Specific heat of liquid ³He under pressure in a restricted geometry

R. Schrenk* and R. König

Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany (Received 12 May 1997; revised manuscript received 27 October 1997)

We have investigated the specific heat of liquid ³He confined to an Ag sinter with an average pore size of about 1000 Å in the temperature range 1 mK $\leq T \leq 20$ mK and at pressures 4.8 bar $\leq p \leq 34.0$ bar. The specific heat of normal-fluid ³He in the sinter pores shows the linear temperature dependence expected for a Fermi liquid. However, the effective mass of the ³He quasiparticles is clearly enhanced in the restricted geometry compared to data obtained in bulk ³He. In addition, there is a temperature-independent contribution to the specific heat, the origin of which can be interpreted as the specific heat of the second layer of ³He on the Ag surface. Moreover, compared with the results obtained for bulk ³He, we observe a much broader maximum in the specific heat in the vicinity of the superfluid transition; this maximum occurs about 0.4 mK below the bulk superfluid transition temperature. Furthermore, in the confinement of the sinter only a part of the ³He in the sinter (about 60%) becomes superfluid. In contrast to the results obtained with pure ³He the specific heat of a liquid ³He.⁴He mixture (1% ³He) in the Ag sinter shows no deviation from bulk data. [S0163-1829(98)03314-1]

I. INTRODUCTION

At temperatures below about one-tenth of the Fermi temperature T_F (which is about 1 K in ³He), the static and dynamic properties of liquid ³He in its normal-fluid phase are well described by the phenomenological Landau Fermiliquid theory.¹ In this temperature range, ³He may be treated as a degenerate Fermi liquid, and the interaction among the ³He quasiparticles is described by the so-called Fermi-liquid parameters, which have to be derived from experiment. The temperature dependences predicted by Landau's Fermiliquid theory for the specific heat $(C \sim T)$, thermal conductivity $(\kappa \sim T^{-1})$, spin diffusion $(D \sim T^{-2})$, and viscosity $(\eta \sim T^{-2})$ of liquid ³He in the degenerate regime result from the fermionic nature of the ³He quasiparticles and the Pauli exclusion principle for scattering of spin- $\frac{1}{2}$ particles around the Fermi sphere.² In particular, the dynamic properties of liquid ³He with their distinct temperature dependences are very sensitive tools for studying the interaction among ³He quasiparticles and for providing information about the Fermi-liquid parameters in the degenerate regime.

The Landau Fermi-liquid theory predicts a specific heat of normal-fluid ³He that is linearly dependent on temperature in the degenerate regime. The coefficient of the specific heat is proportional to the effective mass m_3^* of the ³He quasiparticles, which is a measure of the interaction between the ³He quasiparticles and is therefore strongly dependent on the pressure the sample is exposed to. The quasiparticle interaction, in turn, may be influenced by different length scales, depending on whether ³He is in its normal-fluid or in its superfluid state.

The dominating length scale for the quasiparticle interaction in normal-fluid ³He is given by the mean free path λ of the ³He quasiparticles. According to Landau's theory of Fermi liquids, λ follows a T^{-2} law in the degenerate regime; its magnitude is of the order of $\sim 0.1 \,\mu\text{m}$ at about 30 mK and increases to almost 100 μm at T=1 mK. In the superfluid state, the characteristic length scale of ³He is the pressure-dependent coherence length $\xi(p)$, which is a measure for the spacial expansion of the Cooper pairs. At T_C , the superfluid transition temperature, the coherence length becomes infinite and decreases with decreasing temperature to values of a few 100 Å.

The properties of a system are influenced by a restricted geometry, when the dimension of the confinement becomes comparable to the characteristic lengths of the system. In particular, in liquid ³He the superfluid phase transition is suppressed, and the superfluid fraction decreases in a confining geometry.³ In normal-fluid ³He, an increase of the effective mass of the ³He quasiparticles was observed in various restricted geometries.⁴ We report on experiments in which pure ³He is confined to the pores of an Ag sinter with an average pore size of ~ 1000 Å. As already mentioned above, this dimension of the restricted geometry becomes comparable to the characteristic lengths of normal-fluid and superfluid ³He in the temperature range of our experiment and we therefore may expect to observe an impact of this confinement on the properties of our ³He sample.

A different system for the investigation of the interaction among ³He quasiparticles is provided by liquid ³He-⁴He mixtures due to the finite solubility of ³He in superfluid ⁴He at ³He concentrations x_3 less than 6.4% at zero pressure⁵ and up to 9.5% at p = 10 bar⁶ even at T = 0 K. In liquid ³He-⁴He mixtures, the Fermi temperature and therefore the Fermiliquid regime is not only influenced by the pressure of the mixture but mainly by the concentration of the ³He component. In the degenerate regime of the mixtures, the properties of the system are determined by the properties of the ³He component; the superfluid ⁴He acts only as an inert background on the effective mass of the ³He quasiparticles. In addition to our measurements on pure ³He, we have measured the specific heat of a liquid ³He-⁴He mixture with a ³He concentration $x_3 = 1.0\%$ at two different pressures (p =0 and 21.0 bar) and confined to the same Ag sinter as a

8518

reference system with a much weaker quasiparticle interaction than in pure ³He.

