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Numerical calculations of theB1g Raman spectrum of the two-dimensional Heisenberg model
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The B1g Raman spectrum of the two-dimensionalS51/2 Heisenberg model is discussed within Loudon-
Fleury theory at both zero and finite temperature. The exactT50 spectrum for lattices with up to 636 sites
is computed using Lanczo¨s exact diagonalization. A quantum Monte Carlo~QMC! method is used to calculate
the corresponding imaginary-time correlation function and its first two derivatives for lattices with up to 16
316 spins. The imaginary-time data are continued to real frequency using the maximum-entropy method, as
well as a fit based on spin-wave theory. The numerical results are compared with spin-wave calculations for
finite lattices. There is a surprisingly large change in the exact spectrum going from 434 to 636 sites. In the
former case there is a single dominant two-magnon peak atv/J'3.0, whereas in the latter case there are two
approximately equal-sized peaks atv/J'2.7 and 3.9. This is in good qualitative agreement with the spin-wave
calculations including two-magnon processes on the same lattices. The spin-wave results for larger lattices
show how additional peaks emerge with increasing lattice size, and eventually develop into the well known
two-magnon profile peaked atv/J'3.2 and with weight extending up tov/J'4.6. Both the Lanczo¨s and the
QMC results indicate that the actual two-magnon profile is broader than the narrow peak obtained in spin-wave
theory, but the positions of the maxima agree to within a few percent. The higher-order contributions present
in the numerical results are merged with the two-magnon profile and extend up to frequenciesv/J'7. The
first three frequency cumulants of the spectrum are in excellent agreement with results previously obtained
from a series expansion around the Ising limit. Typical experimentalB1g spectra for La2CuO4 are only slightly
broader than what we obtain here. The exchange constant extracted from the peak position isJ'1400 K, in
good agreement with values obtained from neutron scattering and NMR experiments. We discuss the impli-
cations of our present results for more sophisticated theories of Raman scattering suggested recently.
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I. INTRODUCTION

The magnetic properties of the parent compounds of
high-Tc cuprate superconductors can be well accounted
by weakly coupled two-dimensional~2D! Heisenberg
antiferromagnets.1 Neglecting the weak interlayer coupling
the model is defined by the Hamiltonian

Ĥ5J(
^ i , j &

Si•Sj ~J.0!, ~1!

whereSi is a spin-1/2 operator at sitei on a square lattice
and ^ i , j & denotes a pair of nearest-neighbor sites. The m
well studied among the antiferromagnetic layered cuprate
La2CuO4,2–6 with a Néel ordering temperatureTN'300 K.
For T.TN , the temperature dependence of the spin corr
tion length, measured using neutron scattering,2 is in good
agreement with that of a single-layer Heisenberg model w
J'1500 K.7,8 The spin-wave spectrum of the Heisenbe
model is well reproduced over the entire Brilloin zone.3,9 The
NMR relaxation rates 1/T1 and 1/T2G , which probe the low-
frequency spin dynamics, also show remarkable agreem
between experiment5,6 and theory.7,10–12
570163-1829/98/57~14!/8478~16!/$15.00
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In contrast to these success stories, the experimental
man spectrum13–15 shows significant deviations from calcu
lations for the 2D Heisenberg model.16–19 Within this de-
scription of the CuO2 layers, the standard theory of Rama
scattering is based on the Loudon-Fleury~LF! coupling20

between the light and the spin system. The coupling is
tained in second order perturbation theory with virtual sta
containing one doubly occupied site, and is given by20,21

ĤLF5(
^ i , j &

~Ein•si j !~Eout•si j !Si•Sj . ~2!

HereEin andEout are the polarization vectors of the incomin
and scattered light andsi j is the unit vector connecting site
i and j . In terms of the eigenstates$un&% of the Heisenberg
model, the frequency dependence of the scattering inten
at inverse temperatureb is given by Fermi’s golden rule:

I ~v!5
1

Z(
m

e2bEm(
n

u^nuĤLFum&u2d~v2@En2Em# !.

~3!

Most theoretical work has focused on the scattering in
B1g symmetry channel. This corresponds toEin along a di-
8478 © 1998 The American Physical Society
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agonal of the square lattice, andEout perpendicular toEin .
The B1g coupling can thus be written as

ĤLF5 (
^ i , j &x

Si•Sj2 (
^ i , j &y

Si•Sj , ~4!

where^ i , j &x and^ i , j &y denote links in thex andy directions,
respectively.

For La2CuO4, the B1g spectrum has a broad asymmet
peak atv'3J with a tail extending tov'728J.13 In some
cases there is a shoulderlike structure atv'4J. Within spin-
wave theory theB1g scattering is dominated by two-magno
excitations. The two-magnon profile is peaked aroundv'3J
in good agreement with the experiments.16–19 However, the
large width of the experimental spectrum has not been re
duced within spin-wave theory. The first three frequency
mulants of the spectrum have also been calculated usi
series expansion around the Ising limit,22 and are in reason
able agreement with the experimental values. The mom
obtained in spin-wave theory to order 1/S ~two magnon ex-
citations only! are in poor agreement with the series resu
which in principle include multimagnon contributions to a
orders. Unfortunately, the full frequency dependence is
accessible with the series expansion method. Exact diago
ization has been used to compute the exact LF Raman pr
for small lattices.19 For the 434 system there is a singl
dominant two-magnon peak atv/J52.98. Weight present a
v'5J has been attributed to four-magnon processes, bu
relative strength is much smaller than the weight found
perimentally in this frequency region. The tail at higher fr
quencies is absent. Despite this, the first three frequency
mulants are in approximate agreement with both experim
and the series expansion results.

Canali and Girvin17 carried out a spin-wave expansio
including also four-magnon excitations~which enter in order
S22). The narrow width of the two-magnon peak was fou
to be stable with respect to inclusion of the higher-ord
processes. The relative contribution from four-magnon sta
in this calculation is less than 3%. The high energy of
four-magnon weight nevertheless leads to first and sec
cumulants that are much closer to those obtained in the s
expansion and exact diagonalization studies. The spin-w
result for the third cumulant is, however, significantly larg
than the series expansion value. It was argued that this is
to interactions between four magnons that were neglecte
the 1/S2 calculation, and that the relative four-magnon co
tribution must be'10% in order to reproduce the first thre
moments.17 The conclusion that there is less high-ener
weight than in typical experimental spectra then still
mains. However, the apparent inability of a very sophis
cated spin-wave calculation to fully capture the four-magn
processes raises some concerns about this approach fo
culating the actual line shape. Furthermore, Chubukov
Frenkel have recently questioned the stage at which the
S was set to 1/2 in the previous spinwave calculations. T
kept S large and carried out an expansion of the pro
around its peak position before expanding in 1/S and evalu-
ating the result atS51/2. The two-magnon profile obtaine
this way has a width almost three times larger than
‘‘standard’’ one, and the second frequency cumulant is the
fore in better agreement with the series result. However,
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agreement with the first cumulant is actually worse, due
the significantly larger low-frequency weight. Hence, this
sult also has to be viewed with some caution.

Experimentally, significant scattering is also observed
the A1g channel.13 With the standard LF coupling inelasti
scattering in this symmetry is not possible for the Heisenb
model with only nearest-neighbor interactions, since thex
and y terms in Eq.~4! are added in this case andĤLF then
commutes with the Hamiltonian. Adding a next-neare
neighbor term to the LF coupling leads toA1g scattering, but
has no effect in theB1g channel.22 Based on the frequenc
moments obtained in the series expansion, this was argue
be a mechanism that could explain both theB1g and A1g
spectra. However, the narrowB1g line shape obtained in
other calculations remains an unresolved issue for this
nario. Including a next-nearest-neighbor term;J2 in the
Hamiltonian would also lead toA1g scattering, and probably
a broadenedB1g spectrum. The relatively largeA1g intensity
seen experimentally would then likely require a largerJ2
than allowed by other experiments, but detailed calculati
have not been carried out within this model. Other inter
tions, such as the so called four-spin cyclical exchange,18,23

have also been suggested to account for the differences
tween theory and experiment. Analytical calculations as
tailed as those for the standard LF theory~only nearest-
neighbor interactions in both the Hamiltonian and the Ram
operator! have also not yet been carried out within the
theories.

