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In this article, we deal with the scaling function of the spin-wave frequency of ferromagnets. This quantity
enters the mode-coupling theory for ferromagnets below the Curie temperature. To obtain quantitative results,
we discuss the universal properties of the spin-wave frequency and calculate the value of the amplitude factor.
We compare the amplitude factors with experimentally obtained values for the materials Fe, Ni, Co, EuO, and
EuS. The agreement is quite convincing, given the experimental uncertainties. The theoretical value which has
been used earlier and which stems from a Green-function calculation is substantially smaller and does not
agree with the measurements. Finally, we demonstrate how the agreement between recent experiments on the
longitudinal linewidth in Ni and theory can be improved substantially, if one uses the correct value for the
amplitude factor[S0163-182€08)02713-1

[. INTRODUCTION tity influences even qualitatively the shape of the scaling
functions. With this value we therefore get, finally, better
In contrast to the very satisfactory situation abdig agreement between our theoretical mode-coupling calcula-
where quantitative agreement between experiment antions and the experiments. A brief account of the essential
theory of the critical dynamics has been achieysek, e.g., results has been given in Ref. 3.
Refs. 1, 2 and references thergithe situation in the ferro- ~ The outline of this paper is as follows. In Secs. ll-IV we
magnetic phase is far less clear. Even in the isotropic casdrésent theoretical calcu_latlons leading to a value for the am-
there are open guestions. The theory, which was able to exlitude factor of the spin-wave frequency. In Sec. V, we
plain the experimental findings on the critical dynamicsShow how experimental values for this quantity can be de-
quantitatively, has been mode-coupling theory. One imporfived. We extract values for Fe, Ni, Co, EuO, and EuS from
tant issue, now, is the universality of the quantities whichdifferent earlier experiments. In Sec. VI, these findings are
enter this theory. discussed and conclusions for mode-coupling calculations
From renormalization-group theory, it is clear that theare drawn.
scaling functions are universal. This is especially true for the

scaling function of the spin-wave frequency. On the other|;, UNIVERSALITY OF THE SPIN-WAVE FREQUENCY—

hand, for quantitative calculations, mode-coupling theory is THEORETICAL RESULTS

far superior to renormalization-group calculations. However, o ] ] i

this theory is a microscopic theory and it is not obviaus In th_e be_g_lnmng of this section we summarize the_results
priori, that the quantities in question are still universal. ~ ©n static critical exponents and amplitude ratios which are

The purpose of this paper iS, therefore' to deal with théqeeded in the fOllOWing. It is We“-knOWn that there exist
universal properties of the scaling function of the spin-wavecfitical exponents the values of which do not depend on the
frequency, based on mode-coupling theory. We want tdParticular model mvestlga_ted or on'other §pecn‘|c details but
present two lines of argument, proving that for the isotropicrather are universal. Within one universality class, all mem-
Heisenberg ferromagnet, the eigenvalues of the frequem?ers of this class exhibit the_ same critical behav_|or an_d therg-
matrix are universal, i.e., the scaling function for the spin-fore possess the same critical exponents. Dealing with static
wave frequency is universal. Furthermore, we will obtain anProperties, 12 different exponents can be defiriaat since
explicit formula for the amplitude factor of this quantity, there exist 10 scaling relations between them, only 2 are
which allows us to calculate its value. It will then be com- really independent. For example, the exponentg, and y
pared with a result obtained earlier, based on Green functiorf@@n be expressed by the two exponentnd 7 according to
and the random-phase approximatid®PA). We also dis-
cuss some experiments and compare the experimental results
with our findings.

There are five important conclusions from our results:
First, we show that the amplitude factor of the spin-wave d n
frequency is universal also in the mode-coupling theory. Sec- Blv==—1+ =,
ond, our value improves the old RPA value used in earlier 2 2 1)
mode-coupling calculations. Third, our value compares
much better with the experimental values. Fourth, this quan- ylv=2—1.

_2—a
v=—q
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Considering dynamics, a further exponent, the dynamic criti- The static scaling hypothesis for the static susceptibility
cal exponentz has to be added, which is also universal.including an external magnetic field, which leads to a non-
There are far more dynamic universality classes, since modranishing magnetizatiokl, can now be stated in the follow-
els belonging to the same static universality class can neveing form#

theless belong to different dynamic universality classes.

