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Critical behavior of the two-dimensional Ising model in a transverse field:
A density-matrix renormalization calculation

M. S. L. du Croo de Jongh and J. M. J. van Leeuwen
Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands

~Received 9 September 1997!

We have adjusted the density-matrix renormalization method to handle two-dimensional systems of limited
width. The key ingredient for this extension is the incorporation of symmetries in the method. The advantage
of our approach is that we can force certain symmetry properties to the resulting ground-state wave function.
Combining the results obtained for system sizes up to 3036 and finite-size scaling, we derive the phase-
transition point and the critical exponent for the gap in the Ising model in a transverse field on a two-
dimensional square lattice.@S0163-1829~98!00214-8#
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I. INTRODUCTION

The calculation of ground-state properties of a quant
system with many degrees of freedom has been explore
several means. Exact diagonalization is usually limited
fairly small sized systems. Monte Carlo methods are har
extend to zero temperatures and/or are seriously hamp
by sign problems in the wave function~in particular for fer-
mionic degrees of freedom!. Recently White1 has introduced
an algorithm, which bears some analogy with the renorm
ization technique in the sense that wave functions of lar
systems are constructed hierarchically from smaller com
nents. It has received the name density-matrix renormal
tion group ~DMRG!, although the group character is n
where present and even the link with renormalization
induced by spatial rescaling is rather weak. The DMR
method has achieved remarkable accuracy for a numbe
systems notably those of a one-dimensional (d51) charac-
ter. Although there is a physically acceptable rational for
algorithm, its limitations are not well understood. In partic
lar the restriction of the success tod51 systems is of an
empirical nature, while theoretically the renormalization id
would equally well work in higher dimensions. As note
earlier the method performs poorest2,3 near a quantum phas
transition. According to O¨ stlund and Rommer3 this has to do
with the hierarchical nature of the ground-state wave fu
tion, which is at odds with the algebraic correlations in
critical system.

In this paper we study the Ising model in a transverse fi
~ITF! as a model system for a quantum phase transition o
two-dimensional square lattice. It has the advantage to
exactly soluble ind51 dimensions which helps checkin
accuracies for the method we use. Straightforward appl
tion of the DMRG methods yields highly accurate results
this case. The real challenge isd52 dimensions where the
phase transition has the same complexity as that of ad53
dimensional classical Ising model. Here straightforwa
brute force application of the DMRG technique does n
yield convincing results and sophistication is called for. S
some results ond52 dimensional spin system have be
achieved by White.4

In this paper we grow the system with a whole band
570163-1829/98/57~14!/8494~7!/$15.00
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step instead of just one site~see Fig. 1!. This approach al-
lows us to implement the translational symmetry in theW
direction in a similar fashion as Xiang5 has done for the
Hubbard model.

The layout of this paper is as follows: First we introdu
the ITF. The critical behavior of this model is discussed ne
After that, we shift our attention to the DMRG. We make
link with perturbation theory and show the limitations of th
method as a consequence of the environment, partC. After-
wards our implementation is described. Finally, we pres
the results of the calculations: On one hand, the accura
achieved and on the other hand, the critical properties of
ITF.

II. THE ITF

Since the beginning of the 1960s, the ITF has been s
ied. In first instance, the purpose was to model specific m
terials like KH2PO4 crystals. With the introduction of the
renormalization group in the 1970s, an other interest in t
model has arisen. As there exist a simple relation to a c
sical system, the ITF is used as a vehicle to extend
knowledge of critical phenomena from classical spin syste
to quantum systems. Chakrabarti, Dutta, and Sen6 have re-
cently summarized the properties of the ITF. For further d

FIG. 1. The systems we consider are of dimensionsL3W where
L52W,3W,5W,20 and W52, . . . ,6. The system contains thre
parts: A left-hand partA ~shaded!, an intermediate bandB ~black!,
and a right-hand partC ~white!. Actually the figure obscures tha
for L52W,3W,20 the systems are periodical in both directions.
every DMRG step partA andB are contracted.
8494 © 1998 The American Physical Society
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tails we refer to them. We will only mention those properti
here that are of explicit use to our calculations.

