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The B;g Raman spectrum of the two-dimensior&s 1/2 Heisenberg model is discussed within Loudon-
Fleury theory at both zero and finite temperature. The eXacD spectrum for lattices with up to>66 sites
is computed using Lancaaexact diagonalization. A quantum Monte Cai@MC) method is used to calculate
the corresponding imaginary-time correlation function and its first two derivatives for lattices with up to 16
X 16 spins. The imaginary-time data are continued to real frequency using the maximum-entropy method, as
well as a fit based on spin-wave theory. The numerical results are compared with spin-wave calculations for
finite lattices. There is a surprisingly large change in the exact spectrum going frar@ 6X 6 sites. In the
former case there is a single dominant two-magnon peak & 3.0, whereas in the latter case there are two
approximately equal-sized peaksadt]l=~2.7 and 3.9. This is in good qualitative agreement with the spin-wave
calculations including two-magnon processes on the same lattices. The spin-wave results for larger lattices
show how additional peaks emerge with increasing lattice size, and eventually develop into the well known
two-magnon profile peaked at/J~ 3.2 and with weight extending up t8/J~4.6. Both the Lancz®and the
QMC results indicate that the actual two-magnon profile is broader than the narrow peak obtained in spin-wave
theory, but the positions of the maxima agree to within a few percent. The higher-order contributions present
in the numerical results are merged with the two-magnon profile and extend up to frequehtie®. The
first three frequency cumulants of the spectrum are in excellent agreement with results previously obtained
from a series expansion around the Ising limit. Typical experiméyakpectra for LaCuQ, are only slightly
broader than what we obtain here. The exchange constant extracted from the peak po3iidd@8 K, in
good agreement with values obtained from neutron scattering and NMR experiments. We discuss the impli-
cations of our present results for more sophisticated theories of Raman scattering suggested recently.
[S0163-182698)07214-2

I. INTRODUCTION In contrast to these success stories, the experimental Ra-
man spectrufi~*® shows significant deviations from calcu-
The magnetic properties of the parent compounds of théations for the 2D Heisenberg mod&r'® Within this de-
high-T. cuprate superconductors can be well accounted foscription of the CuQ layers, the standard theory of Raman
by weakly coupled two-dimensional2D) Heisenberg scattering is based on the Loudon-FleubyF) coupling®
antiferromagnetd.Neglecting the weak interlayer coupling, between the light and the spin system. The coupling is ob-
the model is defined by the Hamiltonian tained in second order perturbation theory with virtual states
containing one doubly occupied site, and is giveR°By

H=J 'S (3>0), 1 A
UE,D 5 ) @ HLF:<2> (Bin- 61j)(Eour 1)) S+ §; - (2
]

Wh(jer§§ 'j a spin-1/2 ppe;rator at siie.orr]]t? square Iz?]ttice HereE;, andE, are the polarization vectors of the incoming
and(i, ) denotes a pair of nearest-neighbor sites. The MOty scattered light ana; is the unit vector connecting sites
well studied among the antiferromagnetic layered cuprates is andj. In terms of the eigenstatdn)} of the Heisenberg

2-6 \p i ¢ ; ~
La,CuG,, " with a Neel ordering temperatur§N~3QO K. model, the frequency dependence of the scattering intensity
For T>Ty, the temperature dependence of the spin correlaét inverse temperaturg is given by Fermi's golden rule:

tion length, measured using neutron scattefirig),in good

agreement with that of a single-layer Heisenberg model with 1 .

J~1500 K/® The spin-wave spectrum of the Heisenberg |(w)222 e PEnY, [(n|Helm)|28(w—[En—Ep).
model is well reproduced over the entire Brilloin zoteThe m " 3
NMR relaxation rates I/; and 1T ,¢, which probe the low- ©)
frequency spin dynamics, also show remarkable agreemeMost theoretical work has focused on the scattering in the
between experimenf and theory10-12 B,y Symmetry channel. This correspondsig along a di-
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agonal of the square lattice, atfg},,, perpendicular tcE;, . agreement with the first cumulant is actually worse, due to

The B, 4 coupling can thus be written as the significantly larger low-frequency weight. Hence, this re-
sult also has to be viewed with some caution.

Experimentally, significant scattering is also observed in

He= > S'S- 2SS, (4)  the A;y channef® With the standard LF coupling inelastic
(Lix (Lhy scattering in this symmetry is not possible for the Heisenberg
model with only nearest-neighbor interactions, since xhe

where(i, ] ), and(i, ), denote links in thex andy directions, _ o -
respectively. andy terms in Eq.(4) are added in this case amt| then

For La,CuQ,, the B, spectrum has a broad asymmetric commutes with the Hamiltonian. Adding a next-nearest-
peak atw~3J V\;ith a taﬁ extending tao~7—8J.13 In some neighbor term to the LF coupling leadsAq, scattering, but

H 2
cases there is a shoulderlike structureat4J. Within spin- &%Smg% tiﬁc()at;:ttaligetgiltghghsaenrineesﬁeffrfgo?\n tmg varaeggfngg dto
wave theory theéB,, scattering is dominated by two-magnon P ’ 9

excitations. The two-magnon profile is peaked arowre3J be a mechanism that could explain both g, and Aqq

in good aareement with the exoerimersl® However. the spectra. However, the narroB,, line shape obtained in
9 9 P : ’ other calculations remains an unresolved issue for this sce-

large Wid.th.Of th_e experimental spectrum has not been reprgg i, Including a next-nearest-neighbor terad, in the
duced within spin-wave theory. The first three frequency_cu1_|(,jlmi|tonian would also lead t4y, scattering, and probably
mu!ants of thg spectrum have .also. been calcqlated using z?broadene&lg spectrum. The relatively larg, intensity
series expansion e_lround the Isllng liffitand are in reason- seen experimentally would then likely require a larger
able agreement with the experimental values. The momenigan allowed by other experiments, but detailed calculations
obtained in spin-wave theory to orderSltwo magnon eX- have not been carried out within this model. Other interac-
citations only are in poor agreement with the series resultstions, such as the so called four-spin cyclical exchafiga,
which in principle include multimagnon contributions to all have also been suggested to account for the differences be-
orders. Unfortunately, the full frequency dependence is notween theory and experiment. Analytical calculations as de-
accessible with the series expansion method. Exact diagonahiled as those for the standard LF thedonly nearest-
ization has been used to compute the exact LF Raman profileeighbor interactions in both the Hamiltonian and the Raman
for small lattices™® For the 4<4 system there is a single operatof have also not yet been carried out within these
dominant two-magnon peak at'J=2.98. Weight present at theories.
w~5J has been attributed to four-magnon processes, but its It is clear that LF theory is not sufficient to capture all
relative strength is much smaller than the weight found exaspects of Raman scattering in layered cuprates. For ex-
perimentally in this frequency region. The tail at higher fre-ample, resonant scatteririgccurring when the frequency of
guencies is absent. Despite this, the first three frequency cilke incoming light is comparable to the charge-transfen gap
mulants are in approximate agreement with both experimentsan of course not occur within the Heisenberg mddel.
and the series expansion results. Resonance effects lead to a dependence of the line shape on
Canali and Girvift’ carried out a spin-wave expansion the frequencyw;, of the incident light. Chubukov and Fren-
including also four-magnon excitatioahich enter in order kel recently identified a “triple resonance” process which
S™2). The narrow width of the two-magnon peak was foundcan cause significant scattering aroune4J.%* The pre-
to be stable with respect to inclusion of the higher-orderdicted dependence of the triple-resonance cross-section is
processes. The relative contribution from four-magnon statesonsistent with experiments. Other, unexplained features
in this calculation is less than 3%. The high energy of thehave also been observed close to resonahtetypical ex-
four-magnon weight nevertheless leads to first and secongerimental situationgincident visible ligh}, w;, is close to
cumulants that are much closer to those obtained in the serigise resonance frequency. However, in some materials the
expansion and exact diagonalization studies. The spin-wavé&esidual” spectral features associated with the resonance
result for the third cumulant is, however, significantly largerbecome rather weak at the lowesy, accessible, as shown,
than the series expansion value. It was argued that this is dwgg., in a recent systematic study of thg dependence for
to interactions between four magnons that were neglected iRrBa,Cu, /Al :0,.% In these cases one can then expect an
the 18 calculation, and that the relative four-magnon con-LF-Heisenberg type theory to be an adequate starting point.
tribution must be~10% in order to reproduce the first three  Focusing on nonresonaBt  scattering, it is not yet clear
moments:’ The conclusion that there is less high-energywhat the actual line shape is within LF theory. As discussed
weight than in typical experimental spectra then still re-above, the two key questions of the width of the dominant
mains. However, the apparent inability of a very sophisti-two-magnon profile and the relative weight of the higher-
cated spin-wave calculation to fully capture the four-magnororder contributions above the two-magnon cutoff remain in-
processes raises some concerns about this approach for cebmpletely answered within spin-wave theory. The exact di-
culating the actual line shape. Furthermore, Chubukov andgonalization studies carried out so far are limited to lattices
Frenkel have recently questioned the stage at which the spio small for reliable quantitative extrapolation to the ther-
S was set to 1/2 in the previous spinwave calculations. Theynodynamic limit. There is hence a definite need for accurate
kept S large and carried out an expansion of the profilenonperturbative numerical calculations for larger lattices.
around its peak position before expanding i® &hd evalu- Conclusive results would provide a more solid basis for es-
ating the result aB=1/2. The two-magnon profile obtained timating effects not included in the LF-Heisenberg model. It
this way has a width almost three times larger than theshould also be noted that LF theory is the standard frame-
“standard” one, and the second frequency cumulant is therework in which Raman scattering has been interpreted also in
fore in better agreement with the series result. However, theeveral other low-dimensional antiferromagnet8=1/2
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systems®? A satisfactory resolution of the 2D Heisenberg continuation are discussed in Sec. IV. Effects of finite tem-

