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Dynamics of dipolar ferromagnets belowTc
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We employ mode-coupling theory to determine the dynamic critical behavior of isotropic Heisenberg fer-
romagnets below the Curie temperature including the dipolar interaction. Mode-coupling equations are derived
and solved self-consistently for the temperature and wave vector dependence of the dynamical response
functions and line widths of the excitations of this model. Thus, earlier applications of the mode-coupling
theory to the low-temperature phase of ferromagnets are generalized beyond the isotropic limit and the fol-
lowing detailed results are obtained.~1! Our expression for the spin-wave frequency agrees with spin-wave
theory in the common range of validity. The frequency is higher than the isotropic limit. This enhancement

depends on the angle between the magnetizationMW and the wave vectorqW . The largest deviations occur when

qW is perpendicular toMW . The wave-vector dependence can be described by a pseudogap for larger values of the
wave vector. For smallq, the dispersion is modified from quadratic to linear inq. This goes in hand with the
number of Goldstone modes being reduced from 2 to 1 upon inclusion of the dipolar interaction. Some
indications for this behavior are discussed in an analysis of experiments on EuO and Ni.~2! As in the
paramagnetic case, the dipolar interaction also leads to important qualitative changes in the scaling functions
for the damping of the excitations. Both transverse and longitudinal damping are greater in the isotropic case

with an angular dependence onqW relative to MW . The transverse scaling function exhibits a pronounced
minimum, which agrees with experiments performed on EuO. In contrast the data cannot be explained by the
isotropic transverse scaling function which decreases monotonically. The longitudinal damping shows a cross-
over atq'qD from q5/2 to a noncriticalq0 behavior. The width of the central spin relaxation peak exceeds the
spin-wave energy and polarized neutrons are required for its detection. The temperature variation of both
quantities is similar to the paramagnetic case.~3! The competition of the dipolar interaction and the exchange
interaction, characterized by the direction of the wave vector and the spontaneous magnetization, respectively,
gives rise to a severe reduction of symmetry and a complicated tensorial structure of the equations. We identify
the three important orthogonal directions, which correspond to the longitudinal and the two transverse excita-
tions ~spin waves!. ~4! Finally, we show that our results compare favorably with experiments on EuO and Ni.
@S0163-1829~98!02813-6#
o
si
o
e
k
to

s
th

e
rp
od
a

es

the
for

ory
.
ic
nc-

cal
be

or-
an
0
00
of

-
ion

to
I. INTRODUCTION

During the recent years, the accuracy of experiments
the critical dynamics of magnetic systems increased con
erably. Due to experimental progress primarily in neutr
scattering, it has now become possible to investigate th
systems in great detail. The use of polarized neutrons ma
it possible to distinguish between different contributions
the neutron scattering cross section.1–3 ~See also, Refs. 4, 5.!
The method of neutron spin-echo measurements allow
cover regions of very small wave vectors and to probe
time dependence, i.e., the line shape.6 With electron spin
resonance and nuclear magnetic resonance,7–10one measures
the frequency properties at vanishing wave vector.

What can theory contribute to this progress in our und
standing of these systems? In an intense and close inte
between experiment and theory over several years, m
coupling theory proved to be the most successful appro
for quantitatively describing the experimental findings.11–13

With this theory, it is possible to calculate the damping rat
i.e., thelinewidths, and even theline shapesof the dynamic
570163-1829/98/57~14!/8438~18!/$15.00
n
d-
n
se
es

to
e

r-
lay
e-

ch

,

excitations. It became clear in these investigations, that
dipolar interaction cannot be neglected for these systems
T.Tc .

In this paper, therefore, our aim is to generalize the the
to temperatures belowTc , including the dipolar interaction
We calculate the dynamic critical properties of isotrop
Heisenberg ferromagnets, i.e., we calculate the scaling fu
tions of the damping.

Now, we want to discuss briefly the two essential physi
aspects, relevant for our calculation, and the results to
expected from that. Why is the dipolar interaction so imp
tant for critical phenomena, although it is so weak and c
often be neglected?~Its strength corresponds to 10 to 10
mK while typical Curie temperatures range from 10 to 10
K.! This can be ascribed to the following four properties
the dipolar interaction.~1! It is of long range~in contrast to
the short-range exchange interaction! and therefore deter
mines the asymptotic critical properties as the correlat
length diverges.~2! It is anisotropic introducing the direction
of the wave vector as a preferred direction. This leads
additional angular dependencies.~3! It breaks rotation invari-
8438 © 1998 The American Physical Society
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57 8439DYNAMICS OF DIPOLAR FERROMAGNETS BELOWTc
ance, thereby lowering the symmetry, and influencing
dynamics of the order parameter markedly.~4! It introduces
a second length scale in addition to the correlation length,
so called dipolar wave vector. This leads to generalized s
ing laws. This second temperature-independent ‘‘mass’’ a
suppresses fluctuations.

Besides the dipolar interaction, a second aspect is v
relevant for the critical dynamics belowTc : The occurrence
of Goldstone modes due to the spontaneously broken s
metry. These excitations are massless and therefore ha
considerable influence on the properties of the system. T
fluctuations make the system ‘‘critical’’ in the whole low
temperature phase. With great effort it has been tried
tackle the problems connected with these massless mode
renormalization group theory~e.g., in Refs. 14, 15!. But the
analytic effort is rather high and this approach always re
on a perturbation series. It is therefore very attractive to tr
nonperturbation-theory based approach, the mode-coup
theory.

Combining the dipolar interaction and the Goldsto
modes, it is a very important observation, that the Goldst
fluctuations are not completely eliminated due to the dipo
interaction but rather their number is reduced by 1. T
reduction from 2 in the isotropic case to 1 can be obtain
from hydrodynamic considerations,16 from spin-wave
theories,17–19 or from renormalization-group theory.20 See
also Ref. 21. The continuous symmetry, which leads to
one remaining Goldstone mode, is the invariance of
Hamiltonian against infinitesimal rotations of the sponta
ous magnetizationMW around the direction of the wave vecto
qW . One single exception occurs when the wave vectorqW is
oriented parallel to the magnetizationMW . Then, two Gold-
stone modes survive and only the longitudinal mode in
direction ofqW andMW is modified by the dipolar interaction

What is to be expected from these observations?~Here,
we only highlight some of the results.! ~1! Including the
dipolar interaction, the magnetization is no longer conserv
Therefore it comes as no surprise that the linewidths
increased, which is equivalent to enhanced damping or sh
ened lifetime.~2! It is also quite clear that the correspondin
scaling functions depend on the relative orientation betw
the magnetization and the wave vector, characterizing
dipolar interaction. Therefore, a very complicated tenso
structure for the three excitations arises, which makes it b
difficult to present the theoretical results, and to measure
proper quantities for comparison with theory.~3! Certainly
the most striking effect of the dipolar interaction on the cr
cal dynamics of ferromagnets is that the transverse sca
function shows a distinct minimum. This is in marked co
trast to the isotropic case, where the scaling function dec
monotonically.~4! For completeness we shortly mention t
effects of the dipolar interaction on the spin-wave frequen
There is an increase~describable by a pseudogap for lar
wave vectors!, an angular dependence, and, most pro
nently, an altered asymptotic behavior for small wave v
tors. The dispersion is now linear inq instead of quadratic.

Now, we give a brief account of earlier theories. Calcu
tions including the dipolar interaction in the framework
spin-wave theory were performed in Refs. 18, 22, 19. In R
23 the authors tried to cope with the dipolar interaction
e
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perturbation theory using a diagrammatic technique.~See
also, Ref. 24.! These approaches are, however, not capabl
dealing with critical phenomena. An attempt to use mod
coupling theory for the description of critical dynamics in
dipolar ferromagnet was undertaken in Ref. 25. They, ho
ever, used many approximations concerning the mo
coupling equations as well as the static susceptibilities~see
the more detailed discussion below!. In Ref. 26 was reported
a calculation based on the non-self-consistent analysis
mode-coupling equations, which also contain a number
approximations~see below!. Here, many of these approxima
tions are eliminated, and the equations are solved s
consistently.

To give a short overview over different approaches
treat the dynamic properties of isotropic Heisenberg fer
magnets, we mention early renormalization gro
calculations27,28 and macroscopic spin-wave theories.29,30

Results have also been achieved by using diagramm
techniques31 and using mode-coupling theory in a non-se
consistent manner.32,33 See also Ref. 34. The correspondin
mode-coupling equations have been derived microscopic
in Ref. 35. In some limiting cases they have been solv
analytically in Ref. 36. In Ref. 11 they were solved nume
cally in the general case. One approach is the numer
simulation of finite systems. The results then have to be
trapolated to the thermodynamic limit via finite-size scali
analysis. In Ref. 37 the isotropic Heisenberg ferromagnet
a bcc lattice was investigated nearTc . It was found that the
dynamical scaling hypothesis holds and the dynamic crit
exponentz52.478(28) agrees with theoretical predictions.
more comprehensive review can be found in Ref. 13.

