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Three-dimensional lowest-Landau-level theory applied to YBa2Cu3O72d magnetization
and specific heat data: Implications for the critical behavior in the H -T plane
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We study the applicability of magnetization and specific heat equations derived from a lowest-Landau-level
~LLL ! calculation, to the high-temperature superconducting~HTSC! materials of the YBa2Cu3O72d ~YBCO!
family. We find that significant information about these materials can be obtained from this analysis, even
though the three-dimensional LLL functions are not quite as successful in describing them as the corresponding
two-dimensional functions are in describing data for the more anisotropic HTSC Bi- and Tl-based materials.
The results discussed include scaling fits, evidence for the correspondence between the onset ofHc2 ~or LLL !
fluctuations and the flux lattice melting transition, and reasons why three-dimensional~3D! XY scaling may
have less significance than previously believed. We also demonstrate how 3DXY scaling does not describe the
specific heat data of YBCO samples in the critical region. Throughout the paper, the importance of fitting the
actual functions to the data, in contradistinction to checking for scaling behavior, is stressed.
@S0163-1829~98!06814-3#
on
th
La

te
L
n

d
it

an

th
i-
da

er

he
al
he
th
va

ce

r

od
he

art
r-
ich

ere
id-
c-
of
n-

the
the

he
pi-

and
nd
-
nt
-
ory
d-
ch

iled
I. INTRODUCTION

The critical behavior of the high-temperature superc
ductors in finite magnetic fields applied perpendicular to
copper oxide planes has been described by both lowest
dau level ~LLL ! theory and three-dimensional~3D! XY
theory with varying degrees of success. It is widely expec
that 3DXY behavior should hold at low fields and that LL
should be valid at higher fields. There is however little co
sensus about what the value of the crossover field shoul
and how well either of these theories describe resistiv
data, magnetization data, or specific heat data.1–4 One group5

has claimed that LLL should not be valid for fields less th
ten tesla~T! in deoxygenated YBa2Cu3O72d ~YBCO! thin
films based on conductivity measurements while three of
present authors6,7 have found it to be valid down to approx
mately two tesla based on an analysis of specific heat
from YBCO and LuBa2Cu3O72d ~LBCO! single crystals. In
Ref. 8, 3D LLL scaling was found to work for fields great
than 6 T while 3DXY was found to work for fields up to 8
T when domain structure effects were accounted for. T
also found that 3DXY scaled data at lower fields for sever
YBCO class materials roughly collapse. To minimize t
problems of background subtraction and normalization,
authors of Ref. 4 worked with field and temperature deri
tives of the specific heat. They found that 3DXY agreed with
their data for fields larger than 1 T and that 3D LLL did for
fields greater than 6 T if a nonlinear temperature dependen
570163-1829/98/57~14!/8622~10!/$15.00
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was allowed forHc2(T). The authors of Ref. 9 on the othe
hand suggest that their data indicates that 3DXY theory is
not valid beyond 0.5 T and conclude that apparently go
scaling of the magnetization is not sufficient for proving t
validity of the 3D XY or the LLL theory. Clearly, there is
considerable controversy in this field. This is in great p
due to the extreme experimental difficulty in trying to dete
mine, for example, the shape of the specific heat peak, wh
is a small percentage of the total specific heat signal.

In this work, we address one aspect of this problem wh
theoretical work can be of some help. We do so by cons
ering existing analytical expressions for the scaling fun
tions, which are available from LLL theory. The existence
theoretically calculated scaling functions should be co
trasted with the mere idea of scaling. Scaling is simply
statement that a dimensionless form of a quantity, such as
specific heat or magnetization, can be written assomefunc-
tion of a certain dimensionless scaling variable. While t
scaling variable is known, the function need not be, and ty
cally it is not. Equations~8!, ~13!, and ~14! below are ex-
amples of scaling statements. Both the scaling variable
the dimensionless form of the particular quantity depe
upon the theory~e.g., LLL or XY) and upon the dimension
ality. It is possible for experimental data to be consiste
with different forms of scaling, particularly if the experimen
tal uncertainty is considerable. On the other hand, a the
may predict the specific form of the scaling functions in a
dition to the scaling variables. These clearly contain mu
more information than the variables alone and allow deta
8622 © 1998 The American Physical Society
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comparison with experiment for all relevant quantities, n
only dimensionless ratios. Experiment may rule out a the
if the theory’s scaling functions disagree with the expe
ment, even if the data appears to scale consistently with
scaling variables in that theory. Conversely, detailed ag
ment of scaling functions with experiment is a much stron
indication of the correctness of a theory than mere agreem
in the scaling variables. Unfortunately, only in the case
the LLL scaling are there analytical expressions for the m
netization and specific heat functions@given by Eqs.~1! and
~2! below#. The equivalent analysis cannot yet be done
XY theory.

