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Static susceptibilities of dipolar ferromagnets belowTc
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We study the static susceptibility tensor for the isotropic Heisenberg model with short-range nearest-
neighbor exchange and long-range dipolar interactions. We derive analytic expressions for the eigenvalues and
eigenvectors of the susceptibility. To this end one has to take proper account of the Goldstone modes, which
lead to ‘‘critical’’ fluctuations at all temperatures belowTc . We discuss how the dipolar interaction modifies
these effects. Instead of one longitudinal and two transverse susceptibilities in the isotropic limit, we get one
longitudinal, one transverse—Goldstone-mode associated—and one intermediate susceptibility in the general
dipolar case. We present a ‘‘phase diagram’’ exhibiting six distinct regions in the temperature–wave-vector
plane. For each region we give the characteristic leading dependencies of all three susceptibilities.
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I. INTRODUCTION

Above the Curie temperatureTc much knowledge has
been accumulated on the critical behavior of the static s
ceptibility of ferromagnetic materials, see, e.g., Refs. 1
Much work has been done on the isotropic Heisenberg mo
incorporating only the exchange interaction often restric
further to nearest neighbors. In real magnets, however, t
inevitably exists also the dipolar interaction between
spins. Though it is small—corresponding to 10 to 100 m
while typical Curie temperatures range from 10 to 1000 K
and therefore can often be neglected, in critical phenome
plays an important role due to the following four propertie
~1! It is of long range and therefore determines t
asymptotic critical properties as the correlation length
verges.~2! It is anisotropic introducing the direction of th
wave vector as a preferred direction. This leads to additio
angular dependencies.~3! It breaks rotation invariance
thereby lowering the symmetry, and influencing the dyna
ics of the order parameter markedly.~4! It introduces a sec-
ond length scale in addition to the correlation length,
so-called dipolar wave vector. This leads to generaliz
crossover scaling laws. This second temperature-indepen
‘‘mass’’ also suppresses fluctuations. Correspondingly, th
are strong indications that the susceptibility can be descr
numerically quite well by a renormalized Ornstein-Zernic
form with effective exponents.5,4 This is partly due to the
fact that the dipolar coupling does not renormalize un
renormalization group transformations. Furthermore, corr
tions to the scaling function seem to be small.

Below Tc an additional difficulty arises from the spont
neously broken symmetry: the occurence of Goldsto
modes. These massless excitations make the system cr
in the whole low-temperature phase. In low-dimensional s
tems these transverse fluctuations even destroy long-r
order completely.6 In the isotropic Heisenberg model th
transverse fluctuations, characterized by a 1/q2 divergence of
the transverse susceptibility, also lead to a divergence of
570163-1829/98/57~14!/8430~8!/$15.00
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longitudinal susceptibility;1/q at all temperatures belowTc

as the wave vectorq approaches zero.7–15 Connected with
this singularity forq→0 is a singularity of the homogeneou
susceptibility (q50) as an external magnetic fieldH ap-
proaches zero. Theoretically one expects16,7–9,11,14,15a diver-
gence;H21/2, which has meanwhile been observed expe
mentally by Kötzler et al.17

The main topic of this paper is how the dipolar interacti
influences the effect of the Goldstone modes on the st
susceptibilities in the ordered phase belowTc . This is of
interest not only for the study of static critical phenome
itself but also enters prominently the mode-coupli
equations,18 describing the dynamic critical phenomena.

An important observation is that the Goldstone fluctu
tions are not eliminated due to the dipolar interaction b
rather their number is reduced by 1. This reduction from 2
the isotropic case to 1 can be obtained from hydrodyna
considerations,11 from spin wave theories,14,15or from renor-
malization group theory.19 Thus, there are still Goldston
anomalies to be expected. Indeed, it can be shown that
longitudinal susceptibility still diverges;1/q but the ampli-
tude is reduced by a factor of 2. This result has meanw
also been confirmed experimentally for the strongly dipo
material EuS.17 One of the two transverse susceptibilitie
now diverges less rapidly~;1/q instead of;1/q2!, while
the other one stays as in the isotropic case (;1/q2), since it
is associated with the one remaining Goldstone mode.

