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Microscopic derivation of the SO(5) symmetric Landau-Ginzburg potential
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We construct a microscopic model of electron interactions that gives rise to both superconductivity and
antiferromagnetism, and which admits an approximaté55@ymmetry that relates these two phases. The
symmetry can be exact, or it may exist only in the long-wavelength limit, depending on the detailed form of the
interactions. We compute the macroscopic Landau-Ginzburg free energy for this model as a function of
temperature and doping, by explicitly integrating out the fermions. We find that the resulting phase diagram
can resemble that observed for the cuprates, with the antiferromagnetism realized as a spin-density wave,
whose wavelength might be incommensurate with the lattice spacing away from half filling.
[S0163-182698)06313-9

. INTRODUCTION AND SUMMARY Here zpp:(zpp is the electron field, whilep, and ri, are
p

Hubbard-Stratonovich auxiliary scalar fields which, when in-
tegrated out, produce the two four-Fermi interactionss
the chemical potential that measures deviations from half
filling, 6={0;,i=1,2,3 are the Pauli matrices, ar@ is a
fixed nesting vector that will be defined below. The model is
Hetermined by the values of the following five quantities

Zhang has recently proposethat the superconducting
and antiferromagnetic phases of the hiheuprates might
be related to one another by an approximat€5&ymmetry
of the electronic Hubbard Hamiltonian. This proposal incor-
porates in a fundamental way the connection between ant

ferromagnetism(AF) and superconductivitySC) that is ob- (that are,a priori, arbitrary: &,, the electron single-

served in these systems. eparticle dispersion relationf(p,q) and g(p,q), antiferro-

Recently, however, the foundations of this picture hav . : : ; i
come under attack, with criticism directed against the exis_magne’uc and superconducting coupling functions, respec

; . 0 0 g
tence of an approximate $§ symmetry of the Hubbard tively; and a, and a,, two positive constants. These

e - tants could, if one wished, be absorbed into the defini-
Hamiltoniarf (for a reply, see Ref.)3as well as against the cons ' P = o
very possibility, in principle, of relating the antiferromag- tions of f andg by a redefinition of andf; however it is

netic and superconducting phases by the rotation of a ﬁnitegonvenient to keep them for the purposes of renormalization

dimensional order parametbrThis motivates studying in Sec. IV. Because of the form of the summatlons in Egs.
whether and under what conditions an approximatg550 (2) and (3).’ we can assume that the functioh,q) and
symmetry can emerge from a microscopic picture of electrorg(p’q) satisfy the relations

dynamics.

In this paper we investigate a broad class of models of
electron dynamics that are distinct from the Hubbard model
and that can naturally incorporate an approximate(8330  Our goal in this work is twofold: first, to find the con-
symmetry. (A different class of such models has recently ditions on the various parameters of the model under which
been proposed in Ref.)50ur model consists of degenerate this model exhibits an approximate &Dsymmetry, and to
electrons with two kinds of attractive interactions, describedsee how the symmetry-breaking effects manifest themselves
by a four-Fermi Hamiltonian of the formH=Hy+Hiy,  at temperatures much less than the Fermi energy. We find the
whereH;=Har+Hsc, and symmetry to be possible, and it can arise “accidentally” at

long wavelengths even if it is not important for the micro-

scopic dynamics. We also find that symmetry-breaking ef-

Ho=2> (ep— ) ¥hthp+ 2 (8¢} dq+adiz -Ay), (1)  fects are marginal, for weak couplings, in the sense that they
p q increase only logarithmically as one scales into the infrared.
Second, we wish to compute the effective Landau-Ginzburg

1 (LG) potential, so as to determine how the phase diagram

— T SR depends on the microscopic electronic couplings. The result
a2y % H(P.)(Wprralp) Mgrgt M. (2 is that the AF phase can have the phenomenologically de-
sired shape in the temperature-doping plane, preferring low
1 temperatures and zero doping. Moreover the SC phase, while

_ = T also preferring small doping, is not suppressed as quickly by
Hsc 2V 2 9P (Wp-qr2tp) bt HC () increased doping as is the AF phase. The result is that SC

f(p+Q+q,—*=f(p,q), and g(—p—q,q)=g(p,q%4)
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becomes energetically favorable to AF at some lower critical Since Eqs(1)—(3) involve an attractive interaction in the
doping, and persists until some upper critical doping. Thesspin-triplet channel, the nesting produces a spin-density-
results are consistent with but more predictive than the genvave instability. The Hubbard-Stratonovich formulation of
eral effective-field-theory description of Refs. 1 and 6. Forthe Hamiltonian, Eqs(1)—(3), is particularly convenient for
example, they predict the absence of a mixed AF/SC phas®llowing these instabilities of the system since they may be
away from zero doping when the fundamental Hamiltonianstudied by examining the minima of the potential for the
is SQ5) invariant. The results can also agree with the ob-modes¢, andrig, which is induced when the electrons are
served phase diagram of the high-systems if appropriate integrated out. Depending on which of these modes con-
SQ(5) breaking is includedas discussed in detail belpw denses most strongly, the resulting ordered phases are super-
although we do not attempt here a detailed discussion of theonductors or antiferromagnets, possibly both.
applicability of these models to the cuprates. Our presentation is organized as follows. In the Sec. II,

