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Microscopic derivation of the SO„5… symmetric Landau-Ginzburg potential
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We construct a microscopic model of electron interactions that gives rise to both superconductivity and
antiferromagnetism, and which admits an approximate SO~5! symmetry that relates these two phases. The
symmetry can be exact, or it may exist only in the long-wavelength limit, depending on the detailed form of the
interactions. We compute the macroscopic Landau-Ginzburg free energy for this model as a function of
temperature and doping, by explicitly integrating out the fermions. We find that the resulting phase diagram
can resemble that observed for the cuprates, with the antiferromagnetism realized as a spin-density wave,
whose wavelength might be incommensurate with the lattice spacing away from half filling.
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I. INTRODUCTION AND SUMMARY

Zhang has recently proposed1 that the superconductin
and antiferromagnetic phases of the high-Tc cuprates might
be related to one another by an approximate SO~5! symmetry
of the electronic Hubbard Hamiltonian. This proposal inc
porates in a fundamental way the connection between a
ferromagnetism~AF! and superconductivity~SC! that is ob-
served in these systems.

Recently, however, the foundations of this picture ha
come under attack, with criticism directed against the ex
tence of an approximate SO~5! symmetry of the Hubbard
Hamiltonian2 ~for a reply, see Ref. 3!, as well as against the
very possibility, in principle, of relating the antiferromag
netic and superconducting phases by the rotation of a fin
dimensional order parameter.4 This motivates studying
whether and under what conditions an approximate SO~5!
symmetry can emerge from a microscopic picture of elect
dynamics.

In this paper we investigate a broad class of models
electron dynamics that are distinct from the Hubbard mo
and that can naturally incorporate an approximate SO~5!
symmetry. ~A different class of such models has recen
been proposed in Ref. 5.! Our model consists of degenera
electrons with two kinds of attractive interactions, describ
by a four-Fermi Hamiltonian of the formH5H01H int ,
whereH int5HAF1HSC, and

H05(
p

~«p2m!cp
†cp1(

q
~af

0 fq* fq1an
0nW q* •nW q!, ~1!

HAF5
1

2V (
pq

f ~p,q!~cp1Q1q
† sW cp!•nW Q1q1H.c., ~2!

HSC5
1

2V (
pq

g~p,q!~c2p2q
T s2cp!fq1H.c. ~3!
570163-1829/98/57~14!/8549~11!/$15.00
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Here cp5(cp↓

cp↑) is the electron field, whilefq and nW q are

Hubbard-Stratonovich auxiliary scalar fields which, when
tegrated out, produce the two four-Fermi interactions.m is
the chemical potential that measures deviations from h
filling, sW 5$s i ,i 51,2,3% are the Pauli matrices, andQ is a
fixed nesting vector that will be defined below. The mode
determined by the values of the following five quantiti
~that are, a priori, arbitrary!: «p , the electron single-
particle dispersion relation;f (p,q) and g(p,q), antiferro-
magnetic and superconducting coupling functions, resp
tively; and af

0 and an
0, two positive constants. Thes

constants could, if one wished, be absorbed into the de
tions of f andg by a redefinition off andnW ; however it is
convenient to keep them for the purposes of renormaliza
in Sec. IV. Because of the form of the summations in E
~2! and ~3!, we can assume that the functionsf (p,q) and
g(p,q) satisfy the relations

f ~p1Q1q,2q!* 5 f ~p,q!, and g~2p2q,q!5g~p,q!.
~4!

Our goal in this work is twofold: first, to find the con
ditions on the various parameters of the model under wh
this model exhibits an approximate SO~5! symmetry, and to
see how the symmetry-breaking effects manifest themse
at temperatures much less than the Fermi energy. We find
symmetry to be possible, and it can arise ‘‘accidentally’’
long wavelengths even if it is not important for the micr
scopic dynamics. We also find that symmetry-breaking
fects are marginal, for weak couplings, in the sense that t
increase only logarithmically as one scales into the infrar
Second, we wish to compute the effective Landau-Ginzb
~LG! potential, so as to determine how the phase diagr
depends on the microscopic electronic couplings. The re
is that the AF phase can have the phenomenologically
sired shape in the temperature-doping plane, preferring
temperatures and zero doping. Moreover the SC phase, w
also preferring small doping, is not suppressed as quickly
increased doping as is the AF phase. The result is that
8549 © 1998 The American Physical Society
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becomes energetically favorable to AF at some lower crit
doping, and persists until some upper critical doping. Th
results are consistent with but more predictive than the g
eral effective-field-theory description of Refs. 1 and 6. F
example, they predict the absence of a mixed AF/SC ph
away from zero doping when the fundamental Hamilton
is SO~5! invariant. The results can also agree with the o
served phase diagram of the high-Tc systems if appropriate
SO~5! breaking is included~as discussed in detail below!,
although we do not attempt here a detailed discussion of
applicability of these models to the cuprates.

Our analysis of the model defined by Eqs.~1!–~3! is mo-
tivated by the renormalization-group~RG! approach to un-
derstanding superconductivity and antiferromagnetism
BCS and spin-density-wave instabilities within Fermi-liqu
theory.7 In the RG language, a Fermi liquid is understood
a regime of scales for which the dominant quasiparticle
grees of freedom are weakly coupled, degenerate ferm
carrying the same quantum numbers as the underlying e
trons. Under such circumstances almost all of the quasi
ticle self-interactions are irrelevant in the RG sense: th
become less and less important as one integrates out h
energy modes to obtain an effective Hamiltonian valid n
the Fermi surface.