A further complication belowTc consists in the occurenc
of two significant directions: the direction of the spontaneo
magnetization and of the wave vectorqW . This reduces the
symmetry to a degree that the tensorial character of the s
susceptibility has to be taken fully into account. We stre
therefore the importance of a description in terms of eig
values and eigenvectors which has not been done in ea
treatments of this problem.

The outline of this article is as follows: In Sec. II we giv
a short account of a mean-field treatment of the static s
8430 © 1998 The American Physical Society
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57 8431STATIC SUSCEPTIBILITIES OF DIPOLAR . . .
ceptibility, which will give some insight into the fundamen
tal dependencies on the direction of the magnetization
the wave vectorqW . In Sec. III we sketch a renormalizatio
group treatment and derive the dominant contributions to
static susceptibility due to the fluctuations. The results
discussed in Sec. IV and the Appendix, and finally, in t
fifth section, we summarize the main findings.

II. MEAN-FIELD THEORY

We start with a free-energy functional for the spin fiel
fqW

a (a5x,y,z):

F~$f%!5E
qW
JF ~r 1q2!dab1g

qaqb

q2 G fqW
a
f

2qW
b

1E
qW 1

E
qW 2

E
qW 3
(
a,b

u fqW 1

a
fqW 2

a
fqW 3

b
f

2qW 12qW 22qW 3

b .

~1!

Here,r 51/j1
2 ;T2Tc measures the separation fromTc , J0

and J characterize the strength of the exchange interac
while g measures the relative strength of the dipolar inter
tion, and u is the usual coupling constant for the quar
term. Lengths are given in units ofa, the lattice constant
Thus, we can define the dipolar wave vectorqD

2 5g.
This functional can be derived from the isotropic neare

neighbor Heisenberg HamiltonianH including the dipolar
interaction1 via the Kac-Hubbard-Stratonovic
transformation,20 whereH is given by

H5E
qW
UqW

ab
SqW

a
S

2qW
b ,

~2!

UqW
ab

52J0•dab1JH q2a2dab1g
qaqb

q2 J .

Below Tc , F is expanded to second order in the fluctu
tions dfqW

a about the order parameter, yielding

Ftharm5 (
qW ,ab

ŨqW
abdfqW

adf
2qW
b ,

ŨqW
ab

5JF r Ldazdbz1q2dab1g
qaqb

q2 G ,
~3!

r L51/j2
2 ;uT2Tcu.

j2 ~or j for short! is the correlation length belowTc . In
mean-field theory, we havej1

2 /j2
2 52 whereas including

fluctuations one getsj1
2 /j2

2 54.08. This ratio can be calcu
lated from the corresponding homogeneous static susc
bilities according to

j1

j2
5S x̃0

1

x̃0
2D 1/~22h!

. ~4!

Using the expression
d

e
e
e

n
-

t-

-

ti-

x̃0
1

x̃0
2

5
g

b F ~122b!g

2 b~g21!G
~g21!

~5!

from Ref. 21,b50.375 from Ref. 22, andg51.375 andh
50.043 from Ref. 23, this yields

j1

j2
52.02. ~6!

To obtain the static susceptibility in mean-field appro
mation, we just have to invert the matrixŨqW :

xqW
ab

5
1

2
~ŨqW

21
!ab. ~7!

This follows from using the partition functionZharm

5e2b*d@df#Fharm
. Instead ofq, j, andqD we introduce scal-

ing variablesx, y and the corresponding polar coordinat
R, f according to

x5
Ar L

q
5

1

qj
, y5

Ag

q
5

qD

q
,

~8!

R5Ax21y25
Aj221qD

2

q
, tanf5

y

x
5A g

r L
5qDj.

The variablef is a measure for temperature whileR ac-
counts for the wave vector~at fixed temperature!. Then, we
can write down the eigenvaluesl i and eigenvectorsvW i of the
susceptibility tensor, i.e.,

xqWvW i5
1

2Jq2
• l i

vW i ~9!

in scaling form

l 1~R,f,q!51, l 2/3~R,f,q!511R2F̂2/1~q,f!,

vW 1~q,f!5 p̂3êz , vW 2/3~q,f!5cosw2/3~q,f!p̂

1sin w2/3~q,f!êz , ~10!

where we defined

F̂6~q,f!5
1

2
$16A12sin2 2f cos2 q%, ~11!

w3~q,f!5w2~q,f!190°5
1

2
arccosf ~q,f!P@0°,90°#,

f ~q,f!5
sin2 f cos 2q2cos2 f

A12sin2 2f cos2 q
~12!

