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We study the applicability of magnetization and specific heat equations derived from a lowest-Landau-level
(LLL) calculation, to the high-temperature superconductfi§SC) materials of the YBgCu;0,_ 5 (YBCO)
family. We find that significant information about these materials can be obtained from this analysis, even
though the three-dimensional LLL functions are not quite as successful in describing them as the corresponding
two-dimensional functions are in describing data for the more anisotropic HTSC Bi- and Tl-based materials.
The results discussed include scaling fits, evidence for the correspondence between thetbgseirdfLL )
fluctuations and the flux lattice melting transition, and reasons why three-dimen&d@)aXY scaling may
have less significance than previously believed. We also demonstrate ha 3Baling does not describe the
specific heat data of YBCO samples in the critical region. Throughout the paper, the importance of fitting the
actual functions to the data, in contradistinction to checking for scaling behavior, is stressed.
[S0163-18298)06814-3

I. INTRODUCTION was allowed forH,(T). The authors of Ref. 9 on the other
hand suggest that their data indicates that>38D theory is

The critical behavior of the high-temperature superconot valid beyond 0.5 T and conclude that apparently good
ductors in finite magnetic fields applied perpendicular to thescaling of the magnetization is not sufficient for proving the
copper oxide planes has been described by both lowest Laalidity of the 3D XY or the LLL theory. Clearly, there is
dau level (LLL) theory and three-dimensiondBD) XY considerable controversy in this field. This is in great part
theory with varying degrees of success. It is widely expectedlue to the extreme experimental difficulty in trying to deter-
that 3DXY behavior should hold at low fields and that LLL Mine, for example, the shape of the specific heat peak, which
should be valid at higher fields. There is however little con-1S & Small percentage of the total specific heat signal.
sensus about what the value of the crossover field should bﬁ In th!S work, we address one aspect of this problem whgre
and how well either of these theories describe resistivityn€oretical work can be of some help. We do so by consid-

o I = i isting analytical expressions for the scaling func-
data, magnetization data, or specific heat dat@®ne group ering exis : .
has claimed that LLL should not be valid for fields less thantlons’ which are available from LLL theory. The existence of

. . theoretically calculated scaling functions should be con-
ten tesla(T) in deoxygenated YBL0;-; (YBCO) thin trasted with the mere idea of scaling. Scaling is simply the

films based on conductivity measurements while three of thgyatement that a dimensionless form of a quantity, such as the
present authofs’ have found it to be valid down to approxi- gnecific heat or magnetization, can be writtersamefunc-
mately two tesla based on an analysis of specific heat dagn of 4 certain dimensionless scaling variable. While the
from YBCO and LuBaCw0;_ 5 (LBCO) single crystals. In  gcaling variable is known, the function need not be, and typi-
Ref. 8, 3D LLL scaling was found to work for fields greater cally it is not. Equationg8), (13), and (14) below are ex-
than 6 T while 3DXY was found to work for fields up to 8 amples of scaling statements. Both the scaling variable and
T when domain structure effects were accounted for. Theyhe dimensionless form of the particular quantity depend
also found that 3DXY scaled data at lower fields for several upon the theorye.g., LLL or XY) and upon the dimension-
YBCO class materials roughly collapse. To minimize theality. It is possible for experimental data to be consistent
problems of background subtraction and normalization, thavith different forms of scaling, particularly if the experimen-
authors of Ref. 4 worked with field and temperature derivatal uncertainty is considerable. On the other hand, a theory
tives of the specific heat. They found that 3I¥ agreed with  may predict the specific form of the scaling functions in ad-
their data for fields larger tmal T and that 3D LLL did for dition to the scaling variables. These clearly contain much
fields greater tha6 T if a nonlinear temperature dependencemore information than the variables alone and allow detailed
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comparison with experiment for all relevant quantities, notthe theory but we will see that it yields valuable insights into
only dimensionless ratios. Experiment may rule out a theoryther questions about the behavior of the YBCO materials,
if the theory’s scaling functions disagree with the experi-besides the nature of their fluctuation behavior. For example,
ment, even if the data appears to scale consistently with there will present evidence for the correspondence between the
scaling variables in that theory. Conversely, detailed agreesnset of H., (or LLL) fluctuations and flux lattice
ment of scaling functions with experiment is a much strongemelting1®?° Furthermore, it will also be seen that the 1Y
indication of the correctness of a theory than mere agreemestaling is so general as to describe “theoretical data” de-
in the scaling variables. Unfortunately, only in the case ofrived using the LLL theory. This exemplifies the importance
the LLL scaling are there analytical expressions for the magof knowing the actual scaling function.

netization and specific heat functiofgiven by Egs(1) and Our focus here will not be so much on the validity of LLL
(2) below]. The equivalent analysis cannot yet be done forscaling for the HTSC materials as on the applicability of the
XY theory. specific expressions and scaling functions from one particu-