A. The model

Consider a two-dimensional~2D! square lattice with
lengthL and widthW. The lattice is periodic in both direc
tions and each lattice site contains a spin-1

2 . The Hamiltonian
is given by

HITF5(
i 51

L

(
j 51

W

@2JSi , j
x ~Si 11,j

x 1Si , j 11
x !1HSi , j

z #, ~2.1!

where theSi , j
a are the usual Pauli spin matrices satisfying

@Si , j
a ,Si 8, j 8

b
#52id i ,i 8d j , j 8eabgSi , j

g , a,b,g5x,y,z.
~2.2!

As only the ratioH/J is important, we fixJ at J51 and
takeH>0 ~H<0 being equivalent!.

This model is translation and reflection symmetric in bo
directions. Moreover, the symmetry operationSi , j

x →2Si , j
x ,

Si , j
y →2Si , j

y and Si , j
z →Si , j

z leaves the model invariant. Th
operator associated with this isS5exp„ip/2(( i , jSi , j

z

1LW)…. It samples the total number of spins pointing u
wards and returns whether it is oddS521, or evenS511.
We call thisS the spin-reversal operator. The ground state
an eigenfunction of all these symmetry operations.

If H→0, we end up with a simple 2D Ising model. Th
ground state is degenerate; all spins point either up or d
in theSx direction. The associated phase is the classical
dered phase. By taking a rotation in the lowest energy sp
we can obtain states that are even in spin reversal (S511)
or odd (S521). In the other extreme, 1/H→0, free spins in
an external field remain. The ground state is unique and
all spins pointing down in theSz direction. This is the refer-
ence state for the quantum-disordered phase and has
S511. The lowest excitation differs from the ground sta
by the reversal of one spin. So it belongs to the classS521.
We will extensively study the energy gapD between the
lowest excitation ~in S521! and the ground state~in
S511!; D5Eex2Egr .

There is a phase transition between the classical ord
and the quantum-disordered state. A clear signature of
phase transition is the disappearance of the gapD, which
occurs for a critical valueH5Hc .

B. Critical behavior

As mentioned before, the ITF is closely related to a cl
sical Ising model. It can be mapped onto an anisotropic Is
model in one dimension higher. In the current situation
resulting classical model is of sizeL3W3`. It contains a
weak couplingK' in the L3W plane and a strong Ising
coupling K' in the remaining direction@exp(2K')5«H,
K'5«J with «!1#. Chakrabartiet al.6 give an overview of
the procedure. For our purposes the most important co
quences are:

~i! The correlation lengthj in the strong-coupling direc
tion corresponds to the inverse of our gapD (j;D21).

~ii ! The reduced temperaturet5(T2Tc)/Tc corresponds
to our reduced fieldh5(H2Hc)/Hc (t;h).
-
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The well-known relationj;t2zn transforms intoD;hzn.
In the 3D anisotropic Ising model the dynamical expone
z51. We use this in the further discussion. The stand
finite-size scaling methods as described in Ref. 7 can
applied here. The classical scaling relatio
j(t,W21)5bj(b1/nt,bW21), for fixed aspect ratio,
L/W5const, becomes

D~h,W21!5
1

b
D~b1/nh,bW21! , ~2.3!

where corrections to scaling have been neglected. We
setb5W and obtain the scaling expression

WD~h,W21!5D~W1/nh,1!, ~2.4!

showing thatWD only depends on the combinationW1/nh.
So for h50 all linesWD cross at the same value;

WD~0,W21!5D~0,1!. ~2.5!

This gives usHc . If we differentiate Eq.~2.4! with respect to
h and seth50 afterwards, we obtain

S 12
1

n D lnS W

W11D52 lnS Dh~0,W21!

Dh@0,~W11!21# D . ~2.6!

From this we can extractn.

III. THE DMRG METHOD

The DMRG method was formulated by White.1 As it is
not a renormalization-group method in the traditional sen
it could perhaps better be named an iterative basis trunca
method. Gehring, Bursill, and Xiang8 provide an excellent
introduction in the application of the DMRG to 1D spin sy
tems. Here we will not be so extensive. Two important fe
tures of the method are discussed and our approach is
lined.