case would therefore be of more general interest as welperature are considered in Sec. V. In Sec. VI we summarize

Finally, knowing the exacB;, Raman spectrum should help and discuss our results and implications for mechanisms pro-

to shed light on the applicability of spin-wave theory for posed to lead to a broadening of tBegy profile. In an Ap-

calculations of dynamic processes involving excitations ofPendix we present some technical details of the QMC calcu-

more than one magnon. lation of the imaginary-time correlation function and its
Here we report new exact diagonalization results for sysderivatives.

tems with up to &6 spins, which is the largest currently

accessible with this method. We also obtain approximate Il. SPIN-WAVE THEORY

spectra for up to 18 16 spins by maximum-entropymax-

ent analytic continuation of quantum Monte Cari@MC) The Raman spectrum can be easily computed in the spin-

dNave approximation. Various improvements of the linear

?eactﬁﬁiqtlijgg?% Wtemhavsetzoggﬁ:sutllgteoﬁrrlmzsimz)éri)r?:r?gi?n eQL'\IQ spi.n—wave qalculation can be also appligd to Fhe Raman scat-
X : S o tering amplitude. For example, the residual interactions be-

correlation function and its first two derivatives at tempera-,[Ween spin waves, which play a crucial role in the Raman

tres low enough 1o give ground state results. The deriVaéxcited states car’1 be included at the RPA level. Here we

tivef_ aret_use(\jNas Isupplem.((ajntary informhation in thle anallytiaiscuss Iinear,spin-wave theory and the effect of. magnon-

continuation. We also consider a more phenomenological ap- : . :

proach of fitting the two-magnon profile obtained WithinRnagnon interactions on tf#,q spectrum. The primary pur-

spin-wave theory to the imaginary-time data, adding ose of the calculations discussed here is to qualitatively

Gaussian at hiaher frequency to model the hiaher-order co Inderstand the effects of finite size, which will be important
tributions. In o?der o ztud )t/he effects of te% erature Wg‘or interpreting the numerical results presented in the follow-
' y P '’ “"1ng sections. More sophisticated spin-wave calculations in-

ﬁfrglsy the QMC+ max-ent methods also at nonzero ternpera'cluding the quantum fluctuations of the ground state, as well

, . as final states with four magnons, have been carried out be-
We find that theB,q Raman spectrum of the>66 lattice fore, as discussed in the Introduction. Here we note some
has two dominant peaks at/J~2.7 and 3.9, in sharp con-

. ; . bl ith th lytical calculati f the R -
trast to the single dominant peak atJ=2.98 previously probiems wi © analytical caielrations ot the =aman pro

. oo file which motivate our renewed efforts to obtain accurate
found for the 4<4 lattice. These results are qualitatively non-perturbative numerical results
reproduced vv_|th|_n spin-wave theory including _only Wo- 1 the antiferromagnetic ground state we are considering,
magnon excitations and magnon-magnon interactiong

treated withi RPA schemespi it bosonic representation of the spin operators can be intro-
(r_ea ed within an schem PIN-Wave TesullS TeSem- 4,004 on each sublattice by using the usual Dyson-Maleev
bling the infinite-size two-magnon profile are seen only for

) . . transformatiorr®3’ On sublatticed, the transformation reads
much larger lattices. Using the QMC data, the first three

frequency cumulants in the thermodynamic limit can be re- S=s-a'a;, (5a)
liably estimated. They are in excellent agreement with the

previous series expansion resft®oth the Lancze and the ata

QMC results indicate that the dominant peakeat 3.3] is S'= \/2_S< 1- 2|_SI> a;, (5b)
slightly broader than the standard two-magnon profile, but

not as broad as the the one recently obtained by Chubukov _ T

and Frenkef* We find no evidence for a gap between the S = \/Z—Sa ' (50)

two-magnon profile and the higher-order contributions. Theyyhereal creates a boson, i.e., a spin-1 magnon, at isite
appear to be completely merged together and extend up T§imilarl3|/ on sublatticeB

w~=TJ.
Finite-temperature results far/J=<0.25 are very similar Si=-S+ bJ-TbJ- , (6a)
to the ground state results. For higher temperatures there is a

significant growth of the low-frequency spectral weight, as bt b;

also found in a previous exact diagonalization study of a SJ-+= \/Z_SqT 1- % ) (6b)
4x4 lattice®* We find that the temperature at which this

effect becomes significant decreases with increasing system -

size, due to the large finite-size gaps present in the smaller S = \/Z_SQ ' (60)
systems. As usual, as long as small fluctuations around thelNe

Overall, our results are in closer agreement with EXPerlyrdered phase are considered, one keeps only quadratic terms

fh the Hamiltonian(which are the dominant terms in aSL/

calculations, but we conclude that the Heisenberg-LF Specéxpansiom Therefore, in this approximation, the Hamil-

trum is nevertheless not quite as broad as typical experime%nian can be diagonalized by a Bogoliubov transformation
tal spectra. We argue that our results give more credibility tq : P

. . - . n terms of spin-wave excitation®r magnon
proposed broadening mechanisms involving phortéri%:3° P rt gnons