Our analysis of the model defined by E@$)—(3) is mo-  the conditions for the Hamiltonian, Eqgl)—(3), to exhibit
tivated by the renormalization-groyfRG) approach to un- SQO(5) symmetry are derived. We find that the symmetry is
derstanding superconductivity and antiferromagnetism apresent in the long-wavelength limit—0 if the coupling
BCS and spin-density-wave instabilities within Fermi-liquid functions satisfy the relatiofé=g?. In Sec. Ill we integrate
theory! In the RG language, a Fermi liquid is understood asout the electrons to obtain the long-wavelength effective po-
a regime of scales for which the dominant quasiparticle detential for the order parameteys, andrig. The expressions
grees of freedom are weakly coupled, degenerate fermionsbtained in Sec. Ill are evaluated in Sec. 1V, in the limit of
carrying the same quantum numbers as the underlying eleclegenerate electrons, i.e., with all couplings and dispersion
trons. Under such circumstances almost all of the quasiparelations linearized around the FS. We present explicit ex-
ticle self-interactions are irrelevant in the RG sense: theyressions in this limit for the coefficients of the Landau-
become less and less important as one integrates out higtsinzburg theory, as functions of the fundamental fermion
energy modes to obtain an effective Hamiltonian valid neaouplings, temperature and chemical potential. In some parts
the Fermi surface. of the phase diagram the usual expansion of the free energy

The only exceptions to the rule that interactions are irrelto quartic order in the fields is unbounded from below, forc-
evant in the infrared are certain four-Fermi terms, which caring us to use the full potential. From these results it is
be marginally relevant for special kinds of electron kinemat-straightforward to determine the main features of the phase
ics. An important example is any pairwise attraction betweenliagram. We find the dependence ®rand . can have the
electrons(or holeg having opposite momenta. This kind of desired form if the AF interaction in E@2) is chosen to be
interaction grows logarithmically in the infrared, eventually somewhat ¢ 10-20%) stronger than the SC interaction of
becoming strong enough to trigger the BCS instability atEq. (3). In Sec. V we examine the validity of the degenerate-
sufficiently low energies. A second exception exists wherelectron approximation by recomputing the quadratic and
the quasiparticle Fermi surfad&S is nested. The FS is quartic terms of the effective potential without linearizing
nested if its opposite edges are related to one another byabout the FS. We do so using specific choices,df, andg
fixed translationQ in momentum space. In this case the at-that have been previously suggest28in connection with
traction between electrons whose momenta sum to the nest-wave superconductivity, to show that the approximations
ing vectorQ is also marginally relevant, potentially trigger- used in Sec. IV are indeed reliable. Section VI concludes
ing an instability towards the formation of a condensate thatvith a brief recapitulation of our results.
is modulated in space with wave vect@r The result is a
charge- or spin-density wave depending on the electric
charge and spin of the attractive channel. Il. THE SO (5) SYMMETRY

We have both types of instability in mind when using the
Hamiltonian in Eqs(1)—(3). It is assumed that the quasipar-
ticle energiese, are time-reversal invariang_,=&,, and
have a FS with a nesting vect@, defined by the property
gp+q=—&p for p near the FS(Our convention is to define
the FS at half filling to be the zero of energpan example of A. The Algebra
a dispersion relation with these properties in two dimensions Sa)
is the following lattice dispersion relation:

In this section we identify the conditions under which the
Hamiltonian, Eqs(1)—(3), admits an S(b) symmetry along
the lines Zhang has proposed.

symmetry contains as a subgroup the

SQO(3)xXSO(2) group of spin rotations and electromagnetic

&,=—2t[cogp,a)+cog p,a)], (5)  9auge transformations, with respect to whidhs obviously
invariant. The electronic contributions to the corresponding

wherea is the lattice Spacingpi are in the Brillouin zone conserved Chargd@|ectric Charge and Sgimre given by
—mlasp;<w/a, and the nesting vector iQ=(*m/a,

+a/a). However the general analysis that follows in Sec.
IV does not depend on using this explicit form. Notice that
because antiferromagnetism arises here as a spin-density
wave, its periodicity need not be precisely commensurate
with the lattice spacing, particularly away from half filling. o ) ) ] ]
Such incommensurate antiferromagnetism is particularly in- The nontrivial requirement for S©) invariance is the
teresting in view of the splitting of the AF peaks that is seen€Xistence of the electrically charged, spin-triplet, off-
in recent neutron-scattering data. diagonal operatorEl whose real and imaginary parts fill out

> Wldy (6)

p

N| =

Qz% Y, and S=



57

the generators of S®) in addition to3 Q andS. Motivated
by Zhang'$ choice, we take its action on electrons to be
given by

ﬁz}p} hp(#7 o1 002G 1), (7

whereh,, is a function to be determined. The sum is over all

momenta in the Brillouin zone; we can assume without loss

of generality that

h_p+Q:_hp, (8)
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[Ha,vbm)]:zg F(P. ) Nps q( ¥ qT20a00p)
=2p [f(p,@)Npsq+f(—p—a,a)h_]

X(wtpfqa'zwp)*'ieabc%: [f(prQ)hp+q

_f(_ p_q!q)hfp](lﬂzp—qo-Zo-Clﬂp)'
(11)

Recalling that|hy|=7, and using relation$8) and (4), we

i.e., thath changes sign under inversion in momentum spacaee after some algebra that the operatdgsand W rotate

combined with translation by the nesting vecQr As is
easily verifiedIT has the desired commutation relations with
Q andS, and satisfie$Il,,I1,]=0. Furthermore,

[Ma TI51=42 N[ (Ypp) Sap T €and Yprotsp) -
C)
Equation (9) shows that{1Q,S,T1,11"} satisfy the ST)
commutation relations provided we choog|= 2. Com-
bining with Eq.(8), we see thah must be a discontinuous

function; for example, we could havg,= + 1 for p inside
the FS, anch,= + 7 outside.