In the next section, the experimental setup is described. In Sec. III, we present and discuss the results for the specific heat of pure liquid ³He confined to the sinter pores; these data were taken at p = 4.8, 15.5, 25.2, and 34.0 bar. We compare our findings with our results for the specific heat of the above-mentioned liquid ³He-⁴He mixture. Moreover, we discuss possible similarities of the specific heat in the vicinity of the superfluid transition of *liquid* ${}^{3}He$ in the confinement of an Ag sinter with the results observed by other authors for the specific heat close to the superfluid transition of liquid ⁴He confined to porous Vycor glass. In Sec. IV, the results are summarized. In the Appendix, the specific-heat data obtained for pure ³He in the sinter of pore size \sim 1000 Å at the two highest pressures (p = 25.2 and 34.0 bar) are compared with the results obtained with ³He restricted to a solid hcp ⁴He matrix with a ³He cluster size of \sim 200 Å at comparable pressures (p = 26.5 and 34.0 bar). A detailed report on the measurements in the latter geometry, which can only be achieved by applying a pressure p>26 bar in order to solidify ⁴He, can be found in Refs. 7 and 8.

II. EXPERIMENTAL SETUP

The cylindrical cell body of the calorimeter was made of Ag (purity 99.999%) and annealed at 820 °C for 14 h. The Ag cell was then completely filled with an Ag sinter⁹ compressed at about 400 bar resulting in a packing fraction f \sim 48%. This Ag sinter provides a surface area of 52 m² determined by Brunauer-Emmett-Teller adsorption isotherms with nitrogen gas at T = 77 K.¹⁰ As the cell is entirely filled with Ag sinter, the sample volume of 3.72 cm³ is restricted to the pores and interconnecting channels of the sinter, i.e., there is no free (bulk) liquid volume in the cell around the sinter. The pore size of the sinter is estimated according to the sinter model suggested by Robertson, Guillon, and Harrison¹¹ (see also Ref. 12). Here, the open volume of a sinter is assumed as being made of cylindrical pores of the same diameter extending in three orthogonal dimensions and with intersections over part of their lengths. The diameter dof these cylindrical pores is then given by d=4(1-f)/swith s being the surface area per unit volume. Using the above-given values for our experimental cell, we estimate a maximum pore size of the Ag of approximately 1500 Å.

The bottom of the calorimeter was formed by a Straty-Adams type capacitance strain gauge¹³ to measure the pressure of the helium sample *in situ*. Titanium was chosen for the membranes because of its much smaller heat capacity compared with the commonly used BeCu. Calibration of the pressure gauge was performed at 4 K with an absolute accuracy of 10 mbar. The temperature of the calorimeter was measured by a Pt-NMR thermometer mounted on top of the cell and calibrated against the Curie susceptibility of a PdFe thermometer. The temperature scale is given by a National Bureau of Standards superconducting fixed-point device¹⁴ with five superconducting transitions in the temperature range between ~15 and ~210 mK.

The calorimeter cell was supported and thermally isolated by three Vespel rods on the top flange of a PrNi₅ nuclear demagnetization stage. Thermal contact between the nuclear stage and the sample cell could be provided by a superconducting Al heat switch (three foils, $0.1 \times 10 \times 7 \text{ mm}^3$). The Al foils were annealed and diffusion welded to an Ag support at 400 °C for 1 h. The switching ratio of the heat switch was $\kappa_n/\kappa_s = 1.74 \text{ T}^{-2}$, thus enabling good thermal isolation of the sample cell below 30 mK.

The specific heat was determined by the conventional heat pulse method. Heat was either supplied by an Ohmic heater glued to the wall of the calorimeter or, alternatively, by the heat input of the NMR pulses of the Pt-NMR thermometer; the energy input of the NMR pulses was calibrated against the Ohmic heater. We have performed various cross checks to prove the consistency between both ways of supplying heat to the calorimeter; in particular, we have varied length and excitation of the NMR pulses as well as the delay time between two pulses. The data are corrected for the heat capacity of the empty cell, which is about two orders of magnitude smaller than the heat capacity of the He samples at all temperatures of our experiment.