A. Limitations by the environment

In his original papers White1 already stressed the impo
tance of a sufficient number of states in the environme
Still, we will elaborate further on this point for two reason
First, for our method this requirement is even more rest
tive. Second, we believe that this expansion will clarify ce
tain aspect better.

The essence of the DMRG can be described as follo
Consider a system consisting of two parts,A andB. More-
over, suppose we have an approximate ground-state w
function of the combined systemuf0&5( i j f i j u i &u j &. The
bases$u i &% on A and$u j &% on B do not have to be complete
We want to reduce the number of basis states in partA,
preserving the ground-state wave functionuf0& as well as
possible. This approximation touf0& we nameuf̃0& and it
can be expanded as

uf̃0&5(
a j

f̃a j ua&u j &, ~3.1!

where $ua&% spans only a subspace of$u i &%. Preserving the
ground state means that
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uuf0&2uf̃0&u2 ~3.2!

is minimal.
The solution to this problem can be obtained by mean

simple algebra;1 Construct the density matrixr i i 8
5( jf i j f i 8 j and select the eigenvectorsnW a with the largest

eigenvaluesla; rWW •nW a5lanW a. The new basis is now given
by ua&5( in i

au i &.
A truncation error

p512(
a

la5uuf0&2uf̃0&u2 ~3.3!

is introduced to give an indication of the effectiveness of
procedure. On basis of experience this truncation error is
to be a measure of the error in the calculated energy w
respect to the exact result.

There is a peculiarity that was only briefly mentioned
White.1 Suppose we want to use this selection scheme
obtain as many states in partA as we already have in partB,
presuming that there were more states inA initially. Define
ub j&5( if i j u i &. The ground state can be transformed in
this set;

uf0&5(
i j

f i j u i &u j &5(
j

ub j&u j &. ~3.4!

Thus by orthonormalizing the set$ub j&%, we obtain a basis
set for A in which the wave function can exactly be repr
duced. A reformulation of this is: Consider aua& such that
^b j ua&50 for all ub j&. We know thatua&5( in i

au i &, thus

^b j ua&5(
i 8

f i 8 jn i 8
a

50 ~3.5!

and

(
i 8

r i i 8n i 8
a

5(
i 8 j

f i j f i 8 jn i 8
a

50. ~3.6!

nW a is a zero eigenvector ofrWW . Keeping the subspace spann
by theub j& would make the truncation errorp equal to zero.
This lack of choice only becomes worse in the case wh
symmetries are implemented; not just the total number
nonzero eigenstates is fixed, but even within a specific s
metry class the number of nonzero eigenstates is dictate
the states in the environment. Later on, we will make t
explicit for the systems we consider.

B. The convergence in the perturbative regime

The vital question for the DMRG is the convergence
function of the number of statesm included. Apart from the
experimental observation by Liang and Pang9 that for a given
accuracy, the number of states needed in a single part o
system grows exponentially with the widthW of the system,
there is fairly little known about what drives the conve
gence. Here we present a connection with perturba
theory, that resolves this matter in the weak- and strong-fi
limits ~H!1 and 1/H!1!.

Consider the quantum-disordered phase. Split the Ha
tonian into a unperturbed partH05H( i , jSi , j

z and a perturba-
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tion V52( i , jSi , j
x (Si 11,j

x 1Si , j 11
x ). We split the periodical,

rectangular system of sizeL3W again in two parts;A andB
of sizesl 3W and (L2 l )3W wherel is an arbitrary length
smaller thanL. They both contain 2W spins that border the
other part. The unperturbed ground stateu0& has all spins
pointing down in theSz direction. It is the direct product o
two equivalent states restricted toA andB; u0&5u0&Au0&B .
We know that H0u0&52HLWu0&5E0u0&. Perturbation
theory yields

uf0&5u0&1
1

E02H0
Vu0&1OS 1

H2D . ~3.7!