5
2 sin2 f cos2 q21

A12sin2 2f cos2 q
, f ~0°,45°!:521.

Without loss of generality, we assume the magnetization
point along thez direction ~defined by the unit vectorêz!.
Basically, the unit vectorp̂ is the projection ofqW onto the
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8432 57H. SCHINZ AND F. SCHWABL
x-y plane. The angle between the wave vectorqW and thex-y

planeqP@0°,90°# and the vectorp̂ are defined in the fol-
lowing way:

qW 5:q•sgnqW •S cosw cosq
sin w cosq

sin q
D , ~13!

p̂:5S cosw
sin w

0
D :

5H eW z3~qW 3eW z!

p
•sgnqW for p:5Aqx

21qy
2Þ0,

eW y for p50,

~14!

sgnqW :55
sgnqz , qzÞ0,

sgnqy , qz50, qyÞ0,

sgnqx , qz5qy50, qxÞ0,

1, q50.

~15!

With this choice of signs, the eigenvalues as well as
eigenvectors share the symmetryl i(2qW )5 l i(qW ), vW i(2qW )
5vW i(qW ) with the Hamiltonian. The functionsF̂6 have the
following properties:

F̂11F̂251, F̂1>F̂2P@0,1/2#,
~16!

F̂6~q,90°2f!5F̂6~q,f!.

FIG. 1. EigenvectorsvW i of the static susceptibility tensor. Vec

tors êz , MW , qW , vW 2 , andvW 3 all lie in the same plane,vW 1 is perpen-
dicular to that plane.
e

As shown in Fig. 1 the eigenvectors define an orthon
mal right-handed coordinate system. The one remain
Goldstone mode~eigenvaluel 1 and eigenvectorvW 1! is per-
pendicular toqW and the magnetizationMW . ~It costs no energy
to rotateMW around the direction ofqW .! The other two modes
lie in the plane defined byqW andMW , wherevW 3 is rotated by
an anglew3 out of thex-y plane~see Fig. 1!. This direction
is to be identified with the ‘‘longitudinal’’ mode since it
eigenvaluel 3 is the largest of thel i and becomes the invers
longitudinal susceptibility in the two limiting cases of isotro
pic exchange interaction only (f50°) and at the Curie tem
peratureT5Tc (f590°). In the vicinity of these two limit-
ing cases,vW 3 is approximately parallel to the magnetizatio
MW or the wave vectorqW , respectively. Note, however, tha
the deviation from these directions as given byw3 in Eq. ~12!
can become as large as 45°. The border line between t
two limiting cases is given by the condition

tan f51. ~17!

For qW iMW (q590°), the dipolar interaction enters only in th
longitudinal mode and we regain two Goldstone modes p
pendicular to MW . The longitudinal susceptibility has
Ornstein-Zernicke form with an additional ‘‘mass’’qD

2 . As
is evident from Eq.~10! the susceptibilities in the genera
case are described by expressions of Ornstein-Zernicke f
with ‘‘anisotropic’’ ~angle dependent! masses. A detailed
discussion of the eigenvalues and hence the susceptibi
will be deferred to the next section, where fluctuations
included.

As a prerequisite for the next section, we restate the fi
results of this section, Eqs.~8!–~12!, by introducing the
quantitiesr̂ (0)

2 (x,y)5x2, R̃(0) , andf̃ (0) according to

R̃~0!~R,f!5Ar̂ ~0!
2 ~x,y!1y25R,

~18!

tan f̃~0!~R,f!5y/ r̂ ~0!~x,y!5tan f

in the following form for the eigenvalues:

l 1~R,f,q!51, l 2/3~R,f,q!511R̃~0!
2 F̂2/1~q,R,f!,

~19!

F̂6~q,R,f!5
1

2
$16A12sin2 2f̃~0! cos2 q%,

and the eigenvectors or eigendirections

vW 1~q,R,f!5 p̂3êz ,

vW 2/3~q,R,f!5cosw2/3~q,R,f! p̂1sin w2/3~q,R,f!êz ,

w3~q,R,f!5w2~q,R,f!1900

5
1

2
arccosf ~q,R,f!P@0°,90°#,
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f ~q,R,f!5
sin2 f̃~0!cos 2q2cos2 f̃~0!