Analytic expressions for the magnetization and spec
heat LLL scaling functions for two-dimensional~2D!, three-
dimensional ~3D!, and layered systems have be
derived10,11 by using the LLL approximation in the
Ginzburg-Landau~GL! formalism. The two-dimensiona
portion of this work has had striking success in describ
themagnetizationof the highly anisotropic high-temperatur
superconducting materials Bi2Sr2CaCu2O8 ~BSCCO-2212!
and the Tl-based compounds for magnetic fields applied
pendicular to the copper oxide planes. For example, the t
dimensional ~2D! functions10,11 have a field independen
value at a particular temperatureT* 12 which is also a cross
ing point for the magnetization curves. Such behavior
been observed in BSCCO-2212 by many authors13 and
furthermore, Wahl and co-workers14 have not only observed
such crossover in their magnetization data from Tl-ba
single crystals but they have also fit the 2D functions
Refs. 10 and 11 to their data finding good agreement.

Little work has been done to fit the theoretical functio
to specific heatdata on the highly anisotropic HTSC mate
als. Kobayashiet al.15 are among the few to publish specifi
heat data16 for various fields near the critical temperature
such compounds. They scaled their specific heat data fro
c-axis aligned (Bi,Pb)2Sr2Ca2Cu3Ox bulk sample and com
pared it to the 2D scaling function of Tesˇanović and
co-workers10,11 finding reasonable agreement. They a
found a crossing point in their magnetization data.

Even less has been done to compare the theoretica
pressions and scaling functions to experimental data for
more isotropic YBCO materials. In Ref. 6, an approximati
to the 3D LLL specific heat function was compared to sca
specific heat data from various YBCO samples~including a
YBCO single crystal from Ref. 1! and a LBCO sample, with
satisfactory agreement. Further, in the work of Ref. 4,
though a quantitative comparison was not made, one can
qualitative agreement between the scaled temperature de
tives of the specific heat and the second derivative of the
magnetization function.@See Eq.~5! and Figs. 6 and 8 of tha
reference and Fig. 2 of Ref. 17.# Lastly, we are not aware o
any work comparing the 3D theoretical magnetization fu
tion to magnetization data of YBCO-class materials~al-
though an LLL scaling variable analysis of this data has b
performed4,9!. This can be attributed in part to th
complexity18 of the 3D specific heat and magnetization fun
tions of Ref. 11.

In this paper, we examine the 3D specific heat and m
netization functions of Ref. 11 comparing them to data fro
YBCO samples. Not only is such a comparison lacking a
certainly needed in order to learn more about the validity
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the theory but we will see that it yields valuable insights in
other questions about the behavior of the YBCO materi
besides the nature of their fluctuation behavior. For exam
we will present evidence for the correspondence between
onset of Hc2 ~or LLL ! fluctuations and flux lattice
melting.19,20Furthermore, it will also be seen that the 3DXY
scaling is so general as to describe ‘‘theoretical data’’
rived using the LLL theory. This exemplifies the importan
of knowing the actual scaling function.

Our focus here will not be so much on the validity of LL
scaling for the HTSC materials as on the applicability of t
specific expressions and scaling functions from one part
lar calculation based on a nonperturbative approach to
GL-LLL theory.10,11 There are two separate issues he
First, there is the question of describing the HTSC’s in
GL-LLL formalism, which has already been answered,
our opinion, through the success of LLL scaling. Seco
while the expressions we use are of compact form and sh
be useful for analysis of experiments and phenomenolo
they are not mathematically identical to the exact solution
the GL-LLL theory. Therefore, there is a need to address
possible disagreement between theory and experiment
ing from the additional approximations involved in the e
pressions for the scaling functions of Refs. 10,11 relative
the exact answer within the GL-LLL theory. Although th
issue is essentially resolved for very anisotropic, ‘‘almos
2D HTSC systems where the 2D LLL scaling functions
Refs. 10,11 are known to be very accurate,21 it has not been
investigated for the relatively isotropic materials of th
YBCO class.

In this work, we take advantage of the availability of n
merical work on the~quasi! 3D GL-LLL model.22 The exis-
tence of this numerical work for the magnetization will allo
us, as we shall see, to determine some of the fitting par
eters in a way that it is not constrained with experimen
uncertainties involving, for example, the subtraction
‘‘background’’ terms. We can say that we use these num
cal results to ‘‘calibrate’’ certain parameters in the scali
functions. This is very convenient, since the increased co
plexity of the 3D functions, as opposed to the 2D ca
would otherwise make our task much more intricate and
conclusions weaker.

