the AF phase will be reported elsewRere. €Xist at low energy, they need not be weakly coupled since
(unlike Goldstone bosonshey are not required to decouple

at low energies. It is noteworthy, however, that for weakly
E. The disordered phase coupled systems the electron-boson interactions given in Eq.

Many of the results obtained above for pseudo-Goldstoné*4 are the only couplings between the electrons and bosons
bosons deep in the ordered phases might also be expected?®ich can be marginal or releva(ih the RG sense of Refs.
apply in the disordered phase. If so, the wealth of experi25). By contrast, there are a number of self-couplings among
ments available there would permit many more detailed testéie bosons which can be relevant or marginal in the infrared.
of SO(5) symmetry. Applications to the normal phase areOf course, the existence of strong couplings among the low-
also theoretically appealing, since a number of striking feaenergy degrees of freedom does not necessarily invalidate
tures might be expected within the &) picture, including the use of the effective Lagrangian, it could just complicate
two of the more striking implications pointed out in Ref. 1: the extraction of its predictions.
the explanation for the pseudogap, and of the connection to a (3) Bose-Einstein condensatioBven if the previous as-
successful scaling analysis of the temperature dependence ©imptions should apply to a particular system, it is still true
NMR relaxation times® Furthermore, the absence of spon- that a weakly coupled version of electrons and bosons cannot
taneous breaking of S6) also implies that the boson con- provide a good description for the cuprates in the disordered
tribution to correlation functions of the $B) currents, phase for dopings larger than optimal. This is because if the
ja(x)—with a=1,...,10 labeling the SG) generators—are hosonsn, are supposed to appear at low energies, and if
very simply related in the S@)-invariant limit: (j5j;)  their couplings are weak, then the relatipr{x) between
* Jap. Tantalizingly it also might lead to a resistivity which chemical potential and doping should be reasonably well de-
is linear in temperature under certain circumstarices. scribed, as in Sec. Il C, by a gas of free bosons and elec-

In this section we make sonmaveatsconcerning the use trons. But this description always implies Bose-Einstein con-
of the effective Lagrangians of previous sections in the diS'densation for sufﬁcienﬂy |arge dopings, since for |arge
ordered phase. Our main point is to emphasize that conclq;noughx the bosons always “win” and, by condensing,
sions drawn from the effective Lagrangian involving, ns  dominate the expression for the electric charge density. This
(and possibly electronic quasiparticleare not protected in  cannot describe the observddcreaseof the critical super-
the disordered phase by the general low-energy constraints gbnducting temperature with increasing doping, above opti-
Goldstone’s theorem, and so are necessarily more dependefiil doping.
on assumptions made about the details of the underlying Further work is necessary to better explore these implica-
electronic interactions. Although this makes these predictions for the normal phase, and to more clearly identify
tions no longer simply consequences of the symmetrywhich predictions of the effective Lagrangian for this phase

breaking pattern, they can nevertheless be worthwhile agre model specific, and which are more robust consequences
sources of more detailed information about this underlyingof the symmetry-breaking pattern.

microscopic physics. We next describe some of the ways in
which model dependence can enter predictions made for the
;:irllissoi)daeprgg phase using the boson Lagrangians described in ACKNOWLEDGMENTS
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