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We employ mode-coupling theory to determine the dynamic critical behavior of isotropic Heisenberg fer-
romagnets below the Curie temperature including the dipolar interaction. Mode-coupling equations are derived
and solved self-consistently for the temperature and wave vector dependence of the dynamical response
functions and line widths of the excitations of this model. Thus, earlier applications of the mode-coupling
theory to the low-temperature phase of ferromagnets are generalized beyond the isotropic limit and the fol-
lowing detailed results are obtained) Our expression for the spin-wave frequency agrees with spin-wave
theory in the common range of validity. The frequency is higher than the isotropic limit. This enhancement
depends on the angle between the magnetizaficand the wave vectay. The largest deviations occur when
d is perpendicular td4. The wave-vector dependence can be described by a pseudogap for larger values of the
wave vector. For smalf, the dispersion is modified from quadratic to lineaqinThis goes in hand with the
number of Goldstone modes being reduced from 2 to 1 upon inclusion of the dipolar interaction. Some
indications for this behavior are discussed in an analysis of experiments on EuO af@) Ws in the
paramagnetic case, the dipolar interaction also leads to important qualitative changes in the scaling functions
for the damping of the excitations. Both transverse and longitudinal damping are greater in the isotropic case
with an angular dependence aprelative to M. The transverse scaling function exhibits a pronounced
minimum, which agrees with experiments performed on EuO. In contrast the data cannot be explained by the
isotropic transverse scaling function which decreases monotonically. The longitudinal damping shows a cross-
over atq~qp from g2 to a noncriticalg® behavior. The width of the central spin relaxation peak exceeds the
spin-wave energy and polarized neutrons are required for its detection. The temperature variation of both
guantities is similar to the paramagnetic ca8.The competition of the dipolar interaction and the exchange
interaction, characterized by the direction of the wave vector and the spontaneous magnetization, respectively,
gives rise to a severe reduction of symmetry and a complicated tensorial structure of the equations. We identify
the three important orthogonal directions, which correspond to the longitudinal and the two transverse excita-
tions (spin waves (4) Finally, we show that our results compare favorably with experiments on EuO and Ni.
[S0163-182698)02813-4

I. INTRODUCTION excitations. It became clear in these investigations, that the
dipolar interaction cannot be neglected for these systems for
During the recent years, the accuracy of experiments o >T,.
the critical dynamics of magnetic systems increased consid- In this paper, therefore, our aim is to generalize the theory
erably. Due to experimental progress primarily in neutronto temperatures below,., including the dipolar interaction.
scattering, it has now become possible to investigate thes#/e calculate the dynamic critical properties of isotropic
systems in great detail. The use of polarized neutrons makédeisenberg ferromagnets, i.e., we calculate the scaling func-
it possible to distinguish between different contributions totions of the damping.
the neutron scattering cross sectioR (See also, Refs. 4, 6. Now, we want to discuss briefly the two essential physical
The method of neutron spin-echo measurements allows taspects, relevant for our calculation, and the results to be
cover regions of very small wave vectors and to probe thexpected from that. Why is the dipolar interaction so impor-
time dependence, i.e., the line sh&pwlith electron spin tant for critical phenomena, although it is so weak and can
resonance and nuclear magnetic resondnt%ne measures often be neglecteddts strength corresponds to 10 to 100
the frequency properties at vanishing wave vector. mK while typical Curie temperatures range from 10 to 1000
What can theory contribute to this progress in our underK.) This can be ascribed to the following four properties of
standing of these systems? In an intense and close interplalye dipolar interaction(l) It is of long range(in contrast to
between experiment and theory over several years, modé¢he short-range exchange interacjiaand therefore deter-
coupling theory proved to be the most successful approacimines the asymptotic critical properties as the correlation
for quantitatively describing the experimental findifgs:®  length diverges(2) It is anisotropic introducing the direction
With this theory, it is possible to calculate the damping ratespf the wave vector as a preferred direction. This leads to
i.e., thelinewidths and even thdine shapeof the dynamic  additional angular dependenci€3) It breaks rotation invari-
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ance, thereby lowering the symmetry, and influencing theperturbation theory using a diagrammatic technig(feee
dynamics of the order parameter marked#). It introduces  also, Ref. 24.These approaches are, however, not capable of
a second length scale in addition to the correlation length, théealing with critical phenomena. An attempt to use mode-
so called dipolar wave vector. This leads to generalized scaFoupling theory for the description of critical dynamics in a
ing laws. This second temperature-independent “mass” alsélipolar ferromagnet was undertaken in Ref. 25. They, how-
suppresses fluctuations. ever, used many approximations concerning the mode-
Besides the dipolar interaction, a second aspect is ver§oUpling equations as well as the static susceptibilitses
relevant for the critical dynamics beloW,: The occurrence the more detailed discussion belpun Ref. 26 was reported

of Goldstone modes due to the spontaneously broken synf calculation based on the non-self-consistent analysis of
metry. These excitations are massless and therefore haven}alc’de'(?o“'i_l'”gi equztlfr:;,Hwhlch also cfotrr:tam a num_ber of
considerable influence on the properties of the system. The pproximationssee below. Here, many ot tnese approxima-

fluctuations make the system “critical” in the whole low- égg;s?éit;“mmated’ and the equations are solved self-

temperature phase. With great 'effort it has been tried to To give a short overview over different approaches to
tackle the problems connected with these massless modes fy ., yhe dynamic properties of isotropic Heisenberg ferro-
renormahzatlo_n group th_eor@e.g., n Refs. 14, 15 But the ._magnets, we mention early renormalization group
analytic effort is rather high and this approach always re“escalculation?'zs and macroscopic spin-wave theorfds?

on a perturbation series. It is therefore very attractive to try Results have also been achieved by using diagrammatic
nonperturbation-theory based approach, the mOde'COUp“nt%chnique§1 and using mode-coupling theory in a non-self-
theory. consistent mannef3 See also Ref. 34. The corresponding

Com*?"?'”g the _d|polar Interaction and the GOIdStonemode-coupling equations have been derived microscopically
modes, it is a very important observation, that the Goldstonﬁan Ref. 35. In some limiting cases they have been solved

fluctuations are not completely eliminated due to the d'pOIa%maIyticaIIy in Ref. 36. In Ref. 11 they were solved numeri-

interac_tion but rqther their number is reduced by 1. '!'his ally in the general case. One approach is the numerical
reduction from 2 in the Isotropic Qarfge to 1 can k_)e obtaine imulation of finite systems. The results then have to be ex-
from . gx‘ii‘gdy”am'c con3|de_rat|(_) , from spin-wave trapolated to the thermodynamic limit via finite-size scaling
theories, or from rgnormahzauon-group .theo?ﬁ}. See analysis. In Ref. 37 the isotropic Heisenberg ferromagnet on
also Ref. 21 The continuous symmetry, Wh'Ch. leads to th% bcc lattice was investigated neégy. It was found that the
one remaining Goldstone mode, is the invariance of th ynamical scaling hypothesis holds and the dynamic critical

Hamiltonian against infinitesimal rotations of the 5p0ntane'exponemz=2.478(28) agrees with theoretical predictions. A

ous magnetizatioM around the direction of the wave vector more comprehensive review can be found in Ref. 13.
g. One single exception occurs when the wave veﬁtdrs The outline of this article is as follows. In the course of

oriented parallel to the magnetizatio. Then, two Gold- ~ Setting up the mode-coupling equations and their scaling
stone modes survive and only the longitudinal mode in théorm for the dipolar ferromagnet in Sec. IV, we introduce the
direction Ofa andM is modified by the dipolar interaction. Hamiltonian in Sec. Il and briefly sketch the theory in Sec.