They have been classified in Ref. 5 and for matieWhich (@ TM)= |7~ 7ok M i «
describes isotropic Heisenberg ferromagnets, we have X8 T XoX Mg '
—-1/B
d 3 - M
z=§+1—g. ) =q 2+”X0X<TM—O .X)- (6)

In our case, the dimension &=3 and the exponeny can
approximately be set to zerffzor example,n=0.04 for the
isotropic n-vector model ind=n=3 in O(e?) (Ref. 6.] If
we additionally setw=0 [e.g., «=—0.10 for the isotropic
n-vector model ind=n=3 in O(e?) (Ref. 6], we get a
rough estimate also for the static critical exponents

Here, we introduced the scaling variabe 1/g&, with the
correlation lengthé, above T, and the universal scaling

functions y’ and y. From there, we get abovE., without
field (M=0), and in an expansibror x>1

X7

X' (2 X)=1+0(x"%),  x(=x)=3 +1+0(x %)’

v=2/3, B=1/3, y=4/3, z=5/2. (3 B
(0=0H=0)=Relrl 7, x(ra.H=0)~ %,
The amplitudes in the scaling laws set the scales of the X' 4= % Xolml % X(7mG, q>+é& 2
guantities in question, and can therefore not be universal. (7)

Analogous to the critical exponents, 12 amplitudes can be
defined for static critical propertiésThere exist, however,
10 combinations of these nonuniversal amplitudes, which are
themselves universal such that only 2 of the 12 amplitudes

are really nonuniversal and model dependémio-scale-

factor universality.* Important examples for these universal

amplitude ratios are the following:

Coxo
R.=—=kgT¢,
C M(Z) [of

R{ =£,Cg",
RE=£4(Cg)Y,

gO CO
= 4
o Co @

which is the well known Ornstein-Zernike result. Beldw
we get the result

xt(—1X)=Rx", xtH(—1x)=Rx*,

xt(1,0—0H=0)~q"?, ®

which is in accordance with the Goldstone theofestating

that for systems with a spontaneously broken continuous
symmetry, the corresponding transverse susceptibility has to
diverge in the limit of long wavelengthgj(~0). Here,R is

a further universal amplitude ratio

Msgg) )" (8
;OkBTc Re .

éo

€)

&o

In Refs. 8 9 a dynamical scaling hypothesis was pro-
posed, i.e., it was proposed that analogously, there should be
scaling laws also for frequency-dependent quantities near a

(Different from our notation in Ref. 4 additional normaliza- cyitical point. For the dynamic susceptibility, this leads to the

tion constants for the amplitudes have been introdycEuk

following scaling law®

corresponding amplitudes appear in the scaling laws for the

static isotropic susceptibility, correlation lengthé, magne-
tization M, and specific heat

x(q=0)="xo| 7177,
E=&l77" (1<0:£]),

M =My|7|?,

|7

C=C, +C’

(1<0:Cy). (5)

In these formulasg is the wave vectors the reduced tem-

- ( w 1)
X(q,w)—XqY F_q21@1

. (10

- 1
w¢(Q)=FqZ#@

X4 is the static susceptibilitypy, a characteristic frequency,

Y and w are universal scaling functions. The characteristic
frequency sets the time or frequency scale and contains the
dynamic critical exponert and also a furthenonuniversal
amplitudeF. The corresponding scaling functi@nonly de-
pends on static scaling variables.

Now, based on these assumptions, we want to present two

perature r=(T—T.)/T, relative to the Curie temperature lines of arguments, which both show theoretically that the
T., ande, B, v, andv are the usual critical exponents. Be- amplitude factor of the scaling function for the spin-wave

low T, we introduced factorg; andC, for the correlation
length and the specific heat, respectively.

frequency is universal. To this end, we take a closer look at
the frequency matrixog, which appears in mode-coupling
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theory below the Curie temperatuiie.. It represents the be shown analytically that the longitudinal scaling function
characteristic energy for the fundamental excitations—thes, depends asymptotically asbion b.

spin waves. In Ref. 10, the theory has been presented in To this end, we study the mode-coupling equations for the
detail and applied to ferromagnetic substances. There, an excaling functions of the transverse and longitudinal damping

plicit formula for the calculation of the frequency matrix has G and G, in the isotropic limit (no dipolar interaction
been given[Eq. (26) of Ref. 10. Now, we note that the They can be written

scaling law for the spin-wave frequency, given in Ref. 10, is

of course in accordance with the above general consider- ¢ 1 o
ations G .(x)= (47)2 f_ldnfo del (X,k,7),
wi=Fq?o(x,y,®), o(xy,$=b\x(1+y? cod 9). 2 ) )
(a1 Gr(X)= g Ldn fo delr(x,k,7), (15

Here,x=1/q&_ is the scaling variable beloW., y=qp/q
is the scaling variable measuring the strength of the dipolawith
interaction, expressed by the dipolar wave vegtgicf. Eq.