Analytic expressions for the magnetization and specifiQyy calculation based on a nonperturbative approach to the
heat LLL scaling functions for two-dimensionéD), three- | | | L theory 121 There are two separate issues here.
dimensional (3D), and layered systems have beengiqi there is the question of describing the HTSC's in a

; 0,11 : T ;
?;”Vsd L bi; US(';nI? ;fhe LI_LL a_?_ﬁrox;\r;atéqn in thel GL-LLL formalism, which has already been answered, in
inzburg-Landau(GL) formalism. € wo-dimensional . opinion, through the success of LLL scaling. Second,

portion of this work has had striking success in describing_. . .
L : . o hile the expressions we use are of compact form and should
the magnetizatiorof the highly anisotropic high-temperature ; .
be useful for analysis of experiments and phenomenology,

superconducting materials fH,CaCyOg (BSCCO-2212 tt_hey are not mathematically identical to the exact solution of

and the Tl-based compounds for magnetic fields applied pe :
pendicular to the copper oxide planes. For example, the twot-he GL-LLL theory. Therefore, there is a need to address any

dimensional (2D) functiond®!! have a field independent possible disagreement between theory and experiment aris-
value at a particular temperatLifé 12 which is also a cross- ing frgm the addltlone_ll approximations involved in the_ ex-
ing point for the magnetization curves. Such behavior ha@ressions for the sgahng functions of Refs. 10,11 relat|vg to
been observed in BSCCO-2212 by many authomnd the exact answer within the GL-LLL theory. Although this
furthermore, Wahl and co-workéfshave not only observed issue is essentially resolved for very anisotropic, “almost”
such crossover in their magnetization data from Tl-based¢D HTSC systems where the 2D LLL scaling functions of
single crystals but they have also fit the 2D functions ofRefs. 10,11 are known to be very accurdté, has not been

Refs. 10 and 11 to their data finding good agreement. investigated for the relatively isotropic materials of the
Little work has been done to fit the theoretical functionsYBCO class.
to specific heatlata on the highly anisotropic HTSC materi-  In this work, we take advantage of the availability of nu-

als. Kobayashet al® are among the few to publish specific merical work on thgquas) 3D GL-LLL model?? The exis-
heat dat¥ for various fields near the critical temperature ontence of this numerical work for the magnetization will allow
such compounds. They scaled their specific heat data froms, as we shall see, to determine some of the fitting param-
c-axis aligned (Bi,Pb)Sr,CaCu;O, bulk sample and com- eters in a way that it is not constrained with experimental
pared it to the 2D scaling function of Tasovic and uncertainties involving, for example, the subtraction of
co-workerd®!? finding reasonable agreement. They also“background” terms. We can say that we use these numeri-
found a crossing point in their magnetization data. cal results to “calibrate” certain parameters in the scaling
Even less has been done to compare the theoretical efinctions. This is very convenient, since the increased com-
pressions and scaling functions to experimental data for thplexity of the 3D functions, as opposed to the 2D case,
more isotropic YBCO materials. In Ref. 6, an approximationwould otherwise make our task much more intricate and the
to the 3D LLL specific heat function was compared to scaledconclusions weaker.
specific heat data from various YBCO samplexluding a The paper is organized as follows: The theoretical func-
YBCO single crystal from Ref.)land a LBCO sample, with tions calculated from the nonperturbati%é* approach to the
satisfactory agreement. Further, in the work of Ref. 4, al-GL-LLL theory will be set forth and discussed in Sec. Il A.
though a quantitative comparison was not made, one can finkh Sec. Il B, the “calibration” fits of the numerical 3D mag-
qualitative agreement between the scaled temperature derivaetization data to the theoretical res{iq. (1)] are per-
tives of the specific heat and the second derivative of the 3lormed, and then fits to actual magnetization data from
magnetization functiorfSee Eq(5) and Figs. 6 and 8 of that YBCO samples are done. Then, in Sec. IIC, we give a
reference and Fig. 2 of Ref. Jd.astly, we are not aware of simple explanation of the peculiar behavior of the field de-
any work comparing the 3D theoretical magnetization func-pendence of the partial derivativiM (H,T)/JT found in
tion to magnetization data of YBCO-class materigdéd- YBCO and BSCCO. We show that this behavior is simply
though an LLL scaling variable analysis of this data has beeexplained in terms of the LLL scaling functions. Fits of the
performed®). This can be attributed in part to the theoretical 3D specific heat functifq. (2)] to specific heat
complexity'® of the 3D specific heat and magnetization func-data from the same materials as in Sec. Il B are reported in
tions of Ref. 11. Sec. II D along with evidence for the coincidence of the flux
In this paper, we examine the 3D specific heat and maglattice melting transition and the onset K, fluctuations.
netization functions of Ref. 11 comparing them to data fromFinally, implications of this work for 3DXY scaling and the
YBCO samples. Not only is such a comparison lacking andmportance of the scaling functions is demonstrated in Sec.
certainly needed in order to learn more about the validity ofll E followed by a discussion and summary in Sec. lIl.
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Il. THEORETICAL FUNCTIONS AND DATA FITS
A. Theoretical GL-LLL functions
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is the mean-field specific heag, is the superconducting flux
guantumkg is the Boltzman constant, ar@, K, andM are
adjustable parameters whose values are roughly2, and