The only exceptions to the rule that interactions are irr
evant in the infrared are certain four-Fermi terms, which c
be marginally relevant for special kinds of electron kinem
ics. An important example is any pairwise attraction betwe
electrons~or holes! having opposite momenta. This kind o
interaction grows logarithmically in the infrared, eventua
becoming strong enough to trigger the BCS instability
sufficiently low energies. A second exception exists wh
the quasiparticle Fermi surface~FS! is nested. The FS is
nested if its opposite edges are related to one another
fixed translationQ in momentum space. In this case the
traction between electrons whose momenta sum to the n
ing vectorQ is also marginally relevant, potentially trigge
ing an instability towards the formation of a condensate t
is modulated in space with wave vectorQ. The result is a
charge- or spin-density wave depending on the elec
charge and spin of the attractive channel.

We have both types of instability in mind when using t
Hamiltonian in Eqs.~1!–~3!. It is assumed that the quasipa
ticle energies«p are time-reversal invariant,«2p5«p , and
have a FS with a nesting vectorQ, defined by the property
«p1Q52«p for p near the FS.~Our convention is to define
the FS at half filling to be the zero of energy.! An example of
a dispersion relation with these properties in two dimensi
is the following lattice dispersion relation:

«p522t@cos~pxa!1cos~pya!#, ~5!

wherea is the lattice spacing,pi are in the Brillouin zone
2p/a<pi<p/a, and the nesting vector isQ5(6p/a,
6p/a). However the general analysis that follows in Se
IV does not depend on using this explicit form. Notice th
because antiferromagnetism arises here as a spin-de
wave, its periodicity need not be precisely commensur
with the lattice spacing, particularly away from half filling
Such incommensurate antiferromagnetism is particularly
teresting in view of the splitting of the AF peaks that is se
in recent neutron-scattering data.8
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Since Eqs.~1!–~3! involve an attractive interaction in th
spin-triplet channel, the nesting produces a spin-dens
wave instability. The Hubbard-Stratonovich formulation
the Hamiltonian, Eqs.~1!–~3!, is particularly convenient for
following these instabilities of the system since they may
studied by examining the minima of the potential for t
modesf0 andnW Q , which is induced when the electrons a
integrated out. Depending on which of these modes c
denses most strongly, the resulting ordered phases are s
conductors or antiferromagnets, possibly both.

Our presentation is organized as follows. In the Sec.
the conditions for the Hamiltonian, Eqs.~1!–~3!, to exhibit
SO~5! symmetry are derived. We find that the symmetry
present in the long-wavelength limitq→0 if the coupling
functions satisfy the relationf 25g2. In Sec. III we integrate
out the electrons to obtain the long-wavelength effective
tential for the order parametersf0 andnW Q . The expressions
obtained in Sec. III are evaluated in Sec. IV, in the limit
degenerate electrons, i.e., with all couplings and dispers
relations linearized around the FS. We present explicit
pressions in this limit for the coefficients of the Landa
Ginzburg theory, as functions of the fundamental fermi
couplings, temperature and chemical potential. In some p
of the phase diagram the usual expansion of the free en
to quartic order in the fields is unbounded from below, fo
ing us to use the full potential. From these results it
straightforward to determine the main features of the ph
diagram. We find the dependence onT andm can have the
desired form if the AF interaction in Eq.~2! is chosen to be
somewhat (;10– 20%) stronger than the SC interaction
Eq. ~3!. In Sec. V we examine the validity of the degenera
electron approximation by recomputing the quadratic a
quartic terms of the effective potential without linearizin
about the FS. We do so using specific choices of«, f , andg
that have been previously suggested1,5,9 in connection with
d-wave superconductivity, to show that the approximatio
used in Sec. IV are indeed reliable. Section VI conclud
with a brief recapitulation of our results.

II. THE SO „5… SYMMETRY

In this section we identify the conditions under which t
Hamiltonian, Eqs.~1!–~3!, admits an SO~5! symmetry along
the lines Zhang has proposed.

A. The Algebra

SO~5! symmetry contains as a subgroup t
SO~3!3SO~2! group of spin rotations and electromagne
gauge transformations, with respect to whichH is obviously
invariant. The electronic contributions to the correspond
conserved charges~electric charge and spin! are given by

Q5(
p

cp
†cp , and SW 5

1

2 (
p

cp
†sW p ~6!

The nontrivial requirement for SO~5! invariance is the
existence of the electrically charged, spin-triplet, o

diagonal operatorsPW whose real and imaginary parts fill ou
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the generators of SO~5! in addition to 1
2Q andSW . Motivated

by Zhang’s1 choice, we take its action on electrons to
given by

PW [(
p

hp~c2p1Q
T s2sW cp!, ~7!

wherehp is a function to be determined. The sum is over
momenta in the Brillouin zone; we can assume without l
of generality that

h2p1Q52hp , ~8!

i.e., thath changes sign under inversion in momentum sp
combined with translation by the nesting vectorQ. As is
easily verified,PW has the desired commutation relations w
Q andSW , and satisfies@Pa ,Pb#50. Furthermore,

@Pa ,Pb
†#54(

p
uhpu2@~cp

†cp!dab2 i eabc~cp
†sccp!#.

~9!

Equation ~9! shows that$ 1
2Q,SW ,PW ,PW †% satisfy the SO~5!

commutation relations provided we chooseuhpu5 1
4 . Com-

bining with Eq. ~8!, we see thath must be a discontinuou
function; for example, we could havehp56 1

4 for p inside
the FS, andhp57 1

4 outside.

B. Conditions for Symmetry

We next determine the conditions under which the Ham

tonian, Eqs.~1!–~3!, commutes with thePW . It is convenient
here to absorb the constantsaf

0 andan
0 into a redefinition of

the scalar fields,fq→fq /Aaf
0 , nW q→nW q /Aan

0, and also to

rescale f and g, f (p,q)→Aan
0f (p,q) and g(p,q)

→Aaf
0 g(p,q). With these changes, the Hamiltonian is as

Eqs.~1!–~3! except without the factorsaf
0 andan

0. In subse-
quent sections we will restore these factors.

A nonvanishing chemical potential explicitly break
SO~5! down to SO~3!3SO~2!, so we setm50 here. Further-
more, we ignore for now the scalar part ofH0 , which is
invariant providedf andnW transform together in the funda
mental representation of SO~5!. The electron part of the free
Hamiltonian then satisfies

@Pa ,H0
e1#522(

p
«php~cQ2p

T s2sacp!. ~10!