(25_)],_ andf)_ is a numerical constant. In thg common range of IL(X, Kk, 7)= (2x7-1)° _ 1

validity, this result also agrees with spin-wave thebry? K ()

Proving the universality of the scaling functiénis therefore 1

equivalent to proving the universality bf Since we have to xzm[ > % ] ,
specify the value of the amplitude, we need a theory which KQr(X/ )+ k=g (X K -)

treats the dynamics. The theory we use will be the mode-
coupling theory? In this theory the central object for de-
scribing the dynamics is the so-called Kubo relaxation func-
tion ¢. In the general case, this function is a matrix. It can be
expressed through the dynamic susceptibility «

—iv(X)+ k7G (X k) + K gr(X k)"

2knp—1)2 .
|T<x,f<,n>=(K’K7—2)xL<x/K>

- 1 - -
¢(q!w)_ E {X(q’w)_X(q'O)} (12) gTZGT'f‘I;, ;(X)Zﬁ\/;, K2_=K2—2K77+ 1 (16)

Il THE HYDRODYNAMIC LIMIT With y, we denote the scaling function of the longitudinal
OF THE MODE-COUPLING THEORY static susceptibility and withv we denote the scaling func-

. . . ) tion of the (isotropig spin-wave frequency. Agairg is the
Now, we are in a position to start with our first argument. 1o 240N constant.

We assume, that the static and dynamic scaling hypotheses 1,4 procedure to derive the limiting behavior @f and
are valid. It then follows from Eq410) and(6) that we have G in the hydrodynamic X— ) and critical &—0) limit

a scaling law with a universal scaling function fér If we ¢4, these coupled self consistency equations has been de-
now cast¢ into the form scribed in Ref. 24. The idea is to divide the integration in-

terval for k into three regions, extending from 0 to 1, from 1
_ \/X—q (13) tox and fromx to «. (Here, we are only interested in the
wltwgt+il'(g,w) casex>1.) For each region one applies specific approxima-
tions to the integrands which allows to calculate the inte-
grals. This also involves assumptions on the behavior of the
L scaling functions to be determined, which have to be con-
wg+iT(q,0): firmed self-consistently afterwards. To leading ordex ione

thus obtains

. 1
#(q,0)=iVxq

wherewg is the frequency matrix, we also get a scaling law
with universal scaling function for the quantity

- ) , o 1 A1
I'(g,0)—iwg=Fq {G( )—uu(— } (14 G1(X)~(Bg+By In x)x 32 x>1. (17)

Fo*' aé qé
We thus conclude that the combined scaling functionT© calculate the behavior @, one notices that the domi-
nant contribution toG, in Eg. (15 stems from the second
region.| exhibits a maximum ak,~*>"°. Therefore, one
approximates the integrand appropriately for this region, ex-
tends the integration froril x] to [0,¢], and obtains

G—iw, which is a matrix, is universal. If we know thét is
universal, we would be finished, since then alsdad to be
universal.[Mode coupling theory tells us that—because of
Eq. (13— in Eq. (14) is identical tow in Eq. (11).]

To address this last open question—the universality of 12
G—we now turn to mode-coupling theory quantitatively. In GL(X)~ = (X)7(x) ~x7 x>1 (18
principle, G can be calculated using mode-coupling theory XL
and because in Eq. (11) is involved in its calculation, the Obviously, the behavior is only determined by the scaling
resulting scaling function will depend dn In the isotropic ~ function of the spin-wave frequency and the asymptotic
case and in the hydrodynamic linfigz=0 andx—«), it can  behavior of the static susceptibilify; . The transversal scal-
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TABLE I. The configuration numbet, the coefficienta,, and
the volume ratiob? for simple cubic(sc), body centered cubic
(bco), and face centered cubifcc) lattices. See text.

ing function Gy does not influence the result. Assuming
xL~ 1/q one arrives aty, ~1/x. Together withu(x)~ X,
this yieldsG, ~ \X. Concerning the dependence brfrom
Eq. (18) we conclude, therefore, that the longitudinal scaling

function for the damping in the hydrodynamic limit ( S¢ bee fece

— ) is inversely proportional to the amplitude of the € 6 8 12

spin-wave frequency. 2 4 3mv3 47v2
Now, it is obvious thatG— i@ depends in a complicated 270 =P* 1 2 4

manner orb. Since we concluded that it has to be universal,
b itself must be universal. Then, also the scaling function ofdipolar interaction the Hamiltonian can be transformed into
the spin-wave frequency and the relaxation functio& are ~ wave-vector space. Restricting ourselves to the leading order
universal seperately. This closes our first proof. in the wave vectora we end up with the following
expressiorf?
IV. SCALING RELATIONS RESULTING