It is clear that LF theory is not sufficient to capture a
aspects of Raman scattering in layered cuprates. For
ample, resonant scattering~occurring when the frequency o
the incoming light is comparable to the charge-transfer g!
can of course not occur within the Heisenberg mode24

Resonance effects lead to a dependence of the line shap
the frequencyvin of the incident light. Chubukov and Fren
kel recently identified a ‘‘triple resonance’’ process whic
can cause significant scattering aroundv'4J.24 The pre-
dicted dependence of the triple-resonance cross-sectio
consistent with experiments.15 Other, unexplained feature
have also been observed close to resonance.25 In typical ex-
perimental situations~incident visible light!, vin is close to
the resonance frequency. However, in some materials
‘‘residual’’ spectral features associated with the resona
become rather weak at the lowestv in accessible, as shown
e.g., in a recent systematic study of thev in dependence for
PrBa2Cu2.7Al0.3O7.

25 In these cases one can then expect
LF-Heisenberg type theory to be an adequate starting po

Focusing on nonresonantB1g scattering, it is not yet clea
what the actual line shape is within LF theory. As discuss
above, the two key questions of the width of the domina
two-magnon profile and the relative weight of the highe
order contributions above the two-magnon cutoff remain
completely answered within spin-wave theory. The exact
agonalization studies carried out so far are limited to latti
too small for reliable quantitative extrapolation to the the
modynamic limit. There is hence a definite need for accur
nonperturbative numerical calculations for larger lattic
Conclusive results would provide a more solid basis for
timating effects not included in the LF-Heisenberg model
should also be noted that LF theory is the standard fra
work in which Raman scattering has been interpreted als
several other low-dimensional antiferromagneticS51/2
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8480 57SANDVIK, CAPPONI, POILBLANC, AND DAGOTTO
systems.26,27 A satisfactory resolution of the 2D Heisenbe
case would therefore be of more general interest as w
Finally, knowing the exactB1g Raman spectrum should he
to shed light on the applicability of spin-wave theory f
calculations of dynamic processes involving excitations
more than one magnon.

Here we report new exact diagonalization results for s
tems with up to 636 spins, which is the largest current
accessible with this method. We also obtain approxim
spectra for up to 16316 spins by maximum-entropy~max-
ent! analytic continuation of quantum Monte Carlo~QMC!
data. Using the stochastic series expansion Q
technique28–30 we have calculated the imaginary-time L
correlation function and its first two derivatives at tempe
tures low enough to give ground state results. The der
tives are used as supplementary information in the ana
continuation. We also consider a more phenomenological
proach of fitting the two-magnon profile obtained with
spin-wave theory to the imaginary-time data, adding
Gaussian at higher frequency to model the higher-order c
tributions. In order to study the effects of temperature,
apply the QMC1 max-ent methods also at nonzero tempe
tures.

We find that theB1g Raman spectrum of the 636 lattice
has two dominant peaks atv/J'2.7 and 3.9, in sharp con
trast to the single dominant peak atv/J52.98 previously
found for the 434 lattice. These results are qualitative
reproduced within spin-wave theory including only tw
magnon excitations and magnon-magnon interacti
~treated within an RPA scheme!. Spin-wave results resem
bling the infinite-size two-magnon profile are seen only
much larger lattices. Using the QMC data, the first th
frequency cumulants in the thermodynamic limit can be
liably estimated. They are in excellent agreement with
previous series expansion results.22 Both the Lanczo¨s and the
QMC results indicate that the dominant peak atv'3.3J is
slightly broader than the standard two-magnon profile,
not as broad as the the one recently obtained by Chubu
and Frenkel.24 We find no evidence for a gap between t
two-magnon profile and the higher-order contributions. Th
appear to be completely merged together and extend u
v'7J.

Finite-temperature results forT/J&0.25 are very similar
to the ground state results. For higher temperatures there
significant growth of the low-frequency spectral weight,
also found in a previous exact diagonalization study o
434 lattice.31 We find that the temperature at which th
effect becomes significant decreases with increasing sys
size, due to the large finite-size gaps present in the sm
systems.

Overall, our results are in closer agreement with exp
ments than previous exact diagonalization and spin-w
calculations, but we conclude that the Heisenberg-LF sp
trum is nevertheless not quite as broad as typical experim
tal spectra. We argue that our results give more credibility
proposed broadening mechanisms involving phonons.14,32–35

The rest of the paper is organized as follows. In Sec. II
review various spinwave calculations of theB1g Raman pro-
file. We also present results for small lattices, which
compared with exact diagonalization spectra in Sec. III. O
T50 results from QMC simulation and numerical analy
ll.
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continuation are discussed in Sec. IV. Effects of finite te
perature are considered in Sec. V. In Sec. VI we summa
and discuss our results and implications for mechanisms
posed to lead to a broadening of theB1g profile. In an Ap-
pendix we present some technical details of the QMC ca
lation of the imaginary-time correlation function and i
derivatives.

II. SPIN-WAVE THEORY

The Raman spectrum can be easily computed in the s
wave approximation. Various improvements of the line
spin-wave calculation can be also applied to the Raman s
tering amplitude. For example, the residual interactions
tween spin waves, which play a crucial role in the Ram
excited states, can be included at the RPA level. Here
discuss linear spin-wave theory and the effect of magn
magnon interactions on theB1g spectrum. The primary pur
pose of the calculations discussed here is to qualitativ
understand the effects of finite size, which will be importa
for interpreting the numerical results presented in the follo
ing sections. More sophisticated spin-wave calculations
cluding the quantum fluctuations of the ground state, as w
as final states with four magnons, have been carried out
fore, as discussed in the Introduction. Here we note so
problems with the analytical calculations of the Raman p
file which motivate our renewed efforts to obtain accura
non-perturbative numerical results.

In the antiferromagnetic ground state we are consider
a bosonic representation of the spin operators can be in
duced on each sublattice by using the usual Dyson-Mal
transformation.36,37On sublatticeA, the transformation read

Si
z5S2ai

†ai , ~5a!

Si
15A2SS 12

ai
†ai

2S Dai , ~5b!

Si
25A2Sai

† , ~5c!

where ai
† creates a boson, i.e., a spin-1 magnon, at siti .

Similarly, on sublatticeB,

Sj
z52S1bj

†bj , ~6a!

Sj
15A2Sbj

†S 12
bj

†bj

2S D , ~6b!

Sj
25A2Sbj . ~6c!

As usual, as long as small fluctuations around the N´el
ordered phase are considered, one keeps only quadratic t
in the Hamiltonian~which are the dominant terms in a 1/S
expansion!. Therefore, in this approximation, the Hami
tonian can be diagonalized by a Bogoliubov transformat
in terms of spin-wave excitations~or magnons!;

ak5ukak1vkbk
† , ~7a!

bk5ukbk1vkak
† , ~7b!

where the coefficients (.0) are given by
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uk
25

1

2S 1

A12gk
2

11D , ~7c!

vk
25

1

2S 1

A12gk
2

21D . ~7d!

We have definedgk5(de
ik•d/Z as a sum over theZ nearest

neighbors of the site at the origin. In our case~square lattice!,
gk5(coskx1cosky)/2. The resulting well known linear spin
wave Hamiltonian reads

HSW5E01(
k

vk~ak
†ak1bk

†bk!, ~8!

with the dispersion relationvk5JSZA12gk
2. Due to the

decomposition into two sublattices, the reciprocal space
reduced to the magnetic Brillouin zone~MBZ!.

The LF operator can be easily expressed as a quad
form in terms of the spin-wave operators. At zero tempe
ture the ground state contains no bosons if magnon-mag
interactions are neglected so that, in a first approximat
one only keeps constant terms or terms involving the c
ation of magnons, giving

HLF52aNS2Eout•Ein ~9!