This vanishes by virtue of the Fermi statistics ofc, due to
Eq. ~8! and«p1Q52«p52«2p .

For notational convenience, we define the operat
appearing in H int by Vb(q) and W(q), where
Vb(q)[(pf (p,q)(cp1q1Q

† sbcp), and W(q)
[(pg(p,q)(c2p1q

† s2cp
†). Then

@Pa ,W†~q!#52(
p

@g* ~p1q2Q,q!

1g* ~Q2p,q!#hp~cp2Q1q
† sacp!,
l
s

e

-

rs

@Pa ,Vb~q!#52(
p

f ~p,q!hp1q~c2p2q
T s2sasbcp!

5(
p

@ f ~p,q!hp1q1 f ~2p2q,q!h2p#

3~c2p2q
T s2cp!1 i eabc(

p
@ f ~p,q!hp1q

2 f ~2p2q,q!h2p#~c2p2q
T s2sccp!.

~11!

Recalling thatuhpu5 1
4 , and using relations~8! and ~4!, we

see after some algebra that the operatorsVa and W rotate
into one another as a five-dimensional vector of SO~5! pro-
vided the coupling functions satisfy the conditiong(p,q)
54ih2p2qf (p,q).

Of particular interest for many purposes, particularly t
phase diagram, is the long-wavelength limit,q→0. In this
limit, defining the functions f p[ limq→0 f (p,q) and gp
[ limq→0 g(p,q), the above condition reduces togp
54ih2pf p . If we wish to describe ordinary~‘‘ s wave’’!
antiferromagnetism andd-wave superconductivity,f p andgp
must haves-wave andd-wave symmetry, respectively,~f p
51 andgp5sgn(cospxa2cospya), for example!. Thus,hp
must also have d-wave symmetry @hp5 1

4 sgn(cospxa
2cospya), in this example#.

Finally, so long asW andVb transform as a 5 of SO~5!,
the entire Hamiltonian, Eqs.~1!–~3!, is SO~5! invariant, pro-
vided that SO~5! is taken also to rotate the five scalar
Re(f0)/&, Im(f0)/& andnW Q , into one another as a 5. No
tice that although the demands made onf and g for exact
SO~5! symmetry are quite strong, the symmetry can eme
for small q under much weaker conditions, and this is suf
cient for the invariance of the phase diagram.

III. INTEGRATING OUT THE ELECTRONS

We now turn to the derivation of the effective theory th
governs the long-wavelength scalar modesf0 andnW Q . The
resulting effective potential will be subsequently used
identify the phase diagram of the system, and to see to w
extent it exhibits SO~5! invariance. Since the effective poten
tial must be symmetric underU(1) transformations off0
and under SO~3! rotations ofnW Q , for notational simplicity
we shall takef0[f real and (nQ) i5nd i ,3 .

A. Preliminary issues

The thermodynamic variables we wish to follow in th
LG potential are the values of the fieldsf andn themselves,
as well as the temperatureT, and the electron doping awa
from half filling, x. We therefore ignore all scalar mode
apart fromf andn, and compute the effective potential fo
these variables. In order to follow the doping we also int
duce a chemical potentialm, which measures the change
density away from the free-particle FS~which is defined here
by «p50!.

We now integrate out the electrons, using the Ham
tonian, Eqs.~1!–~3!, supplemented by the chemical potenti
To incorporate the Fermi sea we exchange the electron fi
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cp for p inside the FS, for a hole field,xp5s2c2p
† , in the

usual way, permitting the use of vacuum propagators for
integration over the fermion fields.

For the purposes of performing the functional integ
over cp andxp , it is convenient to groupcp , cp

† and their
counterparts having momentum2p and p2Q into the fol-
lowing 16-component vector:

Cp[S cp

cp
†

cp2Q

cp2Q
†

c2p

c2p
†

cQ2p

cQ2p
†

D 5S cp

cp
†

s2xQ2p
†

s2xQ2p

c2p

c2p
†

s2xp2Q
†

s2xp2Q

D . ~12!

When Cp is used as the field, all sums overp must be
restricted to the original Brillouin zone, modulo the transfo
mationsp→2p andp→p1Q.

With this choice the quadratic part of the Hamiltonia
may be written1

2 Cp
†DCp , with

D[S A
B

B
AD , ~13!

andA andB denoting the following 838 matrices:

A5S «p2m
0

f pns3

0

0
2«p1m

0
f pns3

f pns3

0
2«p2m

0

0
f pns3

0
«p1m

D , ~14!

and

B5S 0
gpfs i

0
0

gpfs2

0
0
0

0
0
0

gpfs2

0
0

gpfs2

0
D . ~15!

In these last expressions, each entry of the matricesA andB
are 232 matrices in spin space.

B. The functional determinant

Standard methods may now be used to compute the f
tional integral over the fermion fields. Using the matrix for
for the Hamiltonian, Eqs.~13!–~15!, the result for the one-
loop, finite-temperature contribution to the free-energy d
sity F1 in d spatial dimensions is

2bF1~f,n!5 1
2 ln det~2] t

21D2!

5
1

2 E ddp

~2p!d (
j 52`

`

@ ln~v j
21l1

2 !