The rest of the paper is organized as follows. In Sec. Il we a=Uag+ugby, (7a)
review various spinwave calculations of tBg; Raman pro-
file. We also present results for small lattices, which are ﬁk:ukbk"'vkali (7b)

compared with exact diagonalization spectra in Sec. Ill. Our
T=0 results from QMC simulation and numerical analytic where the coefficientsX0) are given by
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We have defined,, == 2'¥ %Z as a sum over th& nearest L6
neighbors of the site at the origin. In our cdsquare latticg 8 7 | i
Y= (cosk,+cosk,)/2. The resulting well known linear spin- 6 i:,} ]
wave Hamiltonian reads al m i 1
[ ‘\' } ““\";\ i
Hsw= Eo+§k: o agat BLK), 8 5 0 } } ) 8 /‘\ "
= =
with the dispersion relationuk=JSZ\/1—y2k. Due to the 10 + 1
decomposition into two sublattices, the reciprocal space is ‘
reduced to the magnetic Brillouin zori®IBZ). 5| i |
The LF operator can be easily expressed as a quadratic \
form in terms of the spin-wave operators. At zero tempera- ’ } W l\
ture the ground state contains no bosons if magnon-magnon 0 ‘ L A
interactions are neglected so that, in a first approximation, 10 L=10 i
one only keeps constant terms or terms involving the cre-
ation of magnons, giving \ |
5 ; .
Hie=— aNSEou Ein (9) o
0 | e \141/.‘\,'[\\ - ; ‘\4‘
0 1 2 3 4 5
+2a83) (BquEn[Cosky(UR+0) —2uwi] o
(10 FIG. 1. Spin-wave theory results for tfg; Raman profile cal-
5 ot culated on small lattices with X L sites. The dashed curves are the
+ EQuEnl cosky(ug+vi) —2uivi]) ay By - (1D results with the interactions neglected, and the solid ones are with

interactions in the final states included at the RPA level. A damping

In the B,4 geometry, the matrix element is thus €=0.05] has been used to broaden théunctions.

fIHLi _ cosk,—cosk, 12 4] ‘ot
(fHel) = —7— . (12) Hin=~ 2 % Yeop@iBLB_p . (14)
The Raman intensity obtained from Fermi’s golden rule, EqFollowing Refs. 24 and 17 and expressing., as a function
(3), is then of its symmetric termsy,_,=7v¢ ¥y + ¥k Yp T % Y
+7% Y
(cosky—cosk,)?
I(“’)“; 1- 42 Sw—20y), (13 ¥i© = (cosky*cosky)/2 (15
where Q,=4JS\/1- 92 is the frequency of the magnon. Ye =(sinkex sink,)/2, (16)

This expression exhibits a divergenceaat-8JS since the it can be shown that multiple diffusion RPA series only con-

dens_|ty of states dlverge_s at the poundary of the_ .MBZ' tain terms involvingyS~ factors. The final RPA expression
It is well known that this result is strongly modified when : P
for the Raman intensity is given B

one takes into account the magnon-magnon interactions i
the final staté®1®1724n order 18, the Dyson-Maleev trans-

formation generates in the Hamiltonian quartic terms in the [(w)xIlm Lﬂ))} (17)
bosons operators. One way of treating this interaction is to 1+R(w)/4S

keep the termu]B] B a,,*%*"**which is responsible for with

multiple scattering of two magnons in the vacuum. This part

gives the dominant contribution to the magnon-magnon scat- 8J (cosk,—cos ky)2

tering coming from the region near the MBZ boundary R(w)=—~ = w0—2Q0.+ie (18)

where the density of states diverges. Further simplification

results from the vanishing of, at the MBZ boundary so that In the thermodynamic limit, Eq(18) for S=1/2 leads to a
it is reasonable to replacg, by zero for allk. This leads to narrow two-magnon peak arouna=2.78) which extends
an effective interaction of the forth up to w/J=4. In order to be able to directly compare spin-
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the first cumulant is actually significantly worse, due to the

much slower decay of the weight on the low-frequency side
of the peak. In fact, as seen in Fig. 2, the Chubukov-Frenkel
profile extended towards lower frequencies in a way similar

to the experimental spectrum, but the high-frequency tail is
still of course missing. The high-frequency scattering was

argued to be dominated by resonant scattering in typical ex-
perimental situations, and would hence not be explainable by
LF theory?*

To higher orders in B, magnons are present in the
ground state, and up to four magnons can be Raman excited
(the true ground state is a linear combination of states con-
taining any even number of magnons, and the full Dyson-
8 Maleev tranformed Raman operator can create or annihilate
one or two pairs of magnonsCanali and Girvin included
four-magnon excitationgorder 18%) but neglected interac-

in the thermodynamic limit, compared with the experimental spec-t'ons Involv_lng more than_ two ma_gn_oﬁé.'l’he two-ma_gn(_)n_
trum for La,CuOy, discussed in Ref. 2@old solid curvg. The solid ~ Profile obtained this way is very similar to the Canali-Girvin
curve corresponds to Eq18) with a spin-wave renormalization 1/S result discussed above. The relative contribution from
factor Z.=1.158. The dotted curve is the result by Canali andfour-magnon processes is less than 3%, but is likely strongly
Girvin, which includes also quantum fluctuations in the groundaffected by the neglected interactioridn fact, although the
state. The dashed line is the result by Chubukov and Frenkel, ogsmall four-magnon contribution is sufficiefttecause of its
tained by further expanding the line shafi®) in 1/S before setting  rather high energyto change the first and second frequency
S=1/2. All curves are normalized to one. The frequency scale ofcumulants to values in close agreement with the series ex-
the experimental spectrum has been adjusted to give a peak positigansion results, the third cumulant remains far off. It was
in rough agreement with the theoretical curves. argued that this inconsistency is due to the neglected inter-
actions among four magnoihich may even lead to bound

wave results with exact spectra obtained with the LasczoState$, and that such interactions would bring the four-
diagonalization method and approximate results of QMC andhagnon peak position down in frequerft?y?l’he relative
max-ent analytic continuatiofipresented in the following four-magnon weight would then have to increase~tt0%
two sectiong we have also evaluateéd?) for small lattices. in order to satisfy the first three moments. This rough esti-
Results forL X L clusters withL =4, 6, 8, and 10 are shown Mate may indicate that the approximations made in ti$8 1/
in Fig. 1, along with the corresponding noninteracting formcalculation could in fact be serious. In particular, it is not
(13). It is clear that the continuous absorption band for infi-clear that the two-magnon and four-magnon contributions
nite size is obtained from the accumulation of a series ofVill be well separated from each other if the four-magnon
peaks for increasing cluster sizes. However, the number o¥eight moves down and increases by a factor of 3 or more.
peaks is still very small even for a lattice of 100 sites. This, in turn, may lead to considerably stronger interference

In the above calculation the magnon-magnon interaction§ffects that may cause changes also to the upper edge of the
have only been included in the final two-magnon state. Théwo-magnon profilgwhich then no longer would arise from
main effect of interactions in the ground state is to renormalfWo-magnon excitations only _ _
ize the spin-wave velocityc— Z.c, where to order B the Ther_e are hence two major concerns with the spin-wave
renormalization factoZ,=1.158 and arises solely from the calculations that have to be addresd@diThe stage at which
normal ordering of the quartic magnon teriiddence, in a  Sis setto 1/2, leading to two very different two-magnon line
phenomenological way, theQ£orrections can be taken into shapes(2) The contrlbqtlons from fmql states including four
account by shifting the energy scale by a fadgr leading ~ ©F More magnons, which are very difficult to capture com-
to aB,4 profile peaked ato/J=3.22. However, Canali and pletely within spin-wave theory. !n this situation it is clearly
Girvin have shown that the renormalization in fact enters inUSeful to consider nonperturbative numerical methods. We
a nontrivial way in the expression for the Raman profile, andliSCuss two complementary approaches in the next two sec-
hence there are other effects as WélNevertheless, the end tONS.
result for S=1/2 does not differ much from Ed18) with
Z.=1.158, as shown in Fig. 1.