12aS(
k

„Eout
x Ein

x @coskx~uk
21vk

2!22ukvk#

~10!

1Eout
y Ein

y @cosky~uk
21vk

2!22ukvk#…ak
†bk

† . ~11!

In the B1g geometry, the matrix element is thus

^ f uHRu i &5
coskx2cosky

A12gk
2

. ~12!

The Raman intensity obtained from Fermi’s golden rule, E
~3!, is then

I ~v!}(
k

~coskx2cosky!2

12gk
2

d~v22Vk!, ~13!

where Vk54JSA12gk
2 is the frequency of the magnon

This expression exhibits a divergence atv58JS since the
density of states diverges at the boundary of the MBZ.

It is well known that this result is strongly modified whe
one takes into account the magnon-magnon interaction
the final state.38,16,17,24In order 1/S, the Dyson-Maleev trans
formation generates in the Hamiltonian quartic terms in
bosons operators. One way of treating this interaction is
keep the termak

†bk
†b2pap ,16,17,24 which is responsible for

multiple scattering of two magnons in the vacuum. This p
gives the dominant contribution to the magnon-magnon s
tering coming from the region near the MBZ bounda
where the density of states diverges. Further simplificat
results from the vanishing ofgk at the MBZ boundary so tha
it is reasonable to replacegk by zero for allk. This leads to
an effective interaction of the form24
is

tic
-
on
n,
-

.

in

e
to

rt
t-

n

H int52
4J

N (
k

(
p

gk2pak
†bk

†b2pap . ~14!

Following Refs. 24 and 17 and expressinggk2p as a function
of its symmetric termsgk2p5gk

c1gp
c11gk

c2gp
c21gk

s1gp
s1

1gk
s2gp

s2

gk
c65~coskx6cosky!/2 ~15!

gk
s65~sin kx6 sin ky!/2, ~16!

it can be shown that multiple diffusion RPA series only co
tain terms involvinggp

c2 factors. The final RPA expressio
for the Raman intensity is given by24

I ~v!}ImH R~v!

11R~v!/4SJ , ~17!

with

R~v!5
8JS

N (
k

~coskx2cosky!2

v22Vk1 i«
. ~18!

In the thermodynamic limit, Eq.~18! for S51/2 leads to a
narrow two-magnon peak aroundv52.78J which extends
up to v/J54. In order to be able to directly compare spi

FIG. 1. Spin-wave theory results for theB1g Raman profile cal-
culated on small lattices withL3L sites. The dashed curves are th
results with the interactions neglected, and the solid ones are
interactions in the final states included at the RPA level. A damp
e50.05J has been used to broaden thed functions.



zo
an

n
rm
fi
o

r

on
h
a

e

o

i
n

d

on

an

pr
h

e
i

he
ide
kel

ilar
l is
as
ex-
by

e
ited
on-
n-

ilate

-

in
m
gly

cy
ex-
as
ter-

d
r-

sti-
/
ot
ns

on
re.
ce
f the

ave

e
r

m-
ly
We
sec-

on

um

ec

nd
nd
o

o
sit
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wave results with exact spectra obtained with the Lanc¨s
diagonalization method and approximate results of QMC
max-ent analytic continuation~presented in the following
two sections!, we have also evaluated~17! for small lattices.
Results forL3L clusters withL54, 6, 8, and 10 are show
in Fig. 1, along with the corresponding noninteracting fo
~13!. It is clear that the continuous absorption band for in
nite size is obtained from the accumulation of a series
peaks for increasing cluster sizes. However, the numbe
peaks is still very small even for a lattice of 100 sites.

In the above calculation the magnon-magnon interacti
have only been included in the final two-magnon state. T
main effect of interactions in the ground state is to renorm
ize the spin-wave velocity;c→Zcc, where to order 1/S the
renormalization factorZc51.158 and arises solely from th
normal ordering of the quartic magnon terms.39 Hence, in a
phenomenological way, the 1/S corrections can be taken int
account by shifting the energy scale by a factorZc , leading
to a B1g profile peaked atv/J53.22. However, Canali and
Girvin have shown that the renormalization in fact enters
a nontrivial way in the expression for the Raman profile, a
hence there are other effects as well.17 Nevertheless, the en
result for S51/2 does not differ much from Eq.~18! with
Zc51.158, as shown in Fig. 1.

Chubukov and Frenkel have recently raised questi
about the stage at which one should setS51/2 in the spin-
wave calculation. They argued that one should first exp
the large-S expression for the profile~17! around its peak
position, and only after that setS51/2.24 The position of the
maximum then remains approximately the same, but the
file is considerably broader, as also shown in Fig. 2. T
better agreement with the frequency moments calculated
Singh et al.22 was used as support in favor of the broad
peak. However, it should be noted that the agreement w

FIG. 2. Spin-wave theory results for theB1g two-magnon profile
in the thermodynamic limit, compared with the experimental sp
trum for La2CuO4 discussed in Ref. 22~bold solid curve!. The solid
curve corresponds to Eq.~18! with a spin-wave renormalization
factor Zc51.158. The dotted curve is the result by Canali a
Girvin, which includes also quantum fluctuations in the grou
state. The dashed line is the result by Chubukov and Frenkel,
tained by further expanding the line shape~18! in 1/S before setting
S51/2. All curves are normalized to one. The frequency scale
the experimental spectrum has been adjusted to give a peak po
in rough agreement with the theoretical curves.
d

-
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n
d

s

d

o-
e
by
r
th

the first cumulant is actually significantly worse, due to t
much slower decay of the weight on the low-frequency s
of the peak. In fact, as seen in Fig. 2, the Chubukov-Fren
profile extended towards lower frequencies in a way sim
to the experimental spectrum, but the high-frequency tai
still of course missing. The high-frequency scattering w
argued to be dominated by resonant scattering in typical
perimental situations, and would hence not be explainable
LF theory.24

To higher orders in 1/S, magnons are present in th
ground state, and up to four magnons can be Raman exc
~the true ground state is a linear combination of states c
taining any even number of magnons, and the full Dyso
Maleev tranformed Raman operator can create or annih
one or two pairs of magnons!. Canali and Girvin included
four-magnon excitations~order 1/S2) but neglected interac
tions involving more than two magnons.17 The two-magnon
profile obtained this way is very similar to the Canali-Girv
1/S result discussed above. The relative contribution fro
four-magnon processes is less than 3%, but is likely stron
affected by the neglected interactions.17 In fact, although the
small four-magnon contribution is sufficient~because of its
rather high energy! to change the first and second frequen
cumulants to values in close agreement with the series
pansion results, the third cumulant remains far off. It w
argued that this inconsistency is due to the neglected in
actions among four magnons~which may even lead to boun
states!, and that such interactions would bring the fou
magnon peak position down in frequency.17 The relative
four-magnon weight would then have to increase to'10%
in order to satisfy the first three moments. This rough e
mate may indicate that the approximations made in the 1S2

calculation could in fact be serious. In particular, it is n
clear that the two-magnon and four-magnon contributio
will be well separated from each other if the four-magn
weight moves down and increases by a factor of 3 or mo
This, in turn, may lead to considerably stronger interferen
effects that may cause changes also to the upper edge o
two-magnon profile~which then no longer would arise from
two-magnon excitations only!.

There are hence two major concerns with the spin-w
calculations that have to be addressed:~1! The stage at which
S is set to 1/2, leading to two very different two-magnon lin
shapes.~2! The contributions from final states including fou
or more magnons, which are very difficult to capture co
pletely within spin-wave theory. In this situation it is clear
useful to consider nonperturbative numerical methods.
discuss two complementary approaches in the next two
tions.

III. EXACT DIAGONALIZATION

In this section, we compute the exact Raman spectrum
clusters with up toN536 sites by use of the Lanczo¨s diago-
nalization algorithm. In this approach, the Raman spectr
is obtained from a continued fraction,

I ~v!52
1

p
ImH ^0uĤLF

† 1

v1E01 i«2Ĥ
ĤLFu0&J , ~19!