The perturbation flips a pair of neighboring spins. This p
can be in a single part or it can cross the border between
parts. In the latter case the spins are adjacent across
boundary between partA andB. Define$ua&A% to be the set
of states with the flipped pair in partA. Idem for $ub&B%.
Moreover let$un&A% be the set with one spin flipped on th
nth boundary site withB and define in an equivalent mann
$un&B%. The perturbation expansion can now be rewritten

uf0&5u0&Au0&B1
1

2H S (
a

ua&Au0&B1(
b

u0&Aub&B

1(
n

un&Aun&BD 1OS 1

H2D
5S u0&A1

1

2H (
a

ua&AD S u0&B1
1

2H (
b

ub&BD
1

1

2H (
n

un&Aun&B1OS 1

H2D . ~3.8!

As H@1, it is necessary to reproduceall these terms for an
accuracy which is equivalent to the first-order perturbat
theory. The minimal number of states needed in partA is
therefore 1 for the first term in Eq.~3.8! plus 2W for all the
boundary terms. We have confirmed this prediction exp
itly in both the small and largeH limit ( H51/50,50).

The same line of reasoning also holds for the second-
higher-order perturbation terms. We expect for an error co
parable to thenth order perturbation theory thatm;Wn,
dE;(1/H)n. This is always an upper bound for number
statesm needed,m,Wn for a given accuracydE;(1/H)n.
Only when the different orders in perturbation theory b
come distinguishable in size—the limit of largeH—the
equivalence holds. Through combinatorics even the pre
tors can be calculated.

It is thus important to limit the number of interactio
terms between the two parts. Transformation of the prob
to momentum space, as Xiang5 did, leads to a large numbe
of interaction terms between the parts and relatively ma
states will be needed to reproduce the perturbation theo

C. Exploiting the symmetries

We consider systems of sizesL3W. The lengthL is ei-
ther a multiple ofW, L52W,3W,5W, or it is fixed,L520.
The width W is varied fromW52 to W56. The maximal
system we study thus contains 63305180 spins. For
L52W,3W and 20 a torus is constructed by imposing pe
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odical boundary conditions in both directions. ForL55W
the system follows Fig. 1 more genuinely; it is periodical
the width direction and open in the length direction. T
system is split in a left-hand and a right-hand part, b
containing m states. A intermediate band, containing t
complete basis of 2W states, separates them. This is depic
in Fig. 1.

The Hamiltonian of such a system contains many symm
tries that we can incorporate in our calculation. The gene
form of the included symmetry operators is that they are
direct product of three components. Each component act
one part of the system only. For example, consider the tra
lation operatorT in the width direction. This operator is th
direct product of three translations in the individual par
T5TATBTC . The same holds for the reflectionR in the same
direction, R5RARBRC , and the spin-reversal operato
S5exp„ip/2(( i , jSi , j

z 1LW)…5SASBSC .
The ground stateuf0& of the system is translational, re

flection, and spin-reversal invariant;Tuf0&5Ruf0&5Suf0&
5uf0&. For systems of infinite size in the classical order
region~L,W→` andH!1!, it will become degenerate with
a state that is spin-reversal antisymmetric. In order to t
advantage of the symmetries, the bases of partsA, B, andC
are chosen to be eigenvectors of the symmetry operatoT
andS. R is used later on. So if$ua&%, $ub&%, $uc&% are the
bases of the individual parts@not to be mixed up with the
notation used in Eq.~3.8!# then

TAua&5eikaua&, SAua&5saua&. ~3.9!

Similar relations hold for the other two sets. Thus

uf0&5(
abc

fabcua&ub&uc& ~3.10!

and application of the symmetry operations together with
~3.9! yields

ka1kb1kc50 mod 2p, ~3.11!

sasbsc51. ~3.12!

It is also possible to set up the program to find the low
state in other symmetry classes by forcing other values t
0 and 1 in the equations above.

The Hamiltonian can be written as the sum of Hamil
nians within the separate parts:HA , HB , andHC combined
with interactions between parts:HAB , HBC , and HCA ;
H5HA1HB1HC1HAB1HBC1HCA . To show how to
implement the symmetries, we will discuss one elemen
both types.