The paper is organized as follows: The theoretical fu
tions calculated from the nonperturbative10,11approach to the
GL-LLL theory will be set forth and discussed in Sec. II A
In Sec. II B, the ‘‘calibration’’ fits of the numerical 3D mag
netization data to the theoretical result@Eq. ~1!# are per-
formed, and then fits to actual magnetization data fr
YBCO samples are done. Then, in Sec. II C, we give
simple explanation of the peculiar behavior of the field d
pendence of the partial derivative]M (H,T)/]T found23 in
YBCO and BSCCO. We show that this behavior is simp
explained in terms of the LLL scaling functions. Fits of th
theoretical 3D specific heat function@Eq. ~2!# to specific heat
data from the same materials as in Sec. II B are reporte
Sec. II D along with evidence for the coincidence of the fl
lattice melting transition and the onset ofHc2 fluctuations.
Finally, implications of this work for 3DXY scaling and the
importance of the scaling functions is demonstrated in S
II E followed by a discussion and summary in Sec. III.
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II. THEORETICAL FUNCTIONS AND DATA FITS

A. Theoretical GL-LLL functions

As mentioned above, the 2D functions of Refs. 10,
have had considerable success in describing magnetiz
data from the highly anisotropic HTSC materials. Here,
will focus on the 3D specific heat and magnetization fun
tions since the 2D functions are already examined and
quasi-2D functions are less tractable. The magnetization
function of applied magnetic fieldH and temperatureT is
written as Eq.~26! of Ref. 11

4pM ~H,T!Hc28

~TH!2/3 S 4A2pTc0jkf0

kBHc28
D 2/3

5S g1Ag21
tan21Q

pU2 D 1/3

3@GU22UAG2U212#. ~1!

The specific heat function can be rewritten~including impor-
tant subleading terms! by considering24 the pure 3D limit of
the quasi-3D result@Eq. ~30! of Ref. 11#:

C~H,T!

CMF~T!
5

1

2S 12
GU

AG2U212
D

3FU2
dG

dg
1~AG2U2122GU!UdU

dGUG , ~2!

where

U~G!50.81820.1103tanhS G1K

M D , ~3!

G5g1I S g1Ag21
tan21Q

pU2 D , ~4!

I 5(Q2tan21Q)/@2tan21Q#, and it can be shown that

dG

dg
5

Ig1~11I !Ag21tan21Q/@pU2#

Ag21tan21Q/@pU2#1I tan21Q/@pU3#
dU

dG

. ~5!

Recall thatg is related to the temperature through

gS g1Ag21
tan21Q

pU2 D 1/3

5Bt, ~6!

whereB5(Hc28
2jf0ATc0/@8pA2k2kB#)2/3 and

t[
T2Tc~H !

~HT!2/3
. ~7!

In the above equations,25 Hc28 is the first derivative of the
critical field Hc2(T) with respect to temperature~and is as-
sumed to be a constant!, k5lab /jab ~wherelab andjab are
the penetration depth and coherence length respective
the ab plane!, j is jc to within a multiplicative constant (jc
is the coherence length along thec axis!, Tc(H) is the finite
field mean-field transition temperature,Tc05Tc(0), CMF(T)
1
ion
e
-
e
a

in

is the mean-field specific heat,f0 is the superconducting flux
quantum,kB is the Boltzman constant, andQ, K, andM are
adjustable parameters whose values are roughlyp, A2, and
2A2, respectively. The factor of 4p in Eq. ~1! is needed to
convertM (H,T) which is in units of emu/cm3 to gauss~G!.

The fits to Eqs.~1! and~2! are nontrivial sinceU(G) @Eq.
~3!# andG(g) @Eq. ~4!# are functions of one another and th
temperatureT is related tog through a transcendental equ
tion. In place of a commercial fitting package, we have w
ten a code which uses IMSL routines to fit the functio
@Eqs. ~1! and ~2!# ~which must be calculated self
consistently! to the data.

The 3D scaling functions@Eqs.~1! and~2!# are more com-
plex than those of the 2D functions because there is an e
length scale which describes the bending of the vortex li
along the field direction~here taken to be thec axis!. For this
reason, as we noted above, we will take advantage of
numerical results22 on the GL-LLL theory for the magneti-
zation, which is the only quantity presently available fro
numerical work, to ‘‘calibrate’’ certain parameters in our 3
scaling functions.

B. Magnetization

As explained above, we will begin by narrowing down th
number of parameters available to perform fits to actual
perimental data by first considering fits to results from
numerical calculation which simulates YBCO. We will the
use our results from this fitting as a means of ‘‘calibrating
Eqs.~1! and ~2!.

