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Universality of the spin-wave frequency in ferromagnets belowTc
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In this article, we deal with the scaling function of the spin-wave frequency of ferromagnets. This quantity
enters the mode-coupling theory for ferromagnets below the Curie temperature. To obtain quantitative results,
we discuss the universal properties of the spin-wave frequency and calculate the value of the amplitude factor.
We compare the amplitude factors with experimentally obtained values for the materials Fe, Ni, Co, EuO, and
EuS. The agreement is quite convincing, given the experimental uncertainties. The theoretical value which has
been used earlier and which stems from a Green-function calculation is substantially smaller and does not
agree with the measurements. Finally, we demonstrate how the agreement between recent experiments on the
longitudinal linewidth in Ni and theory can be improved substantially, if one uses the correct value for the
amplitude factor.@S0163-1829~98!02713-1#
an

a
e

ics
o

ich

he
th
e
i

e

th
v
t

pi
n
in
a
,
-

io

s

lts
v
e
lie
re
an

ing
er
ula-
tial

e
am-

e
de-
m

are
ons

lts
are
st
the
but
m-
re-

tatic

are
I. INTRODUCTION

In contrast to the very satisfactory situation aboveTc ,
where quantitative agreement between experiment
theory of the critical dynamics has been achieved~see, e.g.,
Refs. 1, 2 and references therein!, the situation in the ferro-
magnetic phase is far less clear. Even in the isotropic c
there are open questions. The theory, which was able to
plain the experimental findings on the critical dynam
quantitatively, has been mode-coupling theory. One imp
tant issue, now, is the universality of the quantities wh
enter this theory.

From renormalization-group theory, it is clear that t
scaling functions are universal. This is especially true for
scaling function of the spin-wave frequency. On the oth
hand, for quantitative calculations, mode-coupling theory
far superior to renormalization-group calculations. Howev
this theory is a microscopic theory and it is not obviousa
priori , that the quantities in question are still universal.

The purpose of this paper is, therefore, to deal with
universal properties of the scaling function of the spin-wa
frequency, based on mode-coupling theory. We want
present two lines of argument, proving that for the isotro
Heisenberg ferromagnet, the eigenvalues of the freque
matrix are universal, i.e., the scaling function for the sp
wave frequency is universal. Furthermore, we will obtain
explicit formula for the amplitude factor of this quantity
which allows us to calculate its value. It will then be com
pared with a result obtained earlier, based on Green funct
and the random-phase approximation~RPA!. We also dis-
cuss some experiments and compare the experimental re
with our findings.

There are five important conclusions from our resu
First, we show that the amplitude factor of the spin-wa
frequency is universal also in the mode-coupling theory. S
ond, our value improves the old RPA value used in ear
mode-coupling calculations. Third, our value compa
much better with the experimental values. Fourth, this qu
570163-1829/98/57~14!/8456~10!/$15.00
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tity influences even qualitatively the shape of the scal
functions. With this value we therefore get, finally, bett
agreement between our theoretical mode-coupling calc
tions and the experiments. A brief account of the essen
results has been given in Ref. 3.

The outline of this paper is as follows. In Secs. II–IV w
present theoretical calculations leading to a value for the
plitude factor of the spin-wave frequency. In Sec. V, w
show how experimental values for this quantity can be
rived. We extract values for Fe, Ni, Co, EuO, and EuS fro
different earlier experiments. In Sec. VI, these findings
discussed and conclusions for mode-coupling calculati
are drawn.

II. UNIVERSALITY OF THE SPIN-WAVE FREQUENCY—
THEORETICAL RESULTS

In the beginning of this section we summarize the resu
on static critical exponents and amplitude ratios which
needed in the following. It is well known that there exi
critical exponents the values of which do not depend on
particular model investigated or on other specific details
rather are universal. Within one universality class, all me
bers of this class exhibit the same critical behavior and the
fore possess the same critical exponents. Dealing with s
properties, 12 different exponents can be defined4 but since
there exist 10 scaling relations between them, only 2
really independent. For example, the exponentsn, b, andg
can be expressed by the two exponentsa andh according to

n5
22a

d
,

b/n5
d

2
211

h

2
,

~1!

g/n522h.
8456 © 1998 The American Physical Society



rit
al
o
ve
e

th
sa
b

,
a
de

al

-

th

e
e-

lity
n-

-

ous
s to

o-
d be
ar a
he

,
tic
the

two
he
ve

at
g

57 8457UNIVERSALITY OF THE SPIN-WAVE FREQUENCY IN . . .
Considering dynamics, a further exponent, the dynamic c
cal exponentz has to be added, which is also univers
There are far more dynamic universality classes, since m
els belonging to the same static universality class can ne
theless belong to different dynamic universality class
They have been classified in Ref. 5 and for modelJ, which
describes isotropic Heisenberg ferromagnets, we have

z5
d

2
112

h

2
. ~2!

In our case, the dimension isd53 and the exponenth can
approximately be set to zero.@For example,h50.04 for the
isotropic n-vector model ind5n53 in O(e2) ~Ref. 6!.# If
we additionally seta50 @e.g., a520.10 for the isotropic
n-vector model ind5n53 in O(e2) ~Ref. 6!#, we get a
rough estimate also for the static critical exponents

n52/3, b51/3, g54/3, z55/2. ~3!