What is to be expected from these observatiofté@re Ill. Some elements of the theory, which have to be provided
we only highlight some of the results(1) Including thé independently, the static susceptibilities and the so-called

dipolar interaction, the magnetization is no longer conserveof.requency matrix, are covered more closely in Appendixes A

Therefore it comes as no surprise that the linewidths arﬁlnd B. In Sec. V we discuss several possibilities to assume a

increased, which is equivalent to enhanced damping or shortn® shape, the so called Lorentzian approximation. Here,

ened lifetime.(2) It is also quite clear that the corresponding SUCh @n approximation is not straightforward because of the

scaling functions depend on the relative orientation betweefOMPlicated tensorial structure of the problem. In Appendix
the magnetization and the wave vector, characterizing th& Wwe therefore present an alternative formulation, while Ap-

dipolar interaction. Therefore, a very complicated tensoriapend'x D contains some details of the calculation. In Sec. VI,

structure for the three excitations arises, which makes it botfIt€" & Short description of the numerical method to solve the

difficult to present the theoretical results, and to measure th€°UPIed integrodifferential equations, we present the central

proper quantities for comparison with theof@) Certainly resncjilts of rg)ur calculations, thde Ilr)?]mdths for theI different
the most striking effect of the dipolar interaction on the criti- M0des. These are compared with experimental measure-

cal dynamics of ferromagnets is that the transverse scalin 1ents for the strongly dipolar magnet EuO and the weakly

function shows a distinct minimum. This is in marked con-CiPolar magnet Ni in Sec. VII. Section VIl contains the
trast to the isotropic case, where the scaling function decay&!Mmmary and conclusions.
monotonically.(4) For completeness we shortly mention the
effects of the dipolar interaction on the spin-wave frequency. II. HAMILTONIAN
There is an increas@escribable by a pseudogap for large
wave vectors an angular dependence, and, most promi- The Hamiltonian for the spin operato8 located at lat-
nently, an altered asymptotic behavior for small wave vectice sitesi with Cartesian components, 3=x,y,z is given
tors. The dispersion is now linear minstead of quadratic.  py*®

Now, we give a brief account of earlier theories. Calcula-
tions including the dipolar interaction in the framework of
spin-wave theory were performed in Refs. 18, 22, 19. In Ref. H= _2 UalsesB (1a)
23 the authors tried to cope with the dipolar interaction in IR



8440 H. SCHINZ AND F. SCHWABL 57

TABLE I. The configuration numbet, the coefficienta;, and  The coefficienta, stems from the Ewald summation of the

the volume ratiob? for simple cubic(so, body centered cubic dipolar interaction and depends also on the lattice type
(bco), and face centered cubifcc) lattices. See text. (Table | and Ref. 3B

s¢ bee fee IIl. GENERAL MODE-COUPLING THEORY

¢ 6 8{ 1‘2f We now proceed with a brief description of the mode-
i T am 3mv3 4mv2 coupling theory. This theory has been invented for the de-
alv=:b 1 2 4 scription of fluid§® and was thereafter extended and success-
fully applied to several other problerfs;***® including
) nonequilibrium thermodynami¢é:* More detailed presen-
a,e:l 3 (1= 5. _07 1 tations can be found in Refs. 11-13, 46, 47, and references
Uij 2 ‘]5a,85],l+5 (1 5I])G &R“aRﬁ > > . .
i IR)" |R— Rl therein. For the more general aspects consider also Refs.

" (1b  48-50 and 51.

) . ) The main observation in the derivation of our mode-
Here, the exchange interactiah is restricted to nearest coupling equations is the existence of time scale separation.
neighborss=NN and the strength of the dipolar interaction pye to conservation laws the collective hydrodynamic
is given byG= 1 (g, ug)? with the Landefactorg, and the modes become slow when the wave vector tends to zero.
Bohr magnetorug . Performing an Ewald summation of the Also, in the vicinity of second order phase transitions the
dipolar interaction the Hamiltonian can be transformed intoorder parameter modes become sldtieritical slowing
wave-vector space. Restricting ourselves to the leading ordélown”). Projecting out the remaining fast variabe¥’ one

in the wave vectorq we end up with the following arrives at generalized Langevin equations with explicit ex-
expressior® pressions for the damping (non local in time, thus incor-

porating memory effecisand for the “random” forces. Be-
Bt low T, there is in addition a reversible time dependence

H= f‘Ud S8 (28 (corresponding to propagating mogiehich is described by
a a frequency matrixw. These Langevin equations are for-
] mally exact, but to be physically meaningful it is essential to

anB
q2a25“B+gq 2 . (2b)  pick the right variables for the set of slow variablgs,}.
q Theoretically it is convenient to introduce the Kubo relax-
The lattice constant of the conventionaubic) unit cell is  ation functione (A =1)
denoted bya, while v is the volume of the primitive unit cell
(containing only one atomFor different Bravais lattices the ¢W(a t)= fﬁd)\<e)\H SA (a t)e M 5Af(a 0)
number of atoms per cubic unit cell differs and thus ’ 0 we m
b= \a%/v depends on the lattice tydsee Table | and Ref.

UgP=—Jo- 8P+

39). Later on, we will measure lengths in units af The =i lim fwe‘”<[A (ﬁ,r),AT(G,O)])dT, (5)
notationf 4 is an abbreviation for e—0 Jt ” v
d3q where B is the inverse temperature kT and
f?f V23 () sA,:=A,—(A,). Equivalently, it can be expressed by the
q

spin-spin correlation function or the dynanffcequency de-
In principle, this integral extends only over the first Brillouin pendenk susceptibility. It has the property
zone, but since we are interested in critical phenomena and )
hence in small wave vectors, we can extend the integration to H*"(0,t=0)= xy*"(q,w=0), (6)
infinity. For larger values off nonuniversal dependencies on . . . . .
the form and the size of the Brillouin zone would enter.'-®" the_ r_e_laxatlon func_tlon at t|me=_0 equals the static
Then, however, also othgmicroscopic and nonuniversal susceptibility tensor. Using this quantity as the scalar product
mechanisms and interactions besides the ones included have
to be taken into account. The expansion of the Fourier trans-

formed exchange interaction leads to the coefficidgtand | . - 4efine orthonormal variabl&5§L=AM/\/X—g and ob-

J. The for.mer will ot e-znte.r the equannsA of moU(rspe tain the equation of motion for the Kubo relaxation function
below) while the latter is given byl=(c/6)J, neglecting

small corrections due to the dipolar interactiéne used . . .
G/Ja%<1). By c we denote the configuration number, i.e., S AN =iw,(q) ¢ (a1
the number of nearest neighbdgiee Table )l Finally, we
introduced the dimensionless quantityelated to the dipolar
wave vectorgp as a measure for the relative strength of the
dipolar interaction compared to the exchange interattith

C) 3/2

(A|B):=¢"B(q,t=0), @)

t > -
_fOFMK(q!t,)¢KV(q!t_t,) dt,r (8)

with frequency and damping matrix given by
a,G
0=(4pa)*= 55

6

(4) w,uV:_I(X,U,|XV):_<[XIL’XI]>’ (9)
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T, (0)=(f,(D)]f,(0)). (100  with the interactionU given in Eq.(1b). This symmetric
cross product transforms to
The random forcd

_ : o B (qMS SY -
f(t)=€9*QX, 11 &tsq_saﬁ-yf&,U (@){S; .85} (18)

develops in time according to the Liouville operai®mpro-  in q space, using,} for the quantum mechanical anticommu-
jected onto the fast variables by means of the projection optator. From(2) it is obvious that in the isotropic limitwith-
eratorQ. Applying the half-sided Fourier transform and us- out dipolar interactionS; does not change in time for van-
ing the property(6) we get the first part of the mode- ishing q, correspondlng to a conserved order parameter,

coupling equations while in the general dipolar case, the time derivative attains a
1 finite value and the homogeneous magnetization is no longer
¢(c_i,w)::j eiwt¢)(a,t)dt:i \/X_(i . _ \/X—&, conserved.
0 wltwg+il'(q,0)
(12 IV. MODE-COUPLING EQUATIONS FOR T<T¢
which allows one to computeé for knownT'. In the further development of the calculation it is conve-
In order to proceed, we have to make two approximationsient to use orthogonalized modes. As is clear from (B).
for I'. At first we replacd’ by we need the static susceptibility tensor, which has to be di-
. . agonalized. The corresponding eigenvectors then determine
[(t)=~(X(1)|X(0)). (13)  the coordinate system which we will use. The derivation of

. these susceptibilities is quite involviédand we only quote
This can be justified, e.g., i, is conserved and one sticks {he main results in Appendix A. The eigenvectors depend in
to small wave vector® If now the time derivative oK is a fairly complicated manner on the relative orientation of the

given by some functional o, wave vectorq and the magnetizatioM. This is the main
source for the considerably increased complexity as com-
pared to the isotropic case or the calculations above the Cu-

I' can be expressed by some higher order relaxation fundie temperaturd.

tions. To close this open hierarchy of equations, we apply the The results in Appendix A are given in scaling form. In-
factorization approximation, which replaces a higher ordestead of wave vectay, correlation lengtht (belowT), and
relaxation function by the sum of all possible contractionsdipolar wave vectorm, we use scaling variables,y and
(products of the simple relaxation functigria a procedure ~alternatively the corresponding polar coordinakes ¢ ac-
similar to the random-phase approximati®PA). This cor-  cording to