1 ln~v j
21l2

2 !#,

5E ddp

~2p!d ln@cosh~bl1/2!cosh~bl2/2!#,

~16!
e

l

-

c-

-

where, as usual,b51/kT and the sum is over the Matsuba
frequencies,v j5(2 j 11)pb. We have switched to con
tinuum momenta, and restored the integration region to
full Brillouin zone ~so that it is no longer modded out byp
→2p and p→p1Q!. The eigenvalues of the Hamiltonia
D are given by

l65$@A«p
21~ f pn!26m#21~gpf!2%1/2. ~17!

Even before undertaking a detailed evaluation of the f
energy ~16!, we can prove an interesting result: in th
SO~5! limit where f p

2/an
05gp

2/af
0 , and for nonzero doping

mÞ0, the ground state must havef50 or n50 ~possibly
both! and hence is never a mixed phase of AF and SC. T
follows from the form of the energy eigenvalues~17! in the
conditions for minimizing the free energy. AddingF1 to the
tree-level free energyF05af

0 f21an
0n2, these conditions are

1

2

]F

]X
5aX

0X2
1

2 E ddp

~2p!d (
6

tanh~bl6/2!
]l6

]X
,

~18!

whereX stands for either of the fieldsf or n. The deriva-
tives of the eigenvalues have the form

]l6

]f
5

gp
2f

l6
;

]l6

]n
5

f p
2n

l6
S 16

m

A«p
21~ f pn!2D . ~19!

When f p
25gp

2 andaf
0 5an

05a0, the minimization conditions
can be written in the form

1

2

]F

]f
5f~a02G!,

1

2

]F

]n
5n~a02G1m2H !, ~20!

where it is easily shown thatG andmH are positive definite
functions. Therefore in this limit there are never simult
neous solutions where bothf andn are nonvanishing, excep
whenm vanishes.

When evaluating these expressions in the next section
focus on the degenerate limit, for whichkT is much less than
the Fermi energy at zero doping. For example, using
explicit dispersion relation given by Eq.~5!, this corresponds
to neglecting powers ofkT/t. In this limit only states near
the Fermi surface are important in the integrals, and it
useful to decompose the momentump into a componentk on
the FS and a componentl perpendicular to the FS. We ma
then linearize all quantities inl , restrict the coupling func-
tionsg and f to momenta lying in the FS, and obtain for th
dispersion relation«'vFl , with the Fermi velocityvF(k),
generally being a function of momentum,k.

Equations~16! and ~17! are this section’s main results
We now extract their implications for the LG potential~see
Ref. 9 for related calculations of the LG free energy for hig
Tc systems! first by examining them in detail in the vicinity
of zero fields,f5n50, and then by computing the potenti
for arbitrary values of the fields, in certain directions in t
f-n plane.

IV. THE LANDAU-GINZBURG THEORY

Equations~16! and ~17! define the effective potential fo
the SC order parameterf, and the AF order parametern.
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Since this potential is analytic atf5n50, an expansion to
quartic order in the fields gives a good indication of when
condensate will form for eitherf or n. The same is not true
of the zero-temperature limit of the potential, which has
nonanalytic behaviorf2ln f2 in the vicinity of f50. How-
ever we will find that the quartic terms do not always sta
lize the potential, and it is necessary to know how the f
potential looks away fromf5n50. In this case we will use
the full free energy in order to determine the phase diag
of the system.

A. Analytic expressions in the quartic approximation

We start by approximating the free energy with a qua
potential, whose form we take to be

b@F2F~0!#5~aff21ann2!1 1
4 ~bfff412bfnf2n2

1bnnn
4!1¯, ~21!

where the ellipsis denotes terms involving more than f
powers off or n. Using Eqs.~16! and ~17! and defining

Nn,m5
1

2\d21 E dd21k fngm

~2p!dvF~k!
, j5«2m,

Tb~j!5
tanh~bj/2!

j
, ~22!

we find that the quadratic coefficients are given by the f
lowing integrals:

af5af
0 ~L!2N0,2E

2L

L

d«Tb~j!, ~23!

an5an
0~L!2N2,0E

2L

L

d«Tb~j!
j

«
, ~24!

whereaf
0 and an

0 are the ‘‘bare’’ values of these quantitie
that appear in the original Hamiltonian, Eqs.~1!–~3!. The
integral over« diverges logarithmically in the ultraviolet
forcing the introduction of the cutoff scale,L. Physically this
scale represents the energies for which the linearization
the quasiparticle spectrum no longer applies, or where
degrees of freedom of the Hamiltonian, Eqs.~1!–~3!, are no
longer appropriate, whichever is lower. If these approxim
tions were exact, thenL would be the actual maximum en
ergy available on the lattice. In any case, we can consideL
to be of order the Fermi energy. The divergent depende
on L asL→` can be absorbed into a renormalization ofaf

0

andan
0.

The quartic coefficients are given similarly by the follow
ing expressions, which since they are convergent allow u
take the cutoffL to infinity if we wish:

bff52N0,4E
2L

L

d«
Tb8 ~j!

j
, ~25!

bfn52N2,2E
2L

L

d«
Tb8 ~j!

«
, ~26!
a

e

-
ll

m

c

r

l-

of
e

-

ce

to

bnn52N4,0E
2L

L

d«FTb8 ~j!

«
2

m

«

]

]« S Tb~j!

« D G . ~27!

The approximationL→` is only valid if T andm are much
smaller than the Fermi energy.

Because we work in the degenerate limit, near the FS,
at zero field, the shape of the coefficient functions ask varies
over the FS enters only as an overall normalization factor.
expected from our previous discussion, the SO~5! symmetry
is manifestly present in the limitm50 and f 2/an

05g2/af
0 .

B. Instability towards condensation

Before turning to the numerical evaluation of these in
grals, it is instructive to first explore the physical implic
tions of the renormalization itself. Because the sign of
loop contributions toaf andan is negative, these quantitie
decrease as the temperature is decreased. In the limit of l
bL, it is easy to see that the one-loop contributionsDax

5ax2ax
0 have the limiting behavior

Daf;22N0,2 ln~bL!; Dan;22N2,0 ln~bL!. ~28!