A12sin2 2f̃~0! cos2 q
,

~20!

f ~0°,R,45°!:521.

III. MASS RENORMALIZATION

Now we include fluctuations in our considerations. Let
start with the isotropic ferromagnet. BelowTc , the trans-
verse Goldstone modes have the pronounced effect of a
ing also the longitudinal susceptibilityxL . Instead of being
finite at all temperatures away fromTc as suggested by th
mean field theory,xL actually diverges at all temperatures
1/q with the wave vector. In Ref. 10 Mazenko has given
analytic expression for the longitudinal susceptibility of t
isotropic Heisenberg model based on a reexponentiation
cedure:

x̂L
21511x2H ~n18!1~52n/2!«

91~n21!x«

2
9«

n18 F11A114x2 lnSA114x221

2x D G1O~«2!J
'11x2

29

1814x
. ~21!

For the number of components we haven53 and the sepa
ration from the upper critical dimensiondc54 is «5dc2d
51. Although the derivation of Eq.~21! in Ref. 10 is not
rigorous, a more sophisticated treatment yields essent
the same result.12,13 It is interesting to note that the
asymptotic 1/q divergence shows up rather late~at very
smallq!. Only atx'100 does the effective exponent start
get close to21 ~see Fig. 2!. Experimentally it is much more
likely to detect the minimum in the effective exponent atx
'3.3 with a value of21.4 for the effective exponent. In
deed, the 1/q singularity has not been observed up to no
while the associated 1/AH singularity has recently bee
detected.17

Now, our aim is to generalize the result~21! to the case
including the dipolar interaction. There, due to the one Go
stone mode remaining, fluctuations will still influence t
result. To this end, we take a look at the associated pe
bation theory which has been developed by Ta¨uber and
Schwabl in Refs. 13, 19. This will tell us how to modify th
mean-field results~18!–~20! in order to take account of th
fluctuations. For details of the perturbation theory and for
analytic expressions we also refer the reader to Refs. 13
We just present here the corresponding Feynman diagr
for the Cartesian components of the two-point-vertex fu
tion G, which in the static limit is proportional to the invers
susceptibility:
s

er-

o-

lly

,

-

r-

e
9.
s

-

~22!

The indicesa,b refer to then21 transverse component
(pa), while s is thenth, longitudinal component. The quan
tity m0 is proportional to the order parameter, andg0 again
measures the strength of the dipolar interaction. Finally,
introduced the projectorsPL

ab5 qaqb/q2, and PT51n

2PL , where1n is the n3n unity matrix. Leaving out the
diagrams~or setting«50!, we just recover the mean fiel
results, which can equivalently be stated as in Eqs.~18!–
~20!.

Since we are interested in critical phenomena, we st
the coexistence limit (q→0). In this limit, it can be shown19

that to leading one loop order only the expression forGss is
modified by the fluctuations while all the other diagram
cancel or are of higher order:

~23!

where the propagator is given by

p
5

1

q2 P̄T
ab1

1

q21g0 cos2 q
P̄L

ab . ~24!

Here, we defined the (n21)3(n21) matrices P̄L

5PL @q2/(q22qn
2)# and P̄T51n212 P̄L . This result

amounts simply to a modification of the wave-vector dep
dence through the renormalized mass term. Thus, in orde
get an expression for the susceptibility including fluctu
tions, we only have to insert a renormalized mass into
formulas~18!–~20! for the susceptibility. In the case of th
isotropic limit this expression was reexponentiated10 to ob-
tain Eq.~21!. The mean field resultm0

2 is replaced by

m0
22

where now, the propagator has the form (g050)

p
5

1

q2 1n21 . ~25!

In scaling variables, this yields a replacement ofr̂ (0)
2 (x,0)

5x2 by
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r̂ 2~x,0!5x2H ~n18!1~52n/2!«

91x«@n21#

2
9«

n18 F11A114x2 lnSA114x221

2x D G
1O~«2!J

5
29x2

1814x
2

9x2

11 F11A114x2 lnSA114x221

2x D G
1O~«2! ~26!

in Eqs. ~18!–~20!. This leads to the expression~21! for the
longitudinal susceptibilityxL .10