X, = F{X,D, (14)

responds to neglecting multimode decays in a perturbation Jie \/—
theory. It can be justified in the limit of vanishing wave X:L:i y=29 9_9%
vector!® since then the relative contribution of the corre- q gé’ q q’

sponding diagrams tends to zero. Another class of diagrams
would lead to vertex corrections, which would yield a finite s VE 2t y g

value for the Fisher exponent®® Thus we obtain the final R=\x"+y"= —q tang="= Equg-
equation connecting the memory matfixback to the relax- (19)

ation function¢: . .
¢ The variable¢ is a measure for temperature whire ac-

I'~g({e}). (15  counts for the wave vectdiat fixed temperatuje Further-

) i ) more, we introduce the angl between the wave vectm}
Equations(12) and (15) define the self-consistency problem d the ol dicular to th tizalond = 0°
to be solved. The specific model enters these general mog@N¢ the piane perpendicular o the magnetizalin .
coupling equations at three places. For the calculation of theorresponds to in-plane orientation gfwhile for 9=90
frequency matrix(9) we need model-dependent thermody-the wave vectoq is perpendicular to the plane. A formal
namic expectation values, we need the static susceptibilitiedefinition is given in Appendix A, Eq(A3).
(6), which cannot be taken from mode-coupling theory, and With this choice of the coordinate system we get the fol-
finally for the time evolution of the slow variablé4d4) we  lowing equations of motion:
need some model specific prescription. 1
For ferromagnets the relevant slow variables are the spin i):f TN (R e gk o
densities and we can use the “microscopic” Heisenberg IS (a%,a=a{S; . 2 20
equations of motion with the vertices
Xu=ilH.X,] (16) Viku(ﬁ’,&—&’)=Eij|(&’,d—ﬁ’)ujk(&’)
for Eq. (14). Using the spin-commutation rules in Cartesian TP NIN DE
coordinates this yields in direct space ~EBi(a,.9-9)U(q-q"). (2D
The fully antisymmetric tensos in Eq. (18) is thus re-
=&, UN’S’ - UL, (17 placed by

aBy
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rated properly and, therefore, small wave vectors cannot be
considered, the applicability of the results to critical phenom-
ena is very restricted. Finally, even these simplified equa-
tions have not been solved self-consistently but rather in a
first iteration based on the neglection of the damping.
Before we derive the scaling form of the mode-coupling
equations we have to deal with the frequency matrix in Eq.
(12). Again, it is helpful to use the coordinate system where
the static susceptibility is diagonal, i.e., to use the directions

of the eigenvector$7i(d) instead of the Cartesian coordi-
nates(indicesi=1,2,3 instead ofx=X,y,z). Then, the fre-

Ei(a’,a—9)=vi()[v;(q)Xvk(q—q)]. (22

The matrixU“‘(ﬁ) mediating the spin-spin interaction in this
coordinate system is given by

UK =] (U@ vk(q)=IPL*+IgM*(¢, ),

0
Mk, 9)=mi-mk, m(p9)=] Vo |,
Vi-u

_ 23 quency matrix(9) can be calculated according to
U(¢,9)=cos ¢3(90°— ¢, 9).
. . . o N N 1 o
The eigenvectors; of the static susceptibility tensor and the c'aJ;:— “’:i] === <[s'li ’S]—&D' (26)
VXgXq

angle ¢5 are defined in Appendix A. These expressions can
now be inserted into Eq13) and after carrying out the fac- ) . ) )
torization approximation we get the final expression for theThe details of the calculation can be found in Appendix B.

damping matrixI” in terms of the relaxation matris: The eigenvalues of this matrix are B4, and —wq. The
first important result is the observation that the frequency

1 ' ‘ matrix is not diagonal together with the tensor of the static
rli(q,t)= — ('S'd(t)|'Sg) susceptibility. The eigenvectors @f; do not coincide with
\/X;Xé the eigenvectors of. This will cause the major difficulties in
the solution of the mode-coupling equations and increase the
4kgT 1 ... effort considerably.
= f&, 3 Tiikmin(d’,9—Q) The second important result is an expression for the spin-

VXX
X ¢*M(q’ ) "(d—a', 1),
where we introduced the kernel

(24

Ti’,-kmm(ﬁ’,ﬁ—ﬁ’)=Vik|(ﬁ’,ﬁ—ﬁ’)vjmn(ﬁ’,cﬁ—&’).

wave frequency

wg=2Im\g%(q+q3 cog V). (27)
Equation(27) generalizes spin-wave results upTp. It is
identical with the expression obtained by spin-wave
theory*® if one replaces the thermodynamic expectation

@9 value m=(S}) by the classicall=0 value S. Spin-wave

Equation(24) together with Eq(12) has now to be solved theory can, however, be improvBdo also yield(S5) in-
for the relaxation functionp. _ stead ofS. The spin-wave frequenci2?) is now angle de-

At this point we compare with two previous treatments of pendent and increased compared to the isotropic case. For
the problem. The equations used in Ref. 25 differ from oursy _ gqe (a”,\;l) the effect of the dipolar interaction is elimi-

in several respects. The anisotropygirof the static suscep- nated and we recover the isotropic spin-wave dispersion re-
tibility x has been neglected. Also, these authors did nofation. In the general case there is a “mass term,” which has
include the coexistence anomaly in the longitudinal suscepseveral consequences. For smplt modifies the dispersion

tibility, ( x,~ 1/q for g—0). By averaging over all directions which is now linear instead of quadratic. We get
of the wave vector the tonsorial character of the problem was

eliminated and thus the equations were reduced to scalar

quantities. Finally, only the parameters of a particular param-

etrization of the linewidths and not the complete functionsThus, the spin-wave energies are strongly increased but there

have been derived self-consistently. Therefore, only somés still no gap in the spectrum. This corresponds to the one

aspects of the dipolar interaction are included in this work. remaining Goldstone mode in the dipolar case, which leads
The mode-coupling equations used in Ref. 26 also contaito massless excitations. For largehe mass term leads to a

a number of severe approximations. The dispersion relatiopseudogap, i.e., the spin-wave frequency appears to have

is valid only for not too small wave vectors. The static sus-been shifted upwards:

ceptibilities do not account for the dipolar crossover, and

especially neglect the complicated tonsorial structure. As the

treatment of Raghavan and Huber, the results of Lovesey are

therefore restricted to the weak dipolar regmpgé<<1. This

is also due to the assumed diagonality of the damping matriBoth asymptotic expressions together with the complete for-

in terms of the spin fluctuations parallel and perpendicular tqnyla (27) are shown in the left part of Fig. 1 fa#=0°. In

the magnetization, which certainly does not hold in the rethe right part we show the spin-wave frequency for various

wg~2Im(qgp cos9+qg?), g<gp cosd. (28

wamZJm

1
g2+ Eq% cog 15‘), q>qp cosd. (29

gion gpé>1 and especially not &=T., where the longi-
tudinal mode is parallel to the wave vectprand not to the

values ofd.
Next, we derive from Eqs(24) and (12) the mode-

magnetization. Since the dipolar interaction is not incorpo-coupling equations in scaling form, which will serve as the
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3 — with
@/2Tmg,’ oy ,/29mgy’ 1
S t= )
Ir S 7] Lr . 4 FqZT
S /, 9=0
S The scaling variablec=q’/gq and the corresponding polar
1t 7 . o coordinatesc, ¥', ande’ will substitute the integration vari-
e’ = >
LT ableq’ in Eqg. (24).
S Since there are two different non universal amplitubles
o5 3 " % i 1 andF’ in Egs.(30) and(32)—(34), it is important to know
D D

whether the ratid=F'/F is universal or not. In Ref. 58 and

FIG. 1. Spin-wave frequency of the dipolar ferromagnet vs i3 more detail in Ref. 59, it has been shown tbas univer-
wave vectorg. Left: $=0°, general formuld—), approximation  ga| (which could also be confirmed experimentally for vari-

for small (—-), and large(---) wave vectorgy. Right: 9=0°, 30°, . . oo
45°, 60°, 90°(as indicated in the graphwhere 9 is the angle ous .magne{@) and that' its value is roughly~7.0-9.4.
Finally, the kernels in Eq(25) scale as

enclosed byg and the plane perpendicular kb.

’ T A’ V= 120'2(— )2t .
starting point for the numerical solution. At first we give the Tiikmin(£,:9,0",.9=A")=370"(4=0A") Lijkmin(XY, g, ),

scaling form for the spin-wave frequency. By inspection of (39
Eq. (27) we get with the scaling function
wg(£,9)=F'q" o' (x,y,9), tikmin(6Y, 04 6) =0 (%Y, 95, KV jmn(X,Y, ¥4, &)
@' (X,y,9) = X(1+yZ cog 9), (30) ::Wukmln(z,%ﬁayk)
where z=5/2 is the dynamic critical exponent. Strictly e
speaking the exact result for the isotropic Heisenberg ferrol-),kl(x y, 9,9, A¢’ k)
magnet ig° H I T
2k p—1 X , )
_d+1 7 31 = x_ Ei )—/,19,19 A’k
=2 2 (3Y)
y? X T b
But since 7 is quite small[e.g., »=0.04 for the isotropic +— | Einl 9,15‘,1‘} A’k |MP 9,19
n-vector model ind=n=3 in O(e?) (Ref. 57], we can -
safely neglect it here. X S ~ (X
The static susceptibilities have already been given in scal- * Eipk yyﬁ.ﬁ A"k |MP y.ﬁ : (36)

ing form in Egs.(A1)—(A6). The general form of the scaling
laws connected with static quantities(&gain setting to zero The quantitiesp”, 9", and«_ are defined in Appendix A.