The numerical calculation to which we refer above w
done by Šášik and Stroud22 using a GL-LLL formulation for
a layered system~with parameters similar to those of YBCO
Hc28 51.8 T, k552, Tc0593, and an anisotropy factorg
5jab /jc55) in order to study flux lattice melting. Thei
results are reproduced in Fig. 1~a!. We have done a four-
parameter fit of Eq.~1! to this numerical ‘‘data’’22 and plot
our results as lines~solid for 2 T, dashed for 3 T, and dotte
for 5 T! with the data in Fig. 1~a!. As one can see, the
agreement is excellent. The fitting parameters areQ, K, M ,
and the constantA relating j to jc and we findQ510.25,
K525.95, M57.38, and j50.2918jc ~i.e., A50.2918)
sincejc52.82 Å here. To verify the consistency of the n
merical data with LLL theory, we scaled the data accord
to the 3D LLL form M (H,T)/(HT)2/35 f „@T
2Tc(H)#/(TH)2/3

… and found the data to collapse flawless
as shown in Fig. 1~b!. When doing such scaling, one ca
typically useTc(H) as an adjustable parameter~and, to a
lesser extent, the background parameters!, but sinceHc28 and
Tc0 are known in this case, there are no adjustable par
eters, which makes the scaling of this data very convinci

Using these values ofQ, K, M , andA determined from
the fit to the numerical ‘‘data’’ we then performed a fit to th
two and three tesla magnetization data of Jeandupeuxet al.9

There are nine fitting parameters, namelyHc28 , k, jc , Tc~2
T!, Tc~3 T!, B0~2 T!, B1~2 T!, B0~3 T!, andB1~3 T! where,
B0(H) andB1(H) are the field-dependent constants used
adjust the subtracted background:MB5(B01B1 /T)H.26

Three-parameter fits were then used to findTc(H), B0(H),
andB1(H) for the four and five tesla fields. We findjc53.78
Å, Hc28 51.837 T/K,k556.02, andTc(H)590.91 K, 90.38
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K, 89.83 K, and 89.04 K forH52 T, 3 T, 4 T, and 5 T,
respectively and show the fits in Fig. 2. The fit to the 5
data is the least satisfactory which we attribute to the d
One can see from Fig. 3 of Ref. 9 that the 4 T and 5 T data
have spurious behavior at low temperatures instead of
lapsing to the mean-field temperature dependence w
could be a result of the entry into the irreversible regio
Except for the 5 T fit, the fits are reasonable and the para
eter values are similar to those found by others which gi
us confidence that the theory is a good description of
data. Furthermore, when one compares the value ofHc28 ob-
tained in the fits to the valuesHc28 51.85 T/K found from the
Tc(H)’s for H52 –4 T ~throwing out the less satisfactory
T fit!, one finds good agreement strengthening the credib
of the fit. If the quantitiesQ, K, andM are added as fitting
parameters, rather than being taken as obtained from the
merical ‘‘calibration,’’ significantly better fits are not ob
tained. This is as expected, if the procedure is correct.

In the inset to Fig. 2, we show the LLL scaling of th
magnetization data of Ref. 9 using the parameters obta
from our fit. The collapse of the data is good in the critic
region but fans out somewhat in the low-temperature, m
field region. We believe that some of this fanning may
due to the spurious behavior associated with the irrevers
region which we discussed above.27

We have also attempted fits to the magnetization data
YBCO single crystal by Salem-Sugui and da Silva.28 In this
case the fits were rather poor unless unphysical param

FIG. 1. ~a! A fit of Eq. ~1! to the ‘‘numerical’’ magnetization
data of Ref. 22.~b! The same data~Ref. 22! scaled according to 3D
LLL theory.
a:
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values were chosen. The situation did not improve whenQ,
K, andM were added as fitting parameters. This is in co
tradistinction with what occurs with the numerical resu
and with the data of Ref. 9. We are more inclined to belie
that the origin of the discrepancy lies with the data set th
with the theory, but we cannot be certain until more mag
tization data from YBCO becomes available to us.

We now turn to using Eq.~1! to explain the results of Ref
23 in which it was found that the temperature derivative
the magnetization has an approximately field independ
value and a crossover point at a distinct temperature wh
value lies close to that ofTc0 for YBCO.

C. Behavior of the magnetization temperature derivative

The behavior of the temperature derivative of the mag
tization ]M (H,T)/]T has been studied as a function of th
field H in Ref. 23. The behavior is quite striking. The mo
salient feature of the experimental results~Fig. 2 of Ref. 23!
is the very weak dependence on the field of this partial
rivative at temperatures near the mean-field temperat
This weak dependence extends to a rather wide tempera
range~more than eight degrees! and in fact, can nearly be
called a field independence for the fieldsH>2 for both the
YBCO and BSCCO data. Also remarkable is the featu
upon which the authors in the cited experimental work
cused which is the apparent crossing of the data at a t
perature very close toTc0.