Chubukov and Frenkel have recently raised questions IIl. EXACT DIAGONALIZATION
about the stage at which one should Set1/2 in the spin-
wave calculation. They argued that one should first expan
the large-S expression for the Pf°f§;‘=7) around its peak  ajization algorithm. In this approach, the Raman spectrum
position, and only aft_er that s&= 1/27" The position of the i qhtained from a continued fraction,
maximum then remains approximately the same, but the pro-
file is considerably broader, as also shown in Fig. 2. The
better agre;azment with the frequency moments calculated by 1 1
Singh et al”™* was used as support in favor of the broader l(w)=——Im{ (O|Af c——————FAH0)}, (19
peak. However, it should be noted that the agreement with ™ w+Ep+ie—H

20

15 ¢

()

1.0 ¢

05 |

0.0

FIG. 2. Spin-wave theory results for tBg, two-magnon profile

In this section, we compute the exact Raman spectrum on
Qusters with up td\= 36 sites by use of the Lanczaliago-
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3 [ ] peak atw/J=~4.5 both in the spin-wave and the Lanszo
I N=16 results. This then suggests that it is a two-magnon peak, in
5 | /\ ] contrast to previous claims that it arises from a four-magnon
I state!® For the larger lattices there is visible weight extend-
1L / i ing up to w/J=~7, which is not present in the spin-wave
,/ results and hence is due to processes involving more than
0 L A N two magnons. For the %6 lattice the relative weight of
these contributions is about 10%.
2r J\ N=26 1 It is difficult to scale the full shape of the spectrum to
H infinite system size. The first few frequency cumulants can
i L )\ | be expected to converge rather quickly, however, and have
A also previously been calculated using a series expansion
I\ /‘\ method as already discussed. Tifta frequencymomentis
30 e B given by (at T=0)
| N=32 "
2r /\ i pn= fo doo"l(w). (20)

a The first cumulanM ;= p,, and forn>1,

M n_lfwd - | 21
N=36 (Mp) =53 o(o—p1)" (o). (21)

(\
| The results for &6 (4x4) are M;=3.524 (3.244, M,
f’ \ s{/ \ =0.8686 (0.797), andV;=0.9576 (1.141). The previous
L series expansion resififsare M;=3.58+0.06, M,=0.81
0, Mz Lo P “‘f‘”*g s +0.05, andM3=1.00t0.14. Hence, the 86 cumulants
off show an improved and good agreement with the series re-
sults. However, since there are significant differences be-
FIG. 3. Exact diagonalization results for tBa, spectrum for  tween the 44 and the 6<6 lattices, the results may still
different small lattices withN sites (solid curve$. The dashed change in the thermodynamic limit. Unfortunately, using
curves are the corresponding RPA—spin-wave results.sThac- also the results foN=26 and 32, the data do not fall on
tions of the exact results have been broadened using a darapingsmooth curvegsee Fig. 8 in the next sectiprand it is not
=0.1), and all the spectra are normalized to one. The spin-wavgypssible to extrapolate to the thermodynamic limit using
results have been given a smaller damping and a different normabmy these Lancz®results. In the next section we will cal-
ization in order to more clearly show the peak positions. culate the cumulants for much larger systems using QMC
data.

where |0) is the ground state of enerdy, which can be
easily calculated with the Lancganethod, ana is a small
imaginary part added to give a finite damping of hé&nc-
tions.

Results for several square and tilted lattices are shown in Real-frequency dynamic properties cannot be obtained di-
Fig. 3, along v_vith the RPA spin_—wave resul_ts discussed in th‘?ectly using QMC methods. Instead, the corresponding
previous section. We have shifted the spin-wave results by aginary-time dependent correlation function has to be cal-
the renormalization factor.—1.18 obtained using several ¢jated, and numerically continued to real frequency. For the
different numerical methods (this value is also in close Raman spectrum defined by E€B), the imaginary-time
agreement with the $f spin-wave valu&.=1.177"). Spin  fynction is given by ’
wave theory clearly correctly predicts the number of the
dominant peaks, which hence can be characterized as two-
magnon peaks. There are, however, some discrepancies in
the peak positions and their relative weights. Most notably, N AN 0 ) ) )
for the largest lattice (& 6), the separation between the two where H g(7) =€™Hre : The_ analytlt_: continuation to
peaks in the exact spectrum exceeds by a factor of more thdf@! frequency amounts to inverting the integral refation
1.5 that of the spin-wave result. This may well be an indica- 1
tion that the correct two-magnon profile is broader than the e —r0
standard profile obtained with spin-wave thedty’ G(n)= wj,xdwl(w)e ' 23
Whether or not it is as broad as that obtained by Chubukov
and Frenkelsee Fig. 2 cannot be determined from the re- With G(7) obtained only to within a statistical error from a
sults for these small lattices, however. We will return to thisQMC simulation, the spectruri{w) cannot be uniquely de-
important issue in the next section. termined. In the max-ent approach to this difficult

It can be noted that for the>44 lattice there is a small problem?#2a unique solution is defined as that minimizing

IV. QUANTUM MONTE CARLO AND MAXIMUM-
ENTROPY ANALYTIC CONTINUATION

G(7n) =(H(NH0)), (22)
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Q= %XZ_ as, (24)
whereS is the entropy of the spectrum,
s-— | delt@mii@im@). @9

defined with respect to a “default” modeh (bothl andm
are here assumed to be normalized to yni@( 7) is calcu-
lated for a discrete set of times. A givenl(w) corresponds
to unique values o6(7;) according to Eq(23). The devia-
tion from the actual calculate@qyc( ) is quantified byx?.
Since the statistical erroks; of Gouc(7;) at different times
are correlatedsee Fig. 13 in the Appendixx? should be
defined in terms of the inverse of the full covariance matrix
C,

xzziEj [G(7)) = Gome( ) 1C;; LG (7)) — Gome( 7).
' (26)

We here parametrize the spectrum in term&igf-200-400
equally spaced delta functior w — w;) for w;>0:

N

|<w>=§lli5<wi—w>, (27)
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In[g(7)]

log,y[6,,(1)]

4t
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T

FIG. 4. QMC results for Ifg(7)] (upper panel for different
system sizes, and the relative statistical errorsgéf) (lower
pane).

Enforcing known frequency moments has been previously
used to improve the resolution of the max-ent metffothe
derivative information goes beyond this by enforcing also

and a smooth continuous spectrum is then represented by tiige “moments” defined withr>0 in Eq. (29). The deriva-

curve connecting the amplitudés(or by giving theé func-
tions a width of the order of the frequency spacing, which
gives a very similar curye The negative part of the bosonic
spectrum is given by detailed balandé— w)=e #“|(w).
We use a flat default model fab>0. The parametew in
Eq. (24) is determined iteratively so as to satisfy the “clas-
sic” max-ent criterion, resulting ifjwithin the assumptions
of the max-ent methgdhe spectrum with the highest prob-
ability given the QMC data.

For calculatingG(7;) we use the stochastic series expan-

tives can of course be expected to improve on the max-ent
procedure only if they can be calculated accurately enough to
contain information not already present in the calculated
G(7). Typically, the statistical errors increase with increas-
ing derivative orden. In our case, the first two derivatives
appear to be useful, although spectra obtained with only
G(7) are not dramatically different.

Next, we present results for systems of sizgL, with
L=4, 6, 8, and 10. Although considerably larger lattices
can be studied with the QMC method, the physical informa-

- 828 o v : W . . ;
sion QMC meth(_)(f, ~as discussed in the Appendix. With tion we are interested in here requires very accurate results
this method, derivatives d(7) can also be directly calcu- for G(7). It is therefore more appropriate to concentrate the
lated. We here use the first two derivatives as supplementaigomputational resources on obtaining reliable results for

information in the max-ent method. Theh derivative of
G(7) is related tol (w) according to

oo

=D f doo"l(w)e™ ™.

G"V(7)= (29

It is a straightforward matter to modify the max-ent proce-
dures to include also the first fejin our case twd of these
derivative relations in addition to the original analytic con-
tinuation equatiori23). The use of derivatives was first sug-
gested by Schtler and Scalapino in their pioneering work
on numerical analytic continuation based @A fitting to

moderate system sizes. Comparing results lfer4—10
should also be sufficient for making statements about the
thermodynamic limit. We also carried out some simulations
for L=16, but the statistical errors are significantly larger in
this case and the continuation to real frequency is therefore
less reliable. In order to obtain ground state results, the simu-
lations were carried out at inverse temperatures as high as
B=8L. Results obtained wittlB=4L are indistinguishable
within statistical errors, indicating that contributions from
excited states indeed are negligible at these low tempera-
tures.