To obtain the result in the general case, i.e. for arbitr
wave number, we would have to evaluate the diagram in
~23! for g0Þ0. For the extreme dipolar limit, we get th
same result as for the istropic limit except for a factor
(n21)/(n22)52.19 This factor stems from the reduction o
the number of the Goldstone modes by one in the presenc
the dipolar interaction.19 In scaling variables this amounts t

FIG. 2. Effective exponent of the longitudinal static susceptib

ity d log x̂L /d log x vs scaling variablex51/qj. Solid: Eq. ~21!;
dashed: Result of the mean-field theory~Ornstein-Zernike!.
y
q.

f

of

r̂ 2~x,`!5x2H ~n18!1~52n/2!«

91x«@n22#

2
9«

n18 F11A114x2 lnSA114x221

2x D G
1O~«2!J

5
29x2

1812x
2

9x2

11 F11A114x2 lnSA114x221

2x D G
1O~«2!. ~27!

Settingg0→`, the propagator in Eq.~23! may be written as

p 5
1

q2 P̄T
ab . ~28!

For the general case, i.e. for arbitrary wave number, w
note that in dimensional regularization the evaluation of t
diagram in Eq.~23! yields results of (n21)q2« and (n
22)q2« for the isotropic and dipolar limit, respectively.19

Due to its angular dependency, the propagator~24! is ex-
tremely complicated in the general case and it would be ve
cumbersome to evaluate the diagram exactly. Instead,
propose to interpolate its value according to Table I.

In scaling variables, this amounts to using

r̂ 2~x,y!5x2H ~n18!1~52n/2!«

91x«@~n22!1~11y2!2«/2#

2
9«

n18
F11A114x2 lnS A114x221

2x
D G

1O~«2!J
5

29x2

1812x@11~11y2!21/2#
2

9x2

11

3F11A114x2 lnS A114x221

2x
D G1O~«2!

~29!

-

TABLE I. Values of the diagram for the mass renormalization in the isotropic (g050) and dipolar limit
(g05`) and in the general case.
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57 8435STATIC SUSCEPTIBILITIES OF DIPOLAR . . .
for the Goldstone-mode renormalized mass, instead o
unrenormalized counterpartr̂ (0)

2 (x,y)5x2. Analogously to
Ref. 10, a reexponentiation procedure is employed to ob
these results.

This result is only an approximation. For example, w
neglected possible angular dependencies in the average
then22 Goldstone modes and the one ‘‘dipolar mode.’’ B
since this simplification only affects the precise form of t
crossover while the limiting cases are correctly implemen
~we have to say more about that!, we believe that this ex-
pression will reproduce correctly the essential physical pr
erties in a qualitative way. Anyhow, even if it were possib
to calculate the diagram exactly, the remaining uncerta
introduced by the reexponentiation procedure is hard to o
come. To improve this procedure would be ve
cumbersome—if feasible at all. Thus from Eqs.~18!–~20!
we end up with the final formulas for the scaling functionsl i

of the static susceptibilitiesxqW
i
51/2Jq2l i :

l 1~R,f,q!51, l 2/3~R,f,q!511R̃2F̂2/1~q,R,f!,
~30!

F̂6~q,R,f!5
1

2
$16A12sin2 2f̃ cos2 q%.

Here, we introduced the new scaling functionsR̃ and f̃:

R̃~R,f!5Ar̂ 2~x,y!1y2, tan f̃~R,f!5y/ r̂ ~x,y!,
~31!

instead ofR̃(0)5R andf̃ (0)5f in Eq. ~18!. The correspond-
ing directions or eigenvectors are given by

vW 1~q,R,f!5 p̂3êz ,

v2/3(q,R,f)5cosw2/3(q,R,f)p1sin w2/3(q,R,f)ez,

w3~q,R,f!5w2~q,R,f!190°5
1

2
arccosf ~q,R,f!

P@0°,90°#,

FIG. 3. Six characteristic regions for the static susceptibi
belowTc in thex-y plane.~See text for the abbreviations.! Shaded:
Dipolar dominated regions belowTc . Dashed: Borders of the cor
responding regions aboveTc .
ts

in

ver
t

d

-

ty
r-

f ~q,R,f!5
sin2 f̃ cos 2q2cos2 f̃

A12sin2 2f̃ cos2 q
,

~32!

f ~0°,R,f!:521 ~R,f such that f̃545°!.