These experimental results can be easily understood f
the LLL scaling formula, Eq.~1!. This equation can be re
written simply as

M5~HT!2/3m~ t !, ~8!

wherem is the scaling function andt the scaled temperatur
variable defined in Eq.~7!. From these equations we have f
the temperature derivative

]M

]T
5

2

3
~HT!21/3m~ t !1m8~ t !S 12

2

3

T2Tc~H !

T D , ~9!

FIG. 2. The magnetization data from a YBCO twinned sing
crystal published in Ref. 9 along with the fits to Eq.~1!. „Inset: Our
LLL scaling of the magnetization data of Ref. 9 shown over a lar
range than that of the authors of Ref. 9 which is in the inset
Fig. 5 of that reference. They axis is 4pM /(TH)2/33104

@G/~OeK)2/3] and thex axis ist3103 @K1/3/Oe2/3# wheret is defined
in Eq. ~7!.…
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where m8(t) is the derivative ofm(t) with respect to its
argument. We can the proceed to the evaluation of the m
second partial derivative, with the result

]2M

]T]H
5

4

9

1

HT
„m~ t !~HT!2/32m8~ t !@T2Tc~H !#…2m9~ t !

3S 12
2

3

T2Tc~H !

T D 1

HT2/3S 1

Hc28
1

2

3

T2Tc~H !

H D ,

~10!

where we have useddTc(H)/dH51/Hc28 . Because the scal
ing function for the magnetization is essentially a line
function of its argument~except in a very narrow region nea
its kink!, we can drop the term proportional tom9 in Eq.
~10!. We then have that the condition for the mixed deriv
tive to vanish is

~HT!21/3m~ t !5m8~ t !
T2Tc~H !

HT
, ~11!

which, taking into account Eq.~7!, can be written

m~ t !5m8~ t !t'm8~0!t. ~12!

Since m(0) is small, this relation is to good accuracy th
Taylor expansion ofm(t) aboutt50 and it will trivially hold
over an extended region. Indeed, sincem is nearly every-
where linear, so that there are no higher order terms, it m
appear that we have nearly proved that the vanishing of
mixed derivative is an identity. This is not at all the cas
chiefly becausem(0) cannot everywhere be neglected. Ho
ever, the argument makes it abundantly clear that the w
dependence on the field of the mixed derivative ofM and the
crossing point follow easily from LLL scaling.

D. Specific heat

In this section we will examine the specific heat functi
@Eq. ~2!# fitting the data of Ref. 9 to it. We will then use Eq
~2! and the method of Ref. 29 to show that flux lattice me
ing occurs at about the same temperature as the onset oHc2
~or LLL ! fluctuations.

FIG. 3. Theoretical specific heat curves for various fie
(H51–8 T plotted at 0.5 T intervals! calculated from Eq.~2!.
d

r

-

y
e

,
-
ak

-

We begin by examining the specific heat curves produ
by Eq. ~2!. We display this function divided by temperatu
in Fig. 3 for various fields in the vicinity of the critical are
using parameters characteristic of YBCO and units
mJ/gK2. ~For YBCO, 1.0 mJ/gK50.6698 J/mole K.! For
CMF(T), we used a standard form:CMF(T)5gT@1
1b(T/Tc021)# which was taken to be a constant abo
Tc(H). This form produces an artificial nonanalyticity of th
curves atTc(H) since the first derivatives are not continuo
but this is unimportant since it does not affect our analysis
any significant way. As one can see in Fig. 3, the curv
generated from Eq.~2!, which have the features of a mea
field ‘‘ramp’’ with fluctuations which produce a peak, ar
qualitatively similar to the data from YBCO samples. Se
for example, Fig. 2 of Ref. 9~reproduced here in Fig. 4!, Fig.
1 of Ref. 29, or Fig. 2 of Ref. 7. What is common to all o
these curves is that they do not collapse immediately
temperatures below the peak. This is in agreement wit
result derived from LLL theory, as originally pointed out i
Ref. 22. There, using the Maxwell relation, (]2M /]T2)H
5(]CH /]H)T /T, it was noted that the left hand side of th
equation is positive for lower temperatures, which mea
that C(T,H) must increase with increasing field.30 As we
will discuss below~Sec. II E!, 3D XY theory cannot accoun
for such behavior.