The outline of this article is as follows. In the course
setting up the mode-coupling equations and their sca
form for the dipolar ferromagnet in Sec. IV, we introduce t
Hamiltonian in Sec. II and briefly sketch the theory in Se
III. Some elements of the theory, which have to be provid
independently, the static susceptibilities and the so-ca
frequency matrix, are covered more closely in Appendixes
and B. In Sec. V we discuss several possibilities to assum
line shape, the so called Lorentzian approximation. He
such an approximation is not straightforward because of
complicated tensorial structure of the problem. In Appen
C we therefore present an alternative formulation, while A
pendix D contains some details of the calculation. In Sec.
after a short description of the numerical method to solve
coupled integrodifferential equations, we present the cen
results of our calculations, the linewidths for the differe
modes. These are compared with experimental meas
ments for the strongly dipolar magnet EuO and the wea
dipolar magnet Ni in Sec. VII. Section VIII contains th
summary and conclusions.

II. HAMILTONIAN

The Hamiltonian for the spin operatorsSW i located at lat-
tice sitesi with Cartesian componentsa,b5x,y,z is given
by38

H52(
i , j

Ui j
abSi

aSj
b , ~1a!
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Ui j
ab5

1

2
Ĵdabd j ,i 1d2~12d i j !G

]2

]Ri
a]Rj

b

1

uRW i2RW j u
.

~1b!

Here, the exchange interactionĴ is restricted to neares
neighborsd5NN and the strength of the dipolar interactio

is given byG5 1
2 (gLmB)2 with the Lande´ factor gL and the

Bohr magnetonmB . Performing an Ewald summation of th
dipolar interaction the Hamiltonian can be transformed i
wave-vector space. Restricting ourselves to the leading o
in the wave vectorqW we end up with the following
expression:38

H5E
qW
UqW

ab
SqW

a
S

2qW
b , ~2a!

UqW
ab

52J0•dab1JH q2a2dab1g
qaqb

q2 J . ~2b!

The lattice constant of the conventional~cubic! unit cell is
denoted bya, while v is the volume of the primitive unit cel
~containing only one atom!. For different Bravais lattices the
number of atoms per cubic unit cell differs and th
b5Aa3/v depends on the lattice type~see Table I and Ref
39!. Later on, we will measure lengths in units ofa. The
notation*qW is an abbreviation for

E
qW
5E v

d3q

~2p!3 . ~3!

In principle, this integral extends only over the first Brillou
zone, but since we are interested in critical phenomena
hence in small wave vectors, we can extend the integratio
infinity. For larger values ofq nonuniversal dependencies o
the form and the size of the Brillouin zone would ente
Then, however, also other~microscopic and nonuniversa!
mechanisms and interactions besides the ones included
to be taken into account. The expansion of the Fourier tra
formed exchange interaction leads to the coefficientsJ0 and
J. The former will not enter the equations of motion~see
below! while the latter is given byJ5(c/6)Ĵ, neglecting
small corrections due to the dipolar interaction~we used
G/ Ĵad!1!. By c we denote the configuration number, i.e
the number of nearest neighbors~see Table I!. Finally, we
introduced the dimensionless quantityg related to the dipolar
wave vectorqD as a measure for the relative strength of t
dipolar interaction compared to the exchange interaction11,39

g5~qDa!25
a1G

Ja3 S c

6D 3/2

. ~4!

TABLE I. The configuration numberc, the coefficienta1 , and
the volume ratiob2 for simple cubic ~sc!, body centered cubic
~bcc!, and face centered cubic~fcc! lattices. See text.

sc bcc fcc

c 6 8 12
a1 4p 3p) 4p&
a3/v5:b2 1 2 4
o
er

nd
to

.

ave
s-

The coefficienta1 stems from the Ewald summation of th
dipolar interaction and depends also on the lattice ty
~Table I and Ref. 38!.

III. GENERAL MODE-COUPLING THEORY

We now proceed with a brief description of the mod
coupling theory. This theory has been invented for the
scription of fluids40 and was thereafter extended and succe
fully applied to several other problems,41–43,13 including
nonequilibrium thermodynamics.44,45 More detailed presen
tations can be found in Refs. 11–13, 46, 47, and referen
therein. For the more general aspects consider also R
48–50 and 51.

The main observation in the derivation of our mod
coupling equations is the existence of time scale separa
Due to conservation laws the collective hydrodynam
modes become slow when the wave vector tends to z
Also, in the vicinity of second order phase transitions t
order parameter modes become slow~‘‘critical slowing
down’’!. Projecting out the remaining fast variables52,53 one
arrives at generalized Langevin equations with explicit e
pressions for the dampingG ~non local in time, thus incor-
porating memory effects! and for the ‘‘random’’ forces. Be-
low Tc there is in addition a reversible time dependen
~corresponding to propagating modes! which is described by
a frequency matrixv. These Langevin equations are fo
mally exact, but to be physically meaningful it is essential
pick the right variables for the set of slow variables$Am%.
Theoretically it is convenient to introduce the Kubo rela
ation functionf (\51)

fmn~qW ,t !5E
0

b

dl^elHdAm~qW ,t !e2lHdAn
†~qW ,0!&

5 i lim
«→0

E
t

`

e2«t^@Am~qW ,t!,An
†~qW ,0!#&dt, ~5!

where b is the inverse temperature 1/kBT and
dAm :5Am2^Am&. Equivalently, it can be expressed by th
spin-spin correlation function or the dynamic~frequency de-
pendent! susceptibility. It has the property

fmn~qW ,t50!5xmn~qW ,v50!, ~6!

i.e., the relaxation function at timet50 equals the static
susceptibility tensor. Using this quantity as the scalar prod

~AuB! ªfAB~qW ,t50!, ~7!

we can define orthonormal variablesXm5Am /AxqW
m and ob-

tain the equation of motion for the Kubo relaxation functio

]

]t
fmn~qW ,t !5 ivmk~qW !fkn~qW ,t !

2E
0

t

Gmk~qW ,t8!fkn~qW ,t2t8! dt8, ~8!

with frequency and damping matrix given by

vmn52 i ~ẊmuXn!52^@Xm ,Xn
†#&, ~9!
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Gmn~ t !5„f m~ t !u f n~0!…. ~10!

The random forcef

f m~ t !5eiQLtQẊm ~11!

develops in time according to the Liouville operatorL pro-
jected onto the fast variables by means of the projection
eratorQ. Applying the half-sided Fourier transform and u
ing the property~6! we get the first part of the mode
coupling equations

f~qW ,v! ªE
0

`

eivtf~qW ,t !dt5 iAxqW
1

v11vqW1 iG~qW ,v!
AxqW ,

~12!

which allows one to computef for known G.
In order to proceed, we have to make two approximatio

for G. At first we replaceG by

G~ t !'„Ẋ~ t !uẊ~0!…. ~13!

This can be justified, e.g., ifAm is conserved and one stick
to small wave vectors.50 If now the time derivative ofX is
given by some functional ofX,

Ẋm5F~$Xn%!, ~14!

G can be expressed by some higher order relaxation fu
tions. To close this open hierarchy of equations, we apply
factorization approximation, which replaces a higher or
relaxation function by the sum of all possible contractio
~products of the simple relaxation functions! in a procedure
similar to the random-phase approximation~RPA!. This cor-
responds to neglecting multimode decays in a perturba
theory. It can be justified in the limit of vanishing wav
vector,13 since then the relative contribution of the corr
sponding diagrams tends to zero. Another class of diagr
would lead to vertex corrections, which would yield a fini
value for the Fisher exponenth.13 Thus we obtain the fina
equation connecting the memory matrixG back to the relax-
ation functionf:

G'G~$f%!. ~15!

Equations~12! and ~15! define the self-consistency proble
to be solved. The specific model enters these general m
coupling equations at three places. For the calculation of
frequency matrix~9! we need model-dependent thermod
namic expectation values, we need the static susceptibil
~6!, which cannot be taken from mode-coupling theory, a
finally for the time evolution of the slow variables~14! we
need some model specific prescription.

For ferromagnets the relevant slow variables are the s
densities and we can use the ‘‘microscopic’’ Heisenb
equations of motion

Ẋm5 i @H,Xm# ~16!

for Eq. ~14!. Using the spin-commutation rules in Cartesi
coordinates this yields in direct space

] tSi
a5«abg$Si

bUi j
gdSj

d2Ui j
bdSj

dSi
g%, ~17!
p-

s

c-
e
r

s

n

s

e-
e
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d

in
g

with the interactionU given in Eq. ~1b!. This symmetric
cross product transforms to

] tSqW
a
5«abgE

qW 8
Ubd~qW 8!$SqW 8

d ,SqW 2qW 8
g

% ~18!

in qW space, using$,% for the quantum mechanical anticomm
tator. From~2! it is obvious that in the isotropic limit~with-
out dipolar interaction! SqW does not change in time for van
ishing q, corresponding to a conserved order parame
while in the general dipolar case, the time derivative attain
finite value and the homogeneous magnetization is no lon
conserved.

IV. MODE-COUPLING EQUATIONS FOR T<TC

In the further development of the calculation it is conv
nient to use orthogonalized modes. As is clear from Eq.~6!,
we need the static susceptibility tensor, which has to be
agonalized. The corresponding eigenvectors then determ
the coordinate system which we will use. The derivation
these susceptibilities is quite involved21 and we only quote
the main results in Appendix A. The eigenvectors depend
a fairly complicated manner on the relative orientation of t
wave vectorqW and the magnetizationMW . This is the main
source for the considerably increased complexity as co
pared to the isotropic case or the calculations above the
rie temperatureTc .