B. Conditions for Symmetry

We next determine the conditions under which the Hamil-

tonian, Egs(1)—(3), commutes with thdl. It is convenient
here to absorb the constarty anda into a redefinition of
the scalar fieldsgpq— bq/ Va5, fig—rg/\a% and also to

rescale f and g, f(p,q)—>\/aﬁf(p,q) and g(p,q)
H\/Egg(p,q). With these changes, the Hamiltonian is as in
Egs.(1)—(3) except without the factora}, anda. In subse-
guent sections we will restore these factors.

A nonvanishing chemical potential explicitly breaks
SQ(5) down to SA3)XSAO(2), so we seju=0 here. Further-
more, we ignore for now the scalar part bf;, which is
invariant providedg$ andn transform together in the funda-
mental representation of $8). The electron part of the free
Hamiltonian then satisfies

[T H3'1= =22 ephy(wg-po20atrp). (10
This vanishes by virtue of the Fermi statistics @af due to
Eq.(8) andep,g=—gp=—&_,.

For notational convenience, we define the operator
appearing in Hy by Vy(q) and W(qg), where
V(@) =S, (0,0) (¥} 45 0Tb¥p) and W(a)
=3,9(p,a)(¢" . qo291). Then

[Ha,w*(qn:z; [g*(p+9—Q,q)

+0*(Q—p, ) INp(¥) o4 qTathp),

into one another as a five-dimensional vector of(Qro-
vided the coupling functions satisfy the conditigriip,q)
=4ih_, f(p,q).

Of particular interest for many purposes, particularly the
phase diagram, is the long-wavelength lintjt~0. In this
limit, defining the functionsf =lim,_, f(p,q) and g,
=limy_o 9(p,q), the above condition reduces tg,
=4ih_,f,. If we wish to describe ordinary”s wave”)
antiferromagnetism and-wave superconductivityf,, andg,
must haves-wave andd-wave symmetry, respectivelyf,
=1 andg,=sgn(cogpa—cosp,a), for example. Thus,h,
must also haved-wave symmetry [hp=% sgn(coxp,a
—cosp,a), in this examplg

Finally, so long a3V andV, transform & a 5 of S@5),
the entire Hamiltonian, Eq$l)—(3), is SA5) invariant, pro-
vided that S@b) is taken also to rotate the five scalars,
Re(po)/v2, Im(¢o)/v2 andfig, into one another as a 5. No-
tice that although the demands made foand g for exact
SQO(5) symmetry are quite strong, the symmetry can emerge
for smallg under much weaker conditions, and this is suffi-
cient for the invariance of the phase diagram.

lIl. INTEGRATING OUT THE ELECTRONS

We now turn to the derivation of the effective theory that
governs the long-wavelength scalar modgsandrig. The
resulting effective potential will be subsequently used to
identify the phase diagram of the system, and to see to what
extent it exhibits S(b) invariance. Since the effective poten-
tial must be symmetric unddd (1) transformations ofp,
and under S(®) rotations offig, for notational simplicity
we shall takepo= ¢ real and (g);=nd; 3.

A. Preliminary issues

The thermodynamic variables we wish to follow in the
LG potential are the values of the fielgsandn themselves,
as well as the temperatuiie and the electron doping away
*rom half filling, x. We therefore ignore all scalar modes
apart from¢ andn, and compute the effective potential for
these variables. In order to follow the doping we also intro-
duce a chemical potential, which measures the change in
density away from the free-particle K&hich is defined here
by £,=0).

We now integrate out the electrons, using the Hamil-
tonian, Eqs(1)—(3), supplemented by the chemical potential.
To incorporate the Fermi sea we exchange the electron field,
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¥, for p inside the FS, for a hole fieldgpzozz,/ﬁ,p, in the
usual way, permitting the use of vacuum propagators for th
integration over the fermion fields.
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where, as usua3=1/kT and the sum is over the Matsubara
drequencies,wj=(2j+1)mB. We have switched to con-
tinuum momenta, and restored the integration region to the

For the purposes of performing the functional integralfull Brillouin zone (so that it is no longer modded out lpy

over i, and x,, it is convenient to groug,, w; and their
counterparts having momentump and p— Q into the fol-
lowing 16-component vector:

'#? lﬂg
U lﬂ?

¢$*Q UZXpr

‘I'p— l/l/pp_;g _ Uzg;(_Qp* p (12)

A oy
+

‘ﬁ?fp O2Xp-0Q

Po-p 02Xp-Q

When ¥, is used as the field, all sums over must be
restricted to the original Brillouin zone, modulo the transfor-
mationsp— —p andp—p+Q.

With this choice the quadratic part of the Hamiltonian
may be written; W JAW . with

A= A B 13
andA andB denoting the following & 8 matrices:
Ep— M 0 fonos 0
0 —ept u 0 fonos
A= P P , (14
fonos 0 —Ep— M 0 14
0 fpno'g 0 8p+ILL
and
0 9pP0, 0 0
| 9pdo 0 0 0
B=1 "o 0 0 gypoy | 1D
0 0 9p b0 0

In these last expressions, each entry of the matédcasadB
are 2x2 matrices in spin space.

B. The functional determinant

——p andp—p+Q). The eigenvalues of the Hamiltonian
A are given by

Ne={[Vep+(fn)?= ul*+(gp)} 17

Even before undertaking a detailed evaluation of the free
energy (16), we can prove an interesting result: in the
SQ(5) limit where f3/ay=g?2/a}, and for nonzero doping,
p#0, the ground state must havie=0 or n=0 (possibly
both) and hence is never a mixed phase of AF and SC. This
follows from the form of the energy eigenvalu€’) in the
conditions for minimizing the free energy. Addikg to the
tree-level free energlf,=aj)¢*+ain?, these conditions are

1aF_OX 1f d% > i N~
2ax XT3 | (ZgE & BANLI2) o

(18

where X stands for either of the field$ or n. The deriva-
tives of the eigenvalues have the form
+

m
17 2
Vept(fpn)
Whenf;=g} andaj=aj=a’, the minimization conditions
can be written in the form

IN. G2 . fin
Y R VT S W

) . (19

1 0F

== F=n(a°—G+ ’H)
2 &¢ M ’

— 0
=4(@°-G), - (20
where it is easily shown th& anduH are positive definite
functions. Therefore in this limit there are never simulta-
neous solutions where bothandn are nonvanishing, except
when u vanishes.