III. SPECIFIC HEAT OF NORMAL-FLUID AND SUPERFLUID ³He AND OF A ³He-⁴He MIXTURE CONFINED TO THE PORES OF AN Ag SINTER

Figure 1 shows the specific heat of liquid ³He at p=4.8, 15.5, 25.2, and 34.0 bar compared to data of bulk liquid ³He (solid line) taken from Ref. 15. There are two distinct differences in the specific-heat data between liquid ³He in the restricted geometry and the bulk liquid. (1) At all four pressures investigated in our experiment, the specific heat of normal-fluid ³He is linearly dependent on temperature as it is in bulk ³He, but the magnitude of the specific heat is enhanced compared with the bulk liquid data. (2) In bulk liquid ³He, there is a distinct jump in the specific heat at the superfluid transition temperature T_C (by a factor of about 2.5) whereas we observe a rounding in the specific heat in the vicinity of the superfluid transition when the liquid is confined to the pores of the sinter, with an onset at $T_{S}^{i} < T_{C}$ and a maximum in the specific heat at T_{S}^{max} (throughout the context, the subscript S denotes the corresponding property of ³He in the sinter).

A. Normal-fluid ³He

In the normal-fluid regime the specific heat of liquid ³He in the Ag sinter depends linearly on temperature but in contrast to the specific heat of bulk liquid ³He there is a temperature-independent contribution to the specific heat, too (Fig. 2). A fit of

$$C = \gamma_S T + C_S \tag{1}$$

to our data provides the coefficient γ_S and the temperatureindependent contribution C_S to the specific heat of ³He in the pores of the sinter; for all pressures investigated these data are summarized in Table I. For comparison, the linear coefficient γ of the specific heat of bulk liquid ³He obtained by Greywall¹⁵ is listed, too. This value of γ is smaller than γ_S for all pressures investigated in our experiment.

FIG. 1. Temperature dependence of the specific heat of liquid ³He in an Ag sinter (\bullet , this work) and of bulk liquid ³He (solid line, from Ref. 15) at p = 4.8, 15.5, 25.2, and 34.0 bar. T_C marks the superfluid transition temperature of bulk liquid ³He, T_S^i the onset of the superfluid transition of liquid ³He in the Ag sinter, and T_S^{max} the maximum of the specific heat of liquid ³He in the Ag sinter.

The linear coefficient of the specific heat of a degenerate Fermi liquid provides information on the effective mass of the ³He quasiparticles. According to Landau's Fermi-liquid theory, the specific heat of liquid ³He is given by

FIG. 2. Temperature dependence of the specific heat of normalfluid liquid ³He in an Ag sinter (\bullet , this work) at 34.0 bar. The dashed line is a fit using Eq. (1) and the solid line represents the specific-heat data of bulk normal-fluid ³He from Ref. 15. The dotted line is the extrapolation of the bulk data to T=0.

TABLE I. The coefficient γ_s and the temperature independent contribution C_s of the specific heat of liquid ³He confined to an Ag sinter obtained from Eq. (1): m_s^*/m_3 is the ratio of the effective mass of the ³He quasiparticles in the Ag sinter to the bare mass of a ³He atom determined from the slope γ_s of the specific heat using Eq. (2). For comparison, the coefficient γ and the ratio m^*/m_3 of bulk liquid ³He (Ref. 15) are listed.

p (bar)	4.8	15.5	25.2	34.0
γ (J/K ² mole)	25.6	30.3	34.2	37.7
γ_S (J/K ² mole)	30.8	34.6	37.4	48.0
m^{*}/m_{3}	3.36	4.33	5.12	5.82
m_{S}^{*}/m_{3}	4.04	4.94	5.60	7.41
C_S (J/K mole)	0.011	0.015	0.020	0.023

$$C_{\text{Fermi}} = \gamma_s T = \frac{\pi^2 N_A k_B^2 m_3}{h/2\pi} \frac{m_3^*}{m_3} \left(V_m / 3\pi^2 N_A \right)^{2/3} T.$$
(2)

Here, V_m is the molar volume of liquid ³He, N_A is Avogadro's constant, k_B is Boltzmann's constant, h is Planck's constant, m_3 is the mass of a bare ³He atom, and m_3^* is the effective mass of the ³He quasiparticles. Figure 3 shows the effective masses of ³He quasiparticles derived from our data of liquid ³He confined to an Ag sinter (see also Table I). The effective mass of ³He in the sinter is enhanced by up to about 20% compared with the effective mass of ³He without restriction in geometry.¹⁵ Moreover, we would like to point out that the effective mass at p= 34.0 bar (m_3^*/m_3 =7.41) is much larger than the value for the effective mass of bulk ³He at the melting curve [m_3^*/m_3 =5.85 (Ref. 15)], which is the largest effective mass observed in bulk liquid ³He.

An enhancement of the effective mass of ³He quasiparticles has been observed in various restricted geometries by other authors, too. For example, the effective mass of ³He quasiparticles in clusters of size of ~ 1000 Å embedded in a solid hcp ⁴He matrix was found to be substantially larger

FIG. 3. Pressure dependence of the effective mass of liquid ³He in the Ag sinter (\blacksquare), compared with the effective mass of bulk liquid ³He from Ref. 15.