the Fisher exponeny) The tensorsE and M have been defined in Eq&22) and
: . (23), respectively.
X(;(&g):)(oq_z'X'(X.y,ﬂa), With Egs.(24) and(12) the complete final mode-coupling
) equations in scaling form for the scaling functioBsand ¢
Clcil(g’g): —Fg% w'l(x,y,95). (32)  are then given by
Here, we used the polar angt; of ﬁ Because of the in- Gil $.7)= 1 Af dk 1
variance of the Hamiltonian againéh—ﬁ it can later be Oy, 1) = 4 ¢

(2m)3 \[o S
replaced by the anglé as defined in Eq(A3). The quanti- \/XI(X'y'ﬁ)XJ(X’y”?)

ties do not depend on the angje which reflects the sym- Xy
metry belonging to the one remaining Goldstone mode. For xti’jkmm(x,y,ﬁ,x)@km(—,—,ﬁ’,Kzr)
the dynamic quantities we have in Fourier space Kk K

> P X
F”(q,wvfag):qu‘)’”(X,ny,ﬂd)a ><(,D|n —,l,’l}”,KZ_T) (37)
K_ K_
-2
- Xod 2
$(G w69 ="E ey g, @y and
with o=Fg?v and as a function of time @6y, 9,2) =INY 0y X (XY, 9)
- . 1 '
I'(a.t,£,9)=[Fg"1°G" (x,y,7,94), X = :
(@LE9=[FATET00y. 799 (34) v1+w(X,y,®)+iG(xy,9,v)

1(q,1,6,9)=x00 20 (XY, 7, 97), (39
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The transition from time to frequency in E@®8) is achieved
by a half-sided Fourier transform

v)= “eivt 7)dT. 39 o .
@()foe e(7) (39 i (x)+1gL’§

With z=5/2 following from general scaling consider-

. . b4
ations[Eq. (31)] and *-1g
2
F= \/8)(0‘] kBT: \/4‘] ke T (40) FIG. 2. Contour of integration of, in the complex»’ plane.
c c Also shown are the poles of the integrand Foy .

the g and » dependencies in the mode-coupling equations As a function of time, Eq(38) becomes a differential
are such that we get a dimensionless scaling law. Because gfation fore:

the second scaling variable one has to distinguish, how-

ever, between this formal exponent and the “real” effective ¢

exponent z. For example, there is a crossover froma @' (x,y,9,7)

Z.=5/2 t0 z.4=2 for the transverse and =0 for the

longitudinal linewidth as one approach&s from above'! [~ P

The numerical constarii in the nonuniversal amplitude :2 XXy, )[i;ik(x y, ) eM(x,y, 9, 7)
depends on the lattice type and is tabulated in Table I. The K XXy, ) e e
universal constant fixes the global numerical scale of the

scaling functions, which can be chosen arbitrarily. For ex- _ deTrGik(X y, 9,7 )eM(x,y, 8, 7— 7') }. (43)

ample, forc=8=* we get for the damping &k, in Lorent- 0

zian approximatiott The initial condition atr=0 is given by the identity6):
:_JLN(X:O,yZO)%SlngSI] for 6:8774 (41) (,Dij(X,y,’lS,T: 0) =;('(X,y,19) 5I] ) (44)

For 6%8774/(51326)239 the Corresponding Scaling function With the he|p of the convolution theorem
is normalized to unity:

’ i . 8 f e"""f(ar)g(br)dr
= = = ~— 0
Gl n(Xx=0y=0)=14" for c (513262 (42
Therefore, we can arbitrarily shift numerical factors between = fw dl 1 f v E g v ab>0 (45)
" . . : . «2ma \alb b ' '
c in the equations and the resulting scaling functions. In the
following, we will choosec= 8. Eq. (37) can be transformed into Fourier space
|
i 1 " d3K 1 . « dv' 1
G (xy,9,v)=~ cf 3= - tikmin (%Y, 9, 4) —
40 2T iy, )Y (. 9) 2w K
Xy 1 X y
XM —, =& v'[k*| — " —,— " (v—v")K"|. (46)
K K K_ — —

Eliminating ¢ via Eq. (38) we get a closed system of integral equations for the scaling fun@iam Fourier space:

; 1 1 d3k R
G(xy, ¥ v)=——Cc—= _ f 3 tikmin(X,Y, 9, k)
4 Yy 9xiy,e’ 2
L (xy L (xy [ x [ x « dyv’ Xy
X \/Xk — = X" == X — —,19”) “(—,—,ﬁ")f —{(vlJrKZ w(—,—,t‘;">
K K K K K_ K_ K_ K_ —® aa K K
Xy v —1) km [ x X v—o' —-1Y In
+iG| —,—,9%, — (v—v"1+k* | w| —,—, %" | +iG| —,— 9",
K K K? K_ K_ K_ K_ Kz
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V. GENERALIZED LORENTZIAN APPROXIMATION The column vectors of ; are right eigenvectors d¥l while

_1 .
Equationg(37) and(38) or their equivalents are very com- the row vectors ofra span the corresponding dual space

plicated because of the dependencegaand w. A very suc-

cessful idea to reduce the complexity has been the so-called To=:[ny(@T* ={[nL(Dn(@)nm (@) ]*}?,
Lorentzian approximatiolt There, one assumes a frequency _

independent dampin@ in the relaxation functionp (38). mi(q) |*

This amounts to a Lorentzian in Fourier space or an expo- “loai_ . i3 =T,

nential decay of¢ in time. Now, the integr?ation over fre-p [Ty 1M=my(q)= TTT(Q2 : (52)
quency in Eq(46) or equivalently Eq(47) can be performed M. ()

analytically. Thus, the implicit frequency dependence is

eliminated and the theory is reduced to the computation of a rﬁ;((j) . ﬁb(a): Sab-

wave-vector dependent linewidth. Often, this is sufficient for ) )
comparison with experiments, since line widths are easier t§f Tq is unitary we have
measure than line shapes. 1ot .

Reformulating and generalizing this idea, we assume that T =T5 mMa(@)=na(q). (53
the damping matrix in Eq(38) varies only slowly with fre- , i
quency so that approximately it can be set constant. Thed\OW We get the following representation for the matfix
we have to diagonalizeé in order to carry out the integra- - ) _ - _
tion. Comparedgto the isotropic case, th}ére is, howevgr, one ¢(q'w):'\/X—cde[Ta lel(q-“’)Td]flTa 1\/X_ri
major difficulty in the dipolar case: We do not know in ad-

vance how to diagonalize the damping matlix This can —i(VxeTo) ————— (T-"xo), (59
essentially be traced bagkqgs.(48) and(49)] to the fact that TV . 1+ig’(q) 9 a

the tensor of the static susceptibilify does not commute .

with the frequency matrixC. They cannot be diagonalized ©T+ €auivalently,

simultaneously. Therefore, the diagonalizatiod dias to be i

done self-consistently together with the determinatiori’of S Gw=i S Mg (ql 55
itself. There are two possible solutions to this problem. In ’ a={L.T.T*} w+igh(q)’

Appendix C we show how the theory can be formulated
without specifying the exact diagonalizing transformation for TN AT =Dt P P
I. Unfortunately, the resulting expressions become rather in- M3 ()= Vxgxglna(@) " ma(q). (56)

volved and cumbersome. Here, we prefer to use the secongence, the relaxation function is a sum of three Lorentzians
possibility, an approximate diagonalization bfto be ex- iy the general dipolar case. The tonsorial structure, however,

plained in more detail at the end of this section and in Ap-ig 55 yet unspecified. The matr;, which determines the

pendix D. The essential result will be that we can approxi- . - .
mately use the coordinate system spanned by th(\évelght factors(56), depends ord’(q) and either has to be

eigenvectors of the static susceptibility tensor. But first wedetérmined self-consistently together witliq) or an addi-
formulate the general Lorentzian theory. tional assumption on the tonsorial structure has to be made.

This is different from the isotropic case and generalizes the
Lorentzian approximation.

Now, we insert Eq(55) into Eq. (46) and carry out the
frequency integration along the contour shown in Fig. 2.

