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Critical behavior of the two-dimensional Ising model in a transverse field:
A density-matrix renormalization calculation
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We have adjusted the density-matrix renormalization method to handle two-dimensional systems of limited
width. The key ingredient for this extension is the incorporation of symmetries in the method. The advantage
of our approach is that we can force certain symmetry properties to the resulting ground-state wave function.
Combining the results obtained for system sizes up t&@0and finite-size scaling, we derive the phase-
transition point and the critical exponent for the gap in the Ising model in a transverse field on a two-
dimensional square latticES0163-18208)00214-§

[. INTRODUCTION step instead of just one sitsee Fig. 1 This approach al-
lows us to implement the translational symmetry in ie
The calculation of ground-state properties of a quantundirection in a similar fashion as XiaAdias done for the
system with many degrees of freedom has been explored Byubbard model. . . .
several means. Exact diagonalization is usually limited to The layout of this paper is as follows: First we introduce
fairly small sized systems. Monte Carlo methods are hard téhe ITF. The critical behavior of this model is discussed next.
extend to zero temperatures and/or are seriously hamperé¥ter that, we shift our attention to the DMRG. We make a
by sign problems in the wave functigim particular for fer-  link with perturbation theory and show the limitations of the
mionic degrees of freedomRecently Whité has introduced Method as a consequence of the environment, asfter-

an algorithm, which bears some analogy with the renormalwards our implementation_ is described. Finally, we present
;he results of the calculations: On one hand, the accuracies

ization technique in the sense that wave functions of large hieved and on the other hand. the critical "  th
systems are constructed hierarchically from smaller compogc Ieved and on the other hand, the critical properties ot the

nents. It has received the name density-matrix renormaliza-

tion group (DMRG), although the group character is no-

where present and even the link with renormalization as Il. THE ITE

induced by spatial rescaling is rather weak. The DMRG ) o

method has achieved remarkable accuracy for a number of Since the beginning of the 1960s, the ITF has been stud-
systems notably those of a one-dimensiont=() charac- ied. In first instance, the purpose was to model specific ma-

ter. Although there is a physically acceptable rational for theterials Iil;e |t<_I-bPO4 cry.stailr?. \{\g;ho the int:ﬁdu_ctiton OI _th(tah.
algorithm, its limitations are not well understood. In particu- renormaiization group in the S: an otner Interest in this

- . model has arisen. As there exist a simple relation to a clas-
lar the restriction of the success tb=1 systems is of an _. : .
sical system, the ITF is used as a vehicle to extend the

empirical nature, while theoretically the renormalization ideaknowledge of critical phenomena from classical spin systems

WOT.Id :ehquallythwzll ch)rk n hlgr:?:éhdlmensmnsi AS r;]oted to quantum systems. Chakrabarti, Dutta, and®Seve re-
earlier the method pertorms poo ear a quantum phase cently summarized the properties of the ITF. For further de-

transition. According to 6lund and Rommétthis has to do
with the hierarchical nature of the ground-state wave func-
tion, which is at odds with the algebraic correlations in a

A B C
critical system.
In this paper we study the Ising model in a transverse field
(ITF) as a model system for a quantum phase transition on a
two-dimensional square lattice. It has the advantage to be w
exactly soluble ind=1 dimensions which helps checking
accuracies for the method we use. Straightforward applica-

tion of the DMRG methods yields highly accurate results in
this case. The real challengeds-2 dimensions where the
phase transition has the same complexity as that @8 L
dimensional classical Ising model. Here straightforward, FG. 1. The systems we consider are of dimenslorsV where
brute force application of the DMRG technique does not| = 2w 3w 5W.20 andW=2, .. ., 6. The system contains three
yield convincing results and sophistication is called for. Still parts: A left-hand par& (shaded] an intermediate ban8 (black),
some results oml=2 dimensional spin system have beenand a right-hand pa€ (white). Actually the figure obscures that
achieved by Whité. for L=2W,3W,20 the systems are periodical in both directions. At
In this paper we grow the system with a whole band pervery DMRG step pard andB are contracted.
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tails we refer to them. We will only mention those properties  The well-known relatioré~t~?" transforms intaA ~h?”.