IV. DISCUSSION

In order to better understand the results~30!–~32! we dis-
cuss several limiting cases. To this end we neglect the
merically unimportant second term involving the logarith
in Eq. ~29!. The border line for the eigenvectors betwe
approximately parallel to the magnetizationMW and approxi-
mately parallel toqW is given by@cf. Eq. ~17!#

tan f̃51. ~33!

In terms ofx andy this is a line determined by

x5 f 1~y!:5
y2@11~11y2!21/2#

29

1Ay4@11~11y2!21/2#2

292 1
18y2

29
. ~34!

Below, we will define regions in thex-y plane, correspond-
ing to these limiting cases and we will denote them withI
~for isotropic!, M ~for the intermediate or crossover regio!
if tan f̃,1, or D ~for dipolar! if tan f̃.1.

The eigenvalues or susceptibilities behave qualitativ
different, depending on the demoninator of the first term
Eq. ~29!. Two cases can be identified, separated by the l

x5 f 2~y!:5
9

@11~11y2!21/2#
. ~35!

For x, f 2(y) we haver̂ 2;x2, which amounts to a ‘‘critical’’
or Ornstein-Zernike-like behavior for the susceptibilit
Thus, we useC ~for critical! or M ~again for intermediate or
crossover region! in this case. The other case is characteriz

FIG. 4. Six characteristic regions for the static susceptibi
below Tc in the k1-k2 plane (k15 1Dj, k25 q/qD). Shaded: Di-
polar dominated regions. Inset: The remaining three regions in
case of very weak dipolar interaction.
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TABLE II. Leading order of the static susceptibilities in the six different regions defined in the main text.

Region

x1

('qW ,MW )
x2

~' EV! for qW'MW for qW iMW
x3

~i EV! EV

IC 1

2Jq2

1

2Jq2

1

2Jq2

MW

IM 1

2Jq2

1

2J~q21qD
2 cos2 q!

1

2J~q21qD
2 !

1

2Jq2

1

2J@q21 ~29/18!j22#

MW

IHD 1

2Jq2

1

2Jq2

1

~29/2!Jqj21

MW

MHD 1

2Jq2

1

2J~q21qD
2 cos2 q!

1

2JqD
2

1

2Jq2

1

29Jqj21

MW

DHD 1

2Jq2

1

2J@q21~29/2!qj21 cos2 q#

1

29Jqj21

1

2Jq2

1

2JqD
2

qW

DC 1

2Jq2

1

2J@q21~29/18!j22 cos2 q#

1

2J@q21~29/18!j22#

1

2Jq2

1

2J~q21qD
2 !

qW
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by r̂ 2;x which leads to the 1/q singularity. Therefore, we
have chosen the abbreviation HD~for hydrodynamic! in this
case.

Finally, we get a third line defined by

y51, ~36!

separating regions where the susceptibility is more dipola
more isotropic. Altogether, we have therefore six regions
the x-y plane, where the static suceptibilities show quali
tively different behavior. These regions are shown in Fig

Also included are the corresponding four regions abo
Tc as defined in Ref. 24. Note that we use different scal
variablesx1 andx2 above and belowTc , respectively. This
corresponds to the distinction betweenj1 andj2 .

In the Appendix we gathered the analytic expressions
the leading dependencies of the three susceptibilities in
six cases. Obviously, the results above~see Ref. 4! and be-
low Tc join continuously atTc (x50). In the isotropic case
(y50) our result reproduces the expression given
Mazenko.10 This expression has basically been confirmed
sophisticated renormalization group calculations in Refs.
13. Furthermore, our result is also in accord with renorm
ization group calculations in the so-called coexistence li
including dipolar interactions19 ~where the wave vectorq
vanishes and we reach the extreme dipolar region!. In par-
ticular this holds for the reduction factor of 2~for n53 com-
ponent magnets! by which the longitudinal susceptibility is
reduced in the dipolar region. This result corresponds to
disappearance of one Goldstone mode, leaving only on
the dipolar case. In this case as in all other limiting cases
longitudinal susceptibility is to leading order isotropic~does
not depend on the angle between magnetizationMW and wave
vectorqW !. This is also true exactly of course for the rema
ing Goldstone mode, while the second ‘‘transverse’’ mo
does show an angular dependence. Due to the dipolar in
action fluctuations are reduced~there is an additional ‘‘mass
term’’ in the theory!. Accordingly, the susceptibilities ar
reduced compared to the isotropic case. Nevertheless
longitudinal susceptibility still diverges~with a smaller am-
r
n
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ll

y
y
2,
l-
it

e
in
e

-
e
er-

he

plitude, however!. In the ultimate limit of vanishing wave
vector, it is finite due to demagnetization effects. The sec
transverse susceptibility~which in the isotropic case corre
sponds to a Goldstone mode! also still diverges but has a
smaller exponent. Instead of;q22 the leading asymptotics
is ;q21.