Even if af(T;L) andan(T;L) are initially chosen to be
positive, so thatF is minimized byf5n50, eventually their
decrease with decreasingT can drive them negative, causin
an instability towards the development of nonzero cond
sates forf or n.

Equation~28! gives the evolution of the SO~5! breaking
combination of the electron couplings:

b
]

]b
~af2an!52~N2,02N0,2!52E dd21k

~2p!dvF
~ f 22g2!.

~29!

This shows that any SO~5! breaking present in the origina
Hamiltonian due tof 2Þg2 will be enhanced in the effective
GL Hamiltonian by a potentially large logarithm of the form
ln(bL), whereL is of the order of the Fermi energy. Fo
example, suppose the AF pairing is taken to bes wave, f
5 f 0 , whereas the SC pairing isd-wave, corresponding to
g5g0@cos(akx)2cos(aky)#. Here f 0 andg0 are arbitrary con-
stants. In general,N2,0 andN0,2 differ from each other, and
althoughg0 / f 0 can be tuned to make the difference vanis
there seems to be no symmetry principle that would requ
it to take this special value. Moreover, even if such a cho
were made, it would still not insure that the quartic couplin
would have SO~5! symmetry, i.e.,N4,05N0,45N2,2. In Sec.
V we will say more about the extent of SO~5! breaking that
arises from this choice of coupling functions.

C. Numerical results near f5n50

Figures 1 and 3 present plots of the coefficients of
potential as functions of the chemical potential, factoring o
the integrals over the FS. In this section we describe th
plots in more detail, and use them to deduce the gen
shape of the phase diagram in the temperature-doping pl

Figure 1 plots the one-loop contribution to the quadra
coefficients in the dimensionless form (an2an

0)/N0,2 and
(af2af

0 )/N2,0, whereNn,m are the FS integrals defined i
Eq. ~22!. At zero doping these functions are negative and
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increasing with temperature like ln(T/L), so it is always pos-
sible to choose the bare coefficientsan

0 or af
0 in such a way

that an or af is positive for high temperatures and chang
sign at someTc , triggering the instability toward condensa
tion. As the doping is increased,an increases much mor
rapidly thanaf . It follows that if the AF phase is energet
cally preferable to the SC phase atm50, the system will be
AF at zero doping, and then make the transition to SC
some small doping, provided thataf is still negative at this
value ofm.

With applications to the high-Tc cuprates in mind, we
imagineL;0.1 eV;103 K and so we adjust the bare cou
pling an

0 to ensure that the AF transition~Néel! temperature,
TN , at m50 is 1

10 of the cutoff scale,bNL510. From Fig. 1
it can be seen that at a temperatureT5TN/10, for example,
we havebL5100 and so the AF phase is quenched a
critical doping of xc;mc /L510%. This is the doping a
which an(mc)bL5100 becomes equal toan(0)bL510.

The above example ignores the SC order parame
which would be valid ifaf

0 was taken to be much larger tha
an

0. If on the other hand SO~5! symmetry was realized, s
that af

0 5an
0 and N0,25N2,0, then atm50 the ground state

would be an arbitrary admixture of AF and SC phases si
both have the same energy. In this case, the system
always make a transition to the pure SC phase at the cri
dopingxc . Since experiments indicate that atm50 the cu-
prates are pure AF, the SC phase must be suppresse
having af

0 /N0,2.an
0/N0,2, so that SC is energetically disfa

vored until the critical doping is reached. In this situatio
the phase diagram must have a form similar to Fig. 2.
course, this prediction does not take account of quan
fluctuations within the effective theory itself. Such highe
loop effects are believed to be especially important near
bicritical point, where the SC phase first emerges.1 They may
have the effect of driving this point downward, leaving a g
between the SC and AF phases at temperatures some
above the existence of the bicritical point.

To determine exactly how much SO~5! breaking is needed
in the quadratic terms in order to suppress SC at zero dop
one must compare the local minima of the potential along
f50 and n50 axes and insure that the minimum withn
Þ0 is the deeper of the two. This issue can usually be set
by looking at the higher order terms in the potential. To t

FIG. 1. The coefficients (af2af
0 )/N0,2 ~dashed! and (an

2an
0)/N2,0 ~solid! as a function ofm/L, for bL510, 20, 50, 100,

and 200.
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end we have computed the quartic coefficients in the dim
sionless formsbffT2/N0,4, bnnT

2/N4,0, and bnfT2/N2,2,
and plotted them in Fig. 3.

The fact thatbff is only weakly dependent on the dopin
can be seen by observing that whenL→`, m can be com-
pletely removed by shifting the integration variable from« to
j. The low-temperature form of the quartic couplings can
further understood analytically through the identities

lim
b→`

Tb8 ~j!

b2j
52

7z~3!

2p2 d~j!, ~30!

lim
b→`

1

b2 FTb8 ~j!m2

j«2 2
mTb~j!

«3 G52
7z~3!

2p2 d~j!. ~31!

Equation~31! is valid so long as it is combined with a func
tion that is nonsingular at«50, in which case its own 1/«
singularity can be integrated over using the principal val
Both of these representations of thed function can break
down if multiplied by singular functions ofj, which is pre-
cisely what happens atm50, but for m@1/b they can be
used in conjunction with Eqs.~25!–~27! to deduce that
bnn5bnf50 and bff /N4,057z(3)/2p2, in the low-
temperature limit.