here that are of explicit use to our calculations. In the 3D anisotropic Ising model the dynamical exponent
z=1. We use this in the further discussion. The standard
A. The model finite-size scaling methods as described in Ref. 7 can be

applied here. The classical scaling relation
£, W Y =bé(bYt,bW 1), for fixed aspect ratio,
L/W=const, becomes

Consider a two-dimensional2D) square lattice with
lengthL and widthW. The lattice is periodic in both direc-
tions and each lattice site contains a spiriFhe Hamiltonian
is given by 1

-1\_ v —1

Lw A(hW™H)= bA(b h,bw™), 2.3

= —JS*(SK. .. X .
H'TF_izzl ,Zl (=380 Shay + S ) FHS ) 2D where corrections to scaling have been neglected. We may
o ) o setb=W and obtain the scaling expression
where theS'; are the usual Pauli spin matrices satisfying
WA (h,W~ 1) =A(WYh,1), (2.4
[,

B A
i ,Si,’j,]—2|5i'iy5]-’j/e

apySty, B Y=XY,Z.
s . H s anl/v
(2.2 showing thatWA only depends on the combinatioh™~"h.
So forh=0 all linesWA cross at the same value;
As only the ratioH/J is important, we fixJ at J=1 and
takeH=0 (H=<0 being equivalent WA(OW™1)=A(0,1). (2.5
This model is translation and reflection symmetric in both
directions. Moreover, the symmetry operatish,— — S/,

S§——8&; and & — S leaves the model invariant. The

operator associated with this isSzexp(iq-r/Z(Eiijﬁj ( 1)|
n

This gives ud.. . If we differentiate Eq(2.4) with respect to
h and seth=0 afterwards, we obtain

+LW)). It samples the total number of spins pointing up- 1-—
wards and returns whether it is odd&= — 1, or evenS= + 1. v
We call thisS the spin-reversal operator. The ground state iSfrom this we can extraot.
an eigenfunction of all these symmetry operations.

If H—0, we end up with a simple 2D Ising model. The
ground state is degenerate; all spins point either up or down
in the S* direction. The associated phase is the classical or- The DMRG method was formulated by WhiteAs it is
dered phase. By taking a rotation in the lowest energy spac@ot a renormalization-group method in the traditional sense,
we can obtain states that are even in spin revesal{1) it could perhaps better be named an iterative basis truncation
or odd (S=—1). In the other extreme, H/— 0, free spins in method. Gehring, Bursill, and XiaAgrovide an excellent
an external field remain. The ground state is unique and hagtroduction in the application of the DMRG to 1D spin sys-
all spins pointing down in thé&? direction. This is the refer- tems. Here we will not be so extensive. Two important fea-
ence state for the quantum-disordered phase and has valties of the method are discussed and our approach is out-
S=+1. The lowest excitation differs from the ground statelined.
by the reversal of one spin. So it belongs to the clgsss— 1.

We will extensively study the energy gap between the A. Limitations by the environment
lowest excitation(in S=—1) and the ground statdin
S=+1); A=E—Eg.

There is a phase transition between the classical order
and the quantum-disordered state. A clear signature of thiE
phase transition is the disappearance of the fapvhich
occurs for a critical valu¢d=H,.

( Ap(OW™ 1)
M Ao WD) T

). (2.6

Ill. THE DMRG METHOD

In his original papers Whifealready stressed the impor-
tance of a sufficient number of states in the environment.
till, we will elaborate further on this point for two reasons:
irst, for our method this requirement is even more restric-
tive. Second, we believe that this expansion will clarify cer-
tain aspect better.