Assuming that the the damping matifiq) to be deter-
mined is independent of frequency we get

$(Q,0)~i \/X_‘iM(d‘w)\/X—d' (48) Defining 1}, by
M~ Y(q,w)=w-1-C4+il(q). (49)

* dw' - I
d)km(qr,wr)d)ln(q_q/,w_wr)
Let T4 be a transformation into a new coordinate system, J:w 2
which diagonalized/ (in general T is not unitary, sincev

is not necessarily normgiM,M']#0) = _i% M kMg )M (g—q’)
:
Tglel(cal,w)TQZw-1+ig’(ﬁ), > de’ 1 1
0@ 0 0 \ @ XJwﬁw’ﬂg;(ﬁ’)w—w’+i9é(<i—6’)
gg= 0 gy O . (50 =2 M M(@)ME"(G- 010", 0- 6" @),
0 0  gn(a) (57)

For this coordinate system we defined indices

a,b={L,T,T*}. We introduce linewidths according to this yields

Gl(0,0)=0((0,0), GHg,w)=g}q,0)—iw;. 26(0,4-9",0)= (58)

(51) w+igh(q)+igha-q')’
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Transforming the damping matrix into the coordinate sys-For clarity we omitted the dependence on the scaling vari-

tem

G'20(q)=(Tg HA T ()TY (59
we get
G'*(q,)

1 5 s > .
ﬂkBTﬁ;% 5> Ted(@'.a=0a")13(a",4=q" @), (60)

where the kerneT2! has been defined as

ab/ S S Sy TLci 1 4 S N
Tea(d’,9—q ):i_%m (T{] ) \/i—jTijkmln(q ,qd—q")
' XX

XTg"M;km@')Mg'“(a—&')]. (61

ablesx, y, and ¥ of all vectors appearing in these formulas,
which are defined by

mi(q) - -
I Ui(Q),
Xg

Wa(x,y,9,8) = 2 (@)1 Vg ui(d)),

n(q) . -
@ .. (66

wl(xy, =2,

WY, 8,) =2 [ma(@)]1* Vg i),

v‘v(x,y,a,b:Z mi(¢,9")vi(q').

In the isotropic limit, longitudinal and transverse modes

The final mode-coupling equations for the scaling func-decouple[the damping matrix in Eq(60) is diagona) and

tions of the dampings,,,, which we will solve numerically

the longitudinal width is computed at=0 while the spin-

in the following section, are therefore given in scaling formWave linewidths are evaluated at the spin-wave frequency

by
1. d3k - -
Ged(Xy. 9.v)= 7 Cf POk 2 tEdxy.0,0)

X126y, 9, K, v). (62

o= wg. This is not possible here, since in general the matri-

cesM/ do not commute and the corresponding modes cannot
be decoupled. Thus, to remain consistent we evaluate all
damping constants at zero frequency as in the paramagnetic
case. This is equivalent to the assumption that the frequency-
dependent damping coefficients vary slowly even on the

scale of the spin-wave frequency and not only on the scale of

Here, the scaling function for the frequency integral has théhe linewidths. In the isotropic caséthe longitudinal line-

form

< . . Xy
(XY, 9, k,v) 1=—|v+KZga(;,;,ﬁ>

X
+K2gb(K—,Ki,ﬁ"), 63)

and the kernel can be written as

wWaP(x,y, 9, k) [WaP(X,y, 9, k) ]*,

(64)

B8y 9, 4) =~
¢ K K<

with

W2P(X,y, 9, K) = (2K 7= 1) Ug- {W,( K) X Wp( Kk )}
+y2Uc{[Wa( K)W(K)]- [W(K) X Wy(K_)]
+[Wp( K- )W(K-)]-[W(K_)XWa(x)]},

W3P(x,y, 9, k) = (2k p—1)ud-{w3( k) X Wi (x )}
+y2A2 WA R)W( )] [W(K) X WO(rc )]
+ Wik )W(K_)]-[W(Kk_) X W(K)]}.

(65)

width always exceeds the spin-wave frequency. Later we
will see that this property also holds in the dipolar case.
Thus, this assumption is not more restrictive than in the iso-
tropic case. A consequence of this choice are the following
very useful symmetry properties:

[Ged(X,Y, 9)]* =Gexgr (X,y, D),

[W2P(x,y, 9, k) ]* =W (x,y, 9, ), (67)

which derive fromG;j;(»=0) e R and where we defined the
index mapping
L*=L, (T)*=T*, (T*)*=T. (68

Finally, we have to determine the diagonalizing mairix
entering Eq.(50). If one prefers a self-consistent determina-
tion together with the damping matrix, it is advantageous to
eliminateT, from the equations. This leads to double matri-
ces(objects with four indicesand the corresponding expres-
sions are given in Appendix C. Here, we introduce a simpli-
fying assumption about;. This has the advantage that we
can start with a fixedl; from the beginning. Due to the
reduced symmetry of the problem the Lorentzian approxima-
tion not only requires assumptions about the linewidths as in
the isotropic case but also about the tensor structure.

There are four complementary limiting cases wheége
can be determined in advance. They are described in detail in
Appendix D. For all these cases, the result can be written as
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FIG. 3. Scaling functions for the spin-wave frequency, the transverse and the longitudinal linewiRtHovsvarious values ofd

(9=18°, i=1,...,5 for the isotropic limit(uppermost roy a typical dipolar caséhere p=45°, i.e.,&é t=qp, middle row, and atT,
(bottom row.

Thirdly and finally, the validity can be scrutinized by evalu-

0 i i ating the off diagonal elements d@,, a posteriori We
V2 V2 found that they are indeed small in the four indicated regions
= | i (69) (Appendix D an_d near the ling~y. For Ia_rger va_Iues oR .
0O -— — there are deviations from the assumed diagonality. But since
V2 V2 the results at larg&® do not influence the results at sm&ll
-1 0 0 significantly in our self-consistent solution, we conclude that

our results should be correct for the valuesRyfwhich are
Therefore, we use this expression also in the general caseelevant for the comparison with experimefR<£5).
There is a second justification of this choiceTgf: Because
it amounts to using the static eigenvectors as a basis also for VI. NUMERICAL SOLUTION AND RESULTS
the dynamics, the most significant geometric effects of the
dipolar interaction, which determine the directions of the Before we come to the results of our calculations, we
eigenvectors, are already incorporated. For example, th@riefly descrllbe the numer.lcal procedure for thg solutlon. of
change of the direction of the longitudinal mode from theOur coupled integral equations, the mode-coupling equations
direction of the magnetization in the isotropic case to the62). The integrand functions depend on the quantities to be
direction of the wave vector &, is automatically included. determined through the scaling functiorig in Eq. (62) and
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therefore, we utilize an iterative method to solve this self-
consistency problem. We take starting values@y, then
calculate a set of functions via Eq&2), and iterate until
convergence is achieved. Due to the characteristic structur
of the equationgthe function to be determined enters the
denominator of the right-hand side which has to be inte- |
grated over, there is a tendency to smooth out any devia-
tions from the true solution and the procedure converges
Furthermore, it has been shown that under certain circum-
stances the solution of such mode-coupling equations isoO
unique and if the procedure converges at all, then it con-
verges _uniqu_ely to_ one so_luti(?H.The key ingredient is_the FIG. 4. Variation ofRGt andG, with ¢ for various values of
three-dimensional integration in wave-vector space. Since alg (9=18%, i=1,...5) for R=3,

most all symmetries are lost in our case, and since the func-

tions depend on so many variables, a very fast integratiofesponds to the isotropic case, with the other rows we see
procedure is indispensable. The time necessary for one iterghat the damping is increased due to the dipolar interaction.
tion increases approximately by a factor of 200 comparedrhis is not unexpected, since the magnetization is no longer
with the isotropic case. We have therefore chosen to emplo¥onserved in the presence of the dipolar interaction. The cor-
Gaussian quadrature rules with a nonadaptive fixed integrgesponding lifetime decreases and the linewidth is increased.
tion mesh. Rather, it has been Optimized in advance to begurthermore, we see a strong dependence on the a‘hg|e

ir_ltegrate the specific in'tegrands we deal with. This was POSThe damping is largest when the directionEp{:haracteriz—
S'blec’l becagsed tge rﬂa'rll featurlfs Ofé'e Ilzntegrr]anﬁl_ fl;nCt'oniﬁg the dipolar interaction lies completely in the plane of the
are determined by the known kemndBS5). For the highest transverse modesd(=0°), perpendicular to the magnetiza-

a(;]qu;acy we u_sgd 16000 ?e?hhpcyzgso for tze 'r.]teg][at'ohn[’ion. The most prominent feature is certainly the minimum in
which was carrie Ol.Jt at eac 0 t. e ravimes points for thg, scaling function, which is in very marked contrast to the
external scaling variables. This iteration step was repeateg] J ionic decrease in the pure isotropic case

about 10 to 20 times. The relative error of the functions is If we take a closer look at the variation with i.e., with

est1|_mhated tc: bef Iiss the:jn e i . h temperature or with increasing dipolar influence, we see in
h € Ir_esuft of the r’r;o er;collljp Ingdehquatlhoaféll) argdthen the left part of Fig. 4, that the increase is not always mono-
the scaling functions for the linewidths. The linewidths areqnic ¢ rather has a maximum as a functiondoff o is

the eigenvalues of the matri%9) assumed to be diagonal in g tficiently small. This is very similar to the paramagnetic

the reference frame of the static elgen_vec(cfsthe d_|scu_s- dipolar case where the variation of the transverse linewidth
sion at the end of Sec.)VWhen speaking of a longitudinal also showed a maximum as a functiondaf!