-

b-

f
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where u0& is the ground state of energyE0 which can be
easily calculated with the Lanczo¨s method, and« is a small
imaginary part added to give a finite damping of thed func-
tions.

Results for several square and tilted lattices are show
Fig. 3, along with the RPA spin-wave results discussed in
previous section. We have shifted the spin-wave results
the renormalization factorZc51.18 obtained using severa
different numerical methods40,30 ~this value is also in close
agreement with the 1/S2 spin-wave valueZc51.17717!. Spin
wave theory clearly correctly predicts the number of t
dominant peaks, which hence can be characterized as
magnon peaks. There are, however, some discrepancie
the peak positions and their relative weights. Most notab
for the largest lattice (636), the separation between the tw
peaks in the exact spectrum exceeds by a factor of more
1.5 that of the spin-wave result. This may well be an indi
tion that the correct two-magnon profile is broader than
standard profile obtained with spin-wave theory.16,17

Whether or not it is as broad as that obtained by Chubu
and Frenkel~see Fig. 2! cannot be determined from the re
sults for these small lattices, however. We will return to t
important issue in the next section.

It can be noted that for the 434 lattice there is a smal

FIG. 3. Exact diagonalization results for theB1g spectrum for
different small lattices withN sites ~solid curves!. The dashed
curves are the corresponding RPA–spin-wave results. Thed func-
tions of the exact results have been broadened using a dampe
50.1J, and all the spectra are normalized to one. The spin-w
results have been given a smaller damping and a different nor
ization in order to more clearly show the peak positions.
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peak atv/J'4.5 both in the spin-wave and the Lancz¨s
results. This then suggests that it is a two-magnon peak
contrast to previous claims that it arises from a four-magn
state.19 For the larger lattices there is visible weight exten
ing up to v/J'7, which is not present in the spin-wav
results and hence is due to processes involving more
two magnons. For the 636 lattice the relative weight of
these contributions is about 10%.

It is difficult to scale the full shape of the spectrum
infinite system size. The first few frequency cumulants c
be expected to converge rather quickly, however, and h
also previously been calculated using a series expan
method as already discussed. Thenth frequencymomentis
given by ~at T50)

rn5E
0

`

dvvnI ~v!. ~20!

The first cumulantM15r1, and forn.1,

~Mn!n5
1

r0
E

0

`

dv~v2r1!nI ~v!. ~21!

The results for 636 (434) are M153.524 ~3.244!, M2
50.8686 (0.797), andM350.9576 ~1.141!. The previous
series expansion results22 are M153.5860.06, M250.81
60.05, andM351.0060.14. Hence, the 636 cumulants
show an improved and good agreement with the series
sults. However, since there are significant differences
tween the 434 and the 636 lattices, the results may stil
change in the thermodynamic limit. Unfortunately, usi
also the results forN526 and 32, the data do not fall o
smooth curves~see Fig. 8 in the next section!, and it is not
possible to extrapolate to the thermodynamic limit usi
only these Lanczo¨s results. In the next section we will ca
culate the cumulants for much larger systems using Q
data.

IV. QUANTUM MONTE CARLO AND MAXIMUM-
ENTROPY ANALYTIC CONTINUATION

Real-frequency dynamic properties cannot be obtained
rectly using QMC methods. Instead, the correspond
imaginary-time dependent correlation function has to be c
culated, and numerically continued to real frequency. For
Raman spectrum defined by Eq.~3!, the imaginary-time
function is given by

G~t!5^ĤLF~t!ĤLF~0!&, ~22!

where ĤLF(t)5etĤĤLFe2tĤ. The analytic continuation to
real frequency amounts to inverting the integral relation

G~t!5
1

pE2`

`

dvI ~v!e2tv. ~23!

With G(t) obtained only to within a statistical error from
QMC simulation, the spectrumI (v) cannot be uniquely de
termined. In the max-ent approach to this difficu
problem,41,42 a unique solution is defined as that minimizin
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Q5
1

2
x22aS, ~24!

whereS is the entropy of the spectrum,

S52E
2`

`

dvI ~v!ln@ I ~v!/m~v!#, ~25!

defined with respect to a ‘‘default’’ modelm ~both I andm
are here assumed to be normalized to unity!. G(t) is calcu-
lated for a discrete set of timest i . A given I (v) corresponds
to unique values ofG(t i) according to Eq.~23!. The devia-
tion from the actual calculatedGQMC(t i) is quantified byx2.
Since the statistical errorss i of GQMC(t i) at different times
are correlated~see Fig. 13 in the Appendix!, x2 should be
defined in terms of the inverse of the full covariance mat
C,

x25(
i , j

@G~t i !2GQMC~t i !#Ci j
21@G~t j !2GQMC~t j !#.

~26!

We here parametrize the spectrum in terms ofNv;200–400
equally spaced delta functionsd(v2v i) for v i.0:

I ~v!5(
i 51

Nv

I id~v i2v!, ~27!

and a smooth continuous spectrum is then represented b
curve connecting the amplitudesI i ~or by giving thed func-
tions a width of the order of the frequency spacing, wh
gives a very similar curve!. The negative part of the boson
spectrum is given by detailed balance:I (2v)5e2bvI (v).
We use a flat default model forv.0. The parametera in
Eq. ~24! is determined iteratively so as to satisfy the ‘‘cla
sic’’ max-ent criterion, resulting in~within the assumptions
of the max-ent method! the spectrum with the highest prob
ability given the QMC data.

For calculatingG(t i) we use the stochastic series expa
sion QMC method,28,29 as discussed in the Appendix. Wit
this method, derivatives ofG(t) can also be directly calcu
lated. We here use the first two derivatives as supplemen
information in the max-ent method. Thenth derivative of
G(t) is related toI (v) according to

G~n!~t !5
~21!n

p E
2`

`

dvvnI ~v!e2tv. ~28!

It is a straightforward matter to modify the max-ent proc
dures to include also the first few@in our case two# of these
derivative relations in addition to the original analytic co
tinuation equation~23!. The use of derivatives was first sug
gested by Schu¨ttler and Scalapino in their pioneering wor
on numerical analytic continuation based onx2 fitting to
QMC data.43 To our knowledge, the max-ent method has n
previously been used with derivative information. It shou
be noted that thenth frequency momentrn is given by the
t50 derivative:

rn5~21!n
G~n!~t→0!

G~t→0!
. ~29!
the

-

ry

-

t

Enforcing known frequency moments has been previou
used to improve the resolution of the max-ent method.44 The
derivative information goes beyond this by enforcing a
the ‘‘moments’’ defined witht.0 in Eq. ~29!. The deriva-
tives can of course be expected to improve on the max
procedure only if they can be calculated accurately enoug
contain information not already present in the calcula
G(t). Typically, the statistical errors increase with increa
ing derivative ordern. In our case, the first two derivative
appear to be useful, although spectra obtained with o
G(t) are not dramatically different.

Next, we present results for systems of sizeL3L, with
L54, 6, 8, and 10. Although considerably larger lattic
can be studied with the QMC method, the physical inform
tion we are interested in here requires very accurate res
for G(t). It is therefore more appropriate to concentrate
computational resources on obtaining reliable results
moderate system sizes. Comparing results forL54210
should also be sufficient for making statements about
thermodynamic limit. We also carried out some simulatio
for L516, but the statistical errors are significantly larger
this case and the continuation to real frequency is there
less reliable. In order to obtain ground state results, the si
lations were carried out at inverse temperatures as high
b58L. Results obtained withb54L are indistinguishable
within statistical errors, indicating that contributions fro
excited states indeed are negligible at these low temp
tures.

We begin by showing in Fig. 4 our results for the log
rithm of the normalized imaginary-time correlatorg(t)
5G(t)/G(0). In thesame figure we also show the relativ
statistical error,s rel(t), of g(t). Since the results for all the
system sizes have comparable errors, one can expec
max-ent continuation to real frequency to resolve struct
on roughly the same scale. Already from this imaginary-tim
data it is clear that the real-frequency spectum has domin

FIG. 4. QMC results for ln@g(t)# ~upper panel! for different
system sizes, and the relative statistical errors ofg(t) ~lower
panel!.
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57 8485NUMERICAL CALCULATIONS OF THE B1g RAMAN . . .
weight atv'3J for all system sizes, as ln@g(t)# decays ap-
proximately linearly witht in a sizable regime, with slope
'23. For the larger systems a slight upward curvature
be noted, indicating that there is spectral weight also be
3J.