As mentioned above, the 2D functions of Refs. 10,115.2 respectively. The factor of# in Eq. (1) is needed to
have had considerable success in describing magnetlzatl%nvertM(H T) which is in units of emu/cfto gaussG).
data from the highly anisotropic HTSC materials. Here, we  The fits to Eqs(1) and(2) are nontrivial sinc&J (G) [Eq.

will focus on the 3D specific heat and magnetization func—(3)] andG(g) [Eq. (4)] are functions of one another and the

tions since the 2D functions are already examined and the,

mperaturel is related tog through a transcendental equa-

quasi-2D functions are less tractable. The magnetization asi)," | place of a commercial fitting package, we have writ-

function of applied magnetic fielti and temperaturd is
written as Eq.(26) of Ref. 11

ATM(H, T H G, | 4\/27TT005K¢0) 2

(T3 | kgHE,
tan Q|
=|g+ 24
(g 92
X[GU?-UG?U?+2]. (1)

The specific heat function can be rewritt@ncluding impor-
tant subleading termsy considering’ the pure 3D limit of
the quasi-3D resultEq. (30) of Ref. 11

CHT) 1 GU
Cue(T) 2 JG2U?+2
dG du
X|U2—+({JGZUZ+2-GU)|-—||, (2
dg dG
where
G+K
U(G):0.818—0.110><tanl‘( v ) (3)
tan ®
G=g+!| g+ \/g*+ 2Q>, (4)
7U

| =(Q—tan 'Q)/[2tan Q], and it can be shown that

dG lg+(1+1)g?+tan 1Q/[ wU?] c
d_g_ _ j dU ( )
Vo?+tan 1Q/[ wU?]+Itan lQ/[er?’]E
Recall thatg is related to the temperature through
tan_lQ 1/3
+ 2+ =Bt, 6
g(g gtz ) (6)
whereB= (H/,2¢ o\ Tco/[872K%kg])? and
T-T(H
= LTl ™
(HT)2/3

In the above equatiorfS,H/, is the first derivative of the
critical field Hc,(T) with respect to temperatufand is as-
sumed to be a constank=\ .,/ &, (Whereh ,, and&,;, are

ten a code which uses IMSL routines to fit the functions
[Egs. (1) and (2)] (which must be -calculated self-
consistently to the data.

The 3D scaling functionfEgs.(1) and(2)] are more com-
plex than those of the 2D functions because there is an extra
length scale which describes the bending of the vortex lines
along the field directiorthere taken to be the axis). For this
reason, as we noted above, we will take advantage of the
numerical result$ on the GL-LLL theory for the magneti-
zation, which is the only quantity presently available from
numerical work, to “calibrate” certain parameters in our 3D
scaling functions.

B. Magnetization

As explained above, we will begin by narrowing down the
number of parameters available to perform fits to actual ex-
perimental data by first considering fits to results from a
numerical calculation which simulates YBCO. We will then
use our results from this fitting as a means of “calibrating”
Egs.(1) and(2).

The numerical calculation to which we refer above was
done by $sik and Stroud? using a GL-LLL formulation for
a layered systernwith parameters similar to those of YBCO

=18 T, k=52, T,=93, and an anisotropy factoy
=¢a0/€:.=5) in order to study flux lattice melting. Their
results are reproduced in Fig(al. We have done a four-
parameter fit of Eq(1) to this numerical “data?? and plot
our results as linegsolid for 2 T, dashed for 3 T, and dotted
for 5 T) with the data in Fig. (8. As one can see, the
agreement is excellent. The fitting parameters@ye, M,
and the constanh relating ¢ to ¢, and we findQ=10.25,
K=-5.95 M=7.38, and ¢£=0.291&. (i.e., A=0.2918)
sinceé,=2.82 A here. To verify the consistency of the nu-
merical data with LLL theory, we scaled the data according
to the 3D LLL form M(H,T)/(HT)?®=f(T
—T.(H)]/(TH)?3) and found the data to collapse flawlessly
as shown in Fig. (). When doing such scaling, one can
typically useT.(H) as an adjustable paramet@nd, to a
lesser extent, the background parametdist sinceH/, and
T.o are known in this case, there are no adjustable param-
eters, which makes the scaling of this data very convincing.