The results in Appendix A are given in scaling form. In
stead of wave vectorq, correlation lengthj ~belowTc), and
dipolar wave vectorqD we use scaling variablesx,y and
alternatively the corresponding polar coordinatesR, f ac-
cording to

x5
Ar L

q
5

1

qj
, y5

Ag

q
5

qD

q
,

R5Ax21y25
Aj221qD

2

q
, tanf5

y

x
5A g

r L
5qDj.

~19!

The variablef is a measure for temperature whileR ac-
counts for the wave vector~at fixed temperature!. Further-
more, we introduce the angleq between the wave vectorqW

and the plane perpendicular to the magnetizationMW . q50°
corresponds to in-plane orientation ofqW while for q590°
the wave vectorqW is perpendicular to the plane. A forma
definition is given in Appendix A, Eq.~A3!.

With this choice of the coordinate system we get the f
lowing equations of motion:

] tSqW
i
5E

qW 8

1

2
Vikl~qW 8,qW 2qW 8!$SqW 8

k ,SqW 2qW 8
l

% ~20!

with the vertices

Vikl~qW 8,qW 2qW 8!5Ei jl ~qW 8,qW 2qW 8!U jk~qW 8!

2Eik j~qW 8,qW 2qW 8!U jl ~qW 2qW 8!. ~21!

The fully antisymmetric tensor«abg in Eq. ~18! is thus re-
placed by
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Ei jk~qW 8,qW 2qW 8!5vW i~qW !@vW j~qW 8!3vW k~qW 2qW 8!#. ~22!

The matrixU jk(qW ) mediating the spin-spin interaction in th
coordinate system is given by

U jk~qW !5vW j
T~qW !U~qW !vW k~qW !5Jq21jk1JgM̂jk~f,q!,

M̂ jk~f,q!5:m̂j
•m̂k, m̂W ~f,q!5S 0

Aũ

A12 ũ
D ,

~23!

ũ~f,q!5cos2 w3~90°2f,q!.

The eigenvectorsvW i of the static susceptibility tensor and th
anglew3 are defined in Appendix A. These expressions c
now be inserted into Eq.~13! and after carrying out the fac
torization approximation we get the final expression for
damping matrixG in terms of the relaxation matrixf:

G i j ~qW ,t !5
1

AxqW
i
xqW

j
~ṠqW

i
~ t !uṠqW

j
!

5
4kBT

AxqW
i
xqW

j
E

qW 8

1

2
Ti jkmln8 ~qW 8,qW 2qW !

3fkm~qW 8,t !f ln~qW 2qW 8,t !, ~24!

where we introduced the kernel

Ti jkmln8 ~qW 8,qW 2qW 8!5Vikl~qW 8,qW 2qW 8!Vjmn~qW 8,qW 2qW 8!.
~25!

Equation~24! together with Eq.~12! has now to be solved
for the relaxation functionf.

At this point we compare with two previous treatments
the problem. The equations used in Ref. 25 differ from o
in several respects. The anisotropy inqW of the static suscep
tibility x has been neglected. Also, these authors did
include the coexistence anomaly in the longitudinal susc
tibility, ( xL;1/q for q→0!. By averaging over all directions
of the wave vector the tonsorial character of the problem w
eliminated and thus the equations were reduced to sc
quantities. Finally, only the parameters of a particular para
etrization of the linewidths and not the complete functio
have been derived self-consistently. Therefore, only so
aspects of the dipolar interaction are included in this wor

The mode-coupling equations used in Ref. 26 also con
a number of severe approximations. The dispersion rela
is valid only for not too small wave vectors. The static su
ceptibilities do not account for the dipolar crossover, a
especially neglect the complicated tonsorial structure. As
treatment of Raghavan and Huber, the results of Lovesey
therefore restricted to the weak dipolar regionqDj!1. This
is also due to the assumed diagonality of the damping ma
in terms of the spin fluctuations parallel and perpendicula
the magnetization, which certainly does not hold in the
gion qDj.1 and especially not atT5Tc , where the longi-
tudinal mode is parallel to the wave vectorqW and not to the
magnetization. Since the dipolar interaction is not incorp
n

e
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rated properly and, therefore, small wave vectors canno
considered, the applicability of the results to critical pheno
ena is very restricted. Finally, even these simplified eq
tions have not been solved self-consistently but rather i
first iteration based on the neglection of the damping.

Before we derive the scaling form of the mode-coupli
equations we have to deal with the frequency matrix in E
~12!. Again, it is helpful to use the coordinate system whe
the static susceptibility is diagonal, i.e., to use the directio
of the eigenvectorsvW i(qW ) instead of the Cartesian coord
nates~indices i 51,2,3 instead ofa5x,y,z!. Then, the fre-
quency matrix~9! can be calculated according to

CqW
i j

ª2vqW
i j

5
1

AxqW
i
xqW

j
^@SqW

i ,S
2qW
j

#&. ~26!

The details of the calculation can be found in Appendix
The eigenvalues of this matrix are 0,vqW , and 2vqW . The
first important result is the observation that the frequen
matrix is not diagonal together with the tensor of the sta
susceptibility. The eigenvectors ofCqW do not coincide with
the eigenvectors ofx. This will cause the major difficulties in
the solution of the mode-coupling equations and increase
effort considerably.

The second important result is an expression for the s
wave frequency

vqW52JmAq2~q21qD
2 cos2 q!. ~27!

Equation~27! generalizes spin-wave results up toTc . It is
identical with the expression obtained by spin-wa
theory54,30 if one replaces the thermodynamic expectati
value m5^S0

z& by the classicalT50 value S. Spin-wave
theory can, however, be improved55 to also yield^S0

z& in-
stead ofS. The spin-wave frequency~27! is now angle de-
pendent and increased compared to the isotropic case.
q590° (qW iMW ) the effect of the dipolar interaction is elimi
nated and we recover the isotropic spin-wave dispersion
lation. In the general case there is a ‘‘mass term,’’ which h
several consequences. For smallq it modifies the dispersion
which is now linear instead of quadratic. We get

vqW'2Jm~qqD cosq1q2!, q!qD cosq. ~28!

Thus, the spin-wave energies are strongly increased but t
is still no gap in the spectrum. This corresponds to the o
remaining Goldstone mode in the dipolar case, which le
to massless excitations. For largeq the mass term leads to
pseudogap, i.e., the spin-wave frequency appears to h
been shifted upwards:

vqW'2JmS q21
1

2
qD

2 cos2 q D , q@qD cosq. ~29!

Both asymptotic expressions together with the complete
mula ~27! are shown in the left part of Fig. 1 forq50°. In
the right part we show the spin-wave frequency for vario
values ofq.

Next, we derive from Eqs.~24! and ~12! the mode-
coupling equations in scaling form, which will serve as t
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starting point for the numerical solution. At first we give th
scaling form for the spin-wave frequency. By inspection
Eq. ~27! we get

vqW~j,g!5F8qz
•v̂8~x,y,q!,

v̂8~x,y,q!5Ax~11y2 cos2 q!, ~30!

where z55/2 is the dynamic critical exponent. Strictl
speaking the exact result for the isotropic Heisenberg fe
magnet is56

z5
d

2
112

h

2
. ~31!

But sinceh is quite small@e.g., h50.04 for the isotropic
n-vector model ind5n53 in O(e2) ~Ref. 57!#, we can
safely neglect it here.

The static susceptibilities have already been given in s
ing form in Eqs.~A1!–~A6!. The general form of the scalin
laws connected with static quantities is~again setting to zero
the Fisher exponenth!

xqW
i
~j,g!5x0q22

•x̂ i~x,y,qqW !,

CqW
i j
~j,g!52Fqz

•ṽ i j ~x,y,qqW !. ~32!

Here, we used the polar angleqqW of qW . Because of the in-
variance of the Hamiltonian againstqW→2qW it can later be
replaced by the angleq as defined in Eq.~A3!. The quanti-
ties do not depend on the anglew, which reflects the sym-
metry belonging to the one remaining Goldstone mode.
the dynamic quantities we have in Fourier space

G i j ~qW ,v,j,g!5Fqzg i j ~x,y,n,qqW !,

f i j ~qW ,v,j,g!5
x0q22

Fqz w i j ~x,y,n,qqW !, ~33!

with v5Fqzn and as a function of time

G i j ~qW ,t,j,g!5@Fqz#2Gi j ~x,y,t,qqW !,
~34!

f i j ~qW ,t,j,g!5x0q22w i j ~x,y,t,qqW !,

FIG. 1. Spin-wave frequencyvqW of the dipolar ferromagnet vs
wave vectorq. Left: q50°, general formula~—!, approximation
for small ~––!, and large~-•-! wave vectorsq. Right: q50°, 30°,
45°, 60°, 90°~as indicated in the graph!, where q is the angle

enclosed byqW and the plane perpendicular toMW .
f

-

l-

r

with

t5
1

Fqzt
.

The scaling variablekW 5qW 8/q and the corresponding pola
coordinatesk, q8, andw8 will substitute the integration vari-
ableqW 8 in Eq. ~24!.

Since there are two different non universal amplitudesF
and F8 in Eqs. ~30! and ~32!–~34!, it is important to know
whether the ratiob̂5F8/F is universal or not. In Ref. 58 and
in more detail in Ref. 59, it has been shown thatb̂ is univer-
sal ~which could also be confirmed experimentally for va
ous magnets58! and that its value is roughlyb̂'7.029.4.