line width we therefore mean the linewidth of magnetization In the right column of Fig. 3 the longitudinal linewidths

fluctuations in the direction of the eigenvectarof the static  are drawn. These, too are larger than in the isotropic case for
susceptibility. It is real and depends on the two scaling varithe same reason. The variation with the andl& less pro-
ablesR and ¢, and the angley characterizing the direction nounced here and the linewidth is largest when the wave
of the wave vectoq relative to the magnetizatioM. The Vectorg] is parallel toM (9=90°). Since the dipolar inter-
transverse line width is complex where the real part deter:

action is characterized by the direction of the wave veﬁtor

mines the actual linewidth while the imaginary part leads 0, the |ongitudinal mode is characterized by the direction of

a frequency shift which alters the spin-wave frequency. This

imaginary part is, however, very small and the spin-wavethe spontaneous magnetizatibh this means that again, as

frequency is still approximately given by E7). This is for the transversal excitations, the damping is largest, when

guite analogous to the isotropic case, where the correction trtg]e direct?on qharacterizing .the dipolar interaction-is parallel
the excitation energies was also on the order of a few pe .the_ d|rect|on. chgractenzmg .th9 corresponding mode,
cent only. The only exception occurs very closeTtowhere which is the Iong|tud|nal_ mode th_ls time. For sr_naII values of
the spin-wave energy vanishes and the relative deviatioR (for g>qp), the sqallng fun.ct|0n IS apprpxlmately con-
therefrom can become largErThe spin-wave frequency has _stant, the corresponding linewidth Sh.OWS cnﬂqé’lz behav-
already been discussed in Sec. IV. We have drawn the con“-)Sr,‘2 For smallerg, however, the scaling function grows as
responding scaling functions in the left column of Fig. 3 for R . which means that the '"?eW'P"h itself becomes constant.
various values of the scaling variabie They have been NS exactly parallels the situation abolg. Due to the
. ~ . nonconservation of the magnetization this mode becomes un-

ca!culated using the valu[a=7.7 for the amplitude of the critical. Therefore, the kinetic coefficient is finite, as in the
spin-wave frequency. UsinG, (R=0)=Gr(R=0)=5.13,  5ssjcal van Hove scenario. Since also the static longitudinal
i.e., usingc=8x*, this corresponds tV_=b/G(0)=1.5.  susceptibility eventually is constant in the dipolar cZsthe
(For a detailed discussion of the universal amplitbdand  quotient, i.e., the damping, is constant in the limit0.
W_ see Refs. 58 and 59In the bottom row, atp=90°,  Also the variation ofG, with ¢ (see right part of Fig. yis
which is equivalent ta' =T, the spin-wave frequency van- similar to the paramagnetic dipolar case, since it shows a
ishes. monotonic increas& It is important to note, that the longi-

The damping of the spin waves is shown in the middletudinal linewidth is still larger or of the same size as the
column of Fig. 3. Comparing the uppermost row, which cor-spin-wave frequency as in the isotropic case. First, this gives
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X FIG. 6. Left: Scaling function of spin-wave frequency vs scaling
variablex*2. Theoretical curves are fat=18%, i=1,...,5, experi-
mental points are for Eugrom Ref. 61. Dashed: Scaling function
in the isotropic limit. Right: Same for the scaling function of the
transverse linewidth vg.

FIG. 5. Distribution of the measurements from Ref. 61 for EuO
in the x-y plane. See text for details.

an a posteriorijustification of our assumption that the ap-
proximation of slowly varying damping on _the scale of thetheoretical prediction would be a weighted average over the
spin-wave frequency is not more restrictive than a slow

L h e of the d ; he di = =~"curves shown in the figure. To obtain the scaling functions
variation on the scale of the ampm@Sget € aiscussion in experimentally one has to divide by the critical damping at
Sec. V) Secondly, it implies that experimentally it is neces-

s ) > T.. Both experimental and theoretical linewidths are then
sary to use polarized neutrons in order to detect the longitus .04 1o 1 ak=y=0. The damping could well be pa-

dinal peak, since by using unpolarized neutrons the longitufametrized by the formuIEq=A’q5’2f(q). The value of the

dinal peak would be masked by the spin-wave peaks. amplitudeA’ measured in Ref. 61, however, seems to suffer
from experimental uncertainties. In later measurentéfits
and also in very recent measureméhtthe values are

In this final section we want to compare our findings with "oughly —a faZc;[or of 15 bigger than the value
two experiments. The first was performed on EuO by Passeft’ =4.0 meV A*®found in Re2f.561. We have therefore cho-
et al® measuring spin-wave frequencies and the correspondien the valué\’ =6.60 meV A% At q=0.15 A"* we have
ing linewidths at a variety of temperatures and wave vectorsf (4)~1.30 and thusA~A'f(q)~8.58 meV A*° (cf. Refs.
Due to the availability of unpolarized neutrons only, they58, 59. This yields for the universal amplitude of the spin-
were not able to detect the longitudinal peak and hence coulwave frequency scaling function a valWé_=1.3 orb=6.7
not determine the longitudinal damping. Each measuremeritf. Refs. 58, 58 This is the value used for the theoretical
at a specific temperature and wave vector corresponds tocurves in Fig. 6. Note that we have used no fit parameter.
point in the plane of the scaling variablesandy. These As can be seen from the figure, especially the data for the
points are shown in Fig. 5. damping are by far better represented by the dipolar curves,

The error bars in the direction correspond to the uncer- which show a minimum, than by the isotropic curve, which
tainty in the correlation length. In Ref. 61 the experimentsexhibits a monotonic decreasgashed curve in Fig.)6 The
were compared with the isotropic model, which correspondssotropic theory cannot even qualitatively explain the mea-
to a comparison between the measurements and the theoregisrements.
cally determined function taken on thkeaxis (y=0) in Fig. The second experiment we want to discuss is a recent
5. Here, we made a comparison between the experiment arkperiment on Ni by Boi et al,**who used polarized neu-
the theoretical scaling functions along the trajectory plottedrons and thus could clearly identify the longitudinal peak.
in Fig. 5. Since the separation of the two measured pointdhey performed their measurements in a restricted tempera-
marked with a star from this trajectory is too large, we omit-ture region(values of¢ lie between 26° and 30such that
ted them in the comparison. In Fig. 6 we plot the correspondwe can compare the data with theoretical curvesffer28°.
ing scaling functions vs the scaling variabl&? andx, re-  The scatter in the data for the scaling function of the longi-
spectively. Note that we plot the total spin-wave energytudinal linewidth(Fig. 7) is quite large, but since the scaling
which can be obtained from the exchange spin-wave energfgnction is normalized to unity at=y=0 and on the other

VII. COMPARISON WITH EXPERIMENT

given in Ref. 61 by the following transformation: hand has to increase as’? (the damping itself becomes
constant in the asymptotic dipolar regime &pr-0), the data
Ewot=Eexf (Q), (700 give clear evidence for a minimum.
where the factorf(q) is given by f(q)=1/2+[(1+ ¢)/2/ In Refs. 58, 59 it is shown, that the numerical value of the

Jolarctanye, ¢=0.024 A-2q~2 [see formula33) in Ref.  universal amplitude of the spin-wave frequerizys crucial

61]. When plotted v/ the isotropic limit yields a straight for obtaining a minimum in the scaling function. There, it is

line through the origin. also shown, that such a minimum already occurs in the iso-
Figure 6 shows the possible range of the theoreticatropic theory, provided the right value fbr Here, we show

curves when varying the angl@. Since the sample was a that also in the dipolar theory the experimental results are in

polycrystalline powder, the angle between the wave vectoagreement with theory. Obviously the deviations from the

and the magnetization is not sharply defined, and the actu&otropic theory are not yet very pronounced in the region of
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Gi(®) o(x) no spontaneous magnetization and the longitudinal mode is
5 09'70T ' o 0970'T ' along the wave vectay) is described consistently.
20 L 0979 T 1 200 40979 T 0<90’ ] In our calculations we limited ourselves to a generaliza-

m0987T. 7 tion of the Lorentzian approximation. In Sec. V, we intro-
duced a general derivation of a Lorentzian approximation,
based on the assumption that the damping coefficients enter-

0 -

tor 0=90 ing the relaxation function can be considered frequency in-
dependent. In the general case, the matrix character of these
guantities cannot be neglected. Tkiensorial relaxation
00 s s ‘ 00 s function is a sum of three Lorentzians, where the sum is