At zero doping, all three coefficients have essentially
same value, and from the preceding paragraph we unders
why bff remains nearly constant up to very large dopin
whereasbnn andbnf drop quite sharply. In fact, they reac
negativevalues for intermediate dopings. For these dopin
the truncation to fourth order in the fields gives a poten
that is unbounded from below. Thus the expansion of
potential cannot be used to determine the minimum in thn

FIG. 2. Schematic representation of the phase diagram for
present Hamiltonian, with SO~5! symmetry broken to favor the AF
condensate. Quantum effects not considered here may be ab
drive the bicritical point downward.

FIG. 3. The coefficients bffT2/N0,4, bnnT
2/N4,0, and

bnfT2/N2,2 as a function ofm/L, for L/T510, 20, 50, 100, and
200. The curves approach an asymptotic limit asL/T→`.
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FIG. 4. The rescaled effective potentialF̂ for six values of the doping parameter,x ~horizontal rows! and along three directions in th
f-n plane~vertical columns!. F̂ is plotted as a function off̂2, (f̂21n̂2)/2, andn̂2, in the three respective columns. Each graph is sho
for the range of temperatures given bybL54, 10, 20, and 200, withF̂ always increasing with temperature.
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direction, and our goal of finding the absolute minimum ca
not be attained by expanding only to quartic order. We m
use the full functional form of the free energy for this pu
pose.

D. Numerical results for arbitrary f and n

In computing the full expression forF1 in Eq. ~16!, we
can no longer factorize the momentum integral into a prod
of the form *dd21kG(k)*d«H(«) because the integrand i
not a simple polynomial inf p andgp . However we can still
treat it similarly to our previous computations if we consid
the special case wheref 2 and g2 are constant. We do no
expect this assumption to radically change the features of
more general case, since thek dependence off and g has
played no essential role in the preceding discussion. Cons
g2 still describesd-wave SC and is consistent with SO~5!
symmetry, so long asg changes sign across the nesting s
face, e.g.,gp5sign(«p).

With this assumption, the free energy reduces to a sin
integral over the energy. We have evaluated it numerica
for the relevant ranges of doping, temperature, and or
parameters. The results are most conveniently expresse
terms of the following variables, for which the cutoffL is
scaled out:
n-
st

r-

uct

r

the

tant

r-

gle
lly
der
d in

f̂5gf/L; n̂5 f n/L; x5m/L; ~32!

âf5af
0 /~4N0,0g

2!; ân5an
0/~4N0,0f

2!; b̂5bL/2;
~33!

«̂5«/L; l̂65@~A«̂21n̂26x!21f̂2#1/2; ~34!

DF̂5
1

b̂
E

0

1

d«̂ lnS cosh~ b̂l̂1!cosh~ b̂l̂2!

cosh@b̂~ «̂1x!#cosh@b̂~ «̂2x!#
D .

~35!

In the last line we subtracted a constant to makeDF̂ vanish
at f5n50. Then the full effective potential can be writt
in terms of

F̂[F/~4N0,0L
2!5âff̂21ânn̂21DF̂~f̂,n̂,b̂,x!. ~36!

In Fig. 4 we showF̂ for six values of the doping param
eter, x50, 0.2, 0.4, 0.6, 0.8, and 1~horizontal rows!, and
along three directions in thef-n plane~vertical columns!. F̂
is plotted as a function off̂2, (f̂21n̂2)/2, and n̂2, in the
three respective columns. Each graph is shown for the r
of temperatures given bybL54, 10, 20, and 200, withF̂
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always increasing with temperature. We have chosenâf
52 andâf51.6, hence SO~5! breaking at the 20% level, in
order to illustrate the phenomenologically desired domina
of the AF phase at low doping. Atx50, the lowest minimum
clearly occurs fornÞ0. At x50.2, the minima become de
generate and the transition to the SC phase begins. Fu
increasing the doping quickly removes the AF instabili
and gradually quenches the SC phase as well, dependin
the temperature. This is in complete agreement with the
ture obtained from our analysis of the quadratic coefficie
and confirms the phase diagram shown in Fig. 2.

E. Terms with derivatives

So far we have presented the one-loop free energy o
for spatially constant order parameters. Iff(x) andn(x) are
not constant, there will be additional terms depending
their spatial derivatives. Of these, the most interesting are
(¹f)2 and (¹n)2 terms, since they are needed to comp
quantum corrections coming from within the effective lon
wavelength theory~two-loop and higher corrections!.

By calculating the relevant Feynman diagrams, it
straightforward to show that the quadratic terms inF1 for fq
andnq with an arbitrary momentumq can be obtained from
our previous formulas~23! and ~24! by making the replace
ments

Tb~j!→
tanh~bjp1q/2/2!1tanh~bjp2q/2/2!

jp1q/21jp2q/2
, ~37!

f ~p,q!→ f ~p2q/2,q!, g~p,q!→g~p2q/2,q!, ~38!

wherejp5«p2m and p is the loop momentum to be inte
grated over. Expanding in the external momentumqW gives
the expansion in derivatives of the fields. From this presc
tion it is clear that SO~5! symmetry will be realized in the
derivative terms so long asf 2(p,q)5g2(p,q) and m50,
since the symmetry is then manifest in the energy eigen
uesl6 that appear in Eq.~17!.

The resulting integral overp depends on the exact form o
the dispersion relation«p and the coupling functionsf p ,gp ,
so we will defer further evaluation until the next sectio
where we consider a specific choice of these functions.