FROM MODE-COUPLING THEORY H= J~U§ﬁsgsljd’ (239
Now, we give a second derivation of the conclusion that a
 is universal. It will again demonstrate the unive[salityf)of B op 2.2 sap qeq”
and furthermore result in an explicit formula fdr from Ug =—Jod""+J1q%a%s +g_q2_]' (230

which we can calculate its value. From mode-coupling _ _ ) ) )
theory, we know that the Spin_wa\/e frequency in the isotro_The lattice ConS.tant .Of the ConVenUOl'{an[C) .U.n|t Ce.” IS
pic case, i.e., including exchange interaction only, can bélenoted bya, while v is the volume of the primitive unit cell

written ag® (containing only one atojnFor different Bravais lattices the
number of atoms per cubic unit cell differs and thus
M Mo|7]” Mo&s , , b= a%/v depends on the lattice tygisee Table | and Ref.
@qT T - + (19 13). Later on, we will measure lengths in units o3, The

xe 11 " %oxH(—1x)  xoR

Xq |77 xoxr(=1) xo notation [ is an abbreviation for
The dynamical scaling hypothesis states that the following
form should be valid:

fif o
1 d v (277)3 . )
Wq= quw(@)- 20 The expansion of the Fourier transformed exchange interac-
o ] tion leads to the coefficientdy and J. J is given by
Combining both expressions, we get J=(c/6)J, neglecting small corrections due to the dipolar
R {1 \%2 R z-d interaction(we usedG/Ja%<1). By ¢ we denote the con-
o(X)=b T) with b=kBTC(W) figuration number, i.e., the number of nearest neighkees
qé- 0 Table ). Finally, we introduced the dimensionless quangty
£\972(E_\72 related to the dipolar wave vectgp as a measure for the
X ? (é_) . (21) relative strength of the dipolar interaction compared to the
0 i exchange interactidr®
To proceed, we have to specify the value of the dynamic
amplitudeF. , a,G (c|¥?
However, before we investigate the scaling behavior of 9=(PA°=77 |5 (29

the relaxation function, based on mode-coupling theory, we o _
first want to define some physical quantities. Let us start withThe coefficienta; stems from the Ewald summation of the

the Hamiltonian for the spin operato& located at lattice
sitesi with cartesian components, 3=X,y,z (Ref. 48:

H=— IEI ugPsest, (223

92 1

aR?aRjﬁ |§i_§j| .
(22b

1.
Uﬁﬂ=5 38,50;,45~(1-6))G

Here, the exchange interactioh is restricted to nearest
neighborsé=NN and the strength of the dipolar interaction
is given byG = 1/2(g, ug)? with the Landefactorg, and the

Bohr magnetorug . Performing an Ewald summation of the

dipolar interaction and depends also on the lattice type
(Table | and Ref. 48

Now, we turn to scaling considerations. Measuring all
lengths in units of the lattice constaat we define dimen-

sionless quantitiedi, B, H for the HamiltonianH, the in-
verse temperatur@=1/kgT (kg the Boltzmann constant
and an external fiel@, coupling to the spin§, as follows:

H

=Jg?H,
B= ! B

_13
1 (26)

H=Jg?H.
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For this transformation, we used the typical energy of this b(¢ a )= x0q 2" "e(x,7)
systemJg?, wherelJ is the exchange constant in E@3). o T
Furthermore, we introduced a magnetizatdrand an inter-

action vortexV according to I'(£,0,t)=(Fg?)2G(x,7). (29
M=qS), (273 Here, 7 is the scaling variable belonging to the tirme
The static scaling hypothesis can be stated as follaivs
Vi|k=\]q2_”vi|k . (27b) Eq (6)]

For the transformation from th@nicroscopi¢ spin quan-
tity S, and from thelmicroscopig interaction vortex to the
macroscopig expectation valueM of the order parameter . . . LA
1Eield and t?w)e:(mgcroscopi): interaction vortexV,p we in- The amplitudey in front of the scaling fgnctloo( Of}he
cluded the exponeny to account for the effects of field Static susceptibilityy can be written ago=a/J, wherea is
renormalization. This is not rigorous here, but can be justi2 numerical factor accounting for the normalization of the
fied by a more sophisticated treatmé&ht®in Ref. 24, away scaling functiony. Normalizingy to unity, we havea= 1/2.
to account fory in the mode-coupling equations is presented. Now we want to derive an explicit formula for the ampli-
Assuming that field renormalization is representedtude F from mode coupling theory. The mode coupling
through Eq(27a), Eq.(27b) follows from the definition o/  equations can be written ds
through an equation of motion for the microscopic spis

x(3,6) =02 Txox(x). (30)

see Ref. 10f=1
( fi=1) i 2kgT I
1 HEan~——=— a/UVikl(q .q—a")
i i T P I Y-
SEZI[H,SIQ]ZE fd,Vnk(q A—a')1{S;S;_q1 (28) XaXq
SN~ kmy ~1 Inf5_ S
where{,} denotes the quantum-mechanical anticommutator. XVimn(d',9—09")¢"(q",1) ¢""(q—q',1).
The dynamic scaling hypothesis leads to the following (31)
scaling laws for the Kubo relaxation functi@hand the time-
dependent damping [cf. Egs.(13) and(14)]: Inserting the above scaling laws yields
|
2 2] 2ksT 1 d 2— 2 2472 km In
~y) — -7 . . - n ’ n
(FCI) G (XaT) Uxoq_2+,7 \/ﬁq f;(Jq ) U|kIUJmn(XOq ) ¢ (X:a T)(P (X,a T)
XgXq
8kgT cl4