FIG. 4. The temperature independent contribution C_S to the specific heat of pure ³He (\Box) and of a ³He-⁴He mixture with 1% ³He (\blacksquare) in the Ag sinter. For comparison, the heat capacity of the second layer of ³He adsorbed on the surface of the Ag sinter at saturated vapor pressure (\bigcirc), calculated from Ref. 16, is shown.

than the effective mass of bulk ³He.⁴ Greywall and Busch interpreted their increased specific heat data on twodimensional ³He films on an Ag substrate as the result of a second-layer liquid with a very low Fermi temperature, which implies a ratio $m_3^*/m_3 > 300$.¹⁶ Because the effective mass of ³He quasiparticles is a measure of the interaction among them, one may conclude from these results, that a restriction in geometry leads to an increase in the density of states at the Fermi surface and thus in the interaction among the ³He quasiparticles.

Concerning the temperature-independent contribution C_{s} to the specific heat of pure ³He (Fig. 4 and Table I), one possible interpretation could be in terms of the specific heat of the second layer of ³He on the Ag surface. According to Greywall and Busch,¹⁶ the first layer of ³He on the Ag surface is assumed to be solid, and its specific heat is negligibly small in the temperature range of our measurements. The specific heat of the second layer is reported to be temperature independent, and-normalized to the Ag surface of our experiment-its magnitude is comparable to the temperature-independent contribution C_S observed in our experiment (Fig. 4). Greywall and Busch suggested the second layer of ³He to be a highly condensed Fermi liquid with a Fermi temperature smaller than 10 mK. Therefore, their measurements were not performed in the degenerate regime of this Fermi liquid, thus leading to a temperature-independent specific heat down to several mK. A different explanation for a temperature independent specific heat of the second layer of ³He on the Ag surface is given by Golov and Pobell.¹⁷ These authors consider the second layer as being solid with a continuous distribution of the exchange parameter J as a result of the roughness of the Ag surface leading to a temperature-independent specific heat.

B. ³He-⁴He mixture

Our measurements of the specific heat of a liquid ³He-⁴He mixture with a nominal ³He concentration $x_3 = 1.0\%$ at two different pressures (p=0 and 25.2 bar, see

FIG. 5. Temperature dependence of the specific heat of a liquid ³He-⁴He mixture with a ³He concentration of 1% in an Ag sinter at saturated vapor pressure and at p=21.0 bar; the solid line is a fit using Eq. (1). Note the different scales in temperature and specific heat.

Fig. 5) support the interpretations of the pure ³He data described above. At both pressures, we again observe a specific heat characteristic for a Fermi liquid with its linear temperature dependence. As in the case of pure ³He in the Ag sinter we fitted the specific heat of the mixture using Eq. (1) and calculated the effective mass using Eq. (2) in its modified form for ³He-⁴He mixtures.⁵ However, in contrast to the behavior of pure ³He described above and shown in Figs. 1 and 2, there is neither a difference in the effective masses of the ³He quasiparticles between the ³He-⁴He mixture in the sinter pores and of a bulk mixture with the same concentration,¹⁸ nor is there-within the experimental error-an offset in the mixture data extrapolated to T=0 K, see Fig. 4. The effective mass of the ³He quasiparticle of the mixture in the confining geometry $(m_3^*/m_3 = 2.36 \text{ at saturated vapor pressure};$ $m_3^*/m_3 = 2.88$ at 21.0 bar) derived from the slope of the specific heat data in Fig. 5 is in agreement with the values obtained for a bulk mixture with almost the same concentration (Ref. 18, $x_3 = 1.0\%$; Ref. 19, $x_3 = 1.3\%$), see Fig. 6. It is also important to note that a gradual increase in the ³He concentration x_3 within the first few layers from the wall (with a layer of pure ⁴He on the sinter substrate²⁰) into the liquid (³He-⁴He mixture) may lead to a change in the effective concentration of the mixture in the pores by only $\sim 5\%$ at most (i.e., from $x_3 = 1.0$ to 1.05%) and may be therefore neglected in our analysis.

At saturated vapor pressure the interaction between ³He quasiparticles and the superfluid ⁴He background in a bulk mixture manifests itself in an effective mass ratio $m_3^*/m_3 \sim 2.3$ for the ³He concentration x_3 extrapolated to zero.¹⁸ This ratio increases only very slightly to about 2.36 for a

FIG. 6. The effective mass of a ³He-⁴He mixture with a ³He concentration $x_3 = 1.0\%$ in an Ag sinter (\bigcirc , this work) compared with data for bulk mixtures [solid line, Ref. 18; \blacksquare , Ref. 19 ($x_3 = 1.3\%$)].

³He-⁴He mixture with $x_3 = 1\%$ due to the interaction among the ³He quasiparticles, i.e., the increase in the effective mass due to the ³He-³He quasiparticle interaction in the bulk liquid mixture is only approximately 5% of the whole effective mass (³He-³He and ³He-⁴He). Therefore, it is obvious that an increase in the effective mass caused by an increase in the ³He-³He quasiparticle interaction of up to 20% due to the restricted geometry as it was observed for pure ³He is beyond the resolution of our experiment.