Finally, the kernels in Eq.~25! scale as

Ti jkmln8 ~j,g,qW 8,qW 2qW 8!5J2qW 82~qW 2qW 8!2t i jkmln8 ~x,y,qqW ,kW !,
~35!

with the scaling function

t i jkmln8 ~x,y,qqW ,kW !5v ikl~x,y,qqW ,kW !v jmn~x,y,qqW ,kW !

5:
wi jkmln~x,y,qqW ,kW !

k2k2
2 ,

v ikl~x,y,q,q8,Dw8,k!

5
2k h21

kk2
Eikl S x

y
,q,q8,Dw8,k D

1
y2

kk2
H Eipl S x

y
,q,q8,Dw8,k D M̂ pkS x

y
,q8D

1EipkS x

y
,q,q9,Dw9,k2D M̂ plS x

y
,q9D J . ~36!

The quantitiesw9, q9, andk2 are defined in Appendix A.
The tensorsE and M̂ have been defined in Eqs.~22! and
~23!, respectively.

With Eqs.~24! and~12! the complete final mode-couplin
equations in scaling form for the scaling functionsG andw
are then given by

Gi j ~x,y,q,t!5
1

4
ĉE d3k

~2p!3

1

Ax̂ i~x,y,q!x̂ j~x,y,q!

3t i jkmln8 ~x,y,q,kW !wkmS x

k
,
y

k
,q8,kzt D

3w lnS x

k2

,
y

k2

,q9,k2
z t D ~37!

and

w i j ~x,y,q,n!5 iAx̂ i~x,y,q!x̂ j~x,y,q!

3F 1

n11ṽ~x,y,q!1 iG~x,y,q,n!
G i j

.

~38!
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The transition from time to frequency in Eq.~38! is achieved
by a half-sided Fourier transform

w~n!5E
0

`

eintw~t!dt. ~39!

With z55/2 following from general scaling conside
ations@Eq. ~31!# and

F5A8x0J2kBT

ĉ
5A4JkBT

ĉ
, ~40!

the q and v dependencies in the mode-coupling equatio
are such that we get a dimensionless scaling law. Becaus
the second scaling variabley one has to distinguish, how
ever, between this formal exponent and the ‘‘real’’ effecti
exponent zeff . For example, there is a crossover fro
zeff55/2 to zeff52 for the transverse and tozeff50 for the
longitudinal linewidth as one approachesTc from above.11

The numerical constantb in the nonuniversal amplitudeF
depends on the lattice type and is tabulated in Table I.
universal constantĉ fixes the global numerical scale of th
scaling functions, which can be chosen arbitrarily. For
ample, forĉ58p4 we get for the damping atTc in Lorent-
zian approximation11

GLLN
i j ~x50,y50!'5.1326d i j for ĉ58p4. ~41!

For ĉ'8p4/(5.1326)239 the corresponding scaling functio
is normalized to unity:

GLLN
i j ~x50,y50!51d i j for ĉ'

8p4

~5.1326!2 . ~42!

Therefore, we can arbitrarily shift numerical factors betwe
ĉ in the equations and the resulting scaling functions. In
following, we will chooseĉ58p4.
s
of

e

-

n
e

As a function of time, Eq.~38! becomes a differentia
equation forw:

]

]t
w i j ~x,y,q,t!

5(
k
Ax̂ i~x,y,q!

x̂k~x,y,q!
H i ṽ ik~x,y,q!wk j~x,y,q,t!

2E
0

t

dt8Gik~x,y,q,t8!wk j~x,y,q,t2t8!J . ~43!

The initial condition att50 is given by the identity~6!:

w i j ~x,y,q,t50!5x̂ i~x,y,q!d i j . ~44!

With the help of the convolution theorem

E
0

`

eint f ~at!g~bt!dt

5E
2`

` dn8

2p

1

a
f S n8

a D 1

b
gS n2n8

b Da,b.0, ~45!

Eq. ~37! can be transformed into Fourier space

FIG. 2. Contour of integration ofI ab8 in the complexv8 plane.
Also shown are the poles of the integrand forI LL8 .
Gi j ~x,y,q,n!5
1

4
ĉE d3k

~2p!3

1

Ax̂ i~x,y,q!x̂ j~x,y,q!
t i jkmln8 ~x,y,q,kW !E

2`

` dn8

2p

1

kz

3wkmS x

k
,
y

k
,q8,n8/kzD 1

k2
z w lnS x

k2

,
y

k2

,q9,~n2n8!/k2
z D . ~46!

Eliminating f via Eq. ~38! we get a closed system of integral equations for the scaling functionG in Fourier space:

Gi j ~x,y,q,n!52
1

4
ĉ

1

Ax̂ i~x,y,q!x̂ j~x,y,q!
E d3k

~2p!3 t i jkmln8 ~x,y,q,kW !

3Ax̂kS x

k
,
y

k
,q8D x̂mS x

k
,
y

k
,q8D x̂ lS x

k2

,
y

k2

,q9D x̂nS x

k2

,
y

k2

,q9D E
2`

` dn8

2p
H Xn11kzF ṽS x

k
,
y

k
,q8D

1 iGS x

k
,
y

k
,q8,

n8

kzD GC21J kmH X~n2n8!11k2
z F ṽS x

k2

,
y

k2

,q9D 1 iGS x

k2

,
y

k2

,q9,
n2n8

k2
z D GC21J ln

.

~47!
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V. GENERALIZED LORENTZIAN APPROXIMATION

Equations~37! and~38! or their equivalents are very com
plicated because of the dependence onq andv. A very suc-
cessful idea to reduce the complexity has been the so-ca
Lorentzian approximation.11 There, one assumes a frequen
independent dampingG in the relaxation functionf ~38!.
This amounts to a Lorentzian in Fourier space or an ex
nential decay off in time. Now, the integration over fre
quency in Eq.~46! or equivalently Eq.~47! can be performed
analytically. Thus, the implicit frequency dependence
eliminated and the theory is reduced to the computation
wave-vector dependent linewidth. Often, this is sufficient
comparison with experiments, since line widths are easie
measure than line shapes.

Reformulating and generalizing this idea, we assume
the damping matrix in Eq.~38! varies only slowly with fre-
quency so that approximately it can be set constant. Th
we have to diagonalizef in order to carry out the integra
tion. Compared to the isotropic case, there is, however,
major difficulty in the dipolar case: We do not know in a
vance how to diagonalize the damping matrixG. This can
essentially be traced back@Eqs.~48! and~49!# to the fact that
the tensor of the static susceptibilityx does not commute
with the frequency matrixC. They cannot be diagonalize
simultaneously. Therefore, the diagonalization ofG has to be
done self-consistently together with the determination oG
itself. There are two possible solutions to this problem.
Appendix C we show how the theory can be formulat
without specifying the exact diagonalizing transformation
G. Unfortunately, the resulting expressions become rathe
volved and cumbersome. Here, we prefer to use the sec
possibility, an approximate diagonalization ofG to be ex-
plained in more detail at the end of this section and in A
pendix D. The essential result will be that we can appro
mately use the coordinate system spanned by
eigenvectors of the static susceptibility tensor. But first
formulate the general Lorentzian theory.

Assuming that the the damping matrixG(qW ) to be deter-
mined is independent of frequency we get

f~qW ,v!' iAxqWM ~qW ,v!AxqW , ~48!

M 21~qW ,v!5v•12CqW1 iG~qW !. ~49!

Let TqW be a transformation into a new coordinate syste
which diagonalizesM ~in general,TqW is not unitary, sinceM
is not necessarily normal,@M ,M†#Þ0!

TqW
21

M 21~qW ,v!TqW5v•11 ig8~qW !,

g8ab~qW !5S gL8~qW ! 0 0

0 gT8~qW ! 0

0 0 gT*
8 ~qW !

D ab

. ~50!

For this coordinate system we defined indic
a,b5$L,T,T* %. We introduce linewidths according to

GL8~qW ,v![gL8~qW ,v!, GT8~qW ,v! ªgT8~qW ,v!2 ivqW .
~51!
ed

-

s
a
r
to

at

n,

e

r
n-
nd

-
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e

e

,

The column vectors ofTqW are right eigenvectors ofM while
the row vectors ofTqW

21 span the corresponding dual space

TqW
ia

5:@na
i ~qW !#* 5$@nW L~qW !nW T~qW !nW T* ~qW !#* % ia,

@TqW
21

#ai5:ma
i ~qW !5F mW L

T~qW !

mW T
T~qW !

mW T*
T

~qW !
G ai

, ~52!

mW a
†~qW !•nW b~qW !5dab .

If TqW is unitary we have

TqW
21

5TqW
† , mW a~qW !5nW a~qW !. ~53!

Now we get the following representation for the matrixf:

f~qW ,v!5 iAxqWTqW@TqW
21

M 21~qW ,v!TqW #
21TqW

21AxqW

5 i ~AxqWTqW !
1

v•11 ig8~qW !
~TqW

21AxqW !, ~54!

or, equivalently,

f i j ~qW ,v!5 i (
a5$L,T,T* %

Ma8
i j ~qW !

v1 iga8~qW !
, ~55!

Ma8
i j ~qW !5AxqW

i
xqW

j
@nW a

i ~qW !#* mW a
j ~qW !. ~56!

Hence, the relaxation function is a sum of three Lorentzia
in the general dipolar case. The tonsorial structure, howe
is as yet unspecified. The matrixTqW , which determines the
weight factors~56!, depends onG(qW ) and either has to be
determined self-consistently together withG(qW ) or an addi-
tional assumption on the tonsorial structure has to be ma
This is different from the isotropic case and generalizes
Lorentzian approximation.