— qu—2+ 7]J2q4—277qd

km ’ In "
- — f-viklvjmn@ (x,a' 7)™ (x,a" 7). (32
C i

Collecting all factors, we get mode coupling equations for The nonuniversal dynamic amplituéeis thus completely
the (dimensionlessscaling functions, provided we choose determined by static quantitities. This is analogous to the
5 dynamic critical exponent which, for mod&| also contains
Fo [8x0d°KkeT S d/24 1= 2 33 only static exponentgbesides the dimensiod). The basic
¢ e reason for this result is that the dynamic as well as the static
properties are entirely ruled by the Hamiltonidn We have
In passing we note that different conventions for measurnot included any “irreversible” or “dissipative” terms
ing lengths are used. Depending on whether one us€s which characterize, e.g., the equations of motion for madel
(wherev is the volume of the primitve unit cglor a (the  or B. With this expression foF, we get the final result
lattice constant of the conventional cubic unit gedlifferent
expressions foF result. Herep 3 is used as a unit of length. T\ R\ Mg\ 92 £
The quantityJ denotes the exchange integfas precise =(?§) ( ) <?) (g—
definition is given in Eqs(22) and(23)] andc is a numerical 0 i
constant which accounts for the normalization of the scaling-q. 1< T the quantityd is obviously universal and its value
functions. If we would normalize the scaling functions of the .o, e czcalculated if we know the values for the static univer-
damping atT. to unity, as in Ref. 13, we would have to amplitude ratios.
choose ¢=87%(5.1326F. Normalizing the relaxation- Universal amplitude ratios and their calculation based on

scaling functions as in Ref. 1, we will choose=87*, how-  renormalization-group theory are discussed in great detail in
ever, in the following. Ref. 4. As a reference we take the isotropiwector model

z—-2

(RO .
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in d=3 and withn=3 spin components. Usingexpansion e y [(1-28)y]~ D
around the upper critical dimensialy for e=d.—d=1, we 20 [— (41
have Xo FL2B(y=1)
R.~0.17 (Ref. 14, from Ref. 19, 3=0.375 from Ref. 20, andy=1.375 and
7=0.043 from Ref. 21, this yields
R/~0.42 (Ref. 15, -
K
— =202 (42)
€o . K1
g—g~0.38 (Ref. 15,
(39 Putting all this together, i.e., using
R;~0.9+0.2 (Ref. 15,
¢ ( ) R; ~0.435+0.01,
Co_15m (Ref. 16
—=~1. ef. . R.~0.17,
Co ¢ (43
As a consistency check, we also calculated from these num- &
bers a quantity which was introduced in Ref. 17 and which ?~0-47t 0.09,
can be compared with the corresponding value of (B@). 0
C 1/3 (i:_ /§ %070;
;(C—O) §~o.39r 0.10. (36) :
0 0 we get the final resulb=9.5+1.8.
Another method is calculating directly =3 and using Since this derivation applies to the isotropic case, includ-
a resummation of the perturbation series ing exchange interaction only, we want to briefly discuss the
possible influences of the dipolar interaction. The numerical
Rg%0_434120) (Ref. 18, values, of course, depend on the universality class, i.e., on
the fixed point in the sense of the renormalization-group
& theory. Including now the dipolar interaction, the isotropic
—~0.56 (Ref. 17, Heisenberg fixed point becomes unstable and is replaced by
€0 the dipolar fixed point. It is well knowrisee, e.g., Ref. 22

that the values for the exponents at these two fixed points do
(37) not differ very much(We cannot rule out in principle, how-
ever, the possibility of nontrivial crossover phenomena be-

R;~0.73 (Ref. 17,

&~1 58 (Ref. 17) tween those two fixed points, i.e., effective exponents could
C, ' ' reveal extremal valugsFor the amplitude ratios this ques-
tion is far less thoroughly investigated. We give only one
. Co>1’3§o 0.48 (Ref. 17 result®
—| —=~0. ef. .
¢ & i
H [ _ 5_
Thirdly, one can use series expansions and Monte Carlo  isotiopic:  =—==1+0(e), Qy=1-0.23%,

simulation to obtain 0

~ C, 6
R;~0.165 (Ref. 14. (38) dipolar: C—Ez =+0(e), Q=1-0.25¢;, (44
In Ref. 14 this result is also compared with experiments. 0
Depending on the method for data analysialledA andB)  which shows that the amplitudes also seem to have quite
the authors find similar values in both cases. Therefore, it seems reasonable
N B to assume that the value we calculated will not be very dif-
Nii  Rc=0.11(A) or 0.16B) (Ref. 14, ferent from the value including the dipolar interaction.