Within experimental error, we do not observe a temperature-independent contribution to the specific heat in our measurements on the ³He-⁴He mixtures (see Fig. 4), which can be explained as follows: because of the smaller zero-point motion of the ⁴He atoms the first two layers on the Ag surface are built up from ⁴He atoms. The specific heat of solid ⁴He layers is negligibly small compared to the specific heat of the ³He-⁴He mixture and so C_S should be zero for ³He-⁴He mixtures in sinter pores, if it is caused by the second layer on the sinter surface.

C. Superfluid ³He

In contrast to bulk ³He, ¹⁵ we do not observe a sharp peak but a broad maximum in the specific heat of ³He confined to the Ag sinter (Fig. 7) at a temperature below the superfluid transition temperature of the bulk liquid. With decreasing temperature the specific heat of ³He in the sinter starts to increase at a temperature T_s^i and shows a maximum at T_s^{max} (Table II), which is below the bulk transition temperature at all pressures investigated. The width of this rounding in the specific heat extends over several hundred μK , and it is therefore impossible to extract a single phase transition temperature T_c for ³He in the Ag sinter. Finally, the magnitude of the specific heat at T_s^{max} is much smaller compared with the value obtained in bulk ³He at T_c .

Similar features of an influence of a restricted geometry on the specific heat at the superfluid transition have been observed for liquid ⁴He confined to porous Vycor glass, where in contrast to the sharp peak of the bulk liquid, a rounding of the specific heat (along with a reduced magnitude) of ⁴He-filled pores at a temperature close to the bulk transition temperature is observed.²¹ The particular impor-

FIG. 7. Temperature dependence of the specific heat of liquid ³He in an Ag sinter at 25.2 bar; T_S^i marks the onset of the superfluid phase transition; T_S^{max} is the temperature at which the specific heat has its maximum value. The solid line is the calculated specific heat as described in the text. For comparison, the specific heat of bulk ³He (dashed line) and of normal-fluid ³He in the Ag sinter extrapolated to T=0 (dotted line) is plotted. The temperature-independent contribution to the specific heat that is related to the second layer of ³He on the sinter surface is already subtracted from the data.

tance of the liquid ⁴He/Vycor system consists of the fact that it constitutes a model system for the study of the superfluid phase transition in a restricted geometry. In a number of experiments particular emphasis is given to the question of the dimensionality of the transition of liquid ⁴He (films as well as full pores) in Vycor.²² Concerning the specific heat of ⁴He-filled Vycor, a maximum occurs very close to the bulk transition temperature,²¹ in contrast, the onset of superfluidity of ⁴He in Vycor is observed at significantly lower temperatures.²³ The observation of an anomaly in the specific heat of the ⁴He/Vycor system at the superfluid transition failed until now despite considerable improvements in high-precision calorimetry.²⁴ A direct comparison between the results obtained for the specific heat of the liquid ⁴He/Vycor experiments and the liquid ³He/Ag sinter data, however, seems to be difficult because of the following important differences between both systems: the uniformity and the pore size distribution as well as the pore sizes themselves $(\sim 70 \text{ Å in Vycor and } \sim 1000 \text{ Å in the Ag sinter})$. Although

TABLE II. The superfluid phase transition temperature T_C of bulk ³He (Ref. 15) compared with T_S^i (onset of the increase of the specific heat) and T_S^{max} (maximum of the specific heat) of liquid ³He confined to an Ag sinter. The superfluid fraction *n* of liquid ³He in the sinter is calculated from the specific-heat data; $\xi(T_S^{max})$, $\xi(T_S^i)$ are the coherence lengths at T_S^{max} (T_S^i).

-			
p (bar)	15.5	25.2	34.0
T_C (mK)	2.05	2.36	2.47
T_{S}^{i} (mK)	1.94	2.23	2.37
T_S^{\max} (mK)	1.60	1.95	2.10
n (%)	64 ± 5	63	53
$\xi(T_S^{\max})$ (Å)	470 ± 30	480	440
$\xi(T_S^i)$ (Å)	950±100	852	845

we do not have any detailed information about the pore size distribution in the sinter, we may explain the presence of a large pore size distribution as resulting from the particle size distribution of the Ag powder: a Gaussian fit to the particle size distribution as provided by the manufacturer⁹ results in a maximum at ~850 Å with a width of ~650 Å; these data might be considered as lower limits as the Ag powder is known to form larger clusters due to sintering processes even at room temperature.²⁵