We begin by showing in Fig. 4 our results for the loga-

QMC data’ To our knowledge, the max-ent method has notrithm of the normalized imaginary-time correlatay(r)

previously been used with derivative information. It should
be noted that theth frequency momenp,, is given by the
7=0 derivative:

G"(7—0)

Pn:(—l)nm- (29

=G(7)/G(0). In thesame figure we also show the relative
statistical errorg(7), of g(7). Since the results for all the
system sizes have comparable errors, one can expect the
max-ent continuation to real frequency to resolve structure
on roughly the same scale. Already from this imaginary-time
data it is clear that the real-frequency spectum has dominant
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FIG. 5. Results of max-ent analytic continuation of 10 bootstrap 0.0 * *
samples of QMC imaginary-time data generated for<ad4system. 0.6 r L=10 ]
weight atw~3J for all system sizes, as[lg(7)] decays ap- 0.4 8
proximately linearly with7 in a sizable regime, with slope 02 | |
~ —3. For the larger systems a slight upward curvature can '
be noted, indicating that there is spectral weight also below 0.0 ‘ ‘
3J. 0.0 2.0 4.0 6.0
We find that the shape of the Raman spectrum obtained w/J

with the max-ent method is very sensitive to the statistical
fluctuations in the QMC data. Carrying out the max-ent pro- FIG. 6. Bootstrap-averaged max-ent results forBhgspectrum
d ith diff b ' fyhg ilable i . Pro%or gifferent lattices(solid curves. The 4x4 and 6x 6 results are
C_e ures with di erent su ser of the available Irnag'nary'compared with the corresponding exact diagonalization results with
time data al\_/vays gives a dominant peak closeom_= 3 but 4 dampinge/J=0.1 (dotted curveps
the peak width and asymmetry show large variations. We
therefore consider it appropriate to define the spectrum cor- )
responding to the full set of imaginary time data as an aversmall peak at»/J=4.5 is not present. It can be noted that the
age over suitably defined subsets. For this purpose we udBain peak of the average spectrum is narrower than most of
the so-called bootstrap mettf8dn the following way. the “typical” bootstrap samplessee Fig. 3 contrary to
With the simulation data for some quantiydivided into ~ What might have been expected. This is clearly due to the
M “bin averages” A; in the standard way, a bootstrap fact that the position of the peak shows very small variations

sampleAg is defined as compared to the variations in the _peak width and that for
some bootstrap samples the peak is very sharp.
M Results for the larger lattices are also shown in Fig. 6. In
AB:M 21 AR, (30)  the 6x6 spectrum the two main peaks are clearly resolved.
1=

The weight present at higher frequency cannot be resolved as
whereR; is a randomly chosen bifi.e., the number of bins a separate structure, however, and instead causes the shift by
chosen is the same as the total number of bins, allowing, of15% of the second peak. As the system size grows, the
course, for multiple selections the bjnSince the max-ent number and density of peaks increase, and only a single
procedure is highly nonlinear, the average over a large nunstructure can then be resolved. For the  lattice, the spin-
ber of separately max-ent continued bootstrap samples ofave result shown in Fig. 1 has only one dominant peak. The
imaginary-time correlation functions can be different from max-ent result for this size is, however, very broad, indicat-
the continued full average. We argue that the bootstrap aung that the relative weight distribution among the peaks ob-
erage is more meaningful since statistical fluctuations aréained in spin-wave theory is not reliablsigns of this is
averaged out considerably. seen also in the exact66 spectrum in Fig. B In particular,

In Fig. 5 we show max-ent results for 10 bootstrapthe max-ent spectrum has much more low-frequency weight.
samples of &4 QMC data. All the spectra have a dominant This is the case also for the %00 lattice. The spectrum has
peak very close to the correct positiarid=2.98, as well as a more pronounced peak than fox8, indicating that the
a structure at higher frequency. There are, however, verindividual § functions begin to group into a profile peaked
large variations in the peak width and in the position of thearoundw/J~3.5. It should be noted that the procedures we
high-frequency weight. The average over 500 bootstragre using can be expected to work better for the larger sys-
samples is shown in Fig. 6. The exact Lanezesult with a  tems, for which the distribution of functions are better
dampinge/J=0.1 is quite well reproduced, except that the approximated by a single continuous structure.
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In Fig. 7 we show the results for the short-time behavior FIG. 8. The first three frequency cumulants of the max-ent spec-
of the ratio G(”)(r)/G(r), along with the corresponding tra vs the inverse system siis_olid cir_cles_, with error baps The _
curves obtained from the max-ent results. According to EqPPE" circles are the exact diagonalization results. The previous
(29), the first two frequency moments can be directly 0b_lm‘lnlte-5|ze results.frolm a series expansion, calculatgd by Singh
tained from ther=0 points. The first moment can be accu- it al (.Ref' 22, are indicated by the horizontal dashed liiessult

: estimated error

rately extracted this way. In the case of the second moment
the statistical fluctuations grow large as-0, but the ex-
trapolation provided by the max-ent fit still gives a quite We now return to the line shape. The max-ent spectra
stable result. We also extract the third moment from thedisplayed in Fig. 6 show a considerable dependence on the
max-ent spectra. For both=4 andL =6 the results are in lattice size. The trend foL=6 appears to be the develop-
excellent agreement with the exact results obtained with thenent of a well defined main peak at/J~3.5, as well as
Lanczes method in Sec. Il some strengthening of the tail updgdJ~7. Comparing with