Yet another way to find a numerical value for the ampli-

tudeb is described in Ref. 24. There, a sum rule is combined

from measurements on the ferromagnets Ni and EuO. with results of Ref. 25spin-wave theory after Keffer and
The ratio&, /&_ of the correlation lengths above and be- Loudon, and Dyson, respectivelyand Ref. 26Green func-

low T, can be calculated from the corresponding homogetion formalism after Bogolyubov and Tjablikov for the cal-

EuO: R.=0.18A) or 0.1XB) (Ref. 14, (39

neous static susceptibilities according ey (= 1/£..) culation of the spin-wave frequency and the static suscepti-
bility) to obtain a valueb=7%?~5.57. Summarizing, we
&, Ky };g Uz=m gather the theoretical results in Table Il. The quantity
E_ E‘(;_O) (40 W_=Db/G(0) corresponds to a normalization bf by the

scaling functionG introduced in Eg.(14) and taken at
Using the expression w=0=x, G(0)=5.1326, which is convenient for compari-
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TABLE II. Theoretical values for the spin-wave amplitude cal- So we arrive at the final result
culated by different approaches.

b D
Green-function method n-vector model W_.=—4== 0 . (48

GO)  AVk,
b/G(0)=:W_ 1.08 1.8%36)

Of course, the above parametrization is only valid in the
) ) ] . ] vicinity of the critical point. This condition has to be met for
son with experiment. The values in this ta_ble WI|| later bethe experimental determination of the corresponding param-
compared with experimental results #f_, given in Table  eters. Also the experimental temperature and wave-vector
. dependencies of the different quantities should be such that
they cancel in the final formula foi/_ .
V. UNIVERSALITY OF THE SPIN-WAVE FREQUENCY— Based on these considerations, we now want to discuss
EXPERIMENTAL RESULTS several experiments on the ferromagnets Fe, Ni, Co, EuO,
and EuS. The different parameters often have been measured

) NOW' we want to compare our theore_tlcal results W'.thby different groups and different values for them thus
findings based on experiments. The experimental determm%-merge This also leads to a range of valuesVior. We
tion of b is done according to the following procedure. We siart with experiments on Fe. '
parametrize the spin-wave frequeney, the critical damp-
ing T'q(Te) at Te, and the inverse correlation length A Fe
k1 =1/¢_ below T according to '

The spin-wave stiffnes® was measured in 1969 by Col-

hwg=D(T)g?, D(T)=1.1MD(0)|7|>%*=Dy| 7/, lins and co-workerd! In the critical region
[0.005<7<0.2, with the reduced temperature
AlG(T=Te) =Ag?®, 7=(T—T)/T.], they obtained ()~ 7% and atr=0.1
they measured the valuR(r=0.1)=142(8) meV &. Em-
k1 (T)=kq|7[®". (45 ploying the formula
Here, we introduced the—temperature-dependent—spin- D(T)=1.1D(0)°%, (49)
wave stiffnessD. # is the Planck constanf\ and «, are
constants. From this we derive this yields D(0)=285(16) meV &. Using the same for-
mula at 809 yields D(7=0.2)=184(10) meV &. Later
wg DM DM 1 Dy 1 in 1984, Wicksted etal® determined a value
LT=To AJa AV Vo AVig Jag D(z=02)=175 mev A. |
(46) or the critical damping af., Collinset al. found a law

o _ AT =A0?7® with #I'=0.439(27) meV atq=0.1 A~L.
Combining, on the other hand, the scaling laws, E&§),  This then results in the valua=139(9) meV &5 Wick-
(21), and(14), at =0, we obtain(at T;, we have{_—»  sted et al. measuredA=142.3 meV &> while in 1982,

and thereforec=1/q¢_=0) Mezei et al?® found A= 130 meV A25,
. . The correlation length in Fe has only been determined
wg  Fdo(x) b above T, with the result’ «; =« °%G) At a distance
Y ; ovs

I'y(T=T. Fg’G(0) G(0) from T, of 14.1 and 4.2 K abovd@,=1043 K, they mea-

TABLE Ill. Experimentally determined values for various quantities entering the formula for calculating the amplitudéfactérthe
scaling function for the spin-wave frequency and the resulting valu¥g of Also included are the values for the dipolar wave ve¢adier
Ref. 13, and references thergin

Fe Ni Co EuO EuS
gp (A7Y 0.045/0.033 0.013 0.025 0.147 0.245
Do (meV A?) 31716 480(5) 677(56) 13.3 3.21)
580(18) 14(1) 4.1
A (meV AZ9 1355) 350(15) 300(30) 8.59) 2.1(3)
kg (A7h 0.823) 0.803) 0.948) 0.644) 0.553)
1.2212) 0.64
Kol g 2.02 1 2.02 2.4 2.0%
W_ 1.496119 1.53373 1.638224) 1.263139 1.448215
1.824119 1.71476) 1.329175 1.852269
1.85389)
2.07291)