The amplitudes in the scaling laws set the scales of
quantities in question, and can therefore not be univer
Analogous to the critical exponents, 12 amplitudes can
defined for static critical properties.4 There exist, however
10 combinations of these nonuniversal amplitudes, which
themselves universal such that only 2 of the 12 amplitu
are really nonuniversal and model dependent~two-scale-
factor universality!.4 Important examples for these univers
amplitude ratios are the following:

Rc5
C0x̃0

M0
2 kBTc ,

Rj
15j0C0

1/d ,

Rj
T5j0

T~C0
2!1/d,

j0

j0
T ,

C0

C0
2 . ~4!

~Different from our notation in Ref. 4 additional normaliza
tion constants for the amplitudes have been introduced.! The
corresponding amplitudes appear in the scaling laws for
static isotropic susceptibilityx, correlation lengthj, magne-
tization M , and specific heatC

x~q50!5 x̃0utu2g,

j5j0utu2n ~t,0:j0
T!,

M5M0utub,

C5C0

utu2a

a
1C8 ~t,0:C0

2!. ~5!

In these formulas,q is the wave vector,t the reduced tem-
peraturet5(T2Tc)/Tc relative to the Curie temperatur
Tc , anda, b, g, andn are the usual critical exponents. B
low Tc , we introduced factorsj0

T andC0
2 for the correlation

length and the specific heat, respectively.
i-
.
d-
r-

s.

e
l.
e

re
s

e

The static scaling hypothesis for the static susceptibi
including an external magnetic field, which leads to a no
vanishing magnetizationM , can now be stated in the follow
ing form:4

x~q,T,M !5utu2gx̃0x̂8S tU M

M0
U21/b

,xD
5q221hx0x̂S tU M

M0
U21/b

,xD . ~6!

Here, we introduced the scaling variablex51/qj1 with the
correlation lengthj1 above Tc and the universal scaling
functions x̂8 and x̂. From there, we get aboveTc , without
field (M50), and in an expansion4 for x@1

x̂8~`,x!511O~x22!, x̂~`,x!5
xh

x2111O~x22!
,

x~t,q50,H50!5 x̃0utu2g, x~t,q,H50!'
x0j2h

q21j22 ,

~7!

which is the well known Ornstein-Zernike result. BelowTc
we get the result

x̂T~21,x!5Rxh, x̂T8~21,x!5Rx2,

xT~t,q→0,H50!;q22, ~8!

which is in accordance with the Goldstone theorem7 stating
that for systems with a spontaneously broken continu
symmetry, the corresponding transverse susceptibility ha
diverge in the limit of long wavelengths (q→0). Here,R is
a further universal amplitude ratio

R5S M0
2j0

d

x̃0kBTc
D S j0

T

j0
D d22

5
~Rj

1!d

Rc
S j0

T

j0
D d22

. ~9!

In Refs. 8, 9 a dynamical scaling hypothesis was pr
posed, i.e., it was proposed that analogously, there shoul
scaling laws also for frequency-dependent quantities ne
critical point. For the dynamic susceptibility, this leads to t
following scaling law:5

x~qW ,v!5xqWYS v

Fqz ,
1

qj D ,

vc~qW !5Fqzv̄S 1

qj D . ~10!

xqW is the static susceptibility,vC a characteristic frequency
Y and v̄ are universal scaling functions. The characteris
frequency sets the time or frequency scale and contains
dynamic critical exponentz and also a further~nonuniversal!
amplitudeF. The corresponding scaling functionv̄ only de-
pends on static scaling variables.

Now, based on these assumptions, we want to present
lines of arguments, which both show theoretically that t
amplitude factor of the scaling function for the spin-wa
frequency is universal. To this end, we take a closer look
the frequency matrixvqW , which appears in mode-couplin
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8458 57H. SCHINZ AND F. SCHWABL
theory below the Curie temperatureTc . It represents the
characteristic energy for the fundamental excitations—
spin waves. In Ref. 10, the theory has been presente
detail and applied to ferromagnetic substances. There, an
plicit formula for the calculation of the frequency matrix h
been given@Eq. ~26! of Ref. 10!. Now, we note that the
scaling law for the spin-wave frequency, given in Ref. 10
of course in accordance with the above general consi
ations

vqW5Fqzv̂~x,y,q!, v̂~x,y,q!5b̂Ax~11y2 cos2 q!.
~11!

Here,x51/qj2 is the scaling variable belowTc , y5qD /q
is the scaling variable measuring the strength of the dip
interaction, expressed by the dipolar wave vectorqD @cf. Eq.
~25!#, andb̂ is a numerical constant. In the common range
validity, this result also agrees with spin-wave theory.11,12

Proving the universality of the scaling functionv̂ is therefore
equivalent to proving the universality ofb̂. Since we have to
specify the value of the amplitudeF, we need a theory which
treats the dynamics. The theory we use will be the mo
coupling theory.10 In this theory the central object for de
scribing the dynamics is the so-called Kubo relaxation fu
tion f. In the general case, this function is a matrix. It can
expressed through the dynamic susceptibility

f~qW ,v!5
1

iv
$x~qW ,v!2x~qW ,0!%. ~12!