Now, we insert Eq.~55! into Eq. ~46! and carry out the
frequency integration along the contour shown in Fig. 2.

Defining I ab8 by

E
2`

` dv8

2p
fkm~qW 8,v8!f ln~qW 2qW 8,v2v8!

52 i(
ab

Ma8
km~qW 8!Mb8

ln~qW 2qW 8!

3E
2`

` dv8

2p i

1

v81 iga8~qW 8!

1

v2v81 igb8~qW 2qW 8!

5:(
ab

Ma8
km~qW 8!Mb8

ln~qW 2qW 8!I ab8 ~qW 8,qW 2qW 8,v!,

~57!

this yields

I ab8 ~qW 8,qW 2qW 8,v!5
i

v1 iga8~qW 8!1 igb8~qW 2qW 8!
. ~58!
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Transforming the damping matrix into the coordinate s
tem

G8ab~qW ! ª~TqW
21

!aiG i j ~qW !TqW
jb , ~59!

we get

G8cd~qW ,v!

54kBTE
qW 8
(
ab

1

2
Tcd

ab~qW 8,qW 2qW 8!•I ab8 ~qW 8,qW 2qW 8,v!, ~60!

where the kernelTcd
ab has been defined as

Tcd
ab~qW 8,qW 2qW 8!5 (

i jkmln H ~TqW
21

!ci
1

AxqW
i
xqW

j
Ti jkmln8 ~qW 8,qW 2qW 8!

3TqW
jd

Ma8
km~qW 8!Mb8

ln~qW 2qW 8!J . ~61!

The final mode-coupling equations for the scaling fun
tions of the dampingGab , which we will solve numerically
in the following section, are therefore given in scaling for
by

Gcd~x,y,q,n!5
1

4
ĉE d3k

~2p!3 (
ab

t̂ cd
ab~x,y,q,kW !

3 Î ab8 ~x,y,q,kW ,n!. ~62!

Here, the scaling function for the frequency integral has
form

Î ab8 ~x,y,q,kW ,n!2152 in1kzgaS x

k
,
y

k
,q8D

1k2
z gbS x

k2
,

y

k2
,q9D , ~63!

and the kernel can be written as

t̂ cd
ab~x,y,q,kW !5

1

k2k2
2 wc

ab~x,y,q,kW !@w̃d
ab~x,y,q,kW !#* ,

~64!

with

wc
ab~x,y,q,kW !5~2kh21!uW c•$wW a~kW !3wW b~kW 2!%

1y2uW c$@wW a~kW !ŵ~kW !#•@ŵ~kW !3wW b~kW 2!#

1@wW b~kW 2!ŵ~kW 2!#•@ŵ~kW 2!3wW a~kW !#%,

w̃d
ab~x,y,q,kW !5~2kh21!uW c

0
•$wW a

0~kW !3wW b
0~kW 2!%

1y2uW c
0$@wW a

0~kW !ŵ~kW !#•@ŵ~kW !3wW b
0~kW 2!#

1@wW b
0~kW 2!ŵ~kW 2!#•@ŵ~kW 2!3wW a

0~kW !#%.

~65!
-

-

e

For clarity we omitted the dependence on the scaling v
ablesx, y, andq of all vectors appearing in these formula
which are defined by

uW c~x,y,q!5(
i

mc
i ~qW !

AxqW
i

vW i~qW !,

wW a~x,y,q,kW !5(
i

@na
i ~qW 8!#*AxqW 8

i vW i~qW 8!,

uW c
0~x,y,q!5(

i

nc
i ~qW !

AxqW
i

vW i~qW !, ~66!

wW a
0~x,y,q,kW !5(

i
@ma

i ~qW 8!#*AxqW 8
i vW i~qW 8!,

ŵ~x,y,q,kW !5(
i

m̂i~f,q8!vW i~qW 8!.

In the isotropic limit, longitudinal and transverse mod
decouple@the damping matrix in Eq.~60! is diagonal# and
the longitudinal width is computed atv50 while the spin-
wave linewidths are evaluated at the spin-wave freque
v5vqW . This is not possible here, since in general the ma
cesMa8 do not commute and the corresponding modes can
be decoupled. Thus, to remain consistent we evaluate
damping constants at zero frequency as in the paramag
case. This is equivalent to the assumption that the freque
dependent damping coefficients vary slowly even on
scale of the spin-wave frequency and not only on the scal
the linewidths. In the isotropic case,11 the longitudinal line-
width always exceeds the spin-wave frequency. Later
will see that this property also holds in the dipolar ca
Thus, this assumption is not more restrictive than in the i
tropic case. A consequence of this choice are the follow
very useful symmetry properties:

@Gcd~x,y,q!#* 5Gc* d* ~x,y,q!,

@wc
ab~x,y,q,kW !#* 5wc*

a* b* ~x,y,q,kW !, ~67!

which derive fromGi j (n50)PR and where we defined th
index mapping

L* ªL, ~T!* ªT* , ~T* !* ªT. ~68!

Finally, we have to determine the diagonalizing matrixTqW

entering Eq.~50!. If one prefers a self-consistent determin
tion together with the damping matrix, it is advantageous
eliminateTqW from the equations. This leads to double mat
ces~objects with four indices! and the corresponding expre
sions are given in Appendix C. Here, we introduce a simp
fying assumption aboutTqW . This has the advantage that w
can start with a fixedTqW from the beginning. Due to the
reduced symmetry of the problem the Lorentzian approxim
tion not only requires assumptions about the linewidths a
the isotropic case but also about the tensor structure.

There are four complementary limiting cases whereTqW

can be determined in advance. They are described in deta
Appendix D. For all these cases, the result can be written
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FIG. 3. Scaling functions for the spin-wave frequency, the transverse and the longitudinal linewidth vsR for various values ofq
~q518°i , i 51,. . .,5! for the isotropic limit~uppermost row!, a typical dipolar case~heref545°, i.e.,j215qD , middle row!, and atTc

~bottom row!.
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TqW5S 0
1

&

1

&

0 2
i

&

i

&

21 0 0

D . ~69!

Therefore, we use this expression also in the general c
There is a second justification of this choice ofTqW : Because
it amounts to using the static eigenvectors as a basis als
the dynamics, the most significant geometric effects of
dipolar interaction, which determine the directions of t
eigenvectors, are already incorporated. For example,
change of the direction of the longitudinal mode from t
direction of the magnetization in the isotropic case to
direction of the wave vector atTc is automatically included.
se.

for
e

he

e

Thirdly and finally, the validity can be scrutinized by eval
ating the off diagonal elements ofGab a posteriori. We
found that they are indeed small in the four indicated regio
~Appendix D! and near the linex'y. For larger values ofR
there are deviations from the assumed diagonality. But si
the results at largeR do not influence the results at smallR
significantly in our self-consistent solution, we conclude th
our results should be correct for the values ofR, which are
relevant for the comparison with experiment (R&5).

VI. NUMERICAL SOLUTION AND RESULTS

Before we come to the results of our calculations,
briefly describe the numerical procedure for the solution
our coupled integral equations, the mode-coupling equati
~62!. The integrand functions depend on the quantities to
determined through the scaling functionsÎ ab8 in Eq. ~62! and
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therefore, we utilize an iterative method to solve this se
consistency problem. We take starting values forGcd , then
calculate a set of functions via Eqs.~62!, and iterate until
convergence is achieved. Due to the characteristic struc
of the equations~the function to be determined enters t
denominator of the right-hand side which has to be in
grated over!, there is a tendency to smooth out any dev
tions from the true solution and the procedure converg
Furthermore, it has been shown that under certain circ
stances the solution of such mode-coupling equations
unique and if the procedure converges at all, then it c
verges uniquely to one solution.60 The key ingredient is the
three-dimensional integration in wave-vector space. Since
most all symmetries are lost in our case, and since the fu
tions depend on so many variables, a very fast integra
procedure is indispensable. The time necessary for one i
tion increases approximately by a factor of 200 compa
with the isotropic case. We have therefore chosen to emp
Gaussian quadrature rules with a nonadaptive fixed inte
tion mesh. Rather, it has been optimized in advance to
integrate the specific integrands we deal with. This was p
sible, because the main features of the integrand funct
are determined by the known kernels~65!. For the highest
accuracy we used 16 000 mesh points for the integrat
which was carried out at each of the 7400 mesh points for
external scaling variables. This iteration step was repea
about 10 to 20 times. The relative error of the functions
estimated to be less than 1022.

The result of the mode-coupling equations~62! are then
the scaling functions for the linewidths. The linewidths a
the eigenvalues of the matrix~59! assumed to be diagonal i
the reference frame of the static eigenvectors~cf. the discus-
sion at the end of Sec. V!. When speaking of a longitudina
line width we therefore mean the linewidth of magnetizati
fluctuations in the direction of the eigenvectorvW 3 of the static
susceptibility. It is real and depends on the two scaling v
ablesR andf, and the angleq characterizing the direction
of the wave vectorqW relative to the magnetizationMW . The
transverse line width is complex where the real part de
mines the actual linewidth while the imaginary part leads
a frequency shift which alters the spin-wave frequency. T
imaginary part is, however, very small and the spin-wa
frequency is still approximately given by Eq.~27!. This is
quite analogous to the isotropic case, where the correctio
the excitation energies was also on the order of a few
cent only. The only exception occurs very close toTc where
the spin-wave energy vanishes and the relative devia
therefrom can become larger.11 The spin-wave frequency ha
already been discussed in Sec. IV. We have drawn the
responding scaling functions in the left column of Fig. 3 f
various values of the scaling variablef. They have been
calculated using the valueb̂57.7 for the amplitude of the
spin-wave frequency. UsingGL(R50)5GT(R50)55.13,
i.e., usingĉ58p4, this corresponds toW25b̂/G(0)51.5.
~For a detailed discussion of the universal amplitudeb̂ and
W2 see Refs. 58 and 59.! In the bottom row, atf590°,
which is equivalent toT5Tc , the spin-wave frequency van
ishes.