When evaluating these expressions in the next section, we
focus on the degenerate limit, for whi&f is much less than
the Fermi energy at zero doping. For example, using the
explicit dispersion relation given by E¢b), this corresponds
to neglecting powers okT/t. In this limit only states near
the Fermi surface are important in the integrals, and it is
useful to decompose the momentprnmto a componeri on
the FS and a componehfperpendicular to the FS. We may

_ Standard methods may now be used to compute the fungpen jinearize all quantities ih, restrict the coupling func-
tional integral over the fermion fields. Using the matrix form tionsg andf to momenta lying in the FS, and obtain for the

for the Hamiltonian, Eqs(13)—(15), the result for the one-
loop, finite-temperature contribution to the free-energy den
sity F4 in d spatial dimensions is

—BF1(¢,n)=% In dei(— 92+ A?)

4

+In(w?+1%)],

—dddp Z IN(w?+\2
(277) jzim[n(wj +)

dd
- J (2—7&, In[cosh B\, /2)cosh BN _/2)],
(16)

dispersion relatiore~vgl, with the Fermi velocityv ¢(k),
generally being a function of momentun,

Equations(16) and (17) are this section’s main results.
We now extract their implications for the LG potentigke
Ref. 9 for related calculations of the LG free energy for high-
T. systemg first by examining them in detail in the vicinity
of zero fields,¢=n=0, and then by computing the potential
for arbitrary values of the fields, in certain directions in the
¢-n plane.

IV. THE LANDAU-GINZBURG THEORY

Equations(16) and(17) define the effective potential for
the SC order parametes, and the AF order parameter.



57 MICROSCOPIC DERIVATION OF THE S@) . . . 8553

. (27

quartic order in the fields gives a good indication of when a
condensate will form for eitheg or n. The same is not true
of the zero-temperature limit of the potential, which has therne approximatiom — o is only valid if T and  are much
nonanalytic behaviots’In ¢ in the vicinity of ¢=0. How-  smaller than the Fermi energy.

ever we will find that the quartic terms do not always stabi- Because we work in the degenerate limit, near the FS, and
lize the potential, and it is necessary to know how the fullat zero field, the shape of the coefficient functionk asries
potential looks away frong=n=0. In this case we will use gyer the FS enters only as an overall normalization factor. As
the full free energy in order to determine the phase diagrangxpected from our previous discussion, the(S@ymmetry

of the system. is manifestly present in the limiz =0 andf%aj=g?aj,

]

e e de €

Since this potential is analytic a¢é=n=0, an expansion to A
I:)nn - N4,OJ

THO u (Tﬁ(a)

A. Analytic expressions in the quartic approximation B. Instability towards condensation
We start by approximating the free energy with a quartic  Before turning to the numerical evaluation of these inte-
potential, whose form we take to be grals, it is instructive to first explore the physical implica-
5 N 4 - tions of the renormalization itself. Because the sign of the
BLF—F(0)]=(ay¢"+amn) + z(byy¢™+2b4ndn loop contributions ta, anda, is negative, these quantities
+bynh)+--- (21) decrease as the temperature is decreased. In the limit of large
nn 1

BA, it is easy to see that the one-loop contributiaka,
where the ellipsis denotes terms involving more than four=a,—a$ have the limiting behavior
powers of¢ or n. Using Eqs.(16) and(17) and defining
Aa¢,~—2No’2|n(,8A); Aan"‘_Zszoln(ﬁA). (28)

N e— 1, Even ifa,(T~A) anda,(T~A) are initially chosen to be
positive, so thaF is minimized by¢=n= 0, eventually their
decrease with decreasifigcan drive them negative, causing

tanh(B¢/2) an instability towards the development of nonzero conden-

' sates for¢g or n.

&
. . o . Equation(28) gives the evolution of the SB) breaking
we find that the quadratic coefficients are given by the fol-combination of the electron couplings:

lowing integrals:

. 1 f ddflkfngm B
”'m_Zﬁd_l (27T)dU|:(k)’ g_

Tp(H)= (22)

a d4 1k
A B—=(a —a)ZZ(Nz,o_No,z)zzf ——a— (f*=g%).
ay=aj(A)—No, f deT4(£), (23 Bt (2m)"ve
—A (29
N This shows that any S®) breaking present in the original
a,=a%A)— Nz,oJ' deT4(é) § (24)  Hamiltonian due td?#g? will be enhanced in the effective
—A € GL Hamiltonian by a potentially large logarithm of the form

0 0 . . . In(BA), where A is of the order of the Fermi energy. For
wherea, anda, are the “bare” values of these quantities example, suppose the AF pairing is taken tosbwave, f
that appear in the original Hamiltonian, Eqd)—(3). The  _f_ \hereas the SC pairing -wave, corresponding to
integral overe diverges logarithmically in the ultraviolet, g=golcosak)—cos@k)]. Heref, andg are arbitrary con-
forcing the introduction of the cutoff scal&, Physically this  giants In generaN, , and N, , differ from each other, and
scale represents the energies for which the linearization °$Ithoughgolf0 can be tuned to make the difference vanish,
the quasiparticle spectrum no longer applies, or where thgere seems to be no symmetry principle that would require
degrees of freedom of the Hamiltonian, EGB~(3), are no  j; (4 take this special value. Moreover, even if such a choice
longer appropriate, whichever is lower. If these approximay,ere made, it would still not insure that the quartic couplings
tions were exact, theA would be the actual maximum en- ;5.4 have S@B) symmetry, i.e.N4o=Ng4=N,,. In Sec.
ergy available on the lattice. In any case, we can consider ; \va will say more about the extent of $5) bréaking that
to be of order the Fermi energy. The divergent dependencgises from this choice of coupling functions.
on A asA—o~ can be absorbed into a renormalizatiora@f
anda®.