00 03 10 13 0.0 05 L0 i weighted with sométensoria) weights.
We have found that the dipolar interaction not only modi-
FIG. 7. Left: Scaling function of longitudinal linewidth and data fies the static susceptibilities markedly, but also the spin-
points from Refs. 1, 65 for Ni vs scaling variabte Right: Scaling  wave frequency and the linewidths of the excitations are al-
function of the corresponding spin-wave frequency for variousiered. The spin-wave frequen&y& is increased, which can
anglesd (0=18°%, i=1,....9 vs \X. be described by a pseudogap for larger values of the wave
) i vector (cf. Fig. 1). This enhancement depends on the angle
the comparably smak probed in the experiment, where no betw the maanetizatidii and the wave vectod. The
strong dipolar effects are expected. Furthermore the dipolare een . 9 ) . i og. 1 )
interaction in Ni is only weak, since the dipolar wave vectorlargest deviations from isotropic behavior occur wigis
is small. Farther away fronT, or alternatively at smaller perpendicular toM, i.e., whenq lies completely in the plane
wave vectors the dipolar influences should be noticeableof the transverse modes, perpendicular to the longitudinal
The value of the spin-wave amplitude can be determined bynode. For smalyj, the dispersion is modified from quadratic
independent experiments and we have takén=1.4 or to linear inq (cf. Fig. 1). This directly corresponds to the
equivalentlyb=7.2. Then, there seems to be a slight indica-diSappearance of one Goldstone mode in the general dipolar
tion for a deviation of the frequency data from the isotropicCaSe. An indication for this behavior can be found in experi-
prediction—a straight line through the origin when plotted vsMents on EuO and Nicf. Fig. 6, left, and Fig. 7, right Our
JX. The dipolar dispersion fits the data better, but the fairlyeXPression for the spin-wave frequency agrees with spin-

large error bars prevent a decisive conclusion. Note that thef&@Ve theory in the common range of validity.
are no fit parameters available. The associated transverse damping is also increased com-

pared to the isotropic case with a similar angular depen-
dence. Most significant is a minimum in the transverse scal-
ing functions as compared to the monotonic decrease in the
In this paper we have shown that the dipolar interactiorisotropic limit (cf. top row vs middle row in Fig. B This
drastically affects the critical dynamics of Heisenberg ferro-also compares favorably with experiments conducted on
magnets belowl;. We derived and solved self-consistently EUO (cf. Fig. 6, righ). The frequency shift described by an
mode-coupling equations for the temperature and wavetmaginary part of the damping is small. This parallels the
vector dependence of the linewidths for this model, whichsituation aboveT .. The temperature variatiofwe found a
take full account of the complicated tonsorial structure of thenaximum when varying the scaling variabl cf. Fig. 4,
problem. left) is also similar to the paramagnetic case. However, the
This also results in a very intricate mode structure, whichheight of the maximum depends on the angldetweenq
can be summarized as follows. For the static propgrUes, thgnd M and gets smaller, the more the wave vedogets
Iongltud_mal dlrect!on_ is defined alon.g the ellgenveatgro_f parallel to the magnetizatiolv?l.
the static sus_cgptlbmty tensor assouated with the longitu- The longitudinal dampings| is also increased compared
d!nal susceptlblllty(whlch is defined as the Sm‘.”‘”.e.s.t or Ieastto the isotropic value. It is largest when the wave vector is
divergent of the three eigenvalues or susceptibilititsies - - . .
. > . parallel toM, i.e., whenq lies in the associated longitudinal
in the plane spanned by the wave veajoand the magneti- direction (cf. middle row of Fig. 3. At q~qp, we find a
zationM. The two transverse directions are defined as therossover from the criticatj®? asymptotics to a noncritical
two remaining eigenvectoréz and 53. They are mutually q°. Furthermore, the variation wit# again is monotoni¢cf.
perpendicular to one another and perpendicular to the longiFig. 4, righ). The dependence on the angdeis less pro-
tudinal direction. nounced than for the transverse damping. Stafe wg, the
Although the susceptibility tensoy and the frequency corresponding broad central peak can be detected experimen-
matrix @ cannot be diagonalized simultaneously, approxi-tally only by means of polarized neutrons as in the isotropic
mately the dynamic eigendirections coincide with the staticlimit, i.e., polarized neutrons will be necessary to resolve the
Therefore, the longitudinal directioﬁl also defines the di- complete peak structure.
rection of the longitudinal spin-relaxation mode, while the
two transverse directionfsz and53 span the plane of the two
spin-wave modes. Thereby, the complicated crossover from
the isotropic limiting caséhe longitudinal mode is along the It is a pleasure to thank U. C. Tiker and E. Frey for
magnetization\7l) to the dipolar limiting case ak, (there is  valuable and helpful discussions. The authors would like to

VIIl. SUMMARY AND CONCLUSIONS

ACKNOWLEDGMENTS



57 DYNAMICS OF DIPOLAR FERROMAGNETS BELOWT, 8451

thank P. Bai for providing them with the numerical values 01(9,4)=pxe

of the measurements from Ref. 1 and for some valuable dis- v 2

cussions. Also, discussions with S. Schorr and C. Pich are - _ ~A ~
gratefully acknowledged. This work was supported by the v 9, $) =COS @2 9, )P+ SIN 0o B, p)€;, (AB)
German Federal Ministry for Research and Technology 1

(BMFT) under Contract Nos. 03-SC3TUM and 03- ¢,(9,¢)=p,(3,¢)+90°= = arccosf (9, ) e[0°,90°],
SC4TUM2. 2

sir? ¢ cos 29— cog &
APPENDIX A: STATIC SUSCEPTIBILITIES f(9,¢)=

. £(0°,45%=—1.

e . _ \/1—sin22?$co§q9
The susceptlbmtles(&: /219715, (i=1,2,3), which are

the eigenvalues of the susceptibility tensor, are given by This is a right handed orthogonal coordinate system. In-
stead of the Cartesian coordinate system we therefore use the
coordinate system introduced in the previous papee Fig.

1 of Ref. 2). One direction (;1) is perpendicular to the
wave vectorq and the magnetizatiod, while the other two
R 1 — . . - - . ..
E.(9,4)=={1% \/1—sin2 23 cod 9}, Q|r%ct|ons(v2 anQvg,_perpgndlcular to egach ott)d_re in the

2 g-M plane. Their orientation relative tg and M is rather
complicated, however, and we refer the reader to Ref. 21 for

11(R, ¢, 9)=1, lyR,¢,=1+R*F(9,¢),

- = _ - details.
R(R,¢)=Vr2(x,y)+y? tan(R,¢)=y/r(xy). Instead, we introduce some more scaling variables. If we
(Al) " define
Here, we used a mass functfon q'=q-q'=q-x_, (A7)
202 the polar coordinates _ , 9", ¢" of k_ are given by
~ _
rFy) 18+2x[1+(1+y2)—1/2] K2 =1+ k2= 2k7,
g o]
2
L+ 14 In( +0(e%), ﬂ=%=co§\¢’—¢a)5in 94 sin &' +cos¥; cos V',
(A2)

cos 94—k cos ¥’

and already introduced scaling variables. The fact that the cos "= K_ '

scaling functions depend on two scaling variables instead of

only one is called generalized scaling law and is a direcsin 9"
consequence of the dipolar interaction as outlined in the In- i i i i
troduction. The angle} precisely* is defined together with _\SI? 9+ k7 sif §' — 2k cog ¢’ — g)sindgsin g’

the unit vectorp according to K-

sin 93—k cog ¢’ — pg)sin 9’

COS ¢ COSV cog " —pg) = ~ sn o ,
g=:gsgng sin ¢ cosY (A3) B
sin ¥ — Kk Sin(@’—@g)sin &'
sin(e"—pg)=—— o (A9)
~ >< Q>< ~ R . . .
i C(_)Scp e, X (qxe,) sgng for p= q)2(+q32,¢0, In these_ relations ”only the relative azimuth angles
p=| sine |= p Ap'=¢'— @5 andA¢"=¢"— ¢4 enter.
0 e, for p=0, _
(A4) APPENDIX B: FREQUENCY MATRIX
For the evaluation of the frequency matrix one starts from
sgng,, q,#0 the commutation rules
sgnéim sgnqg,, d,=0, ay#0, (A5) [S*,SE1=i Sisap,S! (B1)
sgnax, 9,=9y=0, ax#0, in direct space with lattice pointsands, which in Fourier
1, g=0. space read

a B
The eigenvectors are then defined through [S5:S31=12ap,Sq. 4 - (B2)
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Inserting
-
(S5)=18;08a,z"M (B3) a.
for the thermal expectation valeith the magnetizatiom),
we get the final form of the frequency matrix
0 siny cos
ij . Y ’ E* =V1 S -
Cy=iwg| —siny 0 (U (B4) . P
—cosy O 0 eV,
N
There, the angley is defined through static quantitiéal) _ . -
and (A6): FIG. 8. The eigenvectors of the frequency masix, a;, and
az, and the eigenvectors of the static susceptlbmty The vectors
(R, &, 9) au, az, v2, andv3 lie in theg-M plane, the vectoraL andvl are
tan (R, ¢, ¥)=tan ¢3(,3) \/ IZ(R'W' perpendicular to that plane. TlgeM plane is spanned by andM,
3\, Q,

wherep is the projection ofy onto the plane perpendicular 1,

normalized to unit length.
vye[0°,90°] (B5)

km

and the spin-wave frequency is given by Mg @) =i - /XE’/X(?, ;»

w'1+ig’(q")