III. THE HYDRODYNAMIC LIMIT
OF THE MODE-COUPLING THEORY

Now, we are in a position to start with our first argume
We assume, that the static and dynamic scaling hypoth
are valid. It then follows from Eqs.~10! and~6! that we have
a scaling law with a universal scaling function forf. If we
now castf into the form

f~qW ,v!5 iAxqW
1

v11vqW1 iG~qW ,v!
AxqW , ~13!

wherevqW is the frequency matrix, we also get a scaling la
with universal scaling function for the quantit
vqW1 iG(qW ,v):

G~qW ,v!2 ivqW5FqzFGS v

Fqz ,
1

qj D2 i v̂S 1

qj D G . ~14!

We thus conclude that the combined scaling funct
G2 i v̂, which is a matrix, is universal. If we know thatG is
universal, we would be finished, since then alsov̂ had to be
universal.@Mode coupling theory tells us that—because
Eq. ~13!—v̂ in Eq. ~14! is identical tov̂ in Eq. ~11!.#

To address this last open question—the universality
G—we now turn to mode-coupling theory quantitatively.
principle, G can be calculated using mode-coupling theo
and becausev̂ in Eq. ~11! is involved in its calculation, the
resulting scaling function will depend onb̂. In the isotropic
case and in the hydrodynamic limit~y50 andx→`!, it can
e
in
x-

s
r-

r

f

-

-
e

.
es

n

f

f

be shown analytically that the longitudinal scaling functi
GL depends asymptotically as 1/b̂ on b̂.

To this end, we study the mode-coupling equations for
scaling functions of the transverse and longitudinal damp
GT and GL in the isotropic limit ~no dipolar interaction!.
They can be written

GL~x!5
ĉ

~4p!2 E
21

1

dhE
0

`

dk I L~x,k,h!,

GT~x!5
ĉ

~4p!2 E
21

1

dhE
0

`

dk I T~x,k,h!, ~15!

with

I L~x,k,h!5
~2kh21!2

k2
2

1

x̂L~x!

32RH 1

kzgT~x/k!1k2
z gT* ~x/k2!J ,

I T~x,k,h!5
~2kh21!2

k2
2 x̂L~x/k!

3
2

2 i n̄~x!1kzGL~x/k!1k2
z gT~x/k2!

,

gT5GT1 i n̄, n̄~x!5b̂Ax, k2
2 5k222kh11. ~16!

With x̂L we denote the scaling function of the longitudin
static susceptibility and withn̄ we denote the scaling func
tion of the ~isotropic! spin-wave frequency. Again,ĉ is the
normalization constant.

The procedure to derive the limiting behavior ofGL and
GT in the hydrodynamic (x→`) and critical (x→0) limit
from these coupled self consistency equations has been
scribed in Ref. 24. The idea is to divide the integration
terval fork into three regions, extending from 0 to 1, from
to x and fromx to `. ~Here, we are only interested in th
casex@1.! For each region one applies specific approxim
tions to the integrands which allows to calculate the in
grals. This also involves assumptions on the behavior of
scaling functions to be determined, which have to be c
firmed self-consistently afterwards. To leading order inx one
thus obtains

GT~x!'~B01B1 ln x!x23/2, x@1. ~17!

To calculate the behavior ofGL one notices that the domi
nant contribution toGL in Eq. ~15! stems from the second
region.I L exhibits a maximum atkmax;x2/3. Therefore, one
approximates the integrand appropriately for this region,
tends the integration from@1,x# to @0,̀ #, and obtains

GL~x!;
1

x̂L~x!n̄~x!
;x1/2, x@1. ~18!

Obviously, the behavior is only determined by the scali
function of the spin-wave frequencyn̄ and the asymptotic
behavior of the static susceptibilityx̂L . The transversal scal



g

ng

d
a
o

a

ng
ro
b

in

o
w
it

t
n

e

to
rder

l

us
.

rac-

ar

the

e
pe

all

57 8459UNIVERSALITY OF THE SPIN-WAVE FREQUENCY IN . . .
ing function GT does not influence the result. Assumin
xL;1/q one arrives atx̂L;1/x. Together withn̄(x);Ax,
this yieldsGL;Ax. Concerning the dependence onb̂ from
Eq. ~18! we conclude, therefore, that the longitudinal scali
function for the damping in the hydrodynamic limit (x

→`) is inversely proportional to the amplitudeb̂ of the
spin-wave frequency.

Now, it is obvious thatG2 i v̂ depends in a complicate
manner onb̂. Since we concluded that it has to be univers
b̂ itself must be universal. Then, also the scaling function
the spin-wave frequencyv̂ and the relaxation functionG are
universal seperately. This closes our first proof.

IV. SCALING RELATIONS RESULTING
FROM MODE-COUPLING THEORY

Now, we give a second derivation of the conclusion th
v̂ is universal. It will again demonstrate the universality ofb̂

and furthermore result in an explicit formula forb̂ from
which we can calculate its value. From mode-coupli
theory, we know that the spin-wave frequency in the isot
pic case, i.e., including exchange interaction only, can
written as10

vqW5
M

xqW
T 5

M0utub

utu2gx̃0x̂T8~21,x!
5

M0j0
z

x̃0R
j1

22zq2. ~19!