V. EXACT RESULTS IN A SPECIFIC MODEL

Our analysis so far has relied upon the approximation
the most important contributions to the effective potential
coming from electronic excitations near the Fermi surfa
This approximation presupposes the Fermi energy to
much greater than the temperature and the chemical po
tial. On the other hand this hierarchy of scales may only b
factor of 10 in the actual cuprate systems we are intere
in. It is therefore interesting to corroborate our conclusio
without assuming thatF1 is dominated by the contribution
from near the FS. In this section we will exactly evaluate
first few terms in the small field expansion ofF using a
semirealistic lattice dispersion relation and pairing functio
which have been previously suggested in the literature.1,5,9 It
will be shown that the results are in good qualitative agr
ment with those based on the RG approach.
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A. Method of solution

For our specific model, we take the lattice dispersion
lation ~5! of the extended Hubbard model and choose

f ~p,q!51, g~p2q/2,q!5@cos~apx!2cos~apy!#/2
~39!

as would be appropriate fors-wave AF pairing andd-wave
SC pairing. The factor of 2 in the definition ofg is chosen
such as to maximize the SO~5! symmetry near the undope
FS, as is shown below, and theq dependence is chosen t
simplify the derivative terms to be computed at the end
this section. We further assume that the system is two dim
sional,d52.

The choice~39! is motivated by three considerations:~1!
we wish to examine to what extent SO~5! symmetry survives
when f 2Þg2, since it has been suggested that SO~5! can be
a good approximate symmetry in the long-wavelength lim
even if it is not exact in the fundamental Hamiltonian;~2!
one would like to see how much the general features of
phase diagram depend on having exact SO~5! symmetry in
the Hamiltonian; and~3! Baskaran and Anderson hav
pointed out4 that the AF phase would be a conductor if SO~5!
was an exact symmetry, whereas with SO~5! breaking an
insulating gap appears.5 We will show that makingf 2Þg2

breaks the symmetry significantly due to fluctuations
from the Fermi surface, even though those close to the
give contributions to the free energy that are approximat
SO~5! symmetric. Nevertheless, the phase diagram is not
fected in a qualitative way, and should still have the sha
shown in Fig. 2.

The effective potential atq50 is still given by the genera
expression~16!, but now the momentum integrals range ov
the Brillouin zone,2p/a,px , py,p/a, and there is no
need to introduce any cutoff because the energy is explic
bounded by24t,«,4t. As before, we expandF to qua-
dratic and quartic order in the fields. Definingjp5«p2m,
this gives

F152E d2p

~2p!2 F2Tb~jp!S ugpfu21n2
jp

«p
D

1
Tb8 ~jp!

2jp
S ugpfu21n2

jp

«p
D 2

1
m

2«p
3 Tb~jp!n4G .

~40!

Next one would like to reexpress the momentum integr
as an integral over the energy times an integral over
Fermi surface. This can be accomplished using the iden

E d2pgp
m5

4

a2 E
24t

4t

d«E
21

1 E
21

1 du dv~u2v !m22m

A12u2A12v2

3d@«12t~u1v !#, ~41!

where u5cos(apx) and v5cos(apy). The integrals overu
andv can be done exactly, leaving an energy integral tim
a density of states function,

E d2pgp
m5

4

a2t E24t

4t

d« Nm~«/4t !. ~42!
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The density of statesNm is given in terms of complete ellip
tic functionsK and E; ~as they are defined in all standa
mathematical references except for Abramowitz and Ste
and Mathematica, which use a nonstandard convention.
for example, Ref. 10! defining «̂5«/4t anda5(11u«̂u)/(1
2u«̂u), the first few are

N0~ «̂ !5
1

11u«̂u
K~1/a!, ~43!

N2~ «̂ !5~11u«̂u!@K~1/a!2E~1/a!#, ~44!

N4~ «̂ !5 1
3 a~12u«̂u!3@~2a211!K~1/a!

22~a211!E~1/a!#. ~45!

These are shown in Fig. 5. Because of our choice of norm
ization forgp in Eq. ~39!, they all have the same asymptot
behavior near the undoped FS,«50: Nm; ln(1/uzu), inde-
pendent ofm. However they quickly diverge from each oth
for energies above or below the FS. This is interesting fr
the point of view of the SO~5! symmetry, because it show
that even thoughg2Þ1, as is necessary to have exact SO~5!,
close to the FS the symmetry is nevertheless approxima
realized. However the logarithmic singularity near«50 in
Nm is too weak to compensate for the SO~5! breaking dif-
ferences betweenN0 andN2 away from the FS, as we wil
presently show.

B. Expansion nearf5n50

Now the expressions for the coefficient functions in t
small-field expansion ofF1 can be written in a way which
looks very similar to our previous results~23!–~27!. Let us
first define

k5
4

\2~2p!2a2t
5

2m

~p\!2 , ~46!

where a is the lattice spacing, andm is the quasiparticle
mass in the vicinity of the FS, where the dispersion relat
can be approximated as«5p2/2m. We then obtain

af5af
0 2kE

24t

4t

d« Tb~j!N2~«/4t !, ~47!

FIG. 5. The density of statesN0 , N2 , andN4 as a function of
«̂5«/4t.
n
ee,

l-

ly

n

an5an
02kE

24t

4t

d« Tb~j!
j

«
N0~«/4t !, ~48!

bff52kE
24t

4t

d«
Tb8 ~j!

j
N4~«/4t !, ~49!

bfn52kE
24t

4t

d«
Tb8 ~j!

«
N2~«/4t !, ~50!

bnn52kE
24t

4t

d«FTb8 ~j!

«
2

m

«

]

]« S Tb~j!

« D GN0~«/4t !.

~51!

The dependence of these coefficients on doping and t
perature is shown in Figs. 6 and 7, which can be compare
Figs. 1 and 3 from our model-independent analysis. In Fig
which shows the one-loop contributions to the quadratic
efficients, one sees that our previous result foran is in good
agreement with the exact computation in the present mo
This is not surprising becausef p is treated as a constant i
both cases, and the only difference between the two is
lattice dispersion relation in the present computation vs
approximation«'vFl in Sec. IV. However the difference
between the two approaches is quite apparent inaf , where
gp is relevant: af increases with doping faster in the exa
computation than in the approximation of factoring out t
FS integration. Nevertheless, the important qualitative f
ture needed to obtain the phase diagram of Fig. 2 pers
af increases more slowly as a function of doping th
doesan .