The essence of the DMRG can be described as follows:
Consider a system consisting of two parssandB. More-

As mentioned before, the ITF is closely related to a clasover, suppose we have an approximate ground-state wave
sical Ising model. It can be mapped onto an anisotropic Isingunction of the combined systempg)=Xj; ¢;|i)|j). The
model in one dimension higher. In the current situation thebaseg|i)} on A and{|j)} on B do not have to be complete.
resulting classical model is of sidex Wx «. It contains a We want to reduce the number of basis states in part
weak couplingK, in the LXW plane and a strong Ising preserving the ground-state wave functiab,) as well as
coupling K, in the remaining directiofexp(~K,)=¢H,  possible. This approximation tas,) we name| o) and it
K, =&eJ with e<1]. Chakrabartit al® give an overview of can be expanded as
the procedure. For our purposes the most important conse-
guences are: ~ ~ i

(i) The correlation lengtt¥ in the strong-coupling direc- |¢0>:§j bajl i), (3.0
tion corresponds to the inverse of our gaf{é~A1).

(i) The reduced temperatute= (T—T.)/T. corresponds where{|a)} spans only a subspace {i)}. Preserving the
to our reduced fieldh=(H—H.)/H. (t~h). ground state means that

B. Critical behavior
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| o) — | bo)|? (3.2 ftion V=—3;;5(S51;+ S j+1). We split the periodical,
rectangular system of sizexX W again in two partsA andB

f sizesl XW and (L —1)XW wherel is an arbitrary length

. The solution to this problem can be obFained by.means 0Emaller tharL. They both contain ¥/ spins that border the
simple  algebrd, Construct the depsﬂy MatriXpiir  other part. The unperturbed ground stég has all spins
=2j¢j;¢irj and 3select the eigenvectors with the largest  pointing down in theS? direction. It is the direct product of
eigenvalues\®; p- v*=\%v%. The new basis is how given two equivalent states restricted foandB; |0)=|0)A|0)g.

is minimal.

by |a)=3;v7i). We know that H,|0)=—HLW|0)=E,|0). Perturbation
A truncation error theory yields
— 1 1
p=1-2 \“=[¢0)~[ o)l (33 [b0)=l00+ g =5 MO +O| 2] 37

is introduced to give an indication of the effectiveness of thelhe perturbation flips a pair of neighboring spins. This pair
procedure. On basis of experience this truncation error is saig" be in @ single part or it can cross the border between both
to be a measure of the error in the calculated energy witfparts. In the latter case the spins are adjacent across the
respect to the exact result. boundary between pa#& andB. Define{|a),} to be the set

There is a peculiarity that was only briefly mentioned by Of states with the flipped pair in pas. Idem for {|b)g}.
White! Suppose we want to use this selection scheme tloreover let{[n),} be the set with one spin flipped on the
obtain as many states in paxtas we already have in pas, nth boundary site wittB and define in an equivalent manner
presuming that there were more statediinitially. Define {In)g}. The perturbation expansion can now be rewritten
|Bj)=Ziij|li). The ground state can be transformed into

this set; [ o) =]0)al0)g+ %(g |a)A|0)B+% |0)alb)g

|¢o>=§ ¢ij|i>|j>=$ 1B)Ii)- (3.4

+3 Inns) +0|

Thus by orthonormalizing the sét3;)}, we obtain a basis

set for A in which the wave function can exactly be repro- 1

duced. A reformulation of this is: Consider|@) such that :(|O>A+ 2H ; |2)a
(Bjla)=0 for all | B;). We know thaja)=ZX;»{'|i), thus

1005+ 5 3 10|

1 1
. + o 2 IMalne+0 F) (3.9
(Bilay=2 ¢rjv;=0 (35 "
V As H>1, it is necessary to reproduedl these terms for an
and accuracy which is equivalent to the first-order perturbation

theory. The minimal number of states needed in paiis

E pn/via/ZZ ¢ij¢i/jviar=0 (3.6) therefore 1 for the first term in Eq3.8) plus 2W for all the
i’ i’

boundary terms. We have confirmed this prediction explic-
. - itly in both the small and largél limit (H=1/50,50).
v® is a zero eigenvector gf. Keeping the subspace spanned The same line of reasoning also holds for the second- and
by the|,3j> would make the truncation errgrequal to zero. higher-order perturbation terms. We expect for an error com-
This lack of choice only becomes worse in the case wherparable to thenth order perturbation theory tham~W",
symmetries are implemented; not just the total number oE~ (1/H)". This is always an upper bound for number of
nonzero eigenstates is fixed, but even within a specific symstatesm neededm<W" for a given accuracyfE~ (1/H)".
metry class the number of nonzero eigenstates is dictated nly when the different orders in perturbation theory be-
the states in the environment. Later on, we will make thiscome distinguishable in size—the limit of large—the

explicit for the systems we consider. equivalence holds. Through combinatorics even the prefac-
tors can be calculated.
B. The convergence in the perturbative regime It is thus important to limit the number of interaction

terms between the two parts. Transformation of the problem
Sto momentum space, as Xiahdid, leads to a large number