The damping of the spin waves is shown in the mid
column of Fig. 3. Comparing the uppermost row, which c
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responds to the isotropic case, with the other rows we
that the damping is increased due to the dipolar interact
This is not unexpected, since the magnetization is no lon
conserved in the presence of the dipolar interaction. The
responding lifetime decreases and the linewidth is increa
Furthermore, we see a strong dependence on the angq.
The damping is largest when the direction ofqW characteriz-
ing the dipolar interaction lies completely in the plane of t
transverse modes (q50°), perpendicular to the magnetiza
tion. The most prominent feature is certainly the minimum
the scaling function, which is in very marked contrast to t
monotonic decrease in the pure isotropic case.

If we take a closer look at the variation withf, i.e., with
temperature or with increasing dipolar influence, we see
the left part of Fig. 4, that the increase is not always mo
tonic but rather has a maximum as a function off if q is
sufficiently small. This is very similar to the paramagne
dipolar case where the variation of the transverse linewi
also showed a maximum as a function off.11

In the right column of Fig. 3 the longitudinal linewidth
are drawn. These, too are larger than in the isotropic case
the same reason. The variation with the angleq is less pro-
nounced here and the linewidth is largest when the w
vectorqW is parallel toMW (q590°). Since the dipolar inter-
action is characterized by the direction of the wave vectorqW ,
and the longitudinal mode is characterized by the direction
the spontaneous magnetizationMW , this means that again, a
for the transversal excitations, the damping is largest, w
the direction characterizing the dipolar interaction is para
to the direction characterizing the corresponding mo
which is the longitudinal mode this time. For small values
R ~for q.qD!, the scaling function is approximately con
stant, the corresponding linewidth shows criticalq5/2 behav-
ior. For smallerq, however, the scaling function grows a
R5/2, which means that the linewidth itself becomes consta
This exactly parallels the situation aboveTc . Due to the
nonconservation of the magnetization this mode becomes
critical. Therefore, the kinetic coefficient is finite, as in th
classical van Hove scenario. Since also the static longitud
susceptibility eventually is constant in the dipolar case,21 the
quotient, i.e., the damping, is constant in the limitq→0.
Also the variation ofGL with f ~see right part of Fig. 4! is
similar to the paramagnetic dipolar case, since it show
monotonic increase.11 It is important to note, that the longi
tudinal linewidth is still larger or of the same size as t
spin-wave frequency as in the isotropic case. First, this gi

FIG. 4. Variation ofRGT andGL with f for various values of
q ~q518°i , i 51,. . .,5! for R53.
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57 8449DYNAMICS OF DIPOLAR FERROMAGNETS BELOWTc
an a posteriori justification of our assumption that the a
proximation of slowly varying damping on the scale of t
spin-wave frequency is not more restrictive than a sl
variation on the scale of the dampings.~See the discussion in
Sec. V.! Secondly, it implies that experimentally it is nece
sary to use polarized neutrons in order to detect the long
dinal peak, since by using unpolarized neutrons the long
dinal peak would be masked by the spin-wave peaks.

VII. COMPARISON WITH EXPERIMENT

In this final section we want to compare our findings w
two experiments. The first was performed on EuO by Pas
et al.61 measuring spin-wave frequencies and the correspo
ing linewidths at a variety of temperatures and wave vect
Due to the availability of unpolarized neutrons only, th
were not able to detect the longitudinal peak and hence c
not determine the longitudinal damping. Each measurem
at a specific temperature and wave vector corresponds
point in the plane of the scaling variablesx and y. These
points are shown in Fig. 5.

The error bars in thex direction correspond to the unce
tainty in the correlation length. In Ref. 61 the experime
were compared with the isotropic model, which correspo
to a comparison between the measurements and the the
cally determined function taken on thex axis (y50) in Fig.
5. Here, we made a comparison between the experiment
the theoretical scaling functions along the trajectory plot
in Fig. 5. Since the separation of the two measured po
marked with a star from this trajectory is too large, we om
ted them in the comparison. In Fig. 6 we plot the correspo
ing scaling functions vs the scaling variablex1/2 and x, re-
spectively. Note that we plot the total spin-wave ener
which can be obtained from the exchange spin-wave ene
given in Ref. 61 by the following transformation:

Etot5Eexf ~q!, ~70!

where the factorf (q) is given by f (q)51/21@(11f)/2/
Af]arctanAf, f50.024 Å22q22 @see formula~33! in Ref.
61#. When plotted vsx1/2, the isotropic limit yields a straigh
line through the origin.

Figure 6 shows the possible range of the theoret
curves when varying the angleq. Since the sample was
polycrystalline powder, the angle between the wave vec
and the magnetization is not sharply defined, and the ac

FIG. 5. Distribution of the measurements from Ref. 61 for Eu
in the x-y plane. See text for details.
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theoretical prediction would be a weighted average over
curves shown in the figure. To obtain the scaling functio
experimentally one has to divide by the critical damping
Tc . Both experimental and theoretical linewidths are th
normalized to 1 atx5y50. The damping could well be pa
rametrized by the formulaGq5A8q5/2f (q). The value of the
amplitudeA8 measured in Ref. 61, however, seems to suf
from experimental uncertainties. In later measurements62,63

and also in very recent measurements64 the values are
roughly a factor of 1.5 bigger than the valu
A854.0 meV Å2.5 found in Ref. 61. We have therefore cho
sen the valueA856.60 meV Å2.5. At q50.15 Å21 we have
f (q)'1.30 and thusA'A8 f (q)'8.58 meV Å2.5 ~cf. Refs.
58, 59!. This yields for the universal amplitude of the spin
wave frequency scaling function a valueW251.3 or b̂56.7
~cf. Refs. 58, 59!. This is the value used for the theoretic
curves in Fig. 6. Note that we have used no fit paramete

As can be seen from the figure, especially the data for
damping are by far better represented by the dipolar curv
which show a minimum, than by the isotropic curve, whic
exhibits a monotonic decrease~dashed curve in Fig. 6!. The
isotropic theory cannot even qualitatively explain the me
surements.

The second experiment we want to discuss is a rec
experiment on Ni by Bo¨ni et al.,1,65 who used polarized neu
trons and thus could clearly identify the longitudinal pea
They performed their measurements in a restricted temp
ture region~values off lie between 26° and 30°! such that
we can compare the data with theoretical curves forf528°.
The scatter in the data for the scaling function of the lon
tudinal linewidth~Fig. 7! is quite large, but since the scalin
function is normalized to unity atx5y50 and on the other
hand has to increase asx5/2 ~the damping itself becomes
constant in the asymptotic dipolar regime forq→0!, the data
give clear evidence for a minimum.

In Refs. 58, 59 it is shown, that the numerical value of t
universal amplitude of the spin-wave frequencyb̂ is crucial
for obtaining a minimum in the scaling function. There, it
also shown, that such a minimum already occurs in the i
tropic theory, provided the right value forb̂. Here, we show
that also in the dipolar theory the experimental results are
agreement with theory. Obviously the deviations from t
isotropic theory are not yet very pronounced in the region

FIG. 6. Left: Scaling function of spin-wave frequency vs scalin
variablex1/2. Theoretical curves are forq518°i , i 51,. . .,5, experi-
mental points are for EuO~from Ref. 61!. Dashed: Scaling function
in the isotropic limit. Right: Same for the scaling function of th
transverse linewidth vsx.



o
ol
to

bl
b

a
ic
vs
irl
e

io
ro
ly
v
ic
th

ic
th

-
s

th

ng

xi
tic

he

ro
e

e is

a-
o-
on,
nter-
in-

hese

is

di-
in-
al-

ave
gle

inal
ic
e
olar
ri-

in-

com-
en-
al-
the

on
n
he

the

d
is
l

l

en-
pic
the

to

ta

u

8450 57H. SCHINZ AND F. SCHWABL
the comparably smallx probed in the experiment, where n
strong dipolar effects are expected. Furthermore the dip
interaction in Ni is only weak, since the dipolar wave vec
is small. Farther away fromTc or alternatively at smaller
wave vectors the dipolar influences should be noticea
The value of the spin-wave amplitude can be determined
independent experiments and we have takenW251.4 or
equivalentlyb̂57.2. Then, there seems to be a slight indic
tion for a deviation of the frequency data from the isotrop
prediction—a straight line through the origin when plotted
Ax. The dipolar dispersion fits the data better, but the fa
large error bars prevent a decisive conclusion. Note that th
are no fit parameters available.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have shown that the dipolar interact
drastically affects the critical dynamics of Heisenberg fer
magnets belowTc . We derived and solved self-consistent
mode-coupling equations for the temperature and wa
vector dependence of the linewidths for this model, wh
take full account of the complicated tonsorial structure of
problem.