We have attempted fits of the specific heat data of Re
to Eq. ~2!. The best test of the theory would be to be able
fit the specific heat data with the parameters obtained for
magnetization data on the same sample, which was discu
in Sec. II B. This could not be done however, and a good
to the entire relevant temperature range could not be
tained even when lifting the constraints from the magneti
tion fits. In our opinion this is due in part to the approxim
tions used to obtain Eq.~2!, and in part to the 3D specific
heat functionabove the peaksnot having the same qualita
tive behavior as data from YBCO samples which we belie
exhibits 2D behavior in this region. The experimental side
the latter statement is reasonable since 2D fluctuations h
been observed in these materials through electronic trans

FIG. 4. YBCO specific heat data for various fields (H
53,4,5,6,7 T) from Ref. 9 along with the fits to Eq.~2!. The up-
permost curve corresponds toH53 T, and the lowermost curve to
H57 T. ~Inset: The same figure zoomed in to show the critic
region.!
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measurements.31 ~For evidence in specific heat data, s
Refs. 6,7.! The theoretical side of these statements is pl
sible for the following reasons. First, as one can see,
theoretical curves for three dimensions exhibit a crosso
point above the peak which according to the Maxwell re
tion (]2M /]T2)H5(]CH /]H)T /T would lead to a positive
curvature in the magnetization for temperatures above
crossover point. This is not observed in YBCO materia
This inconsistency must be attributed to the approximat
used to obtain the specific heat function as a derivative of
free energy, which worsens in the region aboveTc(H). ~The
magnetization function involves fewer approximations.11!
Secondly, the 2D curves decay more quickly to zero ab
the transition than the 3D curves which is important as
now show.

To account for the apparent dimensional crossover of
specific heat data, we have done fits of the 2D function11 to
the data omitting a sizeable temperature window@83.3
K:91.5 K# around the peak where the 3D behavior is e
pected to dominate in order to fix the background@CB5
(28.633612.2602 T! mJ/gK!#. We then do a fit of the 3D
function to the 3 T, 4 T, 5 T, 6 T, and 7 T specific heat data
for the temperature range@82 K:89 K#. The results are good
as can be seen from the parameter values:Hc28 51.82 T/K,
k565.6, andjc53.1819. This is reinforced by a visual in
spection of the fit in Fig. 4 where the curves agree quite w
in the region we believe to be 3D. One also notices that
curves are on the high side at temperatures above the p
which agrees with our earlier discussion of this temperat
regime.

The parameter space is large here and it would be imp
sible to explore all of it to determine the very best fit. Fro
our investigations however, we are certain that an impro
fit with better parameter values can be obtained for exam
by allowing Q, K, andM to vary. One could also allow fo
a quadratic term in the background or even in the mean-fi
term which we have extended over a large tempera
range. Even without exploring the large parameter space
have demonstrated the agreement between the 3D LLL
cific heat function@Eq. ~2!# and YBCO data.

In the remainder of this subsection, we will discuss mo
indirect consequences of LLL theory as applied to the s
cific heat of YBCO class materials. We will present ev
dence, using Eq.~2! and the method of Ref. 29, that flu
lattice melting, which has been observed in resistivity a
magnetization measurments32 and more recently in high
quality calorimetric and specific heat measurements,29,33–35

coincides with the onset of LLL fluctuations.19,20 As we
pointed out above, the curves in Fig. 3 produced from Eq.~2!
reproduce the key features of specific heat data from YB
samples, such as that seen in Fig. 1 of Ref. 29, especially
temperatures below the peak. As the field increases, the
in the theoretical curves moves down in temperature
broadens. Similarly, the temperature of the onset of the fl
tuation part of the peak moves down. By considering
behavior of this temperature as a function of field with fl
lattice melting lines obtained from Ref. 29 and elsewhere32

we will now demonstrate the stated correspondence.
To arrive at their conclusion of second-order flux latti

melting Roulin, Junod, and Walker29 subtract a data set fo
one field from a data set from a slightly larger field and fi
-
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a peak in the ‘‘differential.’’ This peak is due to the highe
field starting to peak at a slightly lower temperature due
peak broadening and transition temperature suppression
see if this peak corresponds to a flux lattice melting, th
look at the field dependence of the peak temperature and
that it agrees with the same curve found in Ref. 32 by ana
sis of magnetization and resistivity curves to derive a fl
lattice melting line for a YBCO sample. We will now show
that similar results can be obtained from Eq.~2!.

Consider Fig. 5~a!. Here, dC(T,H54.25 T)[C(T,H
54.5 T)2C(T,H54.0 T), the difference of two theoreti
cal curves calculated from Eq.~2!, is plotted and is seen to
have the same behavior as that of Fig. 2~b! in Ref. 29: a peak
followed by a deep trough. The field dependence of the te
perature at which eachdC(T,H) peaks is then calculated
This is plotted in Fig. 5~b! along with two lines. The first line
~solid line! is the best three parameter fit of this theoretic
LLL result to the function H(T)5a(12T/b)c with
a5111.2, b592.1, andc51.48 ~standard deviation50.02!.
The second~dashed! line is a two parameter fit with a fixed
c51.33 and a589.2 and b591.1 ~standard deviation
50.05). One can see that the while the exponents differ
11%, the two curves are hard to distinguish. These lines
to be contrasted to that of Refs. 29,32 where the correspo