First HA : It is translational and spin-reversal invarian
thus

^a8uHAua&5^a8uTA
21HATAua&5ei ~ka2ka8!^a8uHAua&

5^a8uSA
21HASAua&5sa8sa^a8uHAua&

5^a8uHAua&dsa8 ,sa
dka8 ,ka

. ~3.13!

It only contains elements within symmetry classes, as
would expect.

SecondHAB : Once again, it is translational and spi
reversal invariant. Moreover it can be written as
h

d
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e
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d
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f

e

HAB52 (
n51

W

Sl ,n
x Sl 11,n

x

52 (
n51

W

~TATB!2n11Sl ,1
x Sl 11,1

x ~TATB!n21,

~3.14!

where l is the length of partA. Si , j
x flips a spin, so

Si , j
x S1SSi , j

x 50. Inserting this and Eq.~3.9! in Eq. ~3.14!
gives

^a8u^b8uHABua&ub&52W^a8uSl ,1
x ua&^b8uSl 11,1

x ub&

3dka81kb8 ,ka1kb
dsa8 ,2sa

dsb8 ,2sb
.

~3.15!

This substantially reduces the computational effort. Fina
the reflection operatorR is used to make matrix elemen
like ^a8uSl ,1

x ua& real. Naturally we could have used this la
symmetryR more, but it only reduces the effort by a facto
of 4 while making the program far more complex.

D. The implementation

Now we focus on the procedure itself. It is tempting
use the 1D DMRG method directly: a site is replaced by
band. The ground stateuf0& of the entire systemABC is
calculated and the optimal basis for blockAB is selected
through the density matrix. However, one runs into sev
difficulties as a consequence of the first remark on
DMRG. It is instructive to reveal the reason: Using the n
tation above, we defineubc&5(abfabcua&ub&. We know that
Tuf0&5Suf0&5uf0&, thus

TATBubc&5e2 ikcubc&,

SASBubc&5scubc&. ~3.16!

The distribution over the symmetry classes in partC forces
the selected states in blockAB to be in ‘‘conjugate’’ classes.
To overcome this problem, we need to increase the num
of states in partC. In that case we can really make a sele
tion and shift into important symmetry classes.

In the 1D procedure the solution is to add one extra site
the environment. The number of states in the environmen
then doubled. In our setup this would correspond to add
an extra band betweenB andC. This is computationally far
too expensive. We now introduce variants on White
infinite-size and finite-size algorithms1 that increase the num
ber of states in the partC.

First we consider our infinite-size approach. We on
have to describe one step in the process as it is an induc
method. We have a basis ofm states for a system of lengthl .

~i! We construct the combined system as depicted in F
2~a! by taking this basis in partA and C together with the
complete basis in the intermediate bandB. (L52l 11)

~ii ! We calculate the ground stateuf0& and obtainm basis
states for a system of lengthl 11 by orthonormalizing
$ubc&%.

~iii ! Suppose that blockAB has f symmetry classes. To
every symmetry class we addm/ f basis states constructe
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randomlyfrom them2W states inA andB. We end up with
m1 f •m/ f 52m basis states for a system of lengthl 11.

~iv! In partA we now take them basis states for a system
of length l and in partC we take the newly constructed 2m
states for lengthl 11. (L52l 12) This yields the configura
tion in Fig. 2~b!.

~v! We calculate the ground stateuf0& and obtain 2m
basis states for lengthl 11 by orthonormalizing$ubc&%. We
replace the basis of partC by this basis and repeat this ste
a couple of times (;3).

~vi! We selectfrom the 2m basis states for lengthl 11 m
states on basis of the density matrix.

Now we have returned to the original situation with t
exception thatl has increased by one. The new ingredien
thus to addm random states to the basis and iterate until
result has converged.

In the same line our finite-size approach lies. Suppose
have basis sets ofm states for lengthsl ,L2 l 21 and
L2 l 22, whereL is now fixed and independent ofl .

~i! We take the basis forl in partA, the basis forL2 l 21
in part C and the complete basis of the band in partB. See
Fig. 3~a!.

~ii ! We calculate the ground stateuf0& and obtain a basis
for length l 11 by orthonormalizing$ubc&%.