We find that the shape of the Raman spectrum obtai
with the max-ent method is very sensitive to the statisti
fluctuations in the QMC data. Carrying out the max-ent p
cedures with different subsets of the available imagina
time data always gives a dominant peak close tov/J53, but
the peak width and asymmetry show large variations.
therefore consider it appropriate to define the spectrum
responding to the full set of imaginary time data as an av
age over suitably defined subsets. For this purpose we
the so-called bootstrap method45 in the following way.

With the simulation data for some quantityA divided into
M ‘‘bin averages’’ Ai in the standard way, a bootstra
sampleAB is defined as

AB5
1

M (
i 51

M

ARi
, ~30!

whereRi is a randomly chosen bin~i.e., the number of bins
chosen is the same as the total number of bins, allowing
course, for multiple selections the bins!. Since the max-en
procedure is highly nonlinear, the average over a large n
ber of separately max-ent continued bootstrap sample
imaginary-time correlation functions can be different fro
the continued full average. We argue that the bootstrap
erage is more meaningful since statistical fluctuations
averaged out considerably.

In Fig. 5 we show max-ent results for 10 bootstr
samples of 434 QMC data. All the spectra have a domina
peak very close to the correct positionv/J52.98, as well as
a structure at higher frequency. There are, however, v
large variations in the peak width and in the position of t
high-frequency weight. The average over 500 bootst
samples is shown in Fig. 6. The exact Lanczo¨s result with a
dampinge/J50.1 is quite well reproduced, except that t

FIG. 5. Results of max-ent analytic continuation of 10 bootst
samples of QMC imaginary-time data generated for a 434 system.
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small peak atv/J54.5 is not present. It can be noted that t
main peak of the average spectrum is narrower than mos
the ‘‘typical’’ bootstrap samples~see Fig. 5!, contrary to
what might have been expected. This is clearly due to
fact that the position of the peak shows very small variatio
compared to the variations in the peak width and that
some bootstrap samples the peak is very sharp.

Results for the larger lattices are also shown in Fig. 6.
the 636 spectrum the two main peaks are clearly resolv
The weight present at higher frequency cannot be resolve
a separate structure, however, and instead causes the sh
'15% of the second peak. As the system size grows,
number and density of peaks increase, and only a sin
structure can then be resolved. For the 838 lattice, the spin-
wave result shown in Fig. 1 has only one dominant peak. T
max-ent result for this size is, however, very broad, indic
ing that the relative weight distribution among the peaks
tained in spin-wave theory is not reliable~signs of this is
seen also in the exact 636 spectrum in Fig. 3!. In particular,
the max-ent spectrum has much more low-frequency wei
This is the case also for the 10310 lattice. The spectrum ha
a more pronounced peak than for 838, indicating that the
individual d functions begin to group into a profile peake
aroundv/J'3.5. It should be noted that the procedures
are using can be expected to work better for the larger s
tems, for which the distribution ofd functions are better
approximated by a single continuous structure.

p

FIG. 6. Bootstrap-averaged max-ent results for theB1g spectrum
for different lattices~solid curves!. The 434 and 636 results are
compared with the corresponding exact diagonalization results
a dampinge/J50.1 ~dotted curves!.
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In Fig. 7 we show the results for the short-time behav
of the ratio G(n)(t)/G(t), along with the corresponding
curves obtained from the max-ent results. According to
~29!, the first two frequency moments can be directly o
tained from thet50 points. The first moment can be acc
rately extracted this way. In the case of the second mom
the statistical fluctuations grow large ast→0, but the ex-
trapolation provided by the max-ent fit still gives a qu
stable result. We also extract the third moment from
max-ent spectra. For bothL54 andL56 the results are in
excellent agreement with the exact results obtained with
Lanczös method in Sec. III.

Figure 8 shows the system size dependence of both
QMC and the Lanczo¨s results for the cumulants, along wit
the previous22 infinite-size series results by Singhet al. We
also include the first and second cumulants obtained fo
16316 lattice, for which we do not consider the full lin
shape obtained with the max-ent method to be stable du
larger statistical errors than for the smaller systems. The
two cumulants can nevertheless be estimated. The max
and series results agree very well for the larger systems.
exact results for the nonsquare lattices do not show a reg
size dependence, whereas theL3L lattices do. Themoments
for the L3L lattices increase monotonically withL. How-
ever, there is a clear maximum in the second cumulant
L56. This is likely caused by the lack of weight between t
two dominant peaks for this lattice size. With growing si
the gap should gradually be filled in by other peaks, lead
to a decreasing second cumulant. Judging from Fig. 8,
results for the largest systems (16316 for M1 and M2 and
10310 for M3) should represent the thermodynamic lim
within statistical errors. We then haveM153.59
60.01, M250.7960.03, andM350.9560.08.

FIG. 7. QMC results for the short-time behavior ofG(1)/G ~up-
per panel! and G(2)/G ~lower panel! for systems of linear sizesL
54 ~solid circle!, 6 ~open circles!, 8 ~solid squares!, and 10~open
squares!. The solid curves are obtained from the max-ent analy
continuation.
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We now return to the line shape. The max-ent spec
displayed in Fig. 6 show a considerable dependence on
lattice size. The trend forL>6 appears to be the develop
ment of a well defined main peak atv/J'3.5, as well as
some strengthening of the tail up tov/J'7. Comparing with
the spin-wave results for the two-magnon profiles shown
Fig. 2, the 10310 max-ent spectrum is clearly much broad
than the narrow peak obtained by Canali and Girvin,17 but
not quite as much broadened towards lower frequencie
the Chubukov-Frenkel profile24 obtained by settingS51/2 at
a later stage of the calculation. Since the max-ent method
be expected to cause some broadening and the trend
increasing the lattice size appears to be a narrowing of
dominant peak, we conclude that the actual peak in the t
modynamic limit should be narrower than that obtained
Chubukov and Frenkel.

In the exact 636 result there are contributions in th
frequency rangev/J'4.527 which are not present in th
spin-wave result for the same lattice~see Fig. 3!. This weight
is therefore most likely dominated by processes involv
more than two magnons. The max-ent result for the 10310
lattice also shows a tail extending up tov/J'7. The total
weight above the spin-wave theory two-magnon cutoffv/J
54.63 does, however, remain at'10–15 %, as previously
argued on the basis of the 1/S2 spin-wave results and th
frequency cumulants.17

c

FIG. 8. The first three frequency cumulants of the max-ent sp
tra vs the inverse system size~solid circles with error bars!. The
open circles are the exact diagonalization results. The prev
infinite-size results from a series expansion, calculated by Si
et al. ~Ref. 22!, are indicated by the horizontal dashed lines~result
6 estimated error!.
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Canali and Girvin argued that the two-magnon profile
very little affected by the higher-order processes, and that
four-magnon contribution should be a peak well separa
from the two-magnon profile.17 We now consider an ap
proach to testing this hypothesis numerically, independe
of the max-ent method. We assume a spectrum consistin
the Canali-Girvin two-magnon profileP(v) shown in Fig. 2,
and a GaussianGs4

(v2v4) of width s4 centered atv

5v4 for modeling the higher-order contribution. In order
account for a possible further frequency shift, we use a p
nomenological frequency renormalizationZ in the two-
magnon profile. The full spectrum is hence

I ~v!5A2P~Zv!1A4Gs4
~v2v4!, ~31!

where P and Gs4
are both normalized to one, and hen

A21A451. We then have four parameters,Z, A4 , v4, and
s4 which can be adjusted to give the best consistency w
the imaginary-time data. Note thatP(v) already contains the
spin-wave renormalization factor to order 1/S2, and hence
our Z should be close to 1 for this treatment to be consiste