2
wg=2Im\g*%(q?+ g5 cos V). (B6) ka 1,
=iXEXD 2T e [T 1T

The eigenvalues of the matr|684) are c~—0 (connected ' +iga(q’)
with the longitudinal mod}aandc» =*w; (connected with (Cy

the two transverse spin-wave mo}ie@" he corresponding

. - The matrix elementgg’ “™ are known while the eigenvalues
eigenvectors are given by

[g']3P= 0.8ap Which are needed for the frequency integra-
tion are unknown. Performing this integration according to

w'=a, Eq. (57) now yields
and o deo’ = e -
- me~’ ’ Nfn_n' 7
f AL CHUR LA G
- I -
w2/3=a+==—{ J_Iiau}. (B?)
- =i KM L kaplb
z _'\/Xq’Xq’quq'quq’g ToTo-a
Here, we defined
1 “lyamrZ21. qbn
N ~ ~ X e [ e [Td'] [Ta*a'] )
ay=—sin #p+cos fe,, w+iga(q’)+igp(a—q’)
(C2
a,=pxez, Obviously, the double sum can be interpreted as a double
back transformation of a diagonal matrix which will yield a
5H==cos 0f)+sin g‘eZ, “double matrix” with indicesk,m,l,n. After this back trans-
formation the matrixT will have disappeared and we only
b=5— 5. (8g)  have to deal with matrix elements f(q') andg’(q—q').

To obtain this double matrix we first note that the function
of a matrix M can be defined through the function of its

ordinate system. The angle 98% is the angle by which the gigenvalueski . Let T be the transformation which diagonal-
eigenvectors of the frequency matrix differ from the eigen-Z€SM:

ectors of the static susceptibility tensor. This is depicted in
\Iéig. 8. 16 Stscepiby o P ! T71MT=diag[{)\i}]<:>M =T diag{{)\i}]T’l. (C3

The vectors{a,,a, ,a,} form a right handed orthogonal co-

Then, by using the functiof of the eigenvalue, we define
APPENDIX C: DOUBLE MATRICES
: . . . - o f(M)=T diad {f(\)}]T (CH
In this appendix we briefly outline the possibility to elimi-
nate the transformation matri; which diagonalizes/, Eq. ~ which is itself a matrix. Quite analogous a function of two
(49), from the equations. We start with the representation variables or two eigenvalues transforms into a double matrix.



57 DYNAMICS OF DIPOLAR FERROMAGNETS BELOWT

We will transform Eg.(C2) in two steps. First we can

write
1 _
TE? P P [Ta'l]am
a o+ig4(q")+igy(g—q’)
1 km

wl+ig’(q)+igy(a—q')-1
=:f1nl0'(q"),0+igh(q—q")]. (CH

The functionsf,,, need a matrixA and a scalax as input

and are basically the matrix elements of the inverse matrix.

Therefore they can be written in the forffior 3 3 matrice$

2
AmX”+ DX+ Cm
x3+dxe+ex+f

fem(AX) = (C6)

where the coefficienta,,,, bym, Ckm, d, €, andf can be

calculated from the matrix elements Af They can be given

8453
Jm 997 4G o) (G- 0 ')
_ 27T ’ ’
=X XeXg_aXe g A finl0(A"), 01
+ig'(q—a") 11", (C12

we therefore have to calculate the quotient of two matrices
[which can be achieved applying E&8)], which consist of
polynomials of the matrixg’ (q—q’) [cf. Eq.(C6) where the
scalarx now has to be replaced by the matB¥. The coef-
ficients of these polynomials are given by matrix elements of

the matrixg’(q').

APPENDIX D: DIAGONALIZING MATRIX
IN LIMITING CASES

In the following, we describe four limiting cases where
the diagonalizing matrixX'; (50) can be determined priori
at least approximately.

1. Small damping

in explicit form if one uses a representation of the inverse of The first limiting case we deal with is an expansion for

a matrixA in terms of a polynomial irA. Let A be defined

through

~ 1
A=A2—SpA~A+E[(SpA)z—Sp(AZ)]-l. (C7)
Then, the inverse oA is given by
A

A7l:detA (€8

for 3X 3 matrices and if deA+#0. Correspondingly, the co-

efficients for the calculation of,,

km
(A =[f(AX) <= | A)

km

x2-1+ix(SpA-1—-A)— A
x3+iSpA-x2—SpA-x—i detA

(C9

are given by

akm= Skm> bkaiSpAﬁkm—iAkm, Ckm:_zkmi

d=iSpA, e=-SpA, f=—i detA.

The second step consists in writing

(C10

2 T Pkl 0'(@),0+igh(a=a)ITE 5 1"

={frl9'(q"),w1+ig’'(q—q") ]} (C1y

In doing so we have transformed the matfi{¥d,x) (matrix
A, scalarx) to a double matrixf(A,B) (two matricesA,B)
as in Eq.(C4). To calculate

small linewidths, i.e.I"<wd. Therefore, to leading order
Tg is given by the matrixT® which just diagonalizes the
frequency matrixCq of Eq. (49). In this case] is unitary,
independent of frequency and given by

1 1
0 - -
V2 V2
T® cos | g g (D1)
L= Yy ——sin — sin
g Sy osiny
sin ! |
- Y ——CO0Sy — COS
v Y V3 Y

The angley has been defined in E@B5). To leading order,
the beigenvalues in Eq51) are the diagonal elements of
G’

2. Isotropic case

The above formula EqD1) can also be used in the iso-
tropic limit without dipolar interaction. Then we have
vy=90°, which yields

1 1
o - =
V2 V2
0_ . _
Ti_ 0 _ |_ |_ , y=0. (D2)
V2 V2
-1 0 0

This formula for the isotropic case, however, is valid in gen-
eral, not only for small damping. Note that this corresponds
to a decomposition into mode®?, S*, andS~, since the
static susceptibility is diagonal in Cartesian coordinates in
this case. AgainT is unitary and does not depend on fre-
guency. The eigenvalues in E&1) are strictly given by the
diagonal elements d&’°. The frequency matrix, the damp-
ing matrix as well as the relaxation function are diagonal

simultaneously. Because of EG3) the quantitiesn?®, u®,
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andw? are identical withw2®, u, andw, respectively. This ated eigenvalue equgtio$ up to termsQifw;) is equivalent
simplifies the expressions fov2® Eq. (65) considerably to replacing the matrixVl ¢ by

W T (x,y, 8, 6)| = |2k — 1|1+ X2,

=il iwg siny 0
LT S K T i IR .
wr' (XY, 0,6)|= 2k~ 1| ——, M "¢~ lwg Siny ir 0 . (D6
—Hy

IWE (%, 9,6 = |WET(x,y, 9,4)],

R Correspondingly, the eigenvalues Mf’c are given b
w2(x,y,9,x)=0 all other casega<b), (D3) P 9y g g y

in accordance with Ref. 11. 5
w1=—ilt+wg sin y+ O(wd),
3. Limiting case T=T,

At T, it is known that the relevant coordinate system is 5
oriented along the direction of the wave vectbBy using w,=—ilt—wg cosy+ O(“’d)’
the eigenvectors of the static susceptibility as a basis, this (D7)
feature is taken into account automatically, and the resulting

diagonalizing matrix, in accordance with Ref. 11, is given b .
g g given By w3=—iT +0(w),

0 1 0
TC
Ta ={0 0 1}, T=T.. (D4) and the eigenvectors by
1 00
This is basically the identity matrix, permutated, because the

(i=3) mode corresponds to tha L) mode and so on. As - 1 _1 - 0

in the isotropic case, the above transformation is unitary and ”1/2=E 1 | +0(wg), nz={0|+0(wg).
frequency independent and it diagonalizes exactly all quan- 0 1

tities in question. (D8)

4. Large dampin . . . >
g ping Choosing a phase facter1 in the eigenvecton;, we get

The opposite case to that outlined in Appendix D 1 isthe following transformation matrix:
characterized byI"'>wg. It contains as a limiting case
T=T,, since there the frequency matrix vanishes and the
conditionI'> w is always fulfilled. Therefore, we can sup-

pose that also for small deviations from or equivalently 0 i i
for frequency small compared with the dampidgjs still V2 V2

nearly diagonal. Off diagonal elements lgf (49) then are r_ .

; . T i (D9)
introduced solely by the frequency matrix q 0 —-—— —
[M™Yi~[MTe]l=[ —i+Cg]" v
a -1 0 0
=il iwgsiny iwgcosy
=| —lwgsiny =il 0 0
_— : Remarkably, this is identical td-, Eq. (D2). It can also be
—lwg cosy 0 —il5 q

used atT., since there the transverse modes 1 and 2 or
(DY) equivalentlyT and T* are degenerate and can be superim-
At T, the eigenvalued’; andI', are degenerate<{I'y) posed linearly. EquatiofD9) can therefore equivalently re-
while I';=T"__is in general different. Expanding the associ- place Eq.(D4).
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