Iauxncgr(i)nrleor:tg:itr::g:\?:t:o(: statf:nlngﬁg?%ﬁgﬁgr?r?v?ﬁ of interaction terms between the parts and relatively many
P y 9 g states will be needed to reproduce the perturbation theory.

accuracy, the number of states needed in a single part of the
system grows exponentially with the widid of the system,
there is fairly little known about what drives the conver-
gence. Here we present a connection with perturbation We consider systems of sizés<x W. The lengthL is ei-
theory, that resolves this matter in the weak- and strong-fielther a multiple ofw, L=2W,3W,5W, or it is fixed, L = 20.
limits (H<1 and 1H<1). The widthW is varied fromW=2 to W=6. The maximal
Consider the quantum-disordered phase. Split the Hamilsystem we study thus containsX@0=180 spins. For
tonian into a unperturbed pdak,= HEi,jSizyj and a perturba- L=2W,3W and 20 a torus is constructed by imposing peri-

C. Exploiting the symmetries
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odical boundary conditions in both directions. Ho=5W W
the system follows Fig. 1 more genuinely; it is periodical in Hapg=— 2, S St 1n
the width direction and open in the length direction. The n=1
system is split in a left-hand and a right-hand part, both w
containingm states. A intermediate band, containing the == (TaTg) "18F 8K 1 TaTe)" Y,
complete basis of ¥ states, separates them. This is depicted n=1 ' '
The Hamiltonian of such a system contains many symme-
tries that we can incorporate in our calculation. The generavhere | is the length of partA. Sf; flips a spin, so
form of the included symmetry operators is that they are theS|;S+SS;;=0. Inserting this and Eq(3.9) in Eq. (3.14
direct product of three components. Each component acts agives
one part of the system only. For example, consider the trans-
lation operator7 in the width direction. This operator is the  (a'[(b’|Hagla)|b)=—W(a’| S’ |a)(b’|S; 1 ,/b)
direct product of three translations in the individual parts; Ny s s
T="T,Tg7: . The same holds for the reflectiGhin the same k' Tkpr Kot Ky @Sar =538 =5y
direction, R=RsRgRc, and the spin-reversal operator (3.15
S=exp(i 7T/2(2|’]S|Z'J+LW)):SASBSC . . . . )
The ground statée,) of the system is translational, re- This subst_antlally reduce_:s the computational e_ffort. Finally:
flection, and spin-reversal invariari] ¢) = R| o) = S| o) t.he reflection operatoR is used to make matrix elements
= |¢bo). For systems of infinite size in the classical orderedlike (8'|S;/a) real. Naturally we could have used this last
region(L,W— o andH<1), it will become degenerate with symmet.ryR more, but it only reduces the effort by a factor
a state that is spin-reversal antisymmetric. In order to tak@f 4 while making the program far more complex.
advantage of the symmetries, the bases of part8, andC
are chosen to be eigenvectors of the symmetry operdtors D. The implementation
andS. R is used later on. So if[a)}, {|b)}, {|c)} are the Now we focus on the procedure itself. It is tempting to
bases of the individual parfsiot to be mixed up with the se the 1D DMRG method directly: a site is replaced by a
notation used in Eq(3.8)] then band. The ground statep,) of the entire systemABC is
— aiky _ calculated and the optimal basis for blogk8 is selected
Tala)=ela),  Sla)=s[a). 3.9 through the density matrix. However, one runs into severe

Similar relations hold for the other two sets. Thus difficulties as a consequence of the first remark on the
DMRG. It is instructive to reveal the reason: Using the no-
_ tation above, we defing.) == spanda)|b). We know that
= alb)lc 3.1 c ab%abcl
|¢O> gc ¢abc| >| >| > ( O) 7‘[¢0>28| ¢O>:|¢O>! thus
and application of the symmetry operations together with Eq. T T —e ke
(3.9 yields a7s|Bc) |Be)
Ky+ky+k,=0 mod 2, (3.1 SaSsl Be) = Sel Be)- (3.16

The distribution over the symmetry classes in parforces
SaSpSe= 1. (312 the selected states in blo&kB to be in “conjugate” classes.