The dynamical scaling hypothesis states that the follow
form should be valid:

vqW5Fqzv̂S 1

qj D . ~20!

Combining both expressions, we get

v̂~x!5b̂S 1

qj2
D z22

with b̂5kBTcS j0
z2d

M0F D
3S j0

j0
TD d22S j2

j1
D z22

. ~21!

To proceed, we have to specify the value of the dynam
amplitudeF.

However, before we investigate the scaling behavior
the relaxation function, based on mode-coupling theory,
first want to define some physical quantities. Let us start w
the Hamiltonian for the spin operatorsSW i located at lattice
sitesi with cartesian componentsa,b5x,y,z ~Ref. 48!:

H52(
i , j

Ui j
abSi

aSj
b , ~22a!

Ui j
ab5

1

2
Ĵdabd j ,i 1d2~12d i j !G

]2

]Ri
a]Rj

b

1

uRW i2RW j u
.

~22b!

Here, the exchange interactionĴ is restricted to neares
neighborsd5NN and the strength of the dipolar interactio
is given byG51/2(gLmB)2 with the Lande´ factorgL and the
Bohr magnetonmB . Performing an Ewald summation of th
l,
f

t

-
e

g

ic

f
e
h

dipolar interaction the Hamiltonian can be transformed in
wave-vector space. Restricting ourselves to the leading o
in the wave vectorqW we end up with the following
expression:48

H5E
qW
UqW

ab
SqW

a
S

2qW
b , ~23a!

UqW
ab

52J0dab1JH q2a2dab1g
qaqb

q2 J . ~23b!

The lattice constant of the conventional~cubic! unit cell is
denoted bya, while v is the volume of the primitive unit cel
~containing only one atom!. For different Bravais lattices the
number of atoms per cubic unit cell differs and th
b5Aa3/v depends on the lattice type~see Table I and Ref
13!. Later on, we will measure lengths in units ofv1/3. The
notation*qW is an abbreviation for

E
qW
5E v

d3q

~2p!3 . ~24!

The expansion of the Fourier transformed exchange inte
tion leads to the coefficientsJ0 and J. J is given by
J5(c/6)Ĵ, neglecting small corrections due to the dipol
interaction~we usedG/ Ĵad!1!. By c we denote the con-
figuration number, i.e., the number of nearest neighbors~see
Table I!. Finally, we introduced the dimensionless quantityg
related to the dipolar wave vectorqD as a measure for the
relative strength of the dipolar interaction compared to
exchange interaction1,13

g5~qDa!25
a1G

Ja3 S c

6D 3/2

. ~25!

The coefficienta1 stems from the Ewald summation of th
dipolar interaction and depends also on the lattice ty
~Table I and Ref. 48!.

Now, we turn to scaling considerations. Measuring
lengths in units of the lattice constanta, we define dimen-
sionless quantitiesH̃, b̃ , H̃ for the HamiltonianH, the in-
verse temperatureb51/kBT ~kB the Boltzmann constant!,
and an external fieldH, coupling to the spinsS, as follows:

H5Jq2H̃,

b5
1

Jq2 b̃ ,
~26!

H5Jq2H̃.

TABLE I. The configuration numberc, the coefficienta1 , and
the volume ratiob2 for simple cubic ~sc!, body centered cubic
~bcc!, and face centered cubic~fcc! lattices. See text.

sc bcc fcc

c 6 8 12
a1 4p 3p) 4p&
a3/v5:b2 1 2 4
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For this transformation, we used the typical energy of t
systemJq2, whereJ is the exchange constant in Eq.~23!.
Furthermore, we introduced a magnetizationM and an inter-
action vortexV according to

M5qh^S0
z&, ~27a!

Vilk5Jq22hv i lk . ~27b!

For the transformation from the~microscopic! spin quan-
tity Sz and from the~microscopic! interaction vortexv to the
~macroscopic! expectation valueM of the order paramete
field and the~macroscopic! interaction vortexV, we in-
cluded the exponenth to account for the effects of field
renormalization. This is not rigorous here, but can be ju
fied by a more sophisticated treatment.24,49 In Ref. 24, a way
to account forh in the mode-coupling equations is presente

Assuming that field renormalization is represent
through Eq.~27a!, Eq. ~27b! follows from the definition ofV
through an equation of motion for the microscopic spinsS
~see Ref. 10,\51!

ṠqW
i
5 i @H,SqW

i
#5

1

2 E
qW 8

Vilk~qW 8,qW 2qW 8!$SqW 8
l

SqW 2qW 8
k

%, ~28!

where$,% denotes the quantum-mechanical anticommutat
The dynamic scaling hypothesis leads to the followi

scaling laws for the Kubo relaxation functionf and the time-
dependent dampingG @cf. Eqs.~13! and ~14!#:
fo

u

.

lin
he
o

s

i-

.

.

f~j,qW ,t !5x0q221hw~x,t!,

G~j,qW ,t !5~Fqz!2G~x,t!. ~29!

Here,t is the scaling variable belonging to the timet.
The static scaling hypothesis can be stated as follows@cf.

Eq. ~6!#:

x~qW ,j!5q221hx0x̂~x!. ~30!