For an interpretation of the specific heat results in the vicinity of the superfluid transition obtained for our ³He samples in the confinement of the Ag sinter, we discuss our data in more detail as it is illustrated in Fig. 7 by means of the measurements at p = 25.2 bar. In this figure, the temperature-independent contribution C_S has already been subtracted from the data leading to zero heat capacity for the extrapolated normal-fluid data (dotted line) at T=0 K. We assume that in each pore of the sinter the transition temperature is determined by the size of the pore; the smaller the pore, the lower the T_C . The distribution of the pore sizes in the sinter then leads to different phase transition temperatures in the temperature range $T_S^{\max} \leq T \leq T_S^i$. We have fitted the data by varying the amount of ³He, which becomes superfluid at a certain temperature T using the specific heat data of normal-fluid ³He in the sinter with the enhanced effective mass as listed in Table I. Further important underlying assumptions of our analysis (thus neglecting a possible correspondence to the findings of the specific heat in the liquid ⁴He/Vycor system as discussed above) are that the specific heat of the superfluid ³He in the sinter shows the same temperature dependence as bulk 3 He (Ref. 15) and that in all pores of same size the jump in the specific heat at the superfluid transition is of equal size as the jump observed in the bulk liquid.

This analysis of the specific heat provides an interesting result, which might explain some experimental observations obtained in investigations of other ³He properties: the best fit (solid curve) to the data in Fig. 7 is obtained with only a fraction of the ³He in the Ag sinter becoming superfluid (Table II), the remainder staying normal-fluid down to the lowest temperature achieved in our experiment. According to this analysis, about 40% of the ³He in the sinter remains normal-fluid and this amount should have an important influence on various properties as, e.g., the thermal conductivity of the liquid in the sinter or the thermal boundary resistance between liquid ³He and the sinter. Measurements of the thermal boundary resistance, for instance, performed by Ahonen, Lounasmaa, and Veuro²⁶ in the temperature range $0.4 \le T \le 10 \text{ mK}$ do not show a change in the temperature dependence even at the superfluid transition. This result could be interpreted in terms of a normal-fluid component near the wall of the sinter, which dominates the thermal boundary resistance.

Within experimental error, the superfluid fraction of ³He in the Ag sinter seems to be pressure independent (see Table II), in contrast to the observation of a decreasing superfluid density with decreasing pressure obtained by torsional oscillator measurements of Hall *et al.*¹² These authors related the decrease in superfluid density with decreasing pressure to the increase of the coherence length at lower pressure. However,

another explanation for a pressure-independent superfluid fraction is given by the following arguments.

The coherence length at a distinct temperature can be calculated according to

$$\xi(T,p) = \xi_0(p) \cdot \left(1 - \frac{T}{T_C(p)}\right)^{-1/2},$$
(3)

where ξ_0 is the zero-temperature coherence length given by

$$\xi_0(p) = \frac{h \nu_F(p)}{2 \pi k_B T_C(p)}.$$
 (4)

The pressure dependences of the Fermi velocity v_F and of the transition temperature T_C result in a pressure dependence of the zero-temperature coherence length ξ_0 , too. The coherence lengths at the characteristic temperatures T_s^i and T_s^{max} calculated with Eq. (3) and Eq. (4), however, do not exhibit a pressure dependence within the experimental error of our measurement; see Table II. From our data one may therefore conclude that independent on the pressure of the sample the onset of the increase of the specific heat (at T_{S}^{i}) and the onset of the superfluid phase transition of ³He in the sinter occurs at a temperature where the coherence length of superfluid ³He is about 900 Å, which is close to the radius of our sinter pores. It is interesting to note that the difference ΔT between the bulk transition temperature T_C and the temperature T_S^i at which the specific heat starts to increase is almost constant $\Delta T = (0.11 \pm 0.01)$ mK]. The striking agreement of this result with the findings of a torsional oscillator experiment of Tholen²⁷ in which a shift of the superfluid transition of liquid ³He in an Ag sinter of $\Delta T = 0.10$ mK (p = 5 bar), 0.17 mK (p=17 bar), 0.10 mK (p=24 bar) and 0.11 mK (p=28 bar)bar) compared to the bulk value was observed, could be interpreted as an indication for a different behavior at the superfluid transition of ³He in the sinter compared with the transition of ⁴He in Vycor (see discussion at the beginning of Sec. III C). The maximum of the specific heat (at T_s^{max}) is related to a pressure-independent coherence length of about 470 Å. We may therefore conclude that the amount of 3 He that undergoes the superfluid phase transition does not depend on the pressure of the sample.

Kjäldman, Kurkijärvi, and Rainer²⁸ have calculated the suppression of the transition temperature of superfluid ³He as a function of the size of an infinitely long cylindrical pore with diffusely scattering walls. Figure 8 shows the fractional depression of T_s^i and T_s^{max} in the Ag sinter as a function of pressure, compared to the theoretical curves obtained from the work of Kjäldman, Kurkijärvi, and Rainer using cylindrical pores of radius 600 and 1200 Å, respectively. Although the sinter structure is much more complicated than an ideal cylindrical form, we find good agreement in the pressure dependence between the theoretical and experimental results with values for the pore size which are comparable to our estimate of the pore size according to Ref. 8.