It is also possible to set up the program to find the lowesiTo overcome this problem, we need to increase the number

state in other symmetry classes by forcing other values thaf states in parC. In that case we can really make a selec-

0 and 1 in the equations above. tion and shift into important symmetry classes.

The Hamiltonian can be written as the sum of Hamilto- In the 1D procedure the solution is to add one extra site to
nians within the separate partq,,, Hg, andHc combined the environment. The number of states in the environment is
with interactions between part§{,g, Hgc, and Hc,;  then doubled. In our setup this would correspond to adding
H=Hp+Hg+Hc+Hpag+ Hgct+Hca. TO show how to an extra band betweed andC. This is computationally far
implement the symmetries, we will discuss one element ofoo expensive. We now introduce variants on White's

both types. infinite-size and finite-size algorithrhthat increase the num-
First H,: It is translational and spin-reversal invariant, ber of states in the pa@.
thus First we consider our infinite-size approach. We only
_ have to describe one step in the process as it is an inductive
(a'|Hala)=(a'| Ty "HaTp|a) =€/ ka ka')(a’ | H,|a) method. We have a basis uf states for a system of length

A , (i) We construct the combined system as depicted in Fig.
=(@'|Sp HaSal2) =sa15a(a’[ Hal2) 2(a) by taking this basis in pa and C together with the
=(a'|Hala)de., < k., . (3.13 complete basis in the intermediate baBd(L=21+1)

a’*%a Ta’a (i) We calculate the ground stdté,) and obtairm basis

It only contains elements within symmetry classes, as onstates for a system of length+1 by orthonormalizing

would expect. {1Bo)}-

SecondH,g: Once again, it is translational and spin- (i) Suppose that blockB hasf symmetry classes. To
reversal invariant. Moreover it can be written as every symmetry class we adud/f basis states constructed
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A B C (iii) In the same way as in the infinite-size algorithm we
o) stars-up ‘ » . m | addm randomly chosen states to this basis.
(iv) In partC we take the Bh basis states for lengtht 1
) S - and in partA the m states for lengti —I—2. This is de-
l 1 l . . . . A
picted in the first of the two pictures in Fig(i8.
A B C (v) We calculate the ground stajeb,) and obtain 2n
. . basis states for —1—1.
b) iteration ‘ AL . Zm | (vi) In part C we take the #n basis states for length
* ] > P N 11 e L—1—-1 and in partA the m states for lengtH; see the
+

second picture in Fig.(®).
FIG. 2. An inductive step in the infinite-size procedure consists  (vii) We calculate the ground stateb,) and obtain 2n
of a startup to obtain an initial approximation for states in a systenbasis states fot+1. These last four steps are repeated a
of lengthl +1 and iterative calculations to make the basis convergecouple of times ¢ 3).
The _numbers_in the rectangle are the rjumber of states in the parts. (viji ) We selectfrom the 2m basis states for lengtht+ 1
The intermediate band B always contains the complete basi¥' of 2m states on basis of the density matrix.
states. Once again we have returned to our starting position
while increasing the length by one. By sweeping through
m-+f-m/f=2m basis states for a system of length 1. the sys_tem we can therefore system_at@cally improve the ba-
(iv) In partA we now take then basis states for a system sis. This method converges at a similar speed as the.lD
of lengthl and in partC we take the newly constructedr? approach; After three sweeps through the system the final

states for length-+ 1. (L=2I+2) This yields the configura- €Sult is achieved. w
tion in Fig. Zb). The computational effort scales asL(2"/W). In gen-