For the 10310 lattice, the imaginary-time data can in
deed be very well accounted for by this spectrum. We
tain the parametersZ50.97, A450.40, v454.1, and
s451.1. The resulting spectrum is shown in Fig. 9. The d
for 16316 spins can also be very well fit to the form co
sidered, and the parameters are not changed much from
10310 ones. This spectrum is also shown in Fig. 9. T
parameters of the Gaussian are such that it is comple
merged with the two-magnon profile. This is clearly cons
tent with both the 636 Lanczös and the max-ent results
which did not show any significant gap between the m
peak and the high-frequency weight. In Fig. 9 the weight
the Gaussian also extends to the low-frequency side of
two-magnon peak, and therefore has the effect of broade

FIG. 9. B1g spectrum obtained by a fit of imaginary-time QM
data to the Canali-Girvin two-magnon profile~Ref. 17! plus a
Gaussian. The almost indistinguishable solid and dashed curve
for a 10310 and a 16316 lattice, respectively. The bold curve
the experimental spectrum for La2CuO4 discussed in Ref. 22, with
the frequency scale adjusted to give the same peak position a
theoretical results~corresponding to an exchangeJ51440 K!.
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it. Therefore, the relative weight of about 40% of the seco
ary peak cannot be interpreted directly as the total fo
magnon contribution, but also likely reflects that the tw
magnon profile from spin-wave theory is too narrow. W
have also carried out fits to two Gaussians, and then find
the dominant one is at a position'3.2J, and the second one
again is at'424.5J. However, the uncertainty in the widt
of the dominant peak is large, and therefore this meth
cannot be used to accurately determine the width. Based
the other approaches we have discussed, we can neverth
conclude that the standard spin-wave two-magnon profil
too narrow, but by how much is not completely clear. T
profile shown in Fig. 9 likely represents a lower bound of t
width.

We also attempted a similar fitting procedure using
Chubukov-Frenkel two-magnon result as the dominant f
ture. However, we found that it was not possible to obt
any good fit to the QMC data in this case, due to the, app
ently, too high low-energy weight.

In Fig. 9 we also show an experimental spectrum
La2CuO4, with the frequency scale adjusted to give the sa
peak positionv/J'3.25 as the QMC–spin-wave fit. Thi
peak position corresponds to an exchange constanJ
51440 K for the experimental system, which is in goo
agreement withJ'1500 K obtained from neutron scatterin
and NMR experiments. Although the experimental spectr
is somewhat broader than our result, there is a quite g
agreement with the distribution of the weight present abo
the two-magnon cutoff frequency. Comparing with the tw
magnon spin-wave spectra shown in Fig. 2, it is clear t
our present fitted spectrum is considerably closer to the
perimental result. As will be discussed further in Sec. VI, t
width of the peak is such that the further broadening requi
to match the experimental spectrum could quite easily
achieved by spin-phonon couplings, as has been sugge
by several groups.

V. FINITE-TEMPERATURE RESULTS

In this section we present results of QMC and max-
calculations carried out at temperaturesT/J50.25, 0.5,
and 1.0.46 Raman spectra for a 434 lattice at these tempera
tures were previously obtained by Bacci and Gagliano us
exact diagonalization.31 Recently, finite temperature Lanczo¨s
calculations for lattices with up to 20 sites were presented
Prelovšek and Jaklicˇ.47 Here we compare QMC1max-ent
results for systems with 434 and 16316 spins. The latter
size should be sufficient for obtaining thermodynamic lim
results at the temperatures considered.

Figure 10 shows the imaginary-time correlation function
For the temperatures considered here,g(t) can be accurately
evaluated for the whole range 0<t<b. The slower decay
with t for the larger lattice indicates the presence of mo
low-frequency weight as the system size increases. Thi
confirmed by the max-ent results for the real-frequency sp
tra, shown in Fig. 11. The results for 434 spins are in rea-
sonable agreement with exact diagonalization results if
includes some rather large broadening of thed functions. In
Fig. 11 we have graphed the exact results as histograms,
the bin width for each temperature chosen large enoug
remove most, but not all, of the jagged structure due to

are
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discrete finite-size spectrum. It is clear that the max-
method cannot capture the fine-structure of the spectrum,
instead gives a single rounded shape. Nevertheless, th
gion of dominant spectral weight and its temperature va

FIG. 10. The logarithm of the normalized imaginary-time co
relator g(t) vs t for 434 ~dashed curves! and 16316 ~solid
curves! lattices at different temperatures.

FIG. 11. Max-ent results for theB1g spectrum of 434 ~dashed
curves! and 16316 ~solid curves! lattices at different temperatures
The histograms represent the exact results for the 434 lattice.
t
nd
re-
-

tions are well reproduced. The low-frequency peak in
exact 434 spectra at high temperatures is due to degen
cies present for this small lattice31 ~i.e., the peak is actually a
v50).

Our 16316 results show a faster enhancement of the lo
frequency spectral weight as the temperature is increa
above T/J'0.25. This difference between lattice sizes
likely due to the presence of large finite-size gaps in the le
spectrum of the 434 system. Naturally, asT→` the system
size dependence should diminish, and this is seen alread
T51.0 in Fig. 11. The finite-temperature spectra calcula
for 20 sites by Prelovsˇek and Jaklicˇ47 for T/J51.0 and 0.5
are in reasonable agreement with our 16316 results, again
taking into account a max-ent broadening of our spec
However, atT/J50.5, judging from the rather large differ
ences between the exact results forN516 ~Ref. 31! and
N520 ~Ref. 47! and the slow approach to the thermod
namic limit discussed in Sec. IV, it is likely that theN520
spectrum has not yet converged to its infinite-size shape.
actual width at this temperature should therefore be so
thing intermediate between our 16316 max-ent result and
the previously obtainedN520 profile.

Experimentally, spectra taken at room temperature do
differ significantly from ones obtained at very low
temperatures.13,14 As the temperature is elevated toT/J'0.5
there is a significant increase in the weight belowv'2J.14

This feature is indeed quite well reproduced by our result
16316 spins.

The spectra shown in Fig. 11 are all normalized to 1. T
temperature dependence of the integrated intensity is a q
tity of experimental interest. We define two intensities:

I 15E
2`

`

dvA~v!, ~32a!

I 25E
0

`

dvA~v!. ~32b!

FIG. 12. IntegratedB1g scattering intensities vs temperature f
434 ~open symbols! and 10310 ~solid symbols! lattices. Circles
are forI 1 ~using all frequencies!, and squares forI 2 ~using positive
frequencies only!.
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These definitions are equivalent atT50, but differ at finiteT
due to spectral weight at negative frequencies, w
A(2v)5e2bvA(v). I 1 can be directly obtained from th
imaginary-time data asG(t50), whereasI 2 is calculated by
integrating the real frequency spectrum obtained using
max-ent method. Figure 12 shows both intensities vsT for
434 and 16316 lattices. Up toT/J'0.25, I 1'I 2, owing
to the absence of significant low-frequency weight at th
temperatures. At higher temperaturesI 1.I 2, but even at
T/J'0.5 the difference is small. For the 434 system the
intensity I 2 increases by'14% as the temperature is d
creased fromT/J50.5 toT/J50, and for 16316 by'9%.

VI. SUMMARY AND DISCUSSION

We have presented numerical results for theB1g spectrum
of the Heisenberg model within Loudon-Fleury theory. W
obtained Lanczo¨s exact diagonalization results for up to
36 spins, and carried out QMC simulations for up to
316 spins. We compared the results with spin-wave the
Our main results and conclusions are the following.

~1! Comparing spin-wave theory and exact diagonali
tion results for the same lattice sizes, we find that for a giv
cluster the number of dominant peaks is the same in b
cases. However, both the positions of the peaks and t
relative weights are different. Most notably, for the 636
lattice there are two dominant peaks, the separation of wh
is 1.5 times larger in the exact result. Assuming that the tr
persists for larger lattices, this indicates that spin-wa
theory underestimates the width of the dominantB1g peak in
the thermodynamic limit.