Similar remarks apply in comparing the quartic coef
cients in the two treatments. The difference in the dispers
relation causes a small change in theT andm dependence of
bnn , the coefficient that does not depend at all ongp . Nev-
ertheless in both analyses,bnn andbnf have the same behav
ior of initially falling very sharply from positive to negative

FIG. 6. The exactly computed coefficients (an2an
0/k) ~solid!

and (af2af
0 )/k ~dashed! as a function ofm/L, for the same values

of bL as in Figs. 1 and 3.

FIG. 7. The exactly computed coefficientsbnnT
2/k, bnfT2/k

andbffT2/k as a function ofm/L, for the same values ofbL as in
Figs. 1, 3, and 6.
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values as the chemical potentialm is increased fromm50,
and gradually becoming zero asm→4t. bff falls much
faster withx in the exact computation than in the previo
one, but still more gradually thanbnn or bnf . Again, this can
be understood analytically in the low-temperature limit us
Eqs. ~30! and ~31!, which gives bnn5bnf50 and bff
5@7z(3)b2m/p4\2#N4(m/4t) for m@1/b. The qualitative
agreement between the two approaches gives us confid
that the shape of the phase diagram in Fig. 2 is indee
robust prediction of the model, in the one-loop approxim
tion.

C. SO„5… breaking due to gp
2Þf p

2

One interesting issue we can explore within the ex
computation is the extent to which SO~5! symmetry is bro-
ken by the assumption ofd-wave SC pairing vss-wave AF
pairing. In Fig. 6 one sees that, despite our tuning the n
malization of gp so as to preserve SO~5! near the FS,
uDanu.uDafu even at zero doping. We could have tunedgp
such as to forceDan5Daf at some temperatureT0 , but the
equality would hold only forT5T0 . In fact we find that the
ratio Daf /Dan scales linearly with ln(b/4t):

S Daf

Dan
D

m50

>0.2010.064 ln~b/4t !. ~52!

For comparison, the breaking in the quartic couplings can
similarly parametrized in terms of the ratios

S bff

bnn
D

m50

>0.08210.10 ln~b/4t !;

S bnf

bnn
D

m50

>0.2710.084 ln~b/4t !. ~53!

D. Derivative terms in the free energy

Using the above techniques and the procedure discu
in Sec. IV E, we can evaluate the lowest derivative terms
the quadratic part ofF1 ,

F15cf~¹f!21cn~¹n!2. ~54!

Defining k85b2t/(4p\)2, «̂5«/4t, m̂5m/4t, and going to
the limit of largebt, we can write the coefficients as

cf>k8E
24t

4t

d«
Tb~j!

cosh2~bj/2!
@~12 «̂2!N2~ «̂ !

2~12u«̂u!2N4~ «̂ !# ~55!

>
14z~3!k8

p2 @~12m̂2!N0~m̂ !

2~12um̂u!2N2~m̂ !#, ~56!

cn>k8E
24t

4t

d«
Tb~j!

cosh2~bj/2! S j

« D @~12 «̂2!N0~ «̂ !

2~12u«̂u!2N2~ «̂ !# ~57!
ce
a
-

t

r-

e

ed
n

;O~1/bt !cf . ~58!

To obtain Eq.~56! we used the identity~30!, which is how-
ever only valid form@1/b. For m&1/b, the logarithmic
singularities inN0 andN2 are integrated over to obtain resu
that is finite asm→0. The identity~30! gives a vanishing
result when applied to Eq.~57!, meaning thatcn is of order
1/bt compared tocf , and thuscn must be computed nu
merically to find the leading behavior in the largebt limit.
Again, these statements hold only form@1/b due to the
singular behavior of the integrand at«50. For m&1/b, we
expect thatcf;cn , just as was found for the coefficients o
the quartic terms.

These derivative terms will not be of further use in t
present preliminary study, but may be useful in comput
the higher-order quantum corrections that we leave for fut
investigation.

VI. CONCLUSIONS

In summary, our calculations lead us to the following co
clusions:

~a! Microscopic SO~5! Invariance: We find, by con-
struction, that microscopic models can indeed give rise
SO~5! invariance that relates thed-wave superconducting
and antiferromagnetic phases. This symmetry can emerge
cidentally at long wavelengths, and so be relevant for
effective potential that determines which phase is energ
cally preferred~in a homogeneous system!. Being a long-
wavelength effect, the symmetry can be easily hidden
treatments that include all scales together.

~b! Features of the Phase Diagram:Using our model
we have computed the Landau-Ginzburg free energy wh
minimization determines the phase diagram in t
temperature-doping plane. We find that the coefficients
the Landau-Ginzburg potential have the right qualitative
pendence on temperature and chemical potential to allow
antiferromagnetism at half filling, but which is destroyed
the system is doped. It can also describe a supercondu
that is favored only for a range of nonzero dopings.

~c! Significance of theSO~5! Symmetry: The class of
models we considered encompasses SO~5! symmetry as a
special case among the most general possible coupling f
tions. We find that if the symmetry is broken in the micr
scopic theory, there is no special tendency for it to be
stored or further broken in the effective long-waveleng
theory. The phase diagram is only of the desired form
there is a certain level of SO~5! breaking, whose fundamenta
origin is unknown. In the specific model considered in S
V, the symmetry appears to be badly broken, sincef p

2 andgp
2

are quite different functions of momentum, yet by tunin
their relative sizes it appears possible to obtain the cor
phase diagram. At present it is therefore not yet cl
whether nature demands an approximate SO~5! symmetry as
the correct way to understand the relation between the
and SC phases in cuprates, or whether SO~5! symmetric
models simply fall into the same universality class as
correct theory. After this work was completed, we learn
of similar work, examining the relation between SO~5! and
generalizations of the Hubbard model, by Henley.11
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