The quartic coefficients are given similarly by the follow-
ing expressions, which since they are convergent allow us to Figures 1 and 3 present plots of the coefficients of the

C. Numerical results near ¢=n=0

take the cutoffA to infinity if we wish: potential as functions of the chemical potential, factoring out
the integrals over the FS. In this section we describe these

T’ﬁ(g) plots in more detail, and use them to deduce the general
byp=— No,4f Ads £ (25  shape of the phase diagram in the temperature-doping plane.

Figure 1 plots the one-loop contribution to the quadratic
, coefficients in the dimensionless foman(—aﬂ)/No,Z and
byn= —Nz,zfA de Tp(&) 26 (as—a%)/N,o, whereN, , are the FS integrals defined in

-A € Eq. (22). At zero doping these functions are negative and are
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T

AF SC

U

1 WA FIG. 2. Schematic representation of the phase diagram for the

o o present Hamiltonian, with SG) symmetry broken to favor the AF
E'G- 1. The coefficients &,—a4)/No, (dashed and @,  condensate. Quantum effects not considered here may be able to
—a,)/Nag (solid) as a function ofw/A, for BA=10, 20, 50, 100, drive the bicritical point downward.
and 200.

end we have computed the quartic coefficients in the dimen-
sionless formsb,,4T?/Ng 4, 0nnT?/Nyo, and b,y T?/Ny,,

and plotted them in Fig. 3.

The fact thab 4 is only weakly dependent on the doping

increasing with temperature like IAA), so it is always pos-
sible to choose the bare coefficierts or a?,, in such a way

thata, or a, is positive for high temperatures and changesCan be seen by observing that whérso, 4 can be com-

2:)9: itss?r?;e%o’ tirr;ggie;”?ngcrtzzslgasi:ati)rlmlcl:trye;osvt\alzr(rjnﬁ?:rr:drir;?:- pletely removed by shifting the integratior] variablle frerto
. ping & The low-temperature form of the quartic couplings can be

rapidly thana,, . It follows that if the AF phase is energeti- frther understood analytically through the identities
cally preferable to the SC phasemat 0, the system will be

AF at zero doping, and then make the transition to SC at TH(£) 74(3)
some small doping, provided that, is still negative at this lim 5% =5z 8(€), (30
value of u. B
With applications to the higf~ cuprates in mind, we
imagine A~0.1 eV~10°K and so we adjust the bare cou- 1 T’ﬁ(g),u2 uTg(é) 74(3)
pling a2 to ensure that the AF transitidiNeel) temperature, B'an B &2 3 |= 5.z 9. (3

Ty, atu=0 is & of the cutoff scaleyA =10. From Fig. 1
it can be seen that at a temperatdire T\/10, for example, Equation(31) is valid so long as it is combined with a func-
we haveA =100 and so the AF phase is quenched at ajon that is nonsingular at=0, in which case its own &/
critical doping ofx.~u./A=10%. This is the doping at singularity can be integrated over using the principal value.
which an(uc) ga = 100 bECOMES equal ta,(0)ga -1o- Both of these representations of ti#efunction can break
The above example ignores the SC order parametetiown if multiplied by singular functions of, which is pre-
which would be valid ifaz, was taken to be much larger than cisely what happens at=0, but for x> 1/8 they can be
aﬂ. If on the other hand S(B) symmetry was realized, so used in conjunction with Eqs(25—(27) to deduce that
thatal,=ag and No,=N,, then atu=0 the ground state bn,=bns=0 and byy/Nyo=7£(3)/2m% in the low-
would be an arbitrary admixture of AF and SC phases sincéemperature limit.
both have the same energy. In this case, the system will At zero doping, all three coefficients have essentially the
always make a transition to the pure SC phase at the criticalame value, and from the preceding paragraph we understand
dopingx.. Since experiments indicate thatat=0 the cu- Wwhy b,, remains nearly constant up to very large doping,
prates are pure AF, the SC phase must be suppressed wpereash,, andb,, drop quite sharply. In fact, they reach
having af;/NO,2>aﬁlN0,2, so that SC is energetically disfa- negativevalues for intermediate dopings. For these dopings,
vored until the critical doping is reached. In this situation,the truncation to fourth order in the fields gives a potential
the phase diagram must have a form similar to Fig. 2. othat is unbounded from below. Thus the expansion of the
course, this prediction does not take account of quamurﬁotential cannot be used to determine the minimum innthe
fluctuations within the effective theory itself. Such higher-
Iqop .effects. are believed to be espe_C|aIIy important near the |, T2/N04 & bnnT2/N40 qu-rz/N 22
bicritical point, where the SC phase first emerg@iey may oo '

have the effect of driving this point downward, leaving a gap ©-4 0.4
between the SC and AF phases at temperatures somewhi 82 gz
above the existence of the bicritical point. g o‘ .
To determine exactly how much $®&) breaking is needed 0 '0 ¢n
in the quadratic terms in order to suppress SC at zero doping-o.1 WA
0 0.20.40.60.8 1 0 0.20.40.60.8 1

one must compare the local minima of the potential along the
¢=0 andn=0 axes and insure that the minimum with FIG. 3. The -coefficients b(M)TZ/NOA, BanT?/Ngo, and
#0 is the deeper of the two. This issue can usually be settled, ,T%/N,, as a function ofu/A, for A/T=10, 20, 50, 100, and
by looking at the higher order terms in the potential. To this200. The curves approach an asymptotic limitAdg — oo,
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FIG. 4. The rescaled effective potentl%llfor six values of the doping parameter(horizontal row$ and along three directions in the
#-n plane(vertical columng F is plotted as a function op?, (¢°+N?)/2, andi?, in the three respective columns. Each graph is shown
for the range of temperatures given B\ =4, 10, 20, and 200, witlr always increasing with temperature.