~2! Our results of maximum-entropy analytic continuati
of QMC imaginary-time data are also consistent with a pe
width larger than that of the spin-wave two-magnon pe
The first three frequency cumulants are in excellent ag
ment with previous results of a series expansion around
Ising model. We estimate the cumulants in the thermo
namic limit to beM153.5960.01, M250.7960.03, and
M350.9560.08.

~3! In order to test the 1/S2 spin-wave theory prediction o
a four-magnon profile well separated from the main tw
magnon peak,17 we carried out a fit of the QMC imaginary
time data to a spectrum consisting of the spin-wave tw
magnon peak and a Gaussian at higher frequency. We fo
that this type of spectrum indeed describes the data well.
fitted Gaussian is centered atv/J'4.1, and is so broad tha
it is completely merged together with the two-magnon str
ture peaked atv/J'3.25. The resulting spectrum resembl
a typical experimentalB1g profile for La2CuO3 with an ex-
changeJ'1400 K. The experimental peak is still slightl
broader, but there is a considerable improvement in comp
son with the standard spin-wave theory two-magnon pro

~4! The imaginary-time data cannot be fitted using t
two-magnon profile obtained by Chubukov and Frenkel24 by
expanding their spin-wave spectrum around its peak posi
before settingS51/2 in the calculation. This is due to th
significantly stronger low-frequency weight present in th
spectrum.

~5! At finite temperature we find a significant increase
spectral weight belowv'2J for T/J*0.25, in agreemen
with experimental results for antiferromagnetic cuprate14
h
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We also find that this effect is suppressed in the 434 sys-
tem, due to the finite-size gaps. The temperature depend
of the integrated scattering intensity is weak.

Our results hence confirm that LF theory can account
some of the main features of typicalB1g spectra observed
experimentally for antiferromagnetic cuprates such
La2CuO4. Our new evidence for a profile significantl
broader than that obtained in spin-wave theory supports
part the early claim by Singhet al.22 that the broadening is
due to the strong quantum fluctuations of the Heisenb
model with S51/2 ~note that spin-wave theory is in goo
agreement with experimental results for quasi-2DS51
systems48!. However, typical experimental spectra are s
broader, and extend to slightly higher frequencies. T
shoulderlike feature observed in some experiments av
'4J is also not present in our results, although we fi
evidence that the four-magnon contribution has its maxim
in this regime. Hence, although our results show a be
agreement with experiments than previous numerical res
obtained for smaller lattices,19,31 the Heisenberg-LF mecha
nism does not appear to fully account for the experimen
Raman scattering, as has been noted in several previous
ies. The fact that there is noA1g scattering within this theory
of course also implies that other additional mechanisms h
to be active.

As noted in the Introduction, the resonance effe
pointed out by Chubukov and Frenkel24 are important to ex-
plain the experimentally observed15 dependence of the line
shape on the frequencyvin of the incident light. However, a
recent experiment on PrBa2Cu2.7Al0.3O7 indicates that the
resonance features become weak asvin is decreased suffi-
ciently far below resonance, and that the width of the dom
nantB1g peak does not exhibit much dependence onv in in
this regime.25 Hence, resonance effects are likely not respo
sible for the remaining line broadening. Based on the res
presented in this paper, we argue that the broadening is
tially intrinsic to the LF-Heisenberg model, i.e., the spi
wave calculations forS51/2 underestimate the high-energ
weight. Canali and Girvin noted that interactions in fin
states with four magnons, which were not included in t
calculations because of their great complexity, could in pr
ciple lead to an enhanced four-magnon spectral weight.17

The further broadening of the spectrum required in or
to explain the experiments could be due to spin-lattice c
plings. Such a mechanism was suggested by Knollet al.,14 in
order to explain the temperature dependence of the
shape. Spin-wave calculations including a phenomenolog
magnon lifetime give some support to these ideas.32 Several
different calculations explicitly including magnon-phono
coupling have been presented recently.33–35 Using an adia-
batic approximation for the phonons leads to a Heisenb
model with random coupling constants. Numerically stud
ing such random lattices with 434 spins and assuming
standard LF coupling, Noriet al. found that theB1g spec-
trum can indeed be broadened by this mechanism, and
also A1g scattering can become significant.33 However, in
this calculation, the strength of the randomness required
order to reproduce the width of the experimentalB1g spec-
trum appears to be rather large~using a Gaussian distributio
for the nearest-neighbor couplingsJi j , a width s'0.5̂ Ji j &
was required!.49 Nori et al. argued that such strong disord
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can be caused by incoherent atomic displacements. Ne
theless, in the absence of other evidence for the presenc
large fluctuations in the Heisenberg couplings, it would
desirable to reproduce the broadened spectrum with a
rower coupling distribution.

One reason for the strong disorder required in the ca
lation of Nori et al. could be the small size of the lattic
used.33 As we have seen, the pure 434 system only has a
single dominant two-magnond function at v52.98J, and
two weaker peaks atv'4.5J andv'5.5J.19 It is clear that
a considerably weaker disorder would suffice to broaden
spectrum if one starts from the much broader pure-sys
profile obtained here for larger lattices.

The type of QMC and max-ent calculations presen
here could in principle be carried out also for disordered s
systems, and even including fully dynamic phonons.50 The
suggested effects of magnon-phonon coupling could he
be investigated more rigorously than previously, using lar
lattices. Although a recent exact diagonalization study
Reilly and Rojo51 give some support for the validity of a
adiabatic approximation for the phonons, calculations w
full dynamic phonons should also be carried out for larg
lattices. Limits on the strength of the phonon-magnon c
pling ~or the width of the disorder distribution in the adi
batic approach! could be established by carrying out QM
calculations of, e.g., the temperature dependence of the
correlation length8 and NMR relaxation rates12 for systems
including lattice vibrations or static disorder.
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APPENDIX: QMC CALCULATIONS OF THE RAMAN
CORRELATION FUNCTIONS

In this Appendix we describe the calculation of th
imaginary-time correlation function~22! with the stochastic
series expansion~SSE! method.28,29 In order to reduce the
statistical fluctuations, we use the spin-rotational invaria
of the Heisenberg Hamiltonian to construct an estimator
noisy than the obvious one. We also derive direct estima
for the t derivatives ofG(t). In order to establish the nota
tion, we first very briefly outline the formalism of the SS
algorithm. More details of the implementation of this no
standard generalization of Handscomb’s method52,53 for the
2D Heisenberg model can be found in Ref. 30.

In order to apply the SSE technique, the Hamiltonian
first written as

Ĥ52
J

2 (
b51

2N

@Ĥ1,b2Ĥ2,b#1
NJ

2
, ~A1!

whereb is a link connecting a pair of nearest-neighbor si

^ i (b), j (b)&, and the operatorsĤ1,b and Ĥ2,b are defined as
er-
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Ĥ1,b52@ 1
4 2Si ~b!

z Sj ~b!
z #, ~A2a!

Ĥ2,b5Si ~b!
1 Sj ~b!

2 1Si ~b!
2 Sj ~b!

1 . ~A2b!

An exact expression for an operator expectation value

^Â&5
1

Z
Tr$Âe2bĤ%, Z5Tr$e2bĤ%, ~A3!

at inverse temperatureb5J/T, is obtained by Taylor ex-
panding exp(2bĤ) and writing the traces as sums over d
agonal matrix elements in the basis$ua&%5$uS1

z , . . . ,SN
z &%.