Figure 8 shows the system size dependence of both thée spin-wave results for the two-magnon profiles shown in
QMC and the Lanczoresults for the cumulants, along with Fig. 2, the 1< 10 max-ent spectrum is clearly much broader
the previou® infinite-size series results by Singtt al. We  than the narrow peak obtained by Canali and GiNibut
also include the first and second cumulants obtained for aot quite as much broadened towards lower frequencies as
16X 16 lattice, for which we do not consider the full line the Chubukov-Frenkel profifé obtained by setting=1/2 at
shape obtained with the max-ent method to be stable due ®@later stage of the calculation. Since the max-ent method can
larger statistical errors than for the smaller systems. The firdte expected to cause some broadening and the trend with
two cumulants can nevertheless be estimated. The max-emicreasing the lattice size appears to be a narrowing of the
and series results agree very well for the larger systems. Thdominant peak, we conclude that the actual peak in the ther-
exact results for the nonsquare lattices do not show a regulamodynamic limit should be narrower than that obtained by
size dependence, whereas the&L lattices do. Thenoments  Chubukov and Frenkel.
for the L XL lattices increase monotonically with. How- In the exact &6 result there are contributions in the
ever, there is a clear maximum in the second cumulant fofrequency rangev/J=~4.5—7 which are not present in the
L=6. This is likely caused by the lack of weight between thespin-wave result for the same lattitgee Fig. 3. This weight
two dominant peaks for this lattice size. With growing sizeis therefore most likely dominated by processes involving
the gap should gradually be filled in by other peaks, leadingnore than two magnons. The max-ent result for thex10
to a decreasing second cumulant. Judging from Fig. 8, th&attice also shows a tail extending up ¢dJ~7. The total
results for the largest systems (166 for M; andM, and  weight above the spin-wave theory two-magnon cutaff
10X 10 for M3) should represent the thermodynamic limit =4.63 does, however, remain a10-15 %, as previously
within statistical errors. We then haveM;=3.59 argued on the basis of theSE/ spin-wave results and the
+0.01, M,=0.79+0.03, andM ;= 0.95+0.08. frequency cumulant¥’
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it. Therefore, the relative weight of about 40% of the second-
i ary peak cannot be interpreted directly as the total four-
(\\ magnon contribution, but also likely reflects that the two-
\0 magnon profile from spin-wave theory is too narrow. We
1.0 “* have also carried out fits to two Gaussians, and then find that
\ the dominant one is at a positien3.2], and the second one
again is at~4—4.5]. However, the uncertainty in the width
v of the dominant peak is large, and therefore this method
q cannot be used to accurately determine the width. Based on
] the other approaches we have discussed, we can nevertheless
conclude that the standard spin-wave two-magnon profile is
too narrow, but by how much is not completely clear. The
profile shown in Fig. 9 likely represents a lower bound of the
width.
We also attempted a similar fitting procedure using the
Chubukov-Frenkel two-magnon result as the dominant fea-
o ture. However, we found that it was not possible to obtain
any good fit to the QMC data in this case, due to the, appar-
FIG. 9. By4 spectrum obtained by a fit of imaginary-time QMC ently, too high low-energy weight.
data to the Canali-Girvin two-magnon profil®ef. 17 plus a In Fig. 9 we also show an experimental spectrum for
Gaussian. The almost indistinguishable solid and dashed curves at@,CuQ,, with the frequency scale adjusted to give the same
for a 1010 and a 1& 16 lattice, respectively. The bold curve is peak positionw/J~3.25 as the QMC-spin-wave fit. This
the experimental spectrum for @uQ, discussed in Ref. 22, with peak position corresponds to an exchange consthnt
the frequency scale adjusted to give the same peak position as the1440 K for the experimental system, which is in good
theoretical resultgcorresponding to an exchange=1440 K). agreement witli~1500 K obtained from neutron scattering
) o ~and NMR experiments. Although the experimental spectrum
Canali and Girvin argued that the two-magnon profile isis somewhat broader than our result, there is a quite good
very little affected by the higher-order processes, and that thggreement with the distribution of the weight present above
four-magnon contribution s_hould be a peak yvell separateghe two-magnon cutoff frequency. Comparing with the two-
from the two-magnon profilé’. We now consider an ap- magnon spin-wave spectra shown in Fig. 2, it is clear that
proach to testing this hypothesis numerically, independently,yr present fitted spectrum is considerably closer to the ex-
of the max-ent method. We assume a spectrum consisting @ferimental result. As will be discussed further in Sec. VI, the
the Canali-Girvin two-magnon profilé(w) shown in Fig. 2, width of the peak is such that the further broadening required
and a GaussiaG,,(w—w,) of width o4 centered atw  to match the experimental spectrum could quite easily be
= w, for modeling the higher-order contribution. In order to achieved by spin-phonon couplings, as has been suggested
account for a possible further frequency shift, we use a pheby several groups.
nomenological frequency renormalizatioh in the two-
magnon profile. The full spectrum is hence

I(®)

05

0.0

V. FINITE-TEMPERATURE RESULTS

() =AP(Zw) +AsG, (0= w4), (32) In this section we present results of QMC and max-ent
) calculations carried out at temperatur€s]=0.25, 0.5,
where P and G,, are both normalized to one, and hencegng 1.0' Raman spectra for a4 lattice at these tempera-
A,+A,=1. We then have four paramete®s, A;, w4, and  tures were previously obtained by Bacci and Gagliano using
o, which can be adjusted to give the best consistency witlexact diagonalizationt Recently, finite temperature Lanczo
the imaginary-time data. Note thB{w) already contains the calculations for lattices with up to 20 sites were presented by
spin-wave renormalization factor to orderSi/ and hence Prelovek and Jakli¢’ Here we compare QMEmax-ent
our Z should be close to 1 for this treatment to be consistentresults for systems with 44 and 16< 16 spins. The latter
For the 10< 10 lattice, the imaginary-time data can in- size should be sufficient for obtaining thermodynamic limit
deed be very well accounted for by this spectrum. We ob+esults at the temperatures considered.
tain the parameter£=0.97, A,=0.40, w,=4.1, and Figure 10 shows the imaginary-time correlation functions.
o4=1.1. The resulting spectrum is shown in Fig. 9. The dataFor the temperatures considered heig;) can be accurately
for 16X 16 spins can also be very well fit to the form con- evaluated for the whole range<Or< . The slower decay
sidered, and the parameters are not changed much from tidth 7 for the larger lattice indicates the presence of more
10X 10 ones. This spectrum is also shown in Fig. 9. Thelow-frequency weight as the system size increases. This is
parameters of the Gaussian are such that it is completelgonfirmed by the max-ent results for the real-frequency spec-
merged with the two-magnon profile. This is clearly consis-tra, shown in Fig. 11. The results for<4 spins are in rea-
tent with both the &6 Lanczs and the max-ent results, sonable agreement with exact diagonalization results if one
which did not show any significant gap between the mainincludes some rather large broadening of éhinctions. In
peak and the high-frequency weight. In Fig. 9 the weight ofFig. 11 we have graphed the exact results as histograms, with
the Gaussian also extends to the low-frequency side of théhe bin width for each temperature chosen large enough to
two-magnon peak, and therefore has the effect of broadeningmove most, but not all, of the jagged structure due to the
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tions are well reproduced. The low-frequency peak in the
exact 44 spectra at high temperatures is due to degenera-

FIG. 10. The logarithm of the normalized imaginary-time cor- Ci€s present for this small lattit(i.e., the peak is actually at

relator g(7) vs 7 for 4X4 (dashed curvgsand 16<16 (solid

curves lattices at different temperatures.

discrete finite-size spectrum.
method cannot capture the fine-structure of the spectrum, a
instead gives a single rounded shape. Nevertheless, the
gion of dominant spectral weight and its temperature varia

It is clear that the max-enf
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Our 16X 16 results show a faster enhancement of the low-
frequency spectral weight as the temperature is increased
bove T/J~0.25. This difference between lattice sizes is
B(ely due to the presence of large finite-size gaps in the level

repectrum of the X4 system. Naturally, a§— o the system

size dependence should diminish, and this is seen already at
T=1.0 in Fig. 11. The finite-temperature spectra calculated
for 20 sites by Prelovek and Jakii¢’ for T/J=1.0 and 0.5

are in reasonable agreement with our<i% results, again
taking into account a max-ent broadening of our spectra.
However, atT/J=0.5, judging from the rather large differ-
ences between the exact results fo=16 (Ref. 31 and
N=20 (Ref. 47 and the slow approach to the thermody-
namic limit discussed in Sec. IV, it is likely that thé=20
spectrum has not yet converged to its infinite-size shape. The
actual width at this temperature should therefore be some-
thing intermediate between our X6 max-ent result and
the previously obtaineil =20 profile.

Experimentally, spectra taken at room temperature do not
differ significantly from ones obtained at very low
temperature$®* As the temperature is elevated T6J~0.5
there is a significant increase in the weight below 2J.2
This feature is indeed quite well reproduced by our result for

1.5 ¢ T/1=0.25 16X 16 spins.
The spectra shown in Fig. 11 are all normalized to 1. The
1.0 r temperature dependence of the integrated intensity is a quan-
tity of experimental interest. We define two intensities:
0.5 |
00 b ] [~ q
0 1 2 5 6 l1=| doA(w), (329
FIG. 11. Max-ent results for thB,4 spectrum of 44 (dashed "
curves and 16<16 (solid curves lattices at different temperatures. l,= f dwA(w). (32b
The histograms represent the exact results for tkel 4attice. 0
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These definitions are equivalentTat 0, but differ at finitsT ~ We also find that this effect is suppressed in the# sys-
due to spectral weight at negative frequencies, withtem, due to the finite-size gaps. The temperature dependence
A(—w)=e P°A(w). |, can be directly obtained from the of the integrated scattering intensity is weak.
imaginary-time data aS(7=0), whereas, is calculated by Our results hence confirm that LF theory can account for
integrating the real frequency spectrum obtained using theome of the main features of typicBl, spectra observed
max-ent method. Figure 12 shows both intensitiesTvier  experimentally for antiferromagnetic cuprates such as
4X4 and 16<16 lattices. Up tol/J~0.25, |,;~1,, owing  La,CuQ,. Our new evidence for a profile significantly
to the absence of significant low-frequency weight at thesé&roader than that obtained in spin-wave theory supports in
temperatures. At higher temperaturbs>1,, but even at part the early claim by Singbt al?? that the broadening is
T/J~0.5 the difference is small. For thex#4 system the due to the strong quantum fluctuations of the Heisenberg
intensity |, increases by~14% as the temperature is de- model with S=1/2 (note that spin-wave theory is in good
creased fronT/J=0.5t0T/J=0, and for 16<16 by~9%. agreement with experimental results for quasi-&>1
system&). However, typical experimental spectra are still