direction, and our goal of finding the absolute minimum can- b=gdlA; A=TnIA; x=pulA; (32)
not be attained by expanding only to quartic order. We must
use the full functional form of the free energy for this pur-

Dose. as=a%/(4Ngg?); a,=a(4Ngof?); B=pBA/2;

(33

s=elA; ho=[(VEZT M2=x)2+ $2]V2  (34)
In computing the full expression fd¥; in Eqg. (16), we

can no longer factorize the momentum integral into a product -1 (1 cosh Br. Ycosh B
of the form fd® *kG(k) fdeH(&) because the integrand is AF:_f 5 In( . ffﬁ +) W} :) _
not a simple polynomial irf, andg, . However we can still cosh B(e+x)]cosh B(e —X)]
treat it similarly to our previous computations if we consider (35
. 2 A~

the speC|_aI case wherfé and_g are constant. We do not In the last line we subtracted a constant to male vanish
expect this assumption to radically change the features of the, , ~ . . :

. at $=n=0. Then the full effective potential can be written
more general case, since thedependence of andg has .

. X . . . in terms of
played no essential role in the preceding discussion. Constan
g? still describesd-wave SC and is consistent with §8)
symmetry, so long ag changes sign across the nesting sur-
face, e.g.gp,=sign(ep). . - . .
With this assumption, the free energy reduces to a single In Fl_g(.) 4OW26 soh;)\M; ;orosg vallées Of. the d?pmg para:jm-

integral over the energy. We have evaluated it numerically’te"x=0. 0.2, 0.4, 0.6, 0.8, and (horizontal rows, an
for the relevant ranges of doping, temperature, and orde?ong three directions in the-n plane(vertical columns F
parameters. The results are most conveniently expressed i plotted as a function of?, (p*+ nz)(Z, andn?, in the
terms of the following variables, for which the cutoffis  three respective columns. Each graph is shown for the range
scaled out: of temperatures given bA =4, 10, 20, and 200, withr

D. Numerical results for arbitrary ¢ and n

|A:E|:/(4N0’OA2):é¢g})2+énﬁ2+AlA:(;zS,ﬁ,,é,X)- (36)
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always increasing with temperature. We have choégn
=2 andé¢= 1.6, hence S() breaking at the 20% level, in

C. P. BURGESS, J. M. CLINE, R. MACKENZIE, AND R. RAY

A. Method of solution
For our specific model, we take the lattice dispersion re-

order to illustrate the phenomenologically desired dominanceion (5) of the extended Hubbard model and choose

of the AF phase at low doping. At=0, the lowest minimum
clearly occurs fom#0. At x=0.2, the minima become de-

generate and the transition to the SC phase begins. Further

increasing the doping quickly removes the AF instability,
and gradually quenches the SC phase as well, depending

the temperature. This is in complete agreement with the pic
ture obtained from our analysis of the quadratic coefficients

and confirms the phase diagram shown in Fig. 2.

E. Terms with derivatives

f(p,a)=1, g(p—a/2,q)=[cogap,)—cogapy)]/2
(39

would be appropriate farwave AF pairing andi-wave
SC pairing. The factor of 2 in the definition gfis chosen
uch as to maximize the $8 symmetry near the undoped
FS, as is shown below, and tliedependence is chosen to
simplify the derivative terms to be computed at the end of
this section. We further assume that the system is two dimen-
sional,d=2.

So far we have presented the one-loop free energy only The choice(39) is motivated by three consideration($)

for spatially constant order parameters¢ifx) andn(x) are

we wish to examine to what extent 88) symmetry survives

not constant, there will be additional terms depending orwhenf?#g?, since it has been suggested that®@an be
their spatial derivatives. Of these, the most interesting are tha good approximate symmetry in the long-wavelength limit,
(V)2 and (Vn)? terms, since they are needed to computeeven if it is not exact in the fundamental Hamiltonig@)

guantum corrections coming from within the effective long-
wavelength theorytwo-loop and higher corrections

one would like to see how much the general features of the
phase diagram depend on having exac{®@ymmetry in

By calculating the relevant Feynman diagrams, it isthe Hamiltonian; and(3) Baskaran and Anderson have

straightforward to show that the quadratic term& infor ¢,
andng with an arbitrary momenturg can be obtained from
our previous formula$23) and (24) by making the replace-
ments

tan”ﬁ§p+q/2/2) +tanr(:8§p—q/2/2)
§p+q/2+ gpfqlz ’

(37

§)—

B

f(p,q)—f(p—a/2q), 9(p.q)—a(p—al2q), (38

where ,=e,—u andp is the loop momentum to be inte-
grated over. Expanding in the external momentngives
the expansion in derivatives of the fields. From this prescrip
tion it is clear that S@b) symmetry will be realized in the
derivative terms so long a&?(p,q)=9%(p,q) and u=0,

since the symmetry is then manifest in the energy eigenval

ues\ . that appear in Eq17).