This also results in a very intricate mode structure, wh
can be summarized as follows. For the static properties,
longitudinal direction is defined along the eigenvectorvW 1 of
the static susceptibility tensorx associated with the longitu
dinal susceptibility~which is defined as the smallest or lea
divergent of the three eigenvalues or susceptibilities!. It lies
in the plane spanned by the wave vectorqW and the magneti-
zation MW . The two transverse directions are defined as
two remaining eigenvectorsvW 2 and vW 3 . They are mutually
perpendicular to one another and perpendicular to the lo
tudinal direction.

Although the susceptibility tensorx and the frequency
matrix v cannot be diagonalized simultaneously, appro
mately the dynamic eigendirections coincide with the sta
Therefore, the longitudinal directionvW 1 also defines the di-
rection of the longitudinal spin-relaxation mode, while t
two transverse directionsvW 2 andvW 3 span the plane of the two
spin-wave modes. Thereby, the complicated crossover f
the isotropic limiting case~the longitudinal mode is along th
magnetizationMW ! to the dipolar limiting case atTc ~there is

FIG. 7. Left: Scaling function of longitudinal linewidth and da
points from Refs. 1, 65 for Ni vs scaling variablex. Right: Scaling
function of the corresponding spin-wave frequency for vario
anglesq ~q518°i , i 51,. . .,5! vs Ax.
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no spontaneous magnetization and the longitudinal mod
along the wave vectorqW ! is described consistently.

In our calculations we limited ourselves to a generaliz
tion of the Lorentzian approximation. In Sec. V, we intr
duced a general derivation of a Lorentzian approximati
based on the assumption that the damping coefficients e
ing the relaxation function can be considered frequency
dependent. In the general case, the matrix character of t
quantities cannot be neglected. The~tensorial! relaxation
function is a sum of three Lorentzians, where the sum
weighted with some~tensorial! weights.

We have found that the dipolar interaction not only mo
fies the static susceptibilities markedly, but also the sp
wave frequency and the linewidths of the excitations are
tered. The spin-wave frequencyvqW is increased, which can
be described by a pseudogap for larger values of the w
vector ~cf. Fig. 1!. This enhancement depends on the an
between the magnetizationMW and the wave vectorqW . The
largest deviations from isotropic behavior occur whenqW is
perpendicular toMW , i.e., whenqW lies completely in the plane
of the transverse modes, perpendicular to the longitud
mode. For smallq, the dispersion is modified from quadrat
to linear in q ~cf. Fig. 1!. This directly corresponds to th
disappearance of one Goldstone mode in the general dip
case. An indication for this behavior can be found in expe
ments on EuO and Ni~cf. Fig. 6, left, and Fig. 7, right!. Our
expression for the spin-wave frequency agrees with sp
wave theory in the common range of validity.

The associated transverse damping is also increased
pared to the isotropic case with a similar angular dep
dence. Most significant is a minimum in the transverse sc
ing functions as compared to the monotonic decrease in
isotropic limit ~cf. top row vs middle row in Fig. 3!. This
also compares favorably with experiments conducted
EuO ~cf. Fig. 6, right!. The frequency shift described by a
imaginary part of the damping is small. This parallels t
situation aboveTc . The temperature variation~we found a
maximum when varying the scaling variablef, cf. Fig. 4,
left! is also similar to the paramagnetic case. However,
height of the maximum depends on the angleq betweenqW

and MW and gets smaller, the more the wave vectorqW gets
parallel to the magnetizationMW .

The longitudinal dampingGL8 is also increased compare
to the isotropic value. It is largest when the wave vector
parallel toMW , i.e., whenqW lies in the associated longitudina
direction ~cf. middle row of Fig. 3!. At q'qD , we find a
crossover from the criticalq5/2 asymptotics to a noncritica
q0. Furthermore, the variation withf again is monotonic~cf.
Fig. 4, right!. The dependence on the angleq is less pro-
nounced than for the transverse damping. SinceGL8*vqW , the
corresponding broad central peak can be detected experim
tally only by means of polarized neutrons as in the isotro
limit, i.e., polarized neutrons will be necessary to resolve
complete peak structure.
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APPENDIX A: STATIC SUSCEPTIBILITIES

The susceptibilitiesxqW
i
51/2Jq2l i , (i 51,2,3), which are

the eigenvalues of the susceptibility tensor, are given by

l 1~R,f,q!51, l 2/3~R,f,q!511R̃2F̂7~q,f!,

F̂6~q,f!5
1

2
$16A12sin2 2f̃ cos2 q%,

R̃~R,f!5Ar̂ 2~x,y!1y2, tanf̃~R,f!5y/ r̂ ~x,y!.
~A1!

Here, we used a mass function21

r̂ 2~x,y!5
29x2

1812x@11~11y2!21/2#

2
9x2

11 F11A114x2 lnSA114x221

2x D G1O~«2!,

~A2!

and already introduced scaling variables. The fact that
scaling functions depend on two scaling variables instea
only one is called generalized scaling law and is a dir
consequence of the dipolar interaction as outlined in the
troduction. The angleq precisely21 is defined together with
the unit vectorp̂ according to

qW 5:q sgnqW S cosw cosq
sin w cosq

sin q
D , ~A3!

p̂ ªS cosw
sin w

0
D ªH eW z3~qW 3eW z!

p
sgnqW for p ªAqx

21qy
2Þ0,

eW y for p50,
~A4!

sgnqW ª5
sgnqz , qzÞ0,

sgnqy , qz50, qyÞ0,

sgnqx , qz5qy50, qxÞ0,

1, q50.

~A5!

The eigenvectors are then defined through
s-
re
e
y

e
of
t
-

vW 1~q,f!5 p̂3êz ,

vW 2/3~q,f!5cosw2/3~q,f! p̂1sin w2/3~q,f!êz ,
~A6!

w3~q,f!5w2~q,f!190°5
1

2
arccosf ~q,f!P@0°,90°#,

f ~q,f!5
sin2 f̃ cos 2q2cos2 f̃

A12sin2 2f̃ cos2 q
, f ~0°,45°! ª21.

This is a right handed orthogonal coordinate system.
stead of the Cartesian coordinate system we therefore us
coordinate system introduced in the previous paper~see Fig.
1 of Ref. 21!. One direction (vW 1) is perpendicular to the
wave vectorqW and the magnetizationMW , while the other two
directions~vW 2 andvW 3 , perpendicular to each other! lie in the
qW -MW plane. Their orientation relative toqW and MW is rather
complicated, however, and we refer the reader to Ref. 21
details.

Instead, we introduce some more scaling variables. If
define

qW 9 ªqW 2qW 85q•kW 2 , ~A7!

the polar coordinatesk2 ,q9,w9 of kW 2 are given by

k2
2 511k222kh,

h5
qW qW 8

qq8
5cos~w82wqW !sin qqW sin q81cosqqW cosq8,

cosq95
cosqqW2k cosq8

k2
,

sin q9

5
Asin2 qqW1k2 sin2 q822k cos~w82wqW !sinqqW sinq8

k2
,

cos~w92wqW !5
sin qqW2k cos~w82wqW !sin q8

k2 sin q9
,

sin~w92wqW !5
2k sin~w82wqW !sin q8

k2 sin q9
. ~A8!

In these relations only the relative azimuth ang
Dw85w82wqW andDw95w92wqW enter.

APPENDIX B: FREQUENCY MATRIX

For the evaluation of the frequency matrix one starts fr
the commutation rules

@Sr
a ,Ss

b#5 i d rs«abgSr
g ~B1!

in direct space with lattice pointsr ands, which in Fourier
space read

@SqW
a ,SqW 8

b
#5 i«abgSqW 1qW 8

g . ~B2!
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Inserting

^SqW
a
&5:dqW ,0da,z•m ~B3!

for the thermal expectation value~with the magnetizationm!,
we get the final form of the frequency matrix

CqW
i j

5 ivqWS 0 sin g cosg

2sin g 0 0

2cosg 0 0
D . ~B4!

There, the angleg is defined through static quantities~A1!
and ~A6!:

tan g~R,f,q!5tan w3~f,q! Al 2~R,f,q!

l 3~R,f,q!
,

gP@0°,90°# ~B5!

and the spin-wave frequency is given by

vqW52JmAq2~q21qD
2 cos2 q!. ~B6!

The eigenvalues of the matrix~B4! are cqW
1
50 ~connected

with the longitudinal mode! andcqW
2/3

56vqW ~connected with
the two transverse spin-wave modes!. The corresponding
eigenvectors are given by

vW 15aW z

and

vW 2/35aW 6 ª

1

&
$aW'7 iaW i%. ~B7!

Here, we defined

aW z ª2sin u p̂1cosuêz ,

aW' ª p̂3êz ,

aW i ªcosu p̂1sin uêz ,

u ªw32g. ~B8!

The vectors$aW z ,aW' ,aW i% form a right handed orthogonal co
ordinate system. The angle 90°2g is the angle by which the
eigenvectors of the frequency matrix differ from the eige
vectors of the static susceptibility tensor. This is depicted
Fig. 8.

APPENDIX C: DOUBLE MATRICES

In this appendix we briefly outline the possibility to elim
nate the transformation matrixTqW which diagonalizesM , Eq.
~49!, from the equations. We start with the representation
-
n

fkm~qW 8,v8!5 iAxqW 8
k

xqW 8
m F 1

v811 ig8~qW 8!
G km

5 iAxqW 8
k

xqW 8
m (

a
TqW 8

ka 1

v81 iga8~qW 8!
@TqW 8

21
#am.