VI. SUMMARY AND DISCUSSION broader, _and extend to slightl_y higher frequ_encies. The
shoulderlike feature observed in some experimentsyat
We have presented numerical results forihg spectrum  ~4J is also not present in our results, although we find

of the Heisenberg model within Loudon-Fleury theory. Weevidence that the four-magnon contribution has its maximum
obtained Lancze exact diagonalization results for up to 6 in this regime. Hence, although our results show a better
X6 spins, and carried out QMC simulations for up to 16agreement with experiments than previous numerical results
X 16 spins. We compared the results with spin-wave theoryobtained for smaller lattice’S;*! the Heisenberg-LF mecha-

Our main results and conclusions are the following. nism does not appear to fully account for the experimental

(1) Comparing spin-wave theory and exact diagonaliza-Raman scattering, as has been noted in several previous stud-
tion results for the same lattice sizes, we find that for a giveries. The fact that there is M,y scattering within this theory
cluster the number of dominant peaks is the same in botbf course also implies that other additional mechanisms have
cases. However, both the positions of the peaks and theto be active.
relative weights are different. Most notably, for the<6 As noted in the Introduction, the resonance effects
lattice there are two dominant peaks, the separation of whichointed out by Chubukov and FrenKeare important to ex-
is 1.5 times larger in the exact result. Assuming that the trenghlain the experimentally observ€ddependence of the line
persists for larger lattices, this indicates that spin-waveshape on the frequenay,, of the incident light. However, a
theory underestimates the width of the dominBgy peak in  recent experiment on PrBau, Al ;0; indicates that the
the thermodynamic limit. resonance features become weakegisis decreased suffi-

(2) Our results of maximum-entropy analytic continuation ciently far below resonance, and that the width of the domi-
of QMC imaginary-time data are also consistent with a peaknantB,, peak does not exhibit much dependenceugnin
width larger than that of the spin-wave two-magnon peakthis regime?® Hence, resonance effects are likely not respon-
The first three frequency cumulants are in excellent agreesible for the remaining line broadening. Based on the results
ment with previous results of a series expansion around thpresented in this paper, we argue that the broadening is par-
Ising model. We estimate the cumulants in the thermodytially intrinsic to the LF-Heisenberg model, i.e., the spin-
namic limit to beM,;=3.59+0.01, M,=0.79+0.03, and wave calculations fo6=1/2 underestimate the high-energy
M;=0.95+0.08. weight. Canali and Girvin noted that interactions in final

(3) In order to test the & spin-wave theory prediction of states with four magnons, which were not included in the
a four-magnon profile well separated from the main two-calculations because of their great complexity, could in prin-
magnon peak’ we carried out a fit of the QMC imaginary- ciple lead to an enhanced four-magnon spectral weight.
time data to a spectrum consisting of the spin-wave two- The further broadening of the spectrum required in order
magnon peak and a Gaussian at higher frequency. We fourtd explain the experiments could be due to spin-lattice cou-
that this type of spectrum indeed describes the data well. Thelings. Such a mechanism was suggested by Ketadil,'* in
fitted Gaussian is centered @tJ~4.1, and is so broad that order to explain the temperature dependence of the line
it is completely merged together with the two-magnon strucshape. Spin-wave calculations including a phenomenological
ture peaked ab/J~3.25. The resulting spectrum resemblesmagnon lifetime give some support to these id&a3everal
a typical experimentaB,  profile for LaCuQ; with an ex-  different calculations explicitly including magnon-phonon
changeJ~1400 K. The experimental peak is still slightly coupling have been presented recefly>> Using an adia-
broader, but there is a considerable improvement in comparbatic approximation for the phonons leads to a Heisenberg
son with the standard spin-wave theory two-magnon profilemodel with random coupling constants. Numerically study-

(4) The imaginary-time data cannot be fitted using theing such random lattices with>44 spins and assuming a
two-magnon profile obtained by Chubukov and Freffkey  standard LF coupling, Norét al. found that theB,4 spec-
expanding their spin-wave spectrum around its peak positiotrum can indeed be broadened by this mechanism, and that
before settingS=1/2 in the calculation. This is due to the also A4 scattering can become significdAtHowever, in
significantly stronger low-frequency weight present in thisthis calculation, the strength of the randomness required in
spectrum. order to reproduce the width of the experimeral, spec-

(5) At finite temperature we find a significant increase intrum appears to be rather largesing a Gaussian distribution
spectral weight belown~2J for T/J=0.25, in agreement for the nearest-neighbor couplindg, a width o~0.5J;;)
with experimental results for antiferromagnetic cuprafes. was requirei*® Nori et al. argued that such strong disorder
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can be caused by incoherent atomic displacements. Never- N _orl_oZ o

theless, in the abgence of other evidencepfor the presence of H1p=2[7 =S Sim]. (A23)

large fluctuations in the Heisenberg couplings, it would be

desirable to reproduce the broadened spectrum with a nar-

rower coupling distribution. o An exact expression for an operator expectation value
One reason for the strong disorder required in the calcu-

lation of Nori et al. could be the small size of the lattice . 1 . . .

used®® As we have seen, the purex4l system only has a (A)= sz{Ae*ﬁH}, z=Tr{e "}, (A3)

single dominant two-magno# function at w=2.98J, and

two weaker peaks ab~4.5) andw~5.5).2% It is clear that ~ at inverse temperatur8=J/T, is obtained by Taylor ex-

a considerably weaker disorder would suffice to broaden thganding exp¢- 8H) and writing the traces as sums over di-
spectrum if one starts from the much broader pure-systefigonal matrix elements in the bagis)}={|SZ, ... S}

profile obtained here for larger lattices. The partition function then takes the f
The type of QMC and max-ent calculations presented

here could in principle be carried out also for disordered spin (—1)"2( B\ no
systems, and even including fully dynamic phonth3he Z=> > > 5) (a1 Ha pla), (A4)
suggested effects of magnon-phonon coupling could hence @ NS =1

be investigated more rigorously than previously, using large{yhere S, is a sequence of index pairs defining the operator
lattices. Although a recent exact diagonalization study bystrin o a
Reilly and Rojd! give some support for the validity of an 9Hi=1Ma by
adiabatic approximation for the phonons, calculations with B
full dynamic phonons should also be carried out for larger Sn=[a1,b1][@z,bz] .. .[an,by], (A5)
lattices. Limits on the strength of the phonon-magnon couwith a;{1,%, b;e{1,...,N}, andn, denotes the total
pling (or the width of the disorder distribution in the adia- humber of index pairgoperators[a; ,b;] with a,=2. Both

batic approachcould be established by carrying out QMC (3 “andfy,, can act only on states where the spins at sites
calculations of, e.g., the temperature dependence of the spin

correlation lengthand NMR relaxation ratéé for systems ' (°) @ndj(b) are antiparallelH, , leaves such a state un-
including lattice vibrations or static disorder. changed, wheread,, flips the spin pair. Defining a propa-
gated state