FIG. 5. ~a! dC(T,H54.25 T)5C(T,H54.5 T)2C(T,H
54.0 T) ~a ‘‘differential’’ ! determined from two of the theoretica
curves in Fig. 3. This curve has the same qualitative behavio
Fig. 2~b! of Ref. 29.~b! The field value versus the temperature
which the ‘‘differentials’’ peak~as explained in the text! for those
fields and two theoretical fits which are discussed in Secs. II D
II E.
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FIG. 6. The theoretical specific heat curv
from an LLL calculated Eq.~2! ~Fig. 3! scaled
according to 3DXY theory: Eq.~13!.
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col-
ing line, Hm(T)599.7@12T/92.5#1.36, is identified with the
second order melting line. The numbers in both fits ag
quite well with each other, especially the exponent which
the most critical parameter in this curve. However, in o
case it has no direct relation to the melting. It therefo
seems that the onset of LLL fluctuations coincides with fl
lattice melting. Further evidence of this has been provided
Refs. 19,20. The melting line is predicted19 to be where Eq.
~7! is a constant and it has been shown20 that this is consis-
tent with the melting lines found above.

E. Implications for 3D XY scaling

In this subsection, we will address an important quest
concerning the experimental discrimination between L
and 3DXY scaling. We will show that the LLL theoretica
results derived from Eqs.~1! and~2! can be used to genera
curves which can then apparently be scaled in accorda
with 3D XY theory. Thus, finding 3DXY scaling does not
exclude that the data actually is in agreement with GL-L
theory. Further, the importance of comparing the experim
tal results with computed functions, not now available for 3
XY theory, is made obvious.

There are two procedures that have been used to ana
specific heat data according to 3DXY scaling theory. The
first is that derived in Ref. 36:

C~H,T!2C~H50,T!

H0.0097
5 f S T/Tc21

H0.747 D , ~13!

whereTc is the zero-field critical temperature and the seco
is that derived in Ref. 1:

CSC~H,T!2C0

H0.0097
5 f S T/Tc21

H0.747 D , ~14!

where C0 is the height of the specific heat cusp and t
subscript SC signifies that it is only the superconducting c
tribution, with the background subtracted out.@The exponent
for H on the right hand side~RHS! of these equations is
derived from the specific heat exponenta and we have used
e
s
r
e

in

n

ce

-

ze

d
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the value derived from4He experiments. The theoretica
value of a is 0.005.# The second scaling form1 is the more
convincing one since the scaling takes place over a wider
less trivial range. In the first form on the other hand, one
scaling mostly horizontal lines which are equal to zero,36 and
thus are virtually guaranteed to scale. The first form there
acts as a sufficient condition for 3DXY scaling and we use i
here. If it does not scale according to this form, it certain
will not scale according to Eq.~14!.

Thus, we proceed to generate ‘‘data’’ from the theoreti
expression Eq.~2!. This is a portion of the theoretical resul
shown earlier in Fig. 3. Then, we attempt to scale t
‘‘data’’ according to the 3DXY formula. The scaling results
are shown in Fig. 6 for the 4 T, 5 T, 6 T, 7 T, and 8 T fields
and as one can see, the collapse is reasonable. We hav
out the smaller fields which as one would expect do
collapse onto these curves. If one were to consider the no
and the background subtractions, which inevitably enter i
the analysis of actual experimental data, one could call
scaling convincing.@When the exponent 0.005 is used for th
exponent forH on the RHS of Eq.~13!, the ‘‘data’’ does not
collapse quite as well.# That LLL calculated ‘‘data’’ can be
made to scale according to 3DXY theory exemplifies the
excessive generality of mere scaling and reinforces the s
ment made in the Introduction that apparently good agr
ment scaling is not sufficient to prove the validity of
theory. This was also stated in Ref. 9 within the context
the 3DXY theory.

As a further insight on these problems, we comment
actual specific heat data from a YBCO sample which w
scaled using Eq.~13! the same way as the theoretical curv
in Fig. 6. This is the specific heat data of Ref. 9, the sa
data to which we attempted fits in Sec. II D. The 3DXY
scaling results in that work are shown in Fig. 4 in Ref. 9. T
large central peak is the zero-field peak and so of course
unimportant since it is simply an artifact of having subtract
off the zero-field data. The important region to consider
just to the left of the central peak, since that area repres
the peaks~or the region of critical behavior! of the finite-
field data sets. As one can see, the data is not close to
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FIG. 7. The data of Ref. 9 scaled according
3D XY theory. The critical region is to the left o
the large peak which is the zero-field peak. O
can see that 3DXY scaling does not describe th
critical region. There are seven data sets plott
corresponding to fields of 1 to 7 T at 1 Tinter-
vals. Higher field sets have lower values at t
extreme left of the graph.
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lapsing here. Because this data is plotted on a scale w
brings in the size of the irrelevant, large zero-field pe
scaling does not appear to be a dramatic failure. Howe
when compared to the collapse of the data at temperat
above the peak where there are no fluctuations and on
dealing with only the background, one can see that the f
ure of 3D XY scaling is more obvious. We have done o
own similar analysis on this data which we show in Fig. 7
a more restricted scale.@We emphasize the point that if th
data does not scale with Eq.~13!, it will not scale with the
more convincing Eq.~14!.# It is seen that the 2 T and 3 T
data do collapse but the 1 T data rides high and the larg
fields go low. The failure of the scaled data to collapse in
actual critical region makes one question whether 3DXY
behavior is valid, although it does not rule it out. Derivatio
of the actual functions like those of Ref. 10 would allow
to settle the point. This is why such derivations are so
portant.