IV. SUMMARY

We have studied the specific heat of liquid ³He confined to an Ag sinter at pressures $4.8 \le p \le 34.0$ bar and in the temperature range $1 \le T \le 30$ mK. The measured specific

FIG. 8. Fractional depression of the superfluid transition temperatures assuming $T_C = T_S^i$ (\Box) and $T_C = T_S^{max}$ (\bullet) in the Ag sinter as a function of pressure. T_C^0 is the superfluid phase transition temperature of bulk ³He. The lines are theoretical curves for the fractional depression of the superfluid transition temperature in cylindrical pores with radii of 600 Å (dashed line) and 1200 Å (solid line) (Ref. 21).

heat of normal-fluid ³He in the confinement of the sinter pores shows enhanced values compared to bulk data. This increase can be explained as being the result of two contributions: (1) an enhanced effective mass of the quasiparticles in the restricted geometry of up to 20% of its value in the bulk liquid and (2) an additional temperature-independent part originating from the second layer of ³He on the substrate. Due to the much weaker interaction among the ³He quasiparticles in a liquid ³He-⁴He solution, we do not observe these features in our measurements of the specific heat of a mixture with the nominal ³He concentration x_3 = 1.0%. The transition into the superfluid phase of 3 He is strongly influenced by the confinement, too. In contrast to the bulk data, there is a much broader maximum in the specific heat for the liquid in the restricted geometry, and the position of the maximum is shifted to lower temperatures compared with the bulk transition temperature. We analyze our specific-heat data in the vicinity of the maximum in terms of phase transitions in the sinter pores with different transition temperatures determined by the coherence length and the sinter pore size. We conclude that only a fraction of $\sim 60\%$ of ³He becomes superfluid in the Ag sinter.

APPENDIX: INFLUENCE OF THE CLUSTER SIZE ON THE SPECIFIC HEAT

As discussed in the previous sections, when confined to the restricted geometry of an Ag sinter with an average pore size of about 1000 Å, the specific heat of normal-fluid ³He can be described by Landau's theory for a Fermi liquid with an enhanced effective mass and a temperature-independent contribution arising from the second layer of ³He on the substrate. The broadening of the transition into the superfluid phase can be related to the pore size, too. The observed features clearly indicate that the restriction to the dimension of

FIG. 9. Temperature dependence of the specific heat of ³He clusters in solid hcp ⁴He (\Box) (Refs. 7 and 8) and of ³He in an Ag sinter (\bullet , this work) at p = 34.0 bar.

 $\sim\!1000$ Å does not alter the phase (liquid or solid) significantly.

The situation becomes completely different when the confinement is further reduced to smaller geometries and the confining material is different from a metal sinter. We have performed measurements of the specific heat of clusters of ³He confined to pores in a matrix of solid hcp ⁴He which in turn is restricted to an Ag sinter. The size of these ³He clusters is estimated to be of order of 200 Å. In this appendix, we present a brief comparison of the very different behavior of ³He confined to both geometries. For detailed results on the measurements of the specific heat in the latter geometry, the reader is referred to Refs. 7 and 8. At p = 34.0 bar the specific heat of the 3 He clusters differs completely from the specific heat of liquid ³He in the Ag sinter (Fig. 9). At T < 10 mK, we observe an increasing specific heat of the ³He clusters with decreasing temperature with a maximum at around 1 mK, where the specific heat is about two orders of magnitude larger than the specific heat of ³He in the Ag sinter. The specific heat of the ³He clusters is dominated by solid ³He even at pressures significantly below

FIG. 10. Temperature dependence of the specific heat of ³He clusters in solid hcp ⁴He at p = 26.5 bar (\Box) (Refs. 7 and 8) and of ³He in an Ag sinter (\bullet , this work) at 25.2 bar.

the bulk ³He melting pressure (p_{melt} =34.4 bar at T=1 mK) and the maximum indicates the nuclear magnetic ordering of the solid ³He in the clusters.

The situation changes at lower pressure of the sample (26 bar; Fig. 10). Both the specific heat of the ³He clusters and the specific heat of ³He in the Ag sinter now show the linear temperature dependence of a Fermi liquid. However, in contrast to ³He in the Ag sinter there is no sign for a superfluid phase transition of the ³He in the clusters and the specific heat of the normal-fluid ³He in the clusters is larger than the specific heat of ³He in the sinter resulting in a larger effec-