The amplitudex0 in front of the scaling functionx̂ of the
static susceptibilityx can be written asx05â/J, whereâ is
a numerical factor accounting for the normalization of t
scaling functionx̂. Normalizingx̂ to unity, we haveâ51/2.

Now we want to derive an explicit formula for the ampl
tude F from mode coupling theory. The mode couplin
equations can be written as10

G i j ~j,qW ,t !'
2kBT

AxqW
i
xqW

j
E

qW 8
vVikl~qW 8,qW 2qW 8!

3Vjmn~qW 8,qW 2qW 8!fkm~qW 8,t !f ln~qW 2qW 8,t !.

~31!

Inserting the above scaling laws yields
~Fqz!2Gi j ~x,t!'v
2kBT

x0q221h

1

Ax̂qW
i
x̂qW

j
qdE

kW
~Jq22h!2v iklv jmn~x0q221h!2wkm~x,a8t!w ln~x,a9t!

5
8kBT

ĉ
x0q221hJ2q422hqd

ĉ/4

Ax̂qW
i
x̂qW

j
E

kW
v iklv jmnw

km~x,a8t!w ln~x,a9t!. ~32!
the

atic

l

e
er-

on
il in
Collecting all factors, we get mode coupling equations
the ~dimensionless! scaling functions, provided we choose

F5A8x0J2kBT

ĉ
, z5d/2112h/2. ~33!

In passing we note that different conventions for meas
ing lengths are used. Depending on whether one usesv1/3

~wherev is the volume of the primitve unit cell! or a ~the
lattice constant of the conventional cubic unit cell!, different
expressions forF result. Here,v1/3 is used as a unit of length

The quantityJ denotes the exchange integral@its precise
definition is given in Eqs.~22! and~23!# andĉ is a numerical
constant which accounts for the normalization of the sca
functions. If we would normalize the scaling functions of t
damping atTc to unity, as in Ref. 13, we would have t
choose ĉ58p4/(5.1326)2. Normalizing the relaxation-
scaling functions as in Ref. 1, we will chooseĉ58p4, how-
ever, in the following.
r

r-

g

The nonuniversal dynamic amplitudeF is thus completely
determined by static quantitities. This is analogous to
dynamic critical exponent which, for modelJ, also contains
only static exponents~besides the dimensiond!. The basic
reason for this result is that the dynamic as well as the st
properties are entirely ruled by the HamiltonianH. We have
not included any ‘‘irreversible’’ or ‘‘dissipative’’ terms
which characterize, e.g., the equations of motion for modeA
or B. With this expression forF, we get the final result

b̂5S Tc

T

ĉ

2
D 1/2S Rc

~Rj
1!dD 1/2S j0

j0
TD d22S j2

j1
D z22

. ~34!

For T'Tc the quantityb̂ is obviously universal and its valu
can be calculated if we know the values for the static univ
sal amplitude ratios.

Universal amplitude ratios and their calculation based
renormalization-group theory are discussed in great deta
Ref. 4. As a reference we take the isotropicn-vector model
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57 8461UNIVERSALITY OF THE SPIN-WAVE FREQUENCY IN . . .
in d53 and withn53 spin components. Using« expansion
around the upper critical dimensiondc for «5dc2d51, we
have

Rc'0.17 ~Ref. 14!,

Rj
1'0.42 ~Ref. 15!,

j0

j0
T '0.38 ~Ref. 15!,

~35!

Rj
T'0.960.2 ~Ref. 15!,

C0

C0
2 '1.521 ~Ref. 16!.

As a consistency check, we also calculated from these n
bers a quantity which was introduced in Ref. 17 and wh
can be compared with the corresponding value of Eq.~37!.

Rj
TS C0

C0
2D 1/3j0

j0
T '0.3960.10. ~36!

Another method is calculating directly ind53 and using
a resummation of the perturbation series

Rj
1'0.4347~20! ~Ref. 18!,

j0

j0
T '0.56 ~Ref. 17!,

Rj
T'0.73 ~Ref. 17!,

~37!

C0

C0
2 '1.58 ~Ref. 17!,

Rj
TS C0

C0
2D 1/3j0

j0
T '0.48 ~Ref. 17!.

Thirdly, one can use series expansions and Monte C
simulation to obtain

Rc'0.165 ~Ref. 14!. ~38!

In Ref. 14 this result is also compared with experimen
Depending on the method for data analysis~calledA andB!
the authors find

Ni: Rc50.11~A! or 0.16~B! ~Ref. 14!,

EuO: Rc50.18~A! or 0.11~B! ~Ref. 14!, ~39!

from measurements on the ferromagnets Ni and EuO.
The ratioj1 /j2 of the correlation lengths above and b

low Tc can be calculated from the corresponding homo
neous static susceptibilities according to (k1

651/j6)

j1

j2
5

k1
2

k1
1 5S x̃0

1

x̃0
2D 1/~22h!

. ~40!

Using the expression
-
h

lo

.

-

x̃0
1

x̃0
2

5
g

b F ~122b!g

2b~g21!G
~g21!

~41!

from Ref. 19,b50.375 from Ref. 20, andg51.375 and
h50.043 from Ref. 21, this yields

k1
2

k1
1 52.02. ~42!