FIG. 2. An inductive step in the infinite-size procedure cons
of a startup to obtain an initial approximation for states in a sys
of lengthl 11 and iterative calculations to make the basis conver
The numbers in the rectangle are the number of states in the p
The intermediate band B always contains the complete basis oW

states.

FIG. 3. An inductive step in the finite-size procedure also c
sists of a startup to obtain an initial approximation for states i
system of lengthl 11. Afterwards we move back and forth betwee
lengthsl and l 11 to make this converge.
s
e

e

~iii ! In the same way as in the infinite-size algorithm w
addm randomly chosen states to this basis.

~iv! In partC we take the 2m basis states for lengthl 11
and in partA the m states for lengthL2 l 22. This is de-
picted in the first of the two pictures in Fig. 3~b!.

~v! We calculate the ground stateuf0& and obtain 2m
basis states forL2 l 21.

~vi! In part C we take the 2m basis states for length
L2 l 21 and in partA the m states for lengthl ; see the
second picture in Fig. 3~b!.

~vii ! We calculate the ground stateuf0& and obtain 2m
basis states forl 11. These last four steps are repeated
couple of times (;3).

~viii ! We selectfrom the 2m basis states for lengthl 11
m states on basis of the density matrix.

Once again we have returned to our starting posit
while increasing the lengthl by one. By sweeping through
the system we can therefore systematically improve the
sis. This method converges at a similar speed as the
approach; After three sweeps through the system the fi
result is achieved.

The computational effort scales asm3L(2W/W). In gen-
eral m*2W. This clarifies the bound on the width. The a
ternative is to follow Liang, Pang,9 and White4 by adding
one site per step. We can then still useS. The calculation
would scale asm3L(W2/22). Our approach includes th
symmetry requirements of the ground state and up toW;8
it is similar in speed as theirs. Applying our method to mo
els where the number of particles or total spin is conser
instead ofS, the calculations can been substantially reduc
and systems of widthsW.6 are pulled within reach.

The largest calculation,W56, L518, m5200 took 48 h
of computer time perH value~at 462 SPECfp92!. To deter-
mine the gapD two such points are needed~S511 and
S521!.

IV. RESULTS

We have performed two kinds of calculations: First, w
made a check on the accuracy of the method. Second
have calculated the gapD for various widthsW, aspect ra-
tio’s L5xW and fieldsH in order to find through finite-size
scaling the phase-transition pointHc and the critical expo-
nentn.

A. The accuracy of the energies

The strict method to determine the error in the ene
dEm for given number of statesm is to compare the result
Em with the exact valueEgr ; dEm5Em2Egr . This would
limit us to small systems of sizes comparable to 636. In the
literature9 it is noted that the errordE decreases exponen
tially with the number of statesm included. We confirm that
statement explicitly for these small systems. Moreover
use this feature to test the accuracy for far larger syste
The energyEm is compared with the result for a larger num
ber of states. For instancem,128; dEm'Em2E128. The
error dEm is largest near the phase transition as can be s
in Fig. 4. Mind the logarithmic scale.
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As the phase transition occurs nearH53, we takeH53
as an example to study the dependence of the errordE on the
width W. The errordEm increases exponentially with grow
ing width W ~Fig. 5!.

B. The phase transition and the critical exponent

The phase-transition pointHc is determined through Eq
~2.5!. We plot WD versusH ~Figs. 6 and 7!. The curves
would intersect precisely atHc , if it were not for corrections
to scaling. These become quite large whenW52,3. After-
wards we use formula~2.6! to obtainn at the intersection of
the curves for consecutive widthsW. The results are listed in
Table I. ForW56 andL52W,3W we are at the limit of our
precision, when we takem5128 states. We therefore s
m5200 in this case.

Apart from these periodical systems, we have also con
ered systems where the periodical connection betweenA and

FIG. 4. The accuracy of the DMRG method for different sta
m ~numbers in graph! as function of the fieldH. The system is
periodical in both directions with dimensionsW54 and L520.
The reference value is taken from a DMRG calculation w
m564.