Using these values d, K, M, andA determined from
the fit to the numerical “data” we then performed a fit to the
two and three tesla magnetization data of Jeandupeax®
There are nine fitting parameters, namely,, «, &, T(2
T), T(3T), Be(2 T), B4(2 T), Bo(3 T), andB;(3 T) where,
Bo(H) andB,(H) are the field-dependent constants used to

the penetration depth and coherence length respectively idjust the subtracted backgrounMg=(By+B;/T)H.?

theab plane, £ is &, to within a multiplicative constant4
is the coherence length along tbeaxis), T.(H) is the finite
field mean-field transition temperatuig,,=T.(0), Cye(T)

Three-parameter fits were then used to fingH), By(H),
andB(H) for the four and five tesla fields. We firgd=3.78
A, H,=1.837 T/K, k=56.02, andT(H)=90.91 K, 90.38
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5 0 g R , FIG. 2. The magnetization data from a YBCO twinned single
CE: *%*g( crystal published in Ref. 9 along with the fits to Edy). (Inset: Our
:?6, x* LLL scaling of the magnetization data of Ref. 9 shown over a larger
£-05 ¢ « range than that of the authors of Ref. 9 which is in the inset to
2 .@‘f Fig. 5 of that reference. The axis is 4rM/(TH)?*x10*
£ " [G/(OeK)??| and thex axis ist X 10° [ KY¥Oe?] wheret is defined
% al * in Eq. (7).)
o x values were chosen. The situation did not improve wQen
ci_'f . K, andM were added as fitting parameters. This is in con-
E-157 tradistinction with what occurs with the numerical results
b : : . and with the data of Ref. 9. We are more inclined to believe
-0.0006 00002 . o, 00002 that the origin of the discrepancy lies with the data set than
(b) [T-THV(TH) =P KT with the theory, but we cannot be certain until more magne-

tization data from YBCO becomes available to us.

We now turn to using EqJ) to explain the results of Ref.
23 in which it was found that the temperature derivative of
the magnetization has an approximately field independent
value and a crossover point at a distinct temperature whose
value lies close to that of . for YBCO.

FIG. 1. (a) A fit of Eq. (1) to the “numerical” magnetization
data of Ref. 22(b) The same datéRef. 22 scaled according to 3D
LLL theory.

K, 89.83 K, and 89.04 K foH=2 T, 3 T,4 T,and 5T,
respectively and show the fits in Fig. 2. The fitto the 5 T
data is the least satisfactory which we attribute to the data: c. Behavior of the magnetization temperature derivative

One can see from Fig. 3 of Ref. 9 thaetd T and 5 T data The behavi fth derivati £ th
have spurious behavior at low temperatures instead of col- e behavior of the temperature derivative of the magne-

lapsing to the mean-field temperature dependence whicl,\z‘l"‘tion,ﬂM(";’T)/&ThhaS tr)]eer) St,“die‘?' as gl(functiogl of the
could be a result of the entry into the irreversible region.ll€ld H in Ref. 23. The behavior is quite striking. The most

Except for tle 5 T fit, the fits are reasonable and the param-_Salient feature of the experimental reSl{Iﬁg. 2 of_Ref. 2_3
eter values are similar to those found by others which give? thg very weak dependence on the field Qf this partial de-
us confidence that the theory is a good description of thdivative at temperatures near the mean-field temperature.

data. Furthermore, when one compares the valdé'gfob- This weak dependence extends to a rather wide temperature
o L ;L 2 range(more than eight degreeand in fact, can nearly be
tained in the fits to the valuds/,=1.85 T/K found from the A '

, . . called a field independence for the fields=2 for both the
TC(.H) N for_H=2—4 T (throwing out the Iess_ satlsfactory 5 YBCO and BSCCO data. Also remarkable is the feature
T fit), one finds good ggreement strengthening the Cr.e(.j'b'"%pon which the authors in the cited experimental work fo-
of the fit. If the quantmesg,' K, andM are added as fitting cused which is the apparent crossing of the data at a tem-
parameters, rather than being taken as obtained from the nHérature very close to
merical “calibration,” significantly better fits are not ob- These experimentaIC(;esults can be easily understood from

tained. This is as expected, if the procedure is correct. . : :
. . ’ ) the LLL scaling formula, Eq(1). This equation can be re-
In the inset to Fig. 2, we show the LLL scaling of thee\gritten simply as

magnetization data of Ref. 9 using the parameters obtain
from our fit. The collapse of the data is good in the critical
region but fans out somewhat in the low-temperature, mean
field region. We believe that some of this fanning may bewhere is the scaling function antithe scaled temperature
due to the spurious behavior associated with the irreversiblgariable defined in Ed(7). From these equations we have for
region which we discussed abot/e. the temperature derivative
We have also attempted fits to the magnetization data on a

YBCO single crystal by Salem-Sugui and da Siffdn this ﬂ: E
case the fits were rather poor unless unphysical parameter JT 3