Hyop= St Sit + SiinSio - (A2b)

n!
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APPENDIX: QMC CALCULATIONS OF THE RAMAN tive and can be gsgd as relative probabilities in a Monte
CORRELATION EUNCTIONS Cgrlo algorithm(this is true for any nonf(ustrated system
Since any nonzero matrix element (A4) is equal to one,
In this Appendix we describe the calculation of the the weight factor corresponding to a contributing, §,) is
imaginary-time correlation functiof®2) with the stochastic simply given by
series expansioiSSE method?®?° In order to reduce the
statistical fluctuations, we use the spin-rotational invariance (BI2)?
of the Heisenberg Hamiltonian to construct an estimator less W(a,S,) = nl - (A7)
noisy than the obvious one. We also derive direct estimators
for the 7 derivatives ofG(7). In order to establish the nota- The algorithm for sampling the configurations,§,) is de-
tion, we first very briefly outline the formalism of the SSE scribed in Ref. 36™%°
algorithm. More details of the implementation of this non-  In order to obtain an expression f@(7) in terms of the
standard generalization of Handscomb’s metAdtifor the  statesa(p)) and the index sequen used in the simula-
2D Heisenberg model can be found in Ref. 30. tion, the expectation value is first written in terms of the
In order to apply the SSE technique, the Hamiltonian iSoperatorsﬂa,b as
first written as

= ag.bg
C J & " " NJ G(7) a%z b%z Pbl’bZGabbz( ) (A8)
H=—3 > [Ap—Hopl+ -, (A1)
25=1 2
where
whereb is a link connecting a pair of nearest-neighbor sites

- . by oy —
(i(b),j(b)), and the operatorsl;, andH,, are defined as Gazvbz( 7)=(Ha, b,(THa, 5,(0)), (A9)
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andB,4 symmetry corresponds 8, =1 for linksb; and +1, ap,=t, by=<N,
b, Whlch are parallel to eac_h othe_r, arRi)l'bz.: —_1 for X(p)={ —1, a,=t, by>N, (A16)
perpendicular links. Proceeding as in the derivation of the 0 a4t

1 p .

partition function(A4), the exponentials in the expression

) If a,=1, X,(p) can be averaged over allN2choices of
e ™MH, , la) operatorg[ 1,b] at positionp. The weightW(«,S/) corre-
171 . . .
sponding to a sequen& obtained by replacing the current
operator[1b,] at p in S, is equal to the current weight

~ . W(a,S,) if the corresponding spins at sité&) and j(b)
are Taylor expanded and all powerstbfare written as sums are antiparallel in the propagated stag(p)), and is zero

of products of the operatof$, ,. There is then a one-to-one otherwise. HenceX,(p) can be redefined as
correspondence between the termsGﬁi:E;(r) and Eg.

1 N
,b — -7 a
Gl oM =52 (ale” MR, ,

2

(A10)

(A4). Dividing out the factor corresponding to the configu- [NQ(p)—N’y*(p)]/ZN, ap=1,
ration weight(A7) gives the average in the form of a func- 1(p)= 0 a1 (AL7)
tion of S;: L
n_2 WhereN’;(p) is the number of antiparallel nearest-neighbor
GA P )= F(r.n:m NP1 m , A1l spin pairs in they direction in|a(p)). One can easily verify
az'bz(T) m§=:0 (v ) az'bz( ) (A1D) that this averaged estimator can be used in products with
both X; andX,. Hence, improved estimators fii(p) X(p+
where m) in Eq. (A14) can be used for the termé X, , X;X,, and
X,5X;. For X,(p) no simple redefinition in terms of single-
_ ™(B— 7" 2(n—1)! operator averaging can be constructezplacing a single op-
F(r.nm)= B"(n—m—2)!m! ' (A12) erator[ 2,b] with any other operator always leads to a non-

contributing term, and hence th&,X, contribution to(A14)

and Nalvbl(m) is the number of times the operatdis; ,b,] remains noisy. However, the rotational invariance of the
32:b; ' Heisenberg Hamiltonian implies that

and[a,,b,] occur inS, (in the given orde)rsbeparated byn
. aj, .

other operators. Hence, measurm@a;b;(r) simply (Xo(P)Xo(p+m))=(2X,(p) X1 (p+m))
amounts to finding all pairs of operatofs,,b;] and
[a,,b,] in the sequencs,. The contribution to Eq(AL10)
of each pair is a function of the relative separation of the
operators, given by EqA12).

In order to obtain a simple expression for the full corre-
lation function G(7) it is useful to introduce a function

1
+§<X1(p)X2(p+m)

+Xa(p)Xy(p+m)),  (Al8)

X(p), such thatX(p) = + 1 if the pth operator inS, acts on 10t 0.004 | v
a link in thex direction, andX(p) = —1 if it acts on ay link. \; 0006 | ‘\‘
Numbering the bonds such thatb<N correspond tax 08 1%
bonds, and\N+1<b=<2N correspond toy bonds, the defi- co6 L M
nition is hence k=) . o001 | .
04 & Trran,
+1, b.=<N L, 000 20 25 lu:s.o
x(p)=| . bp; \ (A13) S 1
» Pp 0.0 e S
Equations(A9) and (Al1l) then give 1.0 |
n n-1 §5 051 T )
G(T)=<2 > F(T,n,m—l)X(p)X(p+m)>, P00 e
p=1m=1 e et T
(A14) 05 e
where of courseX(p) is periodic;X(n+1)=X(1). g 0
In practice the estimatofA14) is rather noisy. An im- -15 o ; 5 3

proved estimator can be constructed as follows. First, the
function X(p) is written as a sum of two terms,
FIG. 13. Upper panel: QMC results fg( ) =G(7)/G(0) of a
X(p)=Xi(p)+Xa(p), (A15) 4 4 system at inverse temperatyge 32 (solid circles, compared
with the exact ground state res@plid curve. The inset shows the
whereXi(p)=*1(t=1,2) forx andy bonds, as before, if regime 1.757<3 on a more detailed scale. Lower panel: The
the pth operator inS;,, [a,,b,], hasa,=t, butX,(p)=0 if  deviation of the QMC data from the exact result, multiplied b§.10
apaét. Hence The dashed curves indicate the statistical errors.
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and therefore thX,X, term does not even have to be evalu-

ated. The final result for the improved estimator @&f7) is +Xo(p)Xy(p+m)] ). (A20)

hence

As discussed in Sec. IV, derivatives can be used as supple-

mentary information in a numerical analytic continuation to

G(n=\3 pzl mel F(7,nim=1)[2X,(p)Xs(p+m) real frequency. The derivatives a0 are of special inter-
est, as they are related to moments of the spectral function
[see Eq(29)].
+X1(P)Xa(p+m)+Xo(p) Xy (p+m)] ). (AL9) We end this appendix with a demonstration that the simu-

lation results forG(7) are indeed free from systematic er-

It should be noted that the functioR(7,n;m) is sharply rors. Since the absolute Raman scattering intensity is not

peaked arounch~n1/ g for large 8, so that typically only a contained in the LF theory, the amplitudeldtv), and hence

small fraction of the terms ifA19) actually have to be of G(7), is irrelevant, and instead @(7) one can consider

evaluated. the ratio

Equation(A19) is valid for any O< r<g, and ther de- _

pendence appears only in the functi®éfr,n;m). In contrast 9(7)=G(7)/G(0). (A21)

to standard Trotter-based QMC methods, the method dig=igure 13 shows the QMC result for this quantity calculated

cussed here can therefore be used to directly calculateralsoon a 4x 4 lattice, along with the exact result obtained from

derivatives of imaginary-time dependent correlation func-l(w) calculated using exact diagonalization. The statistical

tions. An expression for thieth derivative ofG(7) is simply  error of the QMC result is in the fifth decimal digit, and there

n n-1

obtained by replacing in (A19) by its nth derivative: is excellent agreement with the exact result within this accu-
I racy. The absence of detectable systematical errors in the
d"G(r) /3 d"F(7,n,m—1) QMC result forg(7) is hence confirmed. Sinay 7) decays
CV(=—gr =532 2 |—g7— ially, the relative statistical idly with
dr 2 & dr exponentially, the relative statistical error grows rapidly wit
7, and for 7=3 accurate results cannot be easily obtained.
X[2X1(p)X1(p+m)+ X1 (p)Xo(p+m) This is the case also for larger systems.
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