The resulting integral ovgy depends on the exact form of
the dispersion relation, and the coupling function, ,g,,
so we will defer further evaluation until the next section
where we consider a specific choice of these functions.

V. EXACT RESULTS IN A SPECIFIC MODEL

pointed out that the AF phase would be a conductor ifGD
was an exact symmetry, whereas with (S0Obreaking an
insulating gap appearswWe will show that makingf?+ g
breaks the symmetry significantly due to fluctuations far
from the Fermi surface, even though those close to the FS
give contributions to the free energy that are approximately
SQ(5) symmetric. Nevertheless, the phase diagram is not af-
fected in a qualitative way, and should still have the shape
shown in Fig. 2.

The effective potential aj=0 is still given by the general
expression(16), but now the momentum integrals range over
the Brillouin zone,—m/a<p,, py<m/a, and there is no
need to introduce any cutoff because the energy is explicitly

bounded by—4t<e<4t. As before, we expané to qua-

dratic and quartic order in the fields. Definigg=e,— u,
this gives

d?p
Flz‘f (2m)?
TH(E,)
2¢,

2Tﬁ<§p>( |9p |+ ?)
p

b
p

2 2
+ (Igpsbl +n® -

+2%3Tﬁ(§p)n4}

(40)

Our analysis so far has relied upon the approximation that Next one would like to reexpress the momentum integrals

the most important contributions to the effective potential areas an integral over the energy times an integral over the
coming from electronic excitations near the Fermi surfaceFermi surface. This can be accomplished using the identity
This approximation presupposes the Fermi energy to be
much greater than the temperature and the chemical poten-
tial. On the other hand this hierarchy of scales may only be a
factor of 10 in the actual cuprate systems we are interested
in. It is therefore interesting to corroborate our conclusions
without assuming thaf; is dominated by the contributions )
from near the FS. In this section we will exactly evaluate thewhere u=cos@p,) and v=cos@p,). The integrals oveu
first few terms in the small field expansion &f using a andv can be done exactly, leaving an energy integral times
semirealistic lattice dispersion relation and pairing functions@ density of states function,

which have been previously suggested in the literatdrat

will be shown that the results are in good qualitative agree-
ment with those based on the RG approach.

4 (4 1 (1 dudy(u—p)m2™"m
o4 ] S
R N A TN

X 8 e+2t(u+v)],

(41)

4t

4
jdnggzgftf de Ny (el4t). (42)
—4t
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FIG. 6. The exactly computed coefficienta,(- a?,/x) (solid)
and (a¢—a3,)/;< (dashegas a function ofu/ A, for the same values
of BA as in Figs. 1 and 3.

4t
A Fll(jt. 5. The density of state§, N>, and N, as a function of an=a2— KJ 4td8 Ta(é) §N0(8/4t), (48)
eE=¢& . —
The density of states/;, is given in terms of complete ellip- I 83
tic functionsK andE; (as they are defined in all standard Dyy=— K 74td8 & Na(elan), (49
mathematical references except for Abramowitz and Stegun
and Mathematica, which use a nonstandard convention. See, 4t Ty(£)
for example, Ref. 10defininge =¢/4t and a=(1+]&|)/(1 byn=—« de - No(el4t), (50)
—|g&]), the first few are -
s TR wod [Ta(é)
- 1 = pe> 2T 2RS
No(e)= 17 7] K(1/a), (43 b Kﬁ‘uds o9 | T [Noleran).
(51)
Na(&)=(1+]e])[K(La)—E(1a)], (44) The dependence of these coefficients on doping and tem-
perature is shown in Figs. 6 and 7, which can be compared to
Na(&)=3a(1—|e|)¥[(2a?+ 1)K (1/a) Figs. 1 and 3 from our model-independent analysis. In Fig. 6,
, which shows the one-loop contributions to the quadratic co-
—2(a*+1)E(la)]. (49 efficients, one sees that our previous resultégiis in good

Th re shown in Fig. 5. B ¢ our choi £ norm agreement with the exact computation in the present model.
ese are sho g. 0. Because of our CoICE of NOMAkp;q 5 6 surprising becaudg is treated as a constant in

ibzart]ion. forgy intrI]Eq. (33)’ th?{:gl ggvej\tfhilsaT/e asymdptotic both cases, and the only difference between the two is the
ehavior near the undope L n(1/2)), inde- lattice dispersion relation in the present computation vs the
pendent oim. However they quickly diverge from each other approximations~vel in Sec. IV. However the difference
for energies above or below the FS. This is interesting fronbetween the two approaches is quite apparem,jn where
:Eetpomt ct)tZ V|ew20; tlhe S@) symmetryt, br(]ecause It ;shows gp is relevant: a, increases with doping faster in the exact
Ia e\zer;h Olgglgtlh » 85 |stne(_:essary tﬁ lave exac (S)O ¢ Icomputation than in the approximation of factoring out the
cosl.e 8 He etr?ynl‘lme %ls_ne\(er Ie ‘?tss apprt())x!maei,fs integration. Nevertheless, the important qualitative fea-
realized. However the logariinmic singulanty nea=u I 4o needed to obtain the phase diagram of Fig. 2 persists:

N is 100 weak to compensate for the Gpbreaking d'f'. a, increases more slowly as a function of doping than
ferences betweel, and N\, away from the FS, as we will doesa
n-

presently show. Similar remarks apply in comparing the quartic coeffi-
cients in the two treatments. The difference in the dispersion
B. Expansion near¢p=n=0 relation causes a small change in thand . dependence of
Now the expressions for the coefficient functions in thePnn, the coefficient that does not depend at allgyn Nev-
small-field expansion oF ; can be written in a way which €rtheless in both analysds,, andb,,, have the same behav-
looks very similar to our previous resul@3—(27). Let us  1©F of initially falling very sharply from positive to negative
first define