#Theoretically expected value.
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sured x; =0.052 A1 and «; =0.022 A~1, respectively.
This then yieldsks =0.82(3) A"1. In 1976 Als-Nielsen
etal® found the law k=« 2%  with
kg =1.22(12) A1 (see also Ref. 29 Wickstedet al. ob-
tainedx; =« - 707 with x5 =1.05 A~1. To calculate from
these results the correlation length beldywe use the theo-
retically expected ratio ok_ /«x, =2.02.

B. Ni

In 1969  Minkiewicz etal® obtained D

=620(100) meV B934 for the spin-wave stiffness,
which at 809 results inD(7=0.2)=331(53) meV &.
Boni and Shirane in 1985Ref. 32 found D(r=0.2)
=330 meV &2 while in the same year Martineet al>*
found D(7=0.2)=342(8) meV &. In 1991 Bmi et al3*
obtainedD (7) ~ 7% and D (7=0.2)=265(3) meV ~.
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+J,(0)=0.750(61) Kg. Repeating the above calculations
[and using Eq.(49)], we getD(0)=12(1) meV A and
D(7=0.2)=7.7(6) meV A. Finally, Boni et al>? obtained
the valueD (7=0.2)=7.4 meV A2.

For the damping we have the following results:
A=4.0(1) meV &° in Ref. 39, A=8.7(7) meV & in
Ref. 41, andA=8.3(7) meV A5 in Ref. 42. The early re-
sult, which is roughly a factor of 2 too small, appears to be
erroneous, according to the two latter papers.

For the correlation lengths above and bel®w, Passell
etal® on the result k; =F"|7|"ayy, F"=2.32(13),
v=0.681(17), andc_ /k, =2.4. This ratio is in a very fair
agreement with the theoretically expected value. Using
ayw=3.64 A we calculate from there the value
kg =0.637(36) A1 In 1986 Bmi etal*® obtained
kg =0.64 A~1 aboveT. with an exponent 0.7 for the tem-

The damping has been determined in the following thregoerature dependence.

experiments:A=350 meV A2° in Ref. 32, A=350(12)
meV A25in Ref. 33, andA=367(18) meV &°in Ref. 35.
Anders and Stierstatftgive «; =0.79(2) A~ Y| 7{%7%?for
the correlation length abovE. . Steinsvollet al*” and Mar-
tinezet al> havex; =0.09 A! at 1.067.. From this, one
obtains «j=0.64 A"  Boni etal®* measured
kg =0.81(4) A~Y|7/°7t above as well as belowW,. This
ratio of k_/x,=1.0 is in contrast to the theoretically ex-
pected ratio ofk _ /«, =2.02. In the same paper, they also

E. EuS

Repeating the calculations done for EuO, we obtain with
the valuesJ;(0)+J,(0)=0.118(6) Kz and ayy=4.22 A
from Ref. 39 for the unrenormalized spin-wave stiffness
D(0)=2.54(13) meV R. At higher temperatures, we use
Eq. (45 together with T.,=16.56 K to get
D(T=0.8T,)=1.69(9) meV & and D(T=10 K)

observed a quite substantial deviation from the theoretically— 2.15(11) meV R, respectively. Bohret al.in 1984 (Ref.

expected value for the universal amplitude rd®o.

C. Co

43) measuredD(T=10 K)=3meV A?. They also mea-
sured a reduction factor of 90% for the temperature renor-
malization which yield (0)=3.3 meV A2. In 1990 Rebel-

The only measurements on Co were done in 1977 b)§kyet al*investigated the direction dependence of the spin-
Glinka et al The law for the spin-wave stiffness was ob- Wave dispersion. Due to a different sign of the comparably

tained as D(T)=Dy|7°%® and from D(r=0.02)
=60(5) meV A2 one calculates D(7=0.2)=361(30)
meV A2. The damping could be described by = Ag?*?
with A=300(30) meV & and for the correlation length
above T, they obtainedx; =F|7|"/a,, with F=2.4(2),
»=0.65(4) and the nearest-neighbor distaagg=2.55 A.
From this, one calculateg, =0.94(8) A~1. Again, the cor-
relation length below ; has to be determined using the theo-
retically expected ratio ok_ /«x, =2.02.