M=(HT)?Ru(t), €)

2T—T(H)

(HT)_1/3,U~(U+M'(U(1_§ T ) ©
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FIG. 3. Theoretical specific heat curves for various fields gk 4. YBCO specific heat data for various field$ (
(H=1-8 T plotted at 0.5 T intervalsalculated from Eq(2). =3,4,5,6,7 T) from Ref. 9 along with the fits to E). The up-

) ) o ) ) permost curve corresponds tb=3 T, and the lowermost curve to
where u'(t) is the derivative ofu(t) with respect to its H=7 T. (Inset: The same figure zoomed in to show the critical
argument. We can the proceed to the evaluation of the mixeggion)

second partial derivative, with the result

2M 4 1 ] Vé/e l()ze)gicvbydt_exa}mirlirr]]'g ';he stpeci:;ip 'Zeilt lg:urtves proqtuced
- 213_ 1 _ " .(2). We display this function divide emperature
7ton 9 AT HOHD T w OIT=TeH)D = ") inyFig. 3 for variourfs f}i/elds in the vicinity of thg criti(E)aI area
using parameters characteristic of YBCO and units of
X(l_ET_Tc(H)) 1 (i 2T-Te(H) mJ/gk?. (For YBCO, 1.0 mJ/gk-0.6698 J/mole K. For
3 T HT2’3\ H, 3 H " Cue(T), we used a standard formCye(T)=yT[1
+b(T/T,—1)] which was taken to be a constant above
(10 T.(H). This form produces an artificial nonanalyticity of the
where we have usedT,(H)/dH=1/H/,. Because the scal- CUrves afT.(H) since the first derivatives are not continuous
ing function for the magnetization is essentially a linearbut this is unimportant since it does not affect our analysis in
function of its argumentexcept in a very narrow region near any significant way. As one can see in Fig. 3, the curves
its kink), we can drop the term proportional @’ in Eq.  9enerated from Eqg2), which have the features of a mean-
(10). We then have that the condition for the mixed deriva-field “ramp™ with fluctuations which produce a peak, are

tive to vanish is qualitatively similar to the data from YBCO samples. See,
for example, Fig. 2 of Ref. @eproduced here in Fig,)4Fig.
13 T—T.(H) 1 of Ref. 29, or Fig. 2 of Ref. 7. What is common to all of
(HT) M(t)=M'(t)T, (1D these curves is that they do not collapse immediately for
temperatures below the peak. This is in agreement with a
which, taking into account Eq7), can be written result derived from LLL theory, as originally pointed out in
Ref. 22. There, using the Maxwell relationg?M/dT?),
p(t)=p'(Ot=pn'(0)t. (12 —(gC,16H), /T, it was noted that the left hand side of this

Since w(0) is small, this relation is to good accuracy the €uation is positive for lower temperatures, which means
Taylor expansion of:(t) aboutt=0 and it will trivially hoid ~ that C(T,H) must increase with increasing field.As we

over an extended region. Indeed, singeis nearly every- will discuss beIpW(Sec. Il B, 3D XY theory cannot account
where linear, so that there are no higher order terms, it ma{Pr SUCE behavior. d fits of th ific heat d f Ref
appear that we have nearly proved that the vanishing of the /& avehattsmpte 't? cr’] ¢ ﬁ’ Specitic I dezt atS 0 Ele -9
mixed derivative is an identity. This is not at all the Case,t.0 Eq.(2). T.e est test of the theory would be to be able to
chiefly becausg.(0) cannot everywhere be neglected. How-f't the spec!flc heat data with the parameters_ obtalned_ for the
ever, the argument makes it abundantly clear that the weapagnetization data on the same sample, which was discussed

dependence on the field of the mixed derivativavbaind the 1 SEC- Il B. This could not be done however, and a good fit
crossing point follow easily from LLL scaling to the entire relevant temperature range could not be ob-

tained even when lifting the constraints from the magnetiza-
tion fits. In our opinion this is due in part to the approxima-
tions used to obtain Eq2), and in part to the 3D specific

In this section we will examine the specific heat functionheat functionabove the peaksot having the same qualita-
[Eq. (2)] fitting the data of Ref. 9 to it. We will then use Eq. tive behavior as data from YBCO samples which we believe
(2) and the method of Ref. 29 to show that flux lattice melt-exhibits 2D behavior in this region. The experimental side of
ing occurs at about the same temperature as the onskt,of the latter statement is reasonable since 2D fluctuations have
(or LLL) fluctuations. been observed in these materials through electronic transport