Putting all this together, i.e., using

Rj
1'0.43560.01,

Rc'0.17,
~43!

j0

j0
T '0.4760.09,

Aj2 /j1'0.70,

we get the final resultb̂59.561.8.
Since this derivation applies to the isotropic case, inclu

ing exchange interaction only, we want to briefly discuss
possible influences of the dipolar interaction. The numeri
values, of course, depend on the universality class, i.e.
the fixed point in the sense of the renormalization-gro
theory. Including now the dipolar interaction, the isotrop
Heisenberg fixed point becomes unstable and is replace
the dipolar fixed point. It is well known~see, e.g., Ref. 22!
that the values for the exponents at these two fixed points
not differ very much.~We cannot rule out in principle, how
ever, the possibility of nontrivial crossover phenomena
tween those two fixed points, i.e., effective exponents co
reveal extremal values.! For the amplitude ratios this ques
tion is far less thoroughly investigated. We give only o
result23

isotropic:
C0

C0
2 511O~«!, Q1

d5120.239«,

dipolar:
C0

C0
2 5

6

5
1O~«!, Q1

d5120.250«, ~44!

which shows that the amplitudes also seem to have q
similar values in both cases. Therefore, it seems reason
to assume that the value we calculated will not be very d
ferent from the value including the dipolar interaction.

Yet another way to find a numerical value for the amp
tudeb̂ is described in Ref. 24. There, a sum rule is combin
with results of Ref. 25~spin-wave theory after Keffer and
Loudon, and Dyson, respectively.! and Ref. 26~Green func-
tion formalism after Bogolyubov and Tjablikov for the ca
culation of the spin-wave frequency and the static susce
bility ! to obtain a valueb̂5p3/2'5.57. Summarizing, we
gather the theoretical results in Table II. The quant
W25b̂/G(0) corresponds to a normalization ofb̂ by the
scaling functionG introduced in Eq.~14! and taken at
v505x, G(0)55.1326, which is convenient for compar
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son with experiment. The values in this table will later
compared with experimental results forW2 , given in Table
III.

V. UNIVERSALITY OF THE SPIN-WAVE FREQUENCY—
EXPERIMENTAL RESULTS

Now, we want to compare our theoretical results w
findings based on experiments. The experimental determ
tion of b̂ is done according to the following procedure. W
parametrize the spin-wave frequencyvq , the critical damp-
ing Gq(Tc) at Tc , and the inverse correlation lengt
k1

251/j2 below Tc according to

\vqW5D~T!q2, D~T!51.17D~0!utu0.355D0utu0.35,

\GqW~T5Tc!5Aq2.5,

k1
2~T!5k0

2utu0.7. ~45!

Here, we introduced the—temperature-dependent—s
wave stiffnessD. \ is the Planck constant,A and k0 are
constants. From this we derive

vq

Gq~T5Tc!
5

D~T!

AAq
5

D~T!

AAk1~T!

1

Aqj2

5
D0

AAk0
2

1

Aqj2

.

~46!

Combining, on the other hand, the scaling laws, Eqs.~20!,
~21!, and ~14!, at v50, we obtain~at Tc , we havej2→`
and thereforex51/qj250!

vq

Gq~T5Tc!
5

Fqzv̂~x!

FqzG~0!
5

b̂

G~0!
Ax. ~47!

TABLE II. Theoretical values for the spin-wave amplitude ca
culated by different approaches.

Green-function method n-vector model

b̂/G(0)5:W2
1.08 1.85~36!
a-

n-

So we arrive at the final result

W25
b̂

G~0!
5

D0

AAk0
2

. ~48!

Of course, the above parametrization is only valid in t
vicinity of the critical point. This condition has to be met fo
the experimental determination of the corresponding par
eters. Also the experimental temperature and wave-ve
dependencies of the different quantities should be such
they cancel in the final formula forW2 .

Based on these considerations, we now want to disc
several experiments on the ferromagnets Fe, Ni, Co, E
and EuS. The different parameters often have been meas
by different groups and different values for them th
emerge. This also leads to a range of values forW2 . We
start with experiments on Fe.

A. Fe

The spin-wave stiffnessD was measured in 1969 by Co
lins and co-workers.27 In the critical region
@0.005,t,0.2, with the reduced temperatur
t5(Tc2T)/Tc#, they obtainedD(t);t0.37(3) and att50.1
they measured the valueD(t50.1)5142(8) meV Å2. Em-
ploying the formula

D~T!51.17D~0!t0.37, ~49!

this yields D(0)5285(16) meV Å2. Using the same for-
mula at 80%Tc yields D(t50.2)5184(10) meV Å2. Later
in 1984, Wicksted et al.28 determined a value
D(t50.2)5175 meV Å2.

For the critical damping atTc , Collins et al. found a law
\G5Aq2.7(3) with \G50.439(27) meV atq50.1 Å21.
This then results in the valueA5139(9) meV Å2.5. Wick-
sted et al. measuredA5142.3 meV Å2.5, while in 1982,
Mezei et al.29 found A5130 meV Å2.5.

The correlation length in Fe has only been determin
above Tc with the result27 k1

15k0
1t0.65(3). At a distance

from Tc of 14.1 and 4.2 K aboveTc51043 K, they mea-
TABLE III. Experimentally determined values for various quantities entering the formula for calculating the amplitude factorW2 of the
scaling function for the spin-wave frequency and the resulting values ofW2 . Also included are the values for the dipolar wave vector~after
Ref. 13, and references therein!.