- *Present address: Hahn-Meitner Institut Berlin, Glienicker Straße 100,
- D-14109 Berlin, Germany.
- ¹L. D. Landau, Sov. Phys. JETP **3**, 920 (1957).
- ²See for example, *The Physics of Liquid and Solid Helium*, edited by K. H. Benneman and J. B. Ketterson (Wiley, New York, 1976 and 1978), Vols. I and II.
- ³T. Chainer, Y. Morii, and H. Kojima, Phys. Rev. B **21**, 3941 (1980); V. Kotsubo, K. D. Hahn, and J. P. Parpia, Phys. Rev. Lett. **58**, 804 (1987); J. Xu and B. C. Crooker, *ibid.* **65**, 3005 (1990).
- ⁴B. Hébral, A. S. Greenberg, M. T. Béal-Monod, M. Papoular, G. Frossati, H. Godfrin, and D. Thoulouze, Phys. Rev. Lett. **46**, 42 (1980); E. Syskakis, Y. Fujii, F. Pobell, and H. Schroeder, J. Low Temp. Phys. **79**, 341 (1990).
- ⁵For a review of the properties of liquid ³He-⁴He mixtures, see, for example, C. Ebner and D. O. Edwards, Phys. Rep., Phys. Lett. 2C, 77 (1971).
- ⁶G. E. Watson, J. D. Reppy, and R. C. Richardson, Phys. Rev. **188**, 384 (1969).
- ⁷R. Schrenk, R. König, and F. Pobell, Phys. Rev. Lett. **76**, 2945 (1996).
- ⁸R. Schrenk and R. König (unpublished).
- ⁹Ag powder: Inabata Corp., Vacuum Metallurgical Ltd., Japan (nominal grain size 700 Å).
- ¹⁰S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc. **60**, 309 (1938).
- ¹¹R. J. Robertson, F. Guillon, and J. P. Harrison, Can. J. Phys. **61**, 164 (1983).
- ¹²T. Hall, S. M. Thoulen, K. R. Lane, V. Kotsubo, and J. M. Parpia, J. Low Temp. Phys. **89**, 897 (1992).

tive mass (³He cluster, $m_{\text{cluster}}^*/m_3 = 8.4$ at p = 26.5 bar; ³He in the Ag sinter, $m_{\text{sinter}}^*/m_3 = 5.6$ at p = 25.2 bar).

ACKNOWLEDGMENTS

We are very grateful for the support of and discussions with Professor F. Pobell. This work was supported by the HCM Large Scale Facility program of the European Community (Contract No. ERBCHGE-CT 92-0002) and by the Graduiertenkolleg Po88/13 of the Deutsche Forschungsgemeinschaft.

- ¹³G. S. Straty and E. D. Adams, Rev. Sci. Instrum. 40, 1393 (1969).
 ¹⁴F. Pobell, *Matter and Methods at Low Temperatures* (Springer-
- Verlag, Berlin, 1992), p. 204, and references therein.
- ¹⁵D. S. Greywall, Phys. Rev. B **33**, 7520 (1986).
- ¹⁶D. S. Greywall and P. Busch, Phys. Rev. Lett. **60**, 1860 (1988).
- ¹⁷A. Golov and F. Pobell, Phys. Rev. B 53, 12 647 (1996).
- ¹⁸S. Yorozu, M. Hiroi, H. Fukuyama, H. Akimoto, H. Ishimoto, and S. Ogawa, Phys. Rev. B **45**, 12 942 (1992).
- ¹⁹H. C. Chocholacs, R. M. Mueller, J. R. Owers-Bradley, Ch. Buchal, M. Kubota, and F. Pobell, in *Proceedings of the 17th International Conference of Low Temperature Physics*, edited by U. Eckern, A. Schmid, W. Weber, and H. Wuhl (North-Holland, Amsterdam, 1984), p. 1247.
- ²⁰See, e.g., J. P. Harrison, J. Low Temp. Phys. **37**, 467 (1979); S. M. Tholen and J. M. Parpia, Phys. Rev. Lett. **68**, 2810 (1992).
- ²¹D. F. Brewer, J. Low Temp. Phys. **3**, 205 (1970).
- ²²See, e.g., J. D. Reppy, J. Low Temp. Phys. 87, 205 (1992), and references therein.
- ²³See, e.g., C. W. Kiewiet, H. E. Hall, and J. D. Reppy, Phys. Rev. Lett. **35**, 1286 (1975); M. H. W. Chan, K. I. Blum, S. Q. Murphy, G. K. S. Wong, and J. D. Reppy, *ibid.* **61**, 1950 (1988); A. Tyler, H. A. Cho, and J. D. Reppy, J. Low Temp. Phys. **89**, 57 (1992).
- ²⁴G. M. Zassenhaus, A. Tyler, and J. D. Reppy, Czech. J. Phys. Suppl. S1 46, 147 (1996).
- ²⁵H. Franco, J. Bossy, and H. Godfrin, Cryogenics 24, 477 (1984).
- ²⁶A. I. Ahonen, O. V. Lounasmaa, and M. C. Veuro, J. Phys. (Paris), Colloq. C6, 265 (1978).
- ²⁷S. M. Tholen, Ph.D. thesis, Cornell University, 1992; see also Ref. 12 and second reference in Ref. 20.
- ²⁸L. H. Kjäldman, J. Kurkijärvi, and D. Rainer, J. Low Temp. Phys. 33, 577 (1978).