D. Specific heat
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measurement$. (For evidence in specific heat data, see
Refs. 6,7) The theoretical side of these statements is plau-
sible for the following reasons. First, as one can see, the
theoretical curves for three dimensions exhibit a crossover
point above the peak which according to the Maxwell rela-
tion (9°M/dT?)y=(9Cy/dH)1/T would lead to a positive
curvature in the magnetization for temperatures above the
crossover point. This is not observed in YBCO materials.
This inconsistency must be attributed to the approximation
used to obtain the specific heat function as a derivative of the
free energy, which worsens in the region abdyéH). (The
magnetization function involves fewer approximatidfs. -0.3
Secondly, the 2D curves decay more quickly to zero above 76 80
the transition than the 3D curves which is important as we
now show. 8
To account for the apparent dimensional crossover of the
specific heat data, we have done fits of the 2D funéfion
the data omitting a sizeable temperature windp83.3 6
K:91.5 K] around the peak where the 3D behavior is ex-
pected to dominate in order to fix the backgrour@z= _
(—8.6336+2.2602 T mJ/gK)]. We then do a fit of the 3D Egt
functionto the 3 T,4 T,5T, 6 T, &7 T specific heat data -
for the temperature rand82 K:89 K]. The results are good
as can be seen from the parameter vallits;=1.82 T/K, 2t
xk=65.6, andé.=3.1819. This is reinforced by a visual in-
spection of the fit in Fig. 4 where the curves agree quite well

4.0T) [mJ/gK]

-0.15

4.5T)-C(T,H

C(T,H

84 88 92
TIK]

=

in the region we believe to be 3D. One also notices that the 0 :

curves are on the high side at temperatures above the peak, b 6 80 TE‘[f(] 88 92
which agrees with our earlier discussion of this temperature ()

regime. FIG. 5. (@ &C(T,H=4.25 T)=C(T,H=4.5 T)-C(T,H

The parameter space is large here and it would be impos= 4 o ) (a “differential” ) determined from two of the theoretical
sible to explore all of it to determine the very best fit. From curves in Fig. 3. This curve has the same qualitative behavior as
our investigations however, we are certain that an improvegig. 2(b) of Ref. 29.(b) The field value versus the temperature at
fit with better parameter values can be obtained for exampl@hich the “differentials” peak(as explained in the texfor those
by allowing Q, K, andM to vary. One could also allow for fields and two theoretical fits which are discussed in Secs. Il D and
a quadratic term in the background or even in the mean-field E.
term which we have extended over a large temperature
range. Even without exploring the large parameter space, wa peak in the “differential.” This peak is due to the higher
have demonstrated the agreement between the 3D LLL spéeld starting to peak at a slightly lower temperature due to
cific heat function Eq. (2)] and YBCO data. peak broadening and transition temperature suppression. To

In the remainder of this subsection, we will discuss moresee if this peak corresponds to a flux lattice melting, they
indirect consequences of LLL theory as applied to the spelook at the field dependence of the peak temperature and find
cific heat of YBCO class materials. We will present evi- that it agrees with the same curve found in Ref. 32 by analy-
dence, using Eq(2) and the method of Ref. 29, that flux Sis of magnetization and resistivity curves to derive a flux
lattice melting, which has been observed in resistivity andattice melting line for a YBCO sample. We will now show
magnetization measurmeftsand more recently in high that similar results can be obtained from Eg).
quality calorimetric and specific heat measureménts; > Consider Fig. &). Here, SC(T,H=4.25 T)=C(T,H
coincides with the onset of LLL fluctuatiod®?° As we =4.5 T)-C(T,H=4.0 T), the difference of two theoreti-
pointed out above, the curves in Fig. 3 produced from(Egy. cal curves calculated from E), is plotted and is seen to
reproduce the key features of specific heat data from YBC(ave the same behavior as that of Fi@h)2n Ref. 29: a peak
samples, such as that seen in Fig. 1 of Ref. 29, especially fdpllowed by a deep trough. The field dependence of the tem-
temperatures below the peak. As the field increases, the peglerature at which eaciC(T,H) peaks is then calculated.
in the theoretical curves moves down in temperature andhis is plotted in Fig. 8) along with two lines. The first line
broadens. Similarly, the temperature of the onset of the fluctsolid line) is the best three parameter fit of this theoretical
tuation part of the peak moves down. By considering theLLL result to the function H(T)=a(1—-T/b)® with
behavior of this temperature as a function of field with fluxa=111.2,b=92.1, andc=1.48 (standard deviation0.02.
lattice melting lines obtained from Ref. 29 and elsewHére, The seconddashedl line is a two parameter fit with a fixed
we will now demonstrate the stated correspondence. c=1.33 and a=89.2 and b=91.1 (standard deviation