Fe Ni Co EuO EuS

qD (Å 21) 0.045/0.033 0.013 0.025 0.147 0.245
D0 (meV Å2) 317~16! 480~5! 677~56! 13.3 3.2~1!

580~18! 14~1! 4.1
A (meV Å2.5) 135~5! 350~15! 300~30! 8.5~9! 2.1~3!

k0
1 (Å 21) 0.82~3! 0.80~3! 0.94~8! 0.64~4! 0.55~3!

1.22~12! 0.64
k0

2/k0
1 2.02a 1 2.02a 2.4 2.02a

W2 1.496~119! 1.533~73! 1.638~224! 1.263~139! 1.446~215!
1.824~119! 1.714~76! 1.329~175! 1.852~269!

1.853~89!

2.072~91!

aTheoretically expected value.
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sured k1
150.052 Å21 and k1

150.022 Å21, respectively.
This then yieldsk0

150.82(3) Å21. In 1976 Als-Nielsen
et al.30 found the law k1

15k0
1t0.69(2) with

k0
151.22(12) Å21 ~see also Ref. 29!. Wickstedet al. ob-

tainedk1
15k0

1
•t0.7 with k0

151.05 Å21. To calculate from
these results the correlation length belowTc we use the theo-
retically expected ratio ofk2 /k152.02.

B. Ni

In 1969 Minkiewicz et al.31 obtained D
5620(100) meV Å2t0.39(4) for the spin-wave stiffness
which at 80%Tc results in D(t50.2)5331(53) meV Å2.
Böni and Shirane in 1985~Ref. 32! found D(t50.2)
5330 meV Å2 while in the same year Martinezet al.33

found D(t50.2)5342(8) meV Å2. In 1991 Böni et al.34

obtainedD(t);t0.37 andD(t50.2)5265(3) meV Å2.
The damping has been determined in the following th

experiments:A5350 meV Å2.5 in Ref. 32, A5350(12)
meV Å2.5 in Ref. 33, andA5367(18) meV Å2.5 in Ref. 35.

Anders and Stierstadt36 give k1
150.79(2) Å21utu0.702 for

the correlation length aboveTc . Steinsvollet al.37 and Mar-
tinez et al.33 havek1

150.09 Å21 at 1.06Tc . From this, one
obtains k0

150.64 Å21. Böni et al.34 measured
k0

650.81(4) Å21utu0.701 above as well as belowTc . This
ratio of k2 /k151.0 is in contrast to the theoretically ex
pected ratio ofk2 /k152.02. In the same paper, they als
observed a quite substantial deviation from the theoretic
expected value for the universal amplitude ratioRc .

C. Co

The only measurements on Co were done in 1977
Glinka et al.38 The law for the spin-wave stiffness was o
tained as D(T)5D0utu0.39(5) and from D(t50.02)
560(5) meV Å2 one calculates D(t50.2)5361(30)
meV Å2. The damping could be described by\G5Aq2.4(2)

with A5300(30) meV Å2.5 and for the correlation length
above Tc they obtainedk1

15Futun/ann with F52.4(2),
n50.65(4) and the nearest-neighbor distanceaNN52.55 Å.
From this, one calculatesk0

150.94(8) Å21. Again, the cor-
relation length belowTc has to be determined using the the
retically expected ratio ofk2 /k152.02.

D. EuO

This substance was examined very thoroughly in 1976
Passellet al.39 ~together with the similar substance EuS!. In
this work, the exchange constantsJ1 and J2 of the Heisen-
berg interaction~nearest- and next-nearest-neighbor inter
tions! have been determined at low temperatures with
result J1(0)1J2(0)50.725(6) KkB . Employing the for-
mula D(0)52Sa1

2@J11J2#, usingS57/2, anda15&aNN ,
valid for a fcc lattice, and inserting the nearest-neighbor d
tanceaNN53.64 Å, we getD(0)511.6(1) meV Å2 for the
unrenormalized spin-wave stiffness. Using again Eq.~49! to
include the effects of normalization at higher temperatur
this yieldsD(t50.2)57.48(6) meV Å2 at 80%Tc . NearTc
the law ~49! was confirmed with a valueD(0)
511.39 meV Å2. From this, we obtain D(t50.2)
57.35 meV Å2. In 1981 Mook40 got the result J1(0)
e

ly

y

y

-
e

-

s,

1J2(0)50.750(61) KkB . Repeating the above calculation
@and using Eq.~49!#, we get D(0)512(1) meV Å2 and
D(t50.2)57.7(6) meV Å2. Finally, Böni et al.32 obtained
the valueD(t50.2)57.4 meV Å2.

For the damping we have the following result
A54.0(1) meV Å2.5 in Ref. 39, A58.7(7) meV Å2.5 in
Ref. 41, andA58.3(7) meV Å2.5 in Ref. 42. The early re-
sult, which is roughly a factor of 2 too small, appears to
erroneous, according to the two latter papers.