The partition function then takes the form28

Z5(
a

(
n

(
Sn

~21!n2

n! S b

2 D n

^au)
l 51

n

Ĥal ,bl
ua&, ~A4!

whereSn is a sequence of index pairs defining the opera
string ) l 51

n Ĥal ,bl
,

Sn5@a1 ,b1#@a2 ,b2# . . . @an ,bn#, ~A5!

with aiP$1,2%, biP$1, . . . ,2N%, andn2 denotes the tota
number of index pairs~operators! @ai ,bi # with ai52. Both
Ĥ1,b andĤ2,b can act only on states where the spins at s
i (b) and j (b) are antiparallel.Ĥ1,b leaves such a state un
changed, whereasĤ2,b flips the spin pair. Defining a propa
gated state

ua~p!&5)
l 51

p

Ĥal ,bl
ua&, ua~0!&5ua&, ~A6!

a contributing (a,Sn) must clearly satisfy the periodicity
condition ua(n)&5ua(0)&. In an allowed sequenceSn , the
links b corresponding to the spin-flipping operators@2,b#
present must therefore form only closed loops. For a lat
with L3L sites andL even, this implies that the numbern2
must be even, and hence that all terms in Eq.~A4! are posi-
tive and can be used as relative probabilities in a Mo
Carlo algorithm~this is true for any nonfrustrated system!.
Since any nonzero matrix element in~A4! is equal to one,
the weight factor corresponding to a contributing (a,Sn) is
simply given by

W~a,Sn!5
~b/2!2

n!
. ~A7!

The algorithm for sampling the configurations (a,Sn) is de-
scribed in Ref. 30.54,55

In order to obtain an expression forG(t) in terms of the
statesua(p)& and the index sequenceSn used in the simula-
tion, the expectation value is first written in terms of th
operatorsĤa,b as

G~t!5 (
a1 ,a2

(
b1 ,b2

Pb1 ,b2
Ga2 ,b2

a1 ,b1~t!, ~A8!

where

Ga2 ,b2

a1 ,b1~t!5^Ha2 ,b2
~t!Ha1 ,b1

~0!&, ~A9!
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andB1g symmetry corresponds toPb1 ,b2
51 for links b1 and

b2 which are parallel to each other, andPb1 ,b2
521 for

perpendicular links. Proceeding as in the derivation of
partition function~A4!, the exponentials in the expression

Ga2 ,b2

a1 ,b1~t!5
1

Z(
a

^aue2~b2t!ĤĤa2 ,b2
e2tĤĤa1 ,b1

ua&

~A10!

are Taylor expanded and all powers ofĤ are written as sums
of products of the operatorsĤa,b . There is then a one-to-on
correspondence between the terms inGa2 ,b2

a1 ,b1(t) and Eq.

~A4!. Dividing out the factor corresponding to the config
ration weight~A7! gives the average in the form of a fun
tion of Sn :

Ga2 ,b2
a1 ,b1~t!5K (

m50

n22

F~t,n;m!Na2 ,b2

a1 ,b1~m!L , ~A11!

where

F~t,n;m!5
tm~b2t!n2m22~n21!!

bn~n2m22!!m!
, ~A12!

andNa2 ,b2

a1 ,b1(m) is the number of times the operators@a1 ,b1#

and@a2 ,b2# occur inSn ~in the given order! separated bym
other operators. Hence, measuringGa2 ,b2

a1 ,b1(t) simply

amounts to finding all pairs of operators@a1 ,b1# and
@a2 ,b2# in the sequenceSn . The contribution to Eq.~A10!
of each pair is a function of the relative separation of
operators, given by Eq.~A12!.

In order to obtain a simple expression for the full corr
lation function G(t) it is useful to introduce a function
X(p), such thatX(p)511 if the pth operator inSn acts on
a link in thex direction, andX(p)521 if it acts on ay link.
Numbering the bonds such that 0<b<N correspond tox
bonds, andN11<b<2N correspond toy bonds, the defi-
nition is hence

X~p!5H 11, bp<N

21, bp.N.
~A13!

Equations~A9! and ~A11! then give

G~t!5K (
p51

n

(
m51

n21

F~t,n,m21!X~p!X~p1m!L ,

~A14!

where of courseX(p) is periodic;X(n11)5X(1).
In practice the estimator~A14! is rather noisy. An im-

proved estimator can be constructed as follows. First,
function X(p) is written as a sum of two terms,

X~p!5X1~p!1X2~p!, ~A15!

whereXt(p)561(t51,2) for x and y bonds, as before, i
the pth operator inSn , @ap ,bp#, hasap5t, but Xt(p)50 if
ap5” t. Hence
e

e

-

e

Xt~p!5H 11, ap5t, bp<N,

21, ap5t, bp.N,

0, ap5” t.

~A16!

If ap51, X1(p) can be averaged over all 2N choices of
operators@1,b# at positionp. The weightW(a,Sn8) corre-
sponding to a sequenceSn8 obtained by replacing the curren
operator@1,bp# at p in Sn is equal to the current weigh
W(a,Sn) if the corresponding spins at sitesi (b) and j (b)
are antiparallel in the propagated stateua(p)&, and is zero
otherwise. Hence,X1(p) can be redefined as

X1~p!5H @Nx
A~p!2Ny

A~p!#/2N, ap51,

0, ap5” 1,
~A17!

whereNg
A(p) is the number of antiparallel nearest-neighb

spin pairs in theg direction inua(p)&. One can easily verify
that this averaged estimator can be used in products
bothX1 andX2. Hence, improved estimators forX(p)X(p1
m) in Eq. ~A14! can be used for the termsX1X1 , X1X2, and
X2X1. For X2(p) no simple redefinition in terms of single
operator averaging can be constructed~replacing a single op-
erator@2,b# with any other operator always leads to a no
contributing term!, and hence theX2X2 contribution to~A14!
remains noisy. However, the rotational invariance of t
Heisenberg Hamiltonian implies that

^X2~p!X2~p1m!&5^2X1~p!X1~p1m!&

1
1

2
^X1~p!X2~p1m!

1X2~p!X1~p1m!&, ~A18!

FIG. 13. Upper panel: QMC results forg(t)5G(t)/G(0) of a
434 system at inverse temperatureb532 ~solid circles!, compared
with the exact ground state result~solid curve!. The inset shows the
regime 1.75<t<3 on a more detailed scale. Lower panel: T
deviation of the QMC data from the exact result, multiplied by 104.
The dashed curves indicate the statistical errors.
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and therefore theX2X2 term does not even have to be eva
ated. The final result for the improved estimator forG(t) is
hence

G~t!5K 3

2 (
p51

n

(
m51

n21

F~t,n;m21!@2X1~p!X1~p1m!

1X1~p!X2~p1m!1X2~p!X1~p1m!#L . ~A19!

It should be noted that the functionF(t,n;m) is sharply
peaked aroundm'nt/b for largeb, so that typically only a
small fraction of the terms in~A19! actually have to be
evaluated.

Equation~A19! is valid for any 0<t<b, and thet de-
pendence appears only in the functionF(t,n;m). In contrast
to standard Trotter-based QMC methods, the method
cussed here can therefore be used to directly calculate at
derivatives of imaginary-time dependent correlation fun
tions. An expression for thenth derivative ofG(t) is simply
obtained by replacingF in ~A19! by its nth derivative:

G~n!~t !5
dnG~t!

dtn 5K 3

2 (
p51

n

(
m51

n21 S dnF~t,n,m21!

dtn D
3@2X1~p!X1~p1m!1X1~p!X2~p1m!
hy

et

v

s-
o
-

1X2~p!X1~p1m!#L . ~A20!

As discussed in Sec. IV, derivatives can be used as sup
mentary information in a numerical analytic continuation
real frequency. The derivatives att50 are of special inter-
est, as they are related to moments of the spectral func
@see Eq.~29!#.

We end this appendix with a demonstration that the sim
lation results forG(t) are indeed free from systematic e
rors. Since the absolute Raman scattering intensity is
contained in the LF theory, the amplitude ofI (v), and hence
of G(t), is irrelevant, and instead ofG(t) one can consider
the ratio

g~t!5G~t!/G~0!. ~A21!

Figure 13 shows the QMC result for this quantity calculat
on a 434 lattice, along with the exact result obtained fro
I (v) calculated using exact diagonalization. The statisti
error of the QMC result is in the fifth decimal digit, and the
is excellent agreement with the exact result within this ac
racy. The absence of detectable systematical errors in
QMC result forg(t) is hence confirmed. Sinceg(t) decays
exponentially, the relative statistical error grows rapidly w
t, and for t*3 accurate results cannot be easily obtain
This is the case also for larger systems.
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