To arrive at their conclusion of second-order flux lattice =0.05). One can see that the while the exponents differ by
melting Roulin, Junod, and Walk&rsubtract a data set for 11%, the two curves are hard to distinguish. These lines are
one field from a data set from a slightly larger field and findto be contrasted to that of Refs. 29,32 where the correspond-
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FIG. 6. The theoretical specific heat curves
from an LLL calculated Eq(2) (Fig. 3 scaled
according to 3DXY theory: Eq.(13).
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ing line, H,(T)=99.71-T/92.5]*%, is identified with the  the value derived from*He experiments. The theoretical
second order meltlng line. The numbers in both fits agregalue of «a is 0005] The second Sca”ng for:h'is the more
quite well with each other, especially the exponent which isconvincing one since the scaling takes place over a wider and
the most critical parameter in this curve. However, in OUrjess trivial range. In the first form on the other hand, one is
case it has no direct relation to the melt!ng.. It th(_areforesca"ng mostly horizontal lines which are equal to zZ&and
seems that the onset of LLL fluctuations coincides with flux, ;s are virtually guaranteed to scale. The first form thereby

lattice melting. Further evidenc;e of th'is has been provided ir}:\cts as a sufficient condition for 3RY scaling and we use it
REf.S' 19,20. The melt_mg line is predictédo b? V\_/here E_q. here. If it does not scale according to this form, it certainly
(7) is a constant and it has been shéfhat this is consis- will not scale according to Eq14)

tent with the melting lines found above. Thus, we proceed to generate “data” from the theoretical
expression Eq(2). This is a portion of the theoretical results
shown earlier in Fig. 3. Then, we attempt to scale this
In this subsection, we will address an important questior‘data” according to the 3DXY formula. The scaling results
concerning the experimental discrimination between LLLare shown in Fig. 6 forthe 4 T,5T,6 T, 7 T,&B T fields
and 3DXY scaling. We will show that the LLL theoretical and as one can see, the collapse is reasonable. We have left
results derived from Eg$1) and(2) can be used to generate Out the smaller fields which as one would expect do not
curves which can then apparently be scaled in accordan&®llapse onto these curves. If one were to consider the noise,
with 3D XY theory. Thus, finding 3DXY scaling does not and the background subtractions, which inevitably enter into
exclude that the data actually is in agreement with GL-LLL the analysis of actual experimental data, one could call our
theory. Further, the importance of comparing the experimenscaling convincingilWhen the exponent 0.005 is used for the
tal results with computed functions, not now available for 3Dexponent folH on the RHS of Eq(13), the “data” does not
XY theory, is made obvious. collapse quite as well.That LLL calculated “data” can be
There are two procedures that have been used to analyfeade to scale according to 3RY theory exemplifies the
specific heat data according to 30Y scaling theory. The e€xcessive generality of mere scaling and reinforces the state-
first is that derived in Ref. 36: ment made in the Introduction that apparently good agree-
ment scaling is not sufficient to prove the validity of a
theory. This was also stated in Ref. 9 within the context of
: (13)  the 3DXY theory.

As a further insight on these problems, we comment on
whereT, is the zero-field critical temperature and the secondactual specific heat data from a YBCO sample which was
is that derived in Ref. 1: scaled using Eq.13) the same way as the theoretical curves

in Fig. 6. This is the specific heat data of Ref. 9, the same

data to which we attempted fits in Sec. || D. The 3
' (14) scaling results in that work are shown in Fig. 4 in Ref. 9. The

large central peak is the zero-field peak and so of course it is
where C, is the height of the specific heat cusp and theunimportant since it is simply an artifact of having subtracted
subscript SC signifies that it is only the superconducting coneff the zero-field data. The important region to consider is
tribution, with the background subtracted difthe exponent just to the left of the central peak, since that area represents
for H on the right hand sidéRHS) of these equations is the peaks(or the region of critical behaviprof the finite-
derived from the specific heat exponentind we have used field data sets. As one can see, the data is not close to col-

E. Implications for 3D XY scaling
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FIG. 7. The data of Ref. 9 scaled according to
3D XY theory. The critical region is to the left of
the large peak which is the zero-field peak. One
can see that 3IXY scaling does not describe the
critical region. There are seven data sets plotted,
corresponding to fields of Iot7 T at 1 Tinter-
vals. Higher field sets have lower values at the
extreme left of the graph.

o

0,T)-C(H,T)] /H 0-0097 [y )/gK70-0097)

-0.04 -0.02 0 0.02 0.04
[T/-%-1]/HO'747 [T-0.747]