FIG. 5. The accuracy of the DMRG method for given number
statesm ~numbers in graph! as function of the widthW. H53 and
L520. The system is periodical in both directions. The refere
value is taken from a DMRG calculation withm5128.
d-

C is removed. The removal of this boundary connection h
two effects: First, the accuracy of the calculated energies
increase substantially as the size of the interacting bound
is halved. Second, the corrections to scaling will increase.
make up for this second effect, we have to resort to fa
large systems;L55W. This is depicted in Fig. 8.

From the values in Table I we note that the corrections
scaling for n are still fairly large for these system size
(;5%). Wefound that these corrections could not be co
pensated by introducing an irrelevant scaling field in the
lation ~2.3!.

V. CONCLUSION

In this paper we have presented an adaption of the DM
method to two-dimensional spins systems. We follow t
route of adding complete bands instead of single sites to
system. The latter was done by Liang, Pang,9 and White.4

This modification allows us to force a translational symme
in the width direction. The advantage of implementing th
symmetry is that a ground state with specific translatio

s

f

e

FIG. 6. The scaled gapWD as function of the fieldH for aspect
ratio L52W. W52,3,4,5,6. The curves become steeper with
creasing widthW. The crossings for consecutive widths are e
circled. The system is periodical in both directions.m5128, for
W52,3,4,5 andm5200 for W56.

FIG. 7. Idem as Fig. 6 with now the ratioL53W.
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properties can be targeted. Moreover, the space in which
ground state is sought is reduced substantially. This is e
cially useful in systems with Goldstone modes or simi
gapless excitation spectra where the lowest excitations
long to different symmetry classes than the ground state

The computational effort still remains similar to the a
proach of adding single sites as the larger space of the b
~2W instead of 2! is offset by three reductions: First, th
ground state can be written more compactly~a factorW re-
duction!. Second, we only need to apply one operatorSx per
boundary instead ofW operators. Third, the subsystem~part
A! grows with a full band instead of a single site per st
~factor W!.

We have only considered systems of widths up toW56.
In models where the total spin or the number of particles
conserved, we can go to larger widths.

We observe that at criticality, the number of statesm
needed for a given accuracydE/E grows exponentially with
the widthW, in full agreement with Liang and Pang.9 More-
over, we have proven that far enough from the phase tra
tion the method will reproduce perturbation theory.

The procedure does not get stuck at local minim
Whether this is also the case for more complicated mode
unclear at present. White and Scalapino10 have studied the
2D t-J model using the straightforward extension of the 1

TABLE I. The phase-transition pointHc and the critical expo-
nent n. We take Hc to be the value where
WD(W21)5(W11)D@(W11)21#. n is calculated through Eq
~2.6!. The first two aspect ratio’sL52W,3W are with periodical
boundary conditions, the lastL55W is with open boundary condi
tions in the length direction.

L52W L53W L55W
W Hc n Hc n Hc n

2–3 3.113 0.74 3.110 0.73 3.101 0.74
3–4 3.068 0.69 3.067 0.68 3.062 0.69
4–5 3.054 0.67 3.053 0.67 3.051 0.67
5–6 3.049 0.66 3.047 0.65 3.046 0.66
he
e-
r
e-

nd

s

si-

.
is

method and they found that this convergence was an iss
The gapD we have calculated is a nice example of the u

of symmetry classes. The results for the critical propert
Hc53.046 andn50.66, are in reasonable agreement w
the series expansions of Pfeuty and Elliott11 and with the
cluster Monte Carlo calculations of Blo¨te.12

As yet, this method is not as accurate as the more tr
tional methods like Monte Carlo simulations. The accura
could be improved when a larger width could be handled
including several hundreds of states. At present this wo
require the use of a supercomputer. Still it has to be stres
that the DMRG can handle problems that are out of reach
Monte Carlo simulations due to the ‘‘sign problem.’’
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FIG. 8. The scaled gapDW for systems with open boundar
conditions in the length directions and periodical in the width
rection.L55W andm564.
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2A. Drzewiński and J. M. J. van Leeuwen, Phys. Rev. B49, 403
~1994!.
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