To facilitate the comparison between experiment a
theory, we also include the same diagram in the physic
more transparent variablesk15 x/y5 1/qDj and k25 1/y
5 q/qD , i.e., essentially in the temperature–wave-vec
plane~1/j q plane!. We therefore measure these quantities
units of the dipolar wave vectorqD ~see Fig. 4!.

In the inset of Fig. 4 we show the corresponding diagr
for very smallqD , i.e., for negligible dipolar interaction.

In these units we get the expected result that dipolar
fects become important in the vicinity ofTc and also for
vanishingq. The regionDC is reached whenq and 1/j are
smaller thanqD which was to be expected. To enter regio
DHD, however,q quite unexpectedly has to be small com
pared to one tenth ofqD or even less.

V. SUMMARY

To summarize, we have derived analytic expressions
the static susceptibilities of the isotropic Heisenberg fer
magnet belowTc including the dipolar interaction and in
cluding fluctuations induced by the Goldstone modes@Eqs.
~30!–~32!#. Special emphasis was put on the necessity
discuss eigenvalues and eigenvectors of the susceptib
tensor. It has been shown again that the number of Golds
modes is reduced from 2 to 1 due to the dipolar interacti
which leads among other effects to a reduction of the am
tude of the divergent longitudinal susceptibility by a factor
2. While one of the transverse susceptibilities—belonging
the one Goldstone mode remaining—stays unaltered,
other one still diverges, but less rapidly being;1/q instead
of ;1/q2 in the isotropic limit. Although the magnitudes o
the susceptibilities are generally reduced~because fluctua-
tions are diminished! due to the additional mass introduce
by the dipolar interaction, the longitudinal susceptibility st
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diverges;1/q as the wave vectorq approaches 0, until it
enters the region where demagnetization effects become
portant which keep the susceptibility finite. This 1/q diver-
gence is very hard to see experimentally because it show
only at very tiny values ofqj ~j is the correlation length!. It
seems more promising to search for the minimum in
effective exponent~cf. Fig. 2!. Finally, in the Appendix, we
presented expressions for the susceptibilities to leading o
in six characteristic regions in the temperature–wave-ve
plane. The dipolar dominated region nearTc ~the inverse
correlation length there has to be smaller than the dip
wave vectorqD! is reached if the wave vector is small com
pared toqD . Unexpectedly, the asymptotic dipolar region f
from Tc can be reached only for wave vectors smaller tha
tenth ofqD or even less~cf. Fig. 4!.

ACKNOWLEDGMENTS

It is a pleasure to thank U. C. Ta¨uber and E. Frey for
valuable and helpful discussions. This work was suppor
by the German Federal Ministry for Research and Techn
ogy ~BMFT! under Contract Nos. 03-SC3TUM and 0
SC4TUM2.
m-

up

e

er
or

r

a

d
l-

APPENDIX

In this appendix we summarize the analytic results for
leading dependencies of the static susceptibilities in the
different regions defined in the main text. The longitudin
susceptibilityx3 is to leading order independent of the ang
q. The corresponding eigendirection is approximately pa

lel to the magnetizationMW or, in the dipolar dominated re

gions, to the wave vectorqW . @Note, however, that the devia
tion from these directions, given by the anglew3 in Eq. ~32!
can be quite substantial.# The two cases are indicated by th

symbolMW or qW , respectively, in the column EV of Table II
The one remaining Goldstone-mode dominated susceptib
x1 is always independent ofq. Its corresponding eigenvecto
is perpendicular to bothMW and qW . The second transvers
mode does depend onq even to leading order. In this cas
we have therefore also given the results for the two inter
ing special cases,q50°, i.e.,qW'MW , andq590°, i.e.,qW iMW .
The corresponding eigenvector is perpendicular to the o
two eigendirections, i.e., approximately perpendicular to
ther MW or qW .
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