~C1!

The matrix elements@g8#km are known while the eigenvalue
@g8#ab5ga8dab which are needed for the frequency integr
tion are unknown. Performing this integration according
Eq. ~57! now yields

E
2`

` dv8

2p
fkm~qW 8,v8!f ln~qW 2qW 8,v2v8!

5 iAxqW 8
k

xqW 8
m

xqW 2qW 8
l

xqW 2qW 8
n (

ab
TqW 8

ka
TqW 2qW 8

lb

3
1

v1 iga8~qW 8!1 igb8~qW 2qW 8!
@TqW 8

21
#am@TqW 2qW 8

21
#bn.

~C2!

Obviously, the double sum can be interpreted as a dou
back transformation of a diagonal matrix which will yield
‘‘double matrix’’ with indicesk,m,l ,n. After this back trans-
formation the matrixTqW will have disappeared and we onl
have to deal with matrix elements ofg8(qW 8) andg8(qW 2qW 8).

To obtain this double matrix we first note that the functi
of a matrix M can be defined through the function of i
eigenvaluesl i . Let T be the transformation which diagona
izesM :

T21MT5diag@$l i%#⇔M5T diag@$l i%#T21. ~C3!

Then, by using the functionf of the eigenvalue, we define

f ~M ! ªT diag@$ f ~l i !%#T21, ~C4!

which is itself a matrix. Quite analogous a function of tw
variables or two eigenvalues transforms into a double mat

FIG. 8. The eigenvectors of the frequency matrixaW' , aW i , and

aW z , and the eigenvectors of the static susceptibilityvW i . The vectors

aW i , aW z , vW 2 , andvW 3 lie in theq-M plane, the vectorsaW' andvW 1 are

perpendicular to that plane. Theq-M plane is spanned byp̂ andMW ,

where p̂ is the projection ofqW onto the plane perpendicular toMW ,
normalized to unit length.
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We will transform Eq.~C2! in two steps. First we can
write

(
a

TqW 8
ka 1

v1 iga8~qW 8!1 igb8~qW 2qW 8!
@TqW 8

21
#am

5F 1

v11 ig8~qW 8!1 igb8~qW 2qW 8!•1G
km

5: f km@g8~qW 8!,v1 igb8~qW 2qW 8!#. ~C5!

The functionsf km need a matrixA and a scalarx as input
and are basically the matrix elements of the inverse ma
Therefore they can be written in the form~for 333 matrices!

f km~A,x!5
akmx21bkmx1ckm

x31dx21ex1 f
, ~C6!

where the coefficientsakm , bkm , ckm , d, e, and f can be
calculated from the matrix elements ofA. They can be given
in explicit form if one uses a representation of the inverse
a matrixA in terms of a polynomial inA. Let Ã be defined
through

ÃªA22SpA•A1
1

2
@~SpA!22Sp~A2!#•1. ~C7!

Then, the inverse ofA is given by

A215
Ã

det A
~C8!

for 333 matrices and if detAÞ0. Correspondingly, the co
efficients for the calculation off km

f km~A,x!5@ f ~A,x!#km5S 1

x11 iA D km

5F x2
•11 ix~SpA•12A!2Ã

x31 iSpA•x22SpÃ•x2 i det A
G km

~C9!

are given by

akm5dkm , bkm5 iSpAdkm2 iAkm, ckm52Ãkm,

d5 iSpA, e52SpÃ, f 52 i det A. ~C10!

The second step consists in writing

(
b

TqW 2qW 8
lb

f km@g8~qW 8!,v1 igb8~qW 2qW 8!#@TqW 2qW 8
21

#bn

5$ f km@g8~qW 8!,v11 ig8~qW 2qW 8!#% ln. ~C11!

In doing so we have transformed the matrixf (A,x) ~matrix
A, scalarx! to a double matrixf (A,B) ~two matricesA,B!
as in Eq.~C4!. To calculate
x.

f

E
2`

` dv8

2p
fkm~qW 8,v8!f ln~qW 2qW 8,v2v8!

5 iAxqW 8
k

xqW 8
m

xqW 2qW 8
l

xqW 2qW 8
n

$ f km@g8~qW 8!,v1

1 ig8~qW 2qW 8!#% ln, ~C12!

we therefore have to calculate the quotient of two matri
@which can be achieved applying Eq.~C8!#, which consist of
polynomials of the matrixg8(qW 2qW 8) @cf. Eq. ~C6! where the
scalarx now has to be replaced by the matrixB#. The coef-
ficients of these polynomials are given by matrix elements
the matrixg8(qW 8).

APPENDIX D: DIAGONALIZING MATRIX
IN LIMITING CASES

In the following, we describe four limiting cases whe
the diagonalizing matrixTqW ~50! can be determineda priori
at least approximately.

1. Small damping

The first limiting case we deal with is an expansion f
small linewidths, i.e.,G i j !vqW . Therefore, to leading orde
TqW is given by the matrixTqW

v which just diagonalizes the
frequency matrixCqW of Eq. ~49!. In this case,TqW is unitary,
independent of frequency and given by

TqW
v

5S 0
1

&

1

&

cosg 2
i

&
sin g

i

&
sin g

2sin g 2
i

&
cosg

i

&
cosg

D . ~D1!

The angleg has been defined in Eq.~B5!. To leading order,
the eigenvalues in Eq.~51! are the diagonal elements o
G8ab.

2. Isotropic case

The above formula Eq.~D1! can also be used in the iso
tropic limit without dipolar interaction. Then we hav
g[90°, which yields

TqW
0
5S 0

1

&

1

&

0 2
i

&

i

&

21 0 0

D , y50. ~D2!

This formula for the isotropic case, however, is valid in ge
eral, not only for small damping. Note that this correspon
to a decomposition into modesSz, S1, and S2, since the
static susceptibility is diagonal in Cartesian coordinates
this case. Again,TqW is unitary and does not depend on fr
quency. The eigenvalues in Eq.~51! are strictly given by the
diagonal elements ofG8ab. The frequency matrix, the damp
ing matrix as well as the relaxation function are diagon
simultaneously. Because of Eq.~53! the quantitiesw̃c

ab , uW 0,
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andwW 0 are identical withwc
ab , uW , andwW , respectively. This

simplifies the expressions forwc
ab Eq. ~65! considerably

uwL
TT* ~x,y,q,kW !u5u2kh21uA11x2,

uwT
LT~x,y,q,kW !u5u2kh21u

k

Ak21x2
,

uwT*
LT* ~x,y,q,kW !u5uwT

LT~x,y,q,kW !u,

wc
ab~x,y,q,kW !50 all other cases~a<b!, ~D3!

in accordance with Ref. 11.

3. Limiting case T5Tc

At Tc it is known that the relevant coordinate system
oriented along the direction of the wave vector.11 By using
the eigenvectors of the static susceptibility as a basis,
feature is taken into account automatically, and the resul
diagonalizing matrix, in accordance with Ref. 11, is given

T
qW
Tc5S 0 1 0

0 0 1

1 0 0
D , T>Tc . ~D4!

This is basically the identity matrix, permutated, because
( i 53) mode corresponds to the (a5L) mode and so on. As
in the isotropic case, the above transformation is unitary
frequency independent and it diagonalizes exactly all qu
tities in question.

4. Large damping

The opposite case to that outlined in Appendix D 1
characterized byG i j @vqW . It contains as a limiting case
T5Tc , since there the frequency matrix vanishes and
conditionG i j @vqW is always fulfilled. Therefore, we can sup
pose that also for small deviations fromTc or equivalently
for frequency small compared with the damping,G is still
nearly diagonal. Off diagonal elements ofM ~49! then are
introduced solely by the frequency matrix

@M 21# i j '@MTc# i j
ª@2 iG1CqW #

i j

5S 2 iG1 ivqW sin g ivqW cosg

2 ivqW sin g 2 iG2 0

2 ivqW cosg 0 2 iG3

D .

~D5!

At Tc the eigenvaluesG1 and G2 are degenerate (5GT)
while G35GL is in general different. Expanding the asso
v.
is
g

e

d
n-

e

ated eigenvalue equation up to terms ofO(vqW) is equivalent
to replacing the matrixMTc by

@MTc# i j 'S 2 iGT ivqW sin g 0

2 ivqW sin g 2 iGT 0

0 0 2 iGL

D . ~D6!

Correspondingly, the eigenvalues ofMTc are given by

v152 iGT1vqW sin g1O~vqW
2
!,

v252 iGT2vqW cosg1O~vqW
2
!,

~D7!

v352 iGL1O~vqW
2
!,

and the eigenvectors by

nW 1/25
1

&
S 1

7 i
0
D 1O~vqW !, nW 35S 0

0
1
D 1O~vqW !.

~D8!

Choosing a phase factor21 in the eigenvectornW 3 , we get
the following transformation matrix:

TqW
G
5S 0

1

&

1

&

0 2
i

&

i

&

21 0 0

D . ~D9!

Remarkably, this is identical toTqW
0 , Eq. ~D2!. It can also be

used atTc , since there the transverse modes 1 and 2
equivalentlyT and T* are degenerate and can be superi
posed linearly. Equation~D9! can therefore equivalently re
place Eq.~D4!.
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