D. EuO

This substance was examined very thoroughly in 1976 by =0.58(4) THz(Aqg)>%%®)  which

Passellet al*° (together with the similar substance Bus
this work, the exchange constants and J, of the Heisen-

large next nearest-neighbor interaction compared to the
nearest-neighbor interaction, there is a larger direction de-
pendence than usual. The quantitative results for the spin-
wave stiffness wer® ;o T=10 K)=2.34 meV & for the
[100] direction andD,4(T=10 K)=2.29 meV & for the
[117] direction. Applying again a reduction factor of 90%,
this  vyields Djo0)=2.6meV A and D;;4(0)
=2.54 meV &. Using a different experimental method,
Kotzler et al#® in 1993 measured;(0)+J,(0)=0.126 Kk

for the Heisenberg exchange constants. This vyields
D(0)=2.6 meV A2
For the damping Bohn etal®®  obtain
is equivalent to

AT =2.4(2) meV(Aq)?%®). Two further values can be
found in Refs. 46 and 47I"'=2.1(3) meV(Aq)?%*9and

berg interaction(nearest- and next-nearest-neighbor interac# I’ =2.25 meV/(Aq)25, respectively.
tions) have been determined at low temperatures with the The correlation length abové, has been measured by

result J,(0)+J,(0)=0.725(6) Kg. Employing the for-
mulaD(0)=2S&[J;+J,], usingS=7/2, anda;=v2ayy,

and
yields

Passell et al®®
»=0.702(22).

They obtained F*=2.33(13)
Using ayw=4.22 A, this

valid for a fcc lattice, and inserting the nearest-neighbor dis«g =0.552(31) AL, The correlation length beloW, has to

tanceayy=3.64 A, we getD(0)=11.6(1) meV & for the
unrenormalized spin-wave stiffness. Using again @§) to

be determined using the theoretically expected ratio of
KkolKg =2.02.

include the effects of normalization at higher temperatures, All these results are gathered in Table Ill. This table con-

this yieldsD (7=0.2)=7.48(6) meV & at 80%T . NearT,
the law (490 was confirmed with a valueD(0)
=11.39 meV B. From this, we obtain D(7=0.2)
=7.35meV &. In 1981 MooK® got the resultJ;(0)

tains the values as used to calculate the amplitude f&¢tor
of the spin-wave frequency scaling function according to Eq.
(48). For convenience, we also included the values for the
dipolar wave vectors for these substan(@fter Ref. 13, and
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references thereinThe values in this table will, in the next g, * ;
section, be compared with theoretical results\Wér , given --—-- b=1.08
) 20 .- -
in Table 1. b=1.49
—-— b=1.60
VI. SUMMARY AND CONCLUSIONS 15 F ’

“00970T

In this article, we have shown that the scaling function of

the spin-wave frequency is universal. Furthermore, also the 1.0 ¢ ]
amplitude, determining the quantitative influence of the spin- A 0.979T,

wave frequency in scaling theories such as the mode- ‘ ‘ - ‘0'987 T.

coupling theory is universal. For both arguments, we used 0.0 0.5 1.0 1.5 x 2.0
mode-coupling theory as one possible theory for describing

dynamic critical behavior. FIG. 1. Scaling functiomy, vsx=1/qé. Experimental data from

The value of the amplitude factor has been determinedRef. 34.
and compared to the earlier used theoretical value. Thi
value was obtained employing a Green-function method an

is about a factor of 2 smaller. Then, a method for obtainingar interaction. .
. ; L T We see that the agreement between experiment and theory
this amplitude factor from experiments is discussed and val-

ues have been derived for the classical ferromagnets Fe, I\||S improved considerably. If one accounts for the fact that the

. experimental values are normalized to unity for0 and
and Co. We also calculated values for the dipolar ferromagfhat they have to increase monotonically for lasgé.e., in
nets EUO and EuS. They all lie quite close together, under; y y FgQ.€.,

lining the universality of this quantity also from an experi- the hydrodynamic limj, the data seem to indicate a mini-

. ; . . ..mum. The theoretical curve using the old value does not
mental point of view. The difference between the |sotrop|ceven Lalitatively reproduce this finding. while with the new
and the dipolar value is not significant experimentally. This q Y repro 9, W .

S - . : ", value, now the theoretical curve also exhibits a minimum.
is similar to other quantities when dealing with critical phe-

. . . : In further investigations, it would be interesting to deal
nomena. The difference between isotropic and dipolar values. : ; : .
) . . . : with the influence of the dipolar interaction. Are the values
in three dimensions is never very substantial.

The comparison of these experimental values with thé‘or the isotropic and dipolar ferromagnet really close to-

> . .
theoretical ones, given in Table Ill and Table II, respectively,gether' Also, one could try to improve the quality of the
shows that the earlier used RPA value is too small, while th Green-function calculation and see whether the value moves

S : . . Sowards the result obtained here. Finally, it would be worth-

value calculated in this article agrees quite favorably with the ~ . )
. A . while to repeat the experiments on the ferromagnets and re-

experimentally deduced range. A further, indirect evidence .

X . : : duce the size of the error bars.

for the achieved improvement in calculating the value of the
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