W . oy -
(v) We calculate the ground stateb;) and obtain 2n eralm=2"Y. This clarifies the bound on the width. The al-

basis states for lengtht 1 by orthonormalizing| ;). We  t€mative is to follow Liang, Pangand Whité by adding

replace the basis of pa@ by this basis and repeat this step ON€ Site per step. We can then still useThe calculation
a couple of times € 3). would scale asm°L(W</2°). Our approach includes the

(vi) We selectfrom the 2m basis states for lengtht 1 m symmetry requirements of the ground state and up/te8
states on basis of the density matrix. it is similar in speed as theirs. Applying our method to mod-

Now we have returned to the original situation with the els where the number of particles or total spin is conserved
exception that has increased by one. The new ingredient is

randomlyfrom them2% states inA andB. We end up with

instead ofS, the calculations can been substantially reduced

thus to addn random states to the basis and iterate until theand systems of Widthw>6 are pulled within reach.
result has converged. The largest calculation=6, L=18, m=200 took 48 h

In the same line our finite-size approach lies. Suppose w8 computer time peH value(at 462 SPECfp92 To deter-
have basis sets o states for lengthd,L—I—1 and ™Mine the gapA two such points are needdd=-+1 and

L—1—2, whereL is now fixed and independent bf S=-1).
(i) We take the basis fdrin partA, the basis foL. —1—1

in part C and the complete basis of the band in furtSee

Fig. 3a). IV. RESULTS
(i) We calculate the ground staté,) and obtain a basis

We have performed two kinds of calculations: First, we
for lengthl + 1 by orthonormalizind|8.)}. P

made a check on the accuracy of the method. Second, we
have calculated the gap for various widthsW, aspect ra-

4 5 < tio's L=xW and fieldsH in order to find through finite-size
@) start-up m . m scaling the phase-transition poiHt. and the critical expo-
nent .
l 1 L1
C B A A. The accuracy of the energies
| 2m - m | The strict method to determine the error in the energy
. OE,, for given number of states is to compare the results
b) iteration l+1 1 L-l-2 En with the exact valueEy, ; SE,,=E;,,—Eg . This would
A B! c limit us to small systems of sizes comparable 0@ In the
. literaturé it is noted that the errobE decreases exponen-
m 2m l tially with the number of states included. We confirm that
; ; Iy statement explicitly for these small systems. Moreover we

use this feature to test the accuracy for far larger systems.

FIG. 3. An inductive step in the finite-size procedure also con-The energyEr, is compared with the result for a larger num-
sists of a startup to obtain an initial approximation for states in aber of states. For instanae<<128; 6E,,~E—E;3. The
system of length+ 1. Afterwards we move back and forth between error 6E,, is largest near the phase transition as can be seen
lengthsl andl+1 to make this converge. in Fig. 4. Mind the logarithmic scale.
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FIG. 4. The accuracy of the DMRG method for different states

m (numbers in graphas function of the fieldH. The system is
periodical in both directions with dimensio=4 and L= 20.
The reference value is taken from a DMRG calculation with
m=64.

As the phase transition occurs né#ar 3, we takeH=3
as an example to study the dependence of the éEarn the
width W. The errordE,, increases exponentially with grow-
ing width W (Fig. 5).

B. The phase transition and the critical exponent

The phase-transition poitd; is determined through Eg.
(2.5. We plot WA versusH (Figs. 6 and Y. The curves
would intersect precisely &, if it were not for corrections
to scaling. These become quite large wh#i-2,3. After-
wards we use formulé2.6) to obtainv at the intersection of
the curves for consecutive widthg. The results are listed in
Table I. Forw=6 andL=2W,3W we are at the limit of our
precision, when we taken=128 states. We therefore set
m=200 in this case.

FIG. 6. The scaled gag/A as function of the fieldH for aspect
ratio L=2W. W=2,3,4,5,6. The curves become steeper with in-
creasing widthW. The crossings for consecutive widths are en-
circled. The system is periodical in both directioms=128, for
W=2,3,4,5 andn= 200 for W=6.

C is removed. The removal of this boundary connection has
two effects: First, the accuracy of the calculated energies will
increase substantially as the size of the interacting boundary
is halved. Second, the corrections to scaling will increase. To
make up for this second effect, we have to resort to fairly
large systemsl. =5W. This is depicted in Fig. 8.