2 2 2
by T /¥ & b, T« benT 7%
4 2m 46 . s
T R22mZa%t (wh)? (46) ’ .
0.
where a is the lattice spacing, anth is the quasiparticle 0.5 on
mass in the vicinity of the FS, where the dispersion relation -o. 0 WA
can be approximated as=p?/2m. We then obtain 0 0.10.20.30.40.50.6 0 0.10.20.30.40.50.6

at FIG. 7. The exactly computed coefficiertts,T%/x, b,sT?/ k
a,= ag)_ K de TB( ENo(eldt), (47 a_ndbMTZ/K as a function ofu/A, for the same values @A as in
—4t Figs. 1, 3, and 6.
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values as the chemical potentjalis increased fromu=0, ~O(1/Bt)cy. (58)
and gradually becoming zero gs—4t. by, falls much
faster withx in the exact computation than in the previous
one, but still more gradually thamw,, or by, . Again, this can : L
be understood analytically in the low-temperature limit usingEVe" Only valid foru>1/3. For u=1/g, the logarithmic
Egs. (30) and (31), which gives b,,=b,,=0 and b singularities in\Vy and.\, are integrated over to obtain result
=[7§(3)32m/w4h2jN4(M/4t) for M;nllﬂ.n?l'he qualita’fi)\(/be that is finite asu—0. The identity(30) gives a vanishing
agreement between the two approaches gives us confiden ult when agplled to Egsa' meaning tgat” is of o(rjder
that the shape of the phase diagram in Fig. 2 is indeed Bt compared toc,, and thusc, must be computed nu-

robust prediction of the model, in the one-loop approxima-merica"y to find the leading behavior in the largeé limit.
tion. Again, these statements hold only far=>1/8 due to the

singular behavior of the integrand at=0. For u<1/8, we

C. SO(5) breaking due to gg#’% fhxgzcl:}at:iittﬁrn::;, just as was found for the coefficients of

One interesting issue we can explore within the exact These derivative terms will not be of further use in the
computation is the extent to which $8) symmetry is bro- present preliminary study, but may be useful in computing
ken by the assumption af-wave SC pairing vs-wave AF  the higher-order quantum corrections that we leave for future
pairing. In Fig. 6 one sees that, despite our tuning the norinvestigation.
malization of g, so as to preserve $8) near the FS,
|Aa,|>|Aa,| even at zero doping. We could have turggd
such as to forcéa,=Aa, at some temperaturg,, but the VI. CONCLUSIONS
equality would hold only foilT=T,. In fact we find that the
ratio Aa,/Aa, scales linearly with Ing/4t):

To obtain Eq.(56) we used the identity30), which is how-

In summary, our calculations lead us to the following con-

clusions:
Aa (&) Microscopic SQO(5) Invariance: We find, by con-
¢ =0.20+0.064 Ir( B/4t). (52) struction, that microscopic models can indeed give rise to
Aa, u=0 SQ(5) invariance that relates thd-wave superconducting

and antiferromagnetic phases. This symmetry can emerge ac-
%identally at long wavelengths, and so be relevant for the

effective potential that determines which phase is energeti-

cally preferred(in a homogeneous systénBeing a long-

similarly parametrized in terms of the ratios

b""”) =0.082+0.10 In( Bl4t); wavelength effect, the symmetry can be easily hidden in
Brn u=0 treatments that include all scales together.

(b) Features of the Phase Diagram:Using our model
we have computed the Landau-Ginzburg free energy whose
minimization determines the phase diagram in the
temperature-doping plane. We find that the coefficients of
the Landau-Ginzburg potential have the right qualitative de-
D. Derivative terms in the free energy pendence on temperature and chemical potential to allow for

Using the above techniques and the procedure discussédtiferromagnetism at half filling, but which is destroyed as
in Sec. IV E, we can evaluate the lowest derivative terms irf€ System is doped. It can also describe a superconductor

b
( b”"’) =0.27+0.084 I( 8/4t). (53)
nn/ =0

the quadratic part of that is favored only for a range of nonzero dopings.
' (c) Significance of thesO(5) Symmetry: The class of
Fi=cy(Vh)2+cy(Vn)2 (549 models we considered encompassegSp@ymmetry as a

special case among the most general possible coupling func-

Defining ' = B2t/ (4mh)?, e=el4t, u=pul4t, and going to  tions. We find that if the symmetry is broken in the micro-
the limit of large Bt, we can write the coefficients as scopic theory, there is no special tendency for it to be re-
stored or further broken in the effective long-wavelength
theory. The phase diagram is only of the desired form if
there is a certain level of 96) breaking, whose fundamental
origin is unknown. In the specific model considered in Sec.
—(1-1e])°Nu(8)] (55 vV, the symmetry appears to be badly broken, siffcandg},

are quite different functions of momentum, yet by tuning

™ Tp(€) - -
comn | o 18N

14£(3) k! - R their relative sizes it appears possible to obtain the correct
ET[(l_M )No(4) phase diagram. At present it is therefore not yet clear

R R whether nature demands an approximaté®Gymmetry as
— (1= ) No( )], (56)  the correct way to understand the relation between the AF

and SC phases in cuprates, or whether(38Gymmetric
o Ts(6) 3 s - models simply fall into the same universality class as the
Cn=K f_4td8 cosi(BéR) | [(1=&%)No(e) correct theory. After this work was completed, we learned

of similar work, examining the relation between &Dand
—(1—|g|)®Ny(8)] (57)  generalizations of the Hubbard model, by Henly.
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