For the correlation lengths above and belowTc , Passell
et al.39 on the result k1

15F1utun/aNN , F152.32(13),
n50.681(17), andk2 /k152.4. This ratio is in a very fair
agreement with the theoretically expected value. Us
aNN53.64 Å we calculate from there the valu
k0

150.637(36) Å21. In 1986 Böni et al.42 obtained
k0

150.64 Å21 aboveTc with an exponent 0.7 for the tem
perature dependence.

E. EuS

Repeating the calculations done for EuO, we obtain w
the valuesJ1(0)1J2(0)50.118(6) KkB and aNN54.22 Å
from Ref. 39 for the unrenormalized spin-wave stiffne
D(0)52.54(13) meV Å2. At higher temperatures, we us
Eq. ~45! together with Tc516.56 K to get
D(T50.8Tc)51.69(9) meV Å2 and D(T510 K)
52.15(11) meV Å2, respectively. Bohnet al. in 1984~Ref.
43! measuredD(T510 K)53 meV Å2. They also mea-
sured a reduction factor of 90% for the temperature ren
malization which yieldsD(0)53.3 meV Å2. In 1990 Rebel-
sky et al.44 investigated the direction dependence of the sp
wave dispersion. Due to a different sign of the compara
large next nearest-neighbor interaction compared to
nearest-neighbor interaction, there is a larger direction
pendence than usual. The quantitative results for the s
wave stiffness wereD100(T510 K)52.34 meV Å2 for the
@100# direction andD111(T510 K)52.29 meV Å2 for the
@111# direction. Applying again a reduction factor of 90%
this yields D100(0)52.6 meV Å2 and D111(0)
52.54 meV Å2. Using a different experimental method
Kötzler et al.45 in 1993 measuredJ1(0)1J2(0)50.126 KkB
for the Heisenberg exchange constants. This yie
D(0)52.6 meV Å2.

For the damping Bohn et al.43 obtain
G50.58(4) THz(Åq)2.09(6) which is equivalent to
\G52.4(2) meV(Åq)2.09(6). Two further values can be
found in Refs. 46 and 47:\G52.1(3) meV(Åq)2.54(10) and
\G52.25 meV(Åq)2.5, respectively.

The correlation length aboveTc has been measured b
Passell et al.39 They obtained F152.33(13) and
n50.702(22). Using aNN54.22 Å, this yields
k0

150.552(31) Å21. The correlation length belowTc has to
be determined using the theoretically expected ratio
k0

2/k0
152.02.

All these results are gathered in Table III. This table co
tains the values as used to calculate the amplitude factorW2

of the spin-wave frequency scaling function according to E
~48!. For convenience, we also included the values for
dipolar wave vectors for these substances~after Ref. 13, and
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references therein!. The values in this table will, in the nex
section, be compared with theoretical results forW2 , given
in Table II.

VI. SUMMARY AND CONCLUSIONS

In this article, we have shown that the scaling function
the spin-wave frequency is universal. Furthermore, also
amplitude, determining the quantitative influence of the sp
wave frequency in scaling theories such as the mo
coupling theory is universal. For both arguments, we u
mode-coupling theory as one possible theory for describ
dynamic critical behavior.

The value of the amplitude factor has been determi
and compared to the earlier used theoretical value. T
value was obtained employing a Green-function method
is about a factor of 2 smaller. Then, a method for obtain
this amplitude factor from experiments is discussed and
ues have been derived for the classical ferromagnets Fe
and Co. We also calculated values for the dipolar ferrom
nets EuO and EuS. They all lie quite close together, und
lining the universality of this quantity also from an expe
mental point of view. The difference between the isotro
and the dipolar value is not significant experimentally. T
is similar to other quantities when dealing with critical ph
nomena. The difference between isotropic and dipolar va
in three dimensions is never very substantial.

The comparison of these experimental values with
theoretical ones, given in Table III and Table II, respective
shows that the earlier used RPA value is too small, while
value calculated in this article agrees quite favorably with
experimentally deduced range. A further, indirect eviden
for the achieved improvement in calculating the value of
amplitude factor is the comparison of dynamic measu
ments in Ni with mode-coupling theory. This comparison h
already been carried through in Ref. 3 and is based on m
surements described in Ref. 34. In Fig. 1 is shown the l
gitudinal line widthgL of Ni for different distances from the
Curie temperatureTc . The dashed line shows the theoretic
result, using the old value for the amplitude factor. The ot
two theoretical curves are obtained using values which lie
the range of experimentally obtained values and which
also close to the theoretical value obtained in this article
.
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Ref. 10 we discuss the same experiment, including the d
lar interaction.

We see that the agreement between experiment and th
is improved considerably. If one accounts for the fact that
experimental values are normalized to unity forx50 and
that they have to increase monotonically for largex ~i.e., in
the hydrodynamic limit!, the data seem to indicate a min
mum. The theoretical curve using the old value does
even qualitatively reproduce this finding, while with the ne
value, now the theoretical curve also exhibits a minimum

In further investigations, it would be interesting to de
with the influence of the dipolar interaction. Are the valu
for the isotropic and dipolar ferromagnet really close
gether? Also, one could try to improve the quality of th
Green-function calculation and see whether the value mo
towards the result obtained here. Finally, it would be wor
while to repeat the experiments on the ferromagnets and
duce the size of the error bars.
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FIG. 1. Scaling functiongL vs x51/qj. Experimental data from
Ref. 34.
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