From the values in Table | we note that the corrections to
scaling for v are still fairly large for these system sizes
(~5%). Wefound that these corrections could not be com-
pensated by introducing an irrelevant scaling field in the re-
lation (2.3).

V. CONCLUSION

In this paper we have presented an adaption of the DMRG
method to two-dimensional spins systems. We follow the

Apart from these periodical systems, we have also considroute of adding complete bands instead of single sites to the

ered systems where the periodical connection betweand

-2.0

x4

x8
X186
8 x32
X
X186 x32 x84
64

x32

log, ,(SE/E)

x64
X16

x64

x32

s

w
FIG. 5. The accuracy of the DMRG method for given number of

statesm (numbers in graphas function of the widttW. H=3 and

L=20. The system is periodical in both directions. The reference
value is taken from a DMRG calculation with=128.

system. The latter was done by Liang, Pdrand White?

This modification allows us to force a translational symmetry
in the width direction. The advantage of implementing this
symmetry is that a ground state with specific translational

3.6

3.4

WA

3.2

3.0
3.04

3.06 3.08 3.10

H

FIG. 7. Idem as Fig. 6 with now the ratlo=3W.
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TABLE |. The phase-transition poirii; and the critical expo-
nent ». We take H, to be the value where
WA(W™ Y =(W+1)A[(W+1)"1]. v is calculated through Eq.
(2.6). The first two aspect ratio'e =2W,3W are with periodical
boundary conditions, the lakt=5W is with open boundary condi-
tions in the length direction.

L=2W L=3W L=5W
W H. v H¢ v H¢ v

2-3 3.113 0.74 3.110 0.73 3.101 0.74
3-4 3.068 0.69 3.067 0.68 3.062 0.69
4-5 3.054 0.67 3.053 0.67 3.051 0.67
5-6 3.049 0.66 3.047 0.65 3.046 0.66

3.04 3.06 3.08 3.10

properties can be targeted. Moreover, the space in which the H

ground state is sought is reduced substantially. This is espe- FIG. 8. The scaled gapW for systems with open boundary

cially useful in systems with Goldstone modes or similarconditions in the length directions and periodical in the width di-

gapless excitation spectra where the lowest excitations beection.L=5W andm=64.

long to different symmetry classes than the ground state. . _
The computational effort still remains similar to the ap- Method and they found that this convergence was an issue.

proach of adding single sites as the larger space of the banc% The gapA we have calculated is a nice exa.mp'e of the use
(2W instead of 2 is offset by three reductions: First, the of symmetry classes. The rgsults for the critical propertl'es,
ground state can be written more compactyfactorw re- e~ 3-046 andv=0.66, are in reasonab;]% agreement with
duction. Second, we only need to apply one oper&bdper ﬂ:e tserllas ?[xpgnsllonslofllifeuty ?ngmﬁ' tnd with the
boundary instead dfV operators. Third, the subsystepart cluster Monte L.arlo cajculations o

A) grows with a full band instead of a single site per step,. As yet, this "?eth"d IS not as agcurat(_a as the more tradi-
(factor W), tional methods like Monte Carlo simulations. The accuracy

We have only considered systems of widths upte 6 could be improved when a larger width could be handled by

In models where the total spin or the number of particles islnclu_dmg several hundreds of states. At present this would
. require the use of a supercomputer. Still it has to be stressed
conserved, we can go to larger widths.

We observe that at criticality, the number of statas that the DMRG can handle problems that are out of reach of

needed for a given accuradg/E grows exponentially with Monte Carlo simulations due to the "sign problem.
the widthW, in full agreement with Liang and Parfidviore-
over, we have proven that far enough from the phase transi-
tion the method will reproduce perturbation theory. We thank H. W. J. Blte for guiding us through the clas-

The procedure does not get stuck at local minimasical analog and supplying the state-of-the-art value of the
Whether this is also the case for more complicated models isritical field H.. We are indebted to W. van Saarloos for his
unclear at present. White and Scalapthbave studied the continued interest in the problem and his suggestions for the
2D t-J model using the straightforward extension of the 1Dscaling analysis.
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