[CH

lapsing here. Because this data is plotted on a scale whidhdependently from fits to the numerical calculation thereby
brings in the size of the irrelevant, large zero-field peakyraising the credibility of the fits. The remaining parameter
scaling does not appear to be a dramatic failure. Howeveyalues H/,, «, and ;) correspond well to those found for
when compared to the collapse of the data at temperatur¢fiese materials by other means. When applied to another
above the peak where there are no fluctuations and one fta sef® Eq. (1) was not found to accurately describe it. We
dealing with only the background, one can see that the failyp,\iously cannot completely rule out that the results in the
ure of 3D XY scaling is more obvious. We have done our|ast reference are the correct ones and that the other two are
own similar analysis on this data which we show in Fig. 7 iNwrong, but it seems unlikely to us. We also found that Eq.
a more restricted scalfWe emphasize the point that if the (2) could not describe the YBCO specific heat data of Ref. 9
data does not scale with Eq_13), it will not scale with the  ,yer the whole temperatuf@0 K:100 K] but that very good
more convincing Eq(14).] Itis seen that t 2 T and 3 T yegyits for five of the fields could be obtained if the region
data do collapse but ¢nl T data rides high and the larger gpove the peak is excluded from the fit. The question of why
fields go low. The failure of the scaled data to collapse in thgpis is brings us now to a broader discussion of the applica-

actual critical region makes one question whether 8D ity of hoth the 3D specific and magnetization functions of
behavior is valid, although it does not rule it out. Derivationspef. 11 to YBCO data.

of the actual functions like those of Ref. 10 would allow us A5 we discussed in the Introduction, several factors could
to settle the point. This is why such derivations are so iM-gypain possible discrepancies between the functions and the
portant. _ _ o _ data. The most significant would be the failure of GL-LLL
~We close this section on implications for 30Y scaling  theory to describe the YBCO data. We believe that the evi-

with a discussion of the references to 3Dr in the flux  gence is against this because it has been shown elsefesere
lattice melting literature. There a melting line of the form mentioned in the Introductionthat YBCO data scales ac-
Hn(T)=99.71-T/T,(0)]** is found by many cording to this theory. Another possible reason would be
author$****"who point out that the exponent here is the giscrepancies between the functions of Ref. 11 and exact
nearly the same as that.33 expected for 3DXY critical ~ GL-LLL theory. While it does seem that there are some
point analysis. And while some of the same autforte  problems with the approximations used to obtain &byfor
that such an analysis appears incompatible with a first-ord@emperatures above the peak, we tend to discount this for
transition, that we get the same exponent from a LLL aptemperatures around and below the specific heat peaks for
proach appears to make such an identification withX3D  two reasons. First, the 2D function was found to have sig-
theory even more unlikely. nificant success in describing the more anisotropic HTSC
materials and is known to be in excellent agreement with
numerical simulations of the 2D GL-LLL theory. Secondly,
we note the exceptional fit of Eql) to the numerical data

In this paper, we have studied the relevance of 3D GL{Fig. 1(a@)] which provides evidence that this equation is an
LLL theory as exemplified by Eqg1l) and (2) for the mag- accurate description of the GL-LLL theory.
netization and specific heat, to the relatively isotropic HTSC Part of the shortcomings also arise, we believe, be-
materials of the YBCO family. cause Egs(1) and (2) are 3D functions and it has been

Equation(1) was found to accurately describe the magne-shown that, while the YBCO is the least anisotropic of the
tization data for a YBCO sampleand the numerical data major HTSC materials, 2D signatures are presérAs
modeling these materials in the GL-LLL formalisthin the ~ mentioned above, we have tested this by successfully fitting
former case, several of the fitting parameters were obtainethe 3D LLL function to the temperature range of the specific

Ill. DISCUSSION AND SUMMARY
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heat data which is believed to be 3D. Further adding to oufrhis has consequential ramifications for the significance of
conclusion here is prior evidence for 2D behavior in YBCO3D XY theory and what it means to find that data scales
and LBCO through specific heat LLL scalifig.The prob-  according to 3DXY theory. Knowledge of the expressions
lems that afflict the specific heat do not affect the magnetifor the 3D XY scaling functions would be very desirable. If
zation, which has a much simpler, monotonic behavior. Tosuch a calculation becomes available, it would be very

try to remedy the specific heat problem by splicing togethekyorthwhile to repeat the analysis done in this paper in terms
the 2D and 3D functions in the appropriate temperatureyf such functions.

ranges to describe the YBCO data would introduce so many
fitting parameters that any fit would be of little value. It is
also possible to use the quasi-2D functions of Ref. 11 but
these also have a large number of fitting parameters besides
being much less tractable than the pure 2D or 3D functions. Conversations with Dr. J. Buan and Professor C. C.
The importance of scaling functions, as contrasted tdHuang are gratefully acknowledged as is a fruitful discussion
mere scaling variables, has been demonstrated in this papeith Dr. A. Junod. We thank Dr. &k, and Dr. Stroud, Dr.
by showing the low information content of 3RY scaling Salem-Sugui Jret al,, and Dr. O. Jeandupetet al. for gen-
without the associated scaling functions. It was shown in twaerously providing their data. We also thank Isaac Rutel for
cases(Sec. Il B how curves from an equation calculated assistance with the data used in Figs. 6 and 7. This work has
using LLL assumptions could be described by 8¥ theory.  been supported in part by the NSF Grant No. DMR-9415549.
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