We close this section on implications for 3DXY scaling
with a discussion of the references to 3DXY in the flux
lattice melting literature. There a melting line of the for
Hm(T)599.7@12T/Tc(0)#1.36 is found by many
authors29,32,37 who point out that the exponent here is t
nearly the same as that~1.33! expected for 3DXY critical
point analysis. And while some of the same authors32 note
that such an analysis appears incompatible with a first-o
transition, that we get the same exponent from a LLL a
proach appears to make such an identification with 3DXY
theory even more unlikely.

III. DISCUSSION AND SUMMARY

In this paper, we have studied the relevance of 3D G
LLL theory as exemplified by Eqs.~1! and ~2! for the mag-
netization and specific heat, to the relatively isotropic HT
materials of the YBCO family.

Equation~1! was found to accurately describe the magn
tization data for a YBCO sample9 and the numerical data
modeling these materials in the GL-LLL formalism.22 In the
former case, several of the fitting parameters were obta
ch
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independently from fits to the numerical calculation there
raising the credibility of the fits. The remaining parame
values (Hc28 , k, andjc) correspond well to those found fo
these materials by other means. When applied to ano
data set,28 Eq. ~1! was not found to accurately describe it. W
obviously cannot completely rule out that the results in
last reference are the correct ones and that the other two
wrong, but it seems unlikely to us. We also found that E
~2! could not describe the YBCO specific heat data of Re
over the whole temperature@80 K:100 K# but that very good
results for five of the fields could be obtained if the regi
above the peak is excluded from the fit. The question of w
this is brings us now to a broader discussion of the appl
bility of both the 3D specific and magnetization functions
Ref. 11 to YBCO data.

As we discussed in the Introduction, several factors co
explain possible discrepancies between the functions and
data. The most significant would be the failure of GL-LL
theory to describe the YBCO data. We believe that the e
dence is against this because it has been shown elsewhe~as
mentioned in the Introduction! that YBCO data scales ac
cording to this theory. Another possible reason would
discrepancies between the functions of Ref. 11 and ex
GL-LLL theory. While it does seem that there are som
problems with the approximations used to obtain Eq.~2! for
temperatures above the peak, we tend to discount this
temperatures around and below the specific heat peaks
two reasons. First, the 2D function was found to have s
nificant success in describing the more anisotropic HT
materials and is known to be in excellent agreement w
numerical simulations of the 2D GL-LLL theory. Secondl
we note the exceptional fit of Eq.~1! to the numerical data
@Fig. 1~a!# which provides evidence that this equation is
accurate description of the GL-LLL theory.

Part of the shortcomings also arise, we believe,
cause Eqs.~1! and ~2! are 3D functions and it has bee
shown that, while the YBCO is the least anisotropic of t
major HTSC materials, 2D signatures are present.31 As
mentioned above, we have tested this by successfully fit
the 3D LLL function to the temperature range of the spec
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heat data which is believed to be 3D. Further adding to
conclusion here is prior evidence for 2D behavior in YBC
and LBCO through specific heat LLL scaling.6,7 The prob-
lems that afflict the specific heat do not affect the magn
zation, which has a much simpler, monotonic behavior.
try to remedy the specific heat problem by splicing togeth
the 2D and 3D functions in the appropriate temperat
ranges to describe the YBCO data would introduce so m
fitting parameters that any fit would be of little value. It
also possible to use the quasi-2D functions of Ref. 11
these also have a large number of fitting parameters bes
being much less tractable than the pure 2D or 3D functio

The importance of scaling functions, as contrasted
mere scaling variables, has been demonstrated in this p
by showing the low information content of 3DXY scaling
without the associated scaling functions. It was shown in t
cases~Sec. II E! how curves from an equation calculate
using LLL assumptions could be described by 3DXY theory.
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This has consequential ramifications for the significance
3D XY theory and what it means to find that data sca
according to 3DXY theory. Knowledge of the expression
for the 3DXY scaling functions would be very desirable.
such a calculation becomes available, it would be ve
worthwhile to repeat the analysis done in this paper in ter
of such functions.
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