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Static susceptibilities of dipolar ferromagnets belowT .
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We study the static susceptibility tensor for the isotropic Heisenberg model with short-range nearest-
neighbor exchange and long-range dipolar interactions. We derive analytic expressions for the eigenvalues and
eigenvectors of the susceptibility. To this end one has to take proper account of the Goldstone modes, which
lead to “critical” fluctuations at all temperatures beldw . We discuss how the dipolar interaction modifies
these effects. Instead of one longitudinal and two transverse susceptibilities in the isotropic limit, we get one
longitudinal, one transverse—Goldstone-mode associated—and one intermediate susceptibility in the general
dipolar case. We present a “phase diagram” exhibiting six distinct regions in the temperature—wave-vector
plane. For each region we give the characteristic leading dependencies of all three susceptibilities.
[S0163-182698)02613-1

[. INTRODUCTION longitudinal susceptibility~ 1/q at all temperatures beloiy,
as the wave vectog approaches zeroX® Connected with
Above the Curie temperatur€. much knowledge has this singularity forq— 0 is a singularity of the homogeneous
been accumulated on the critical behavior of the static sussusceptibility §=0) as an external magnetic field ap-
ceptibility of ferromagnetic materials, see, e.g., Refs. 1-4proaches zero. Theoretically one exp&tfs®1t141% diver-
Much work has been done on the isotropic Heisenberg modejence~H ~*2 which has meanwhile been observed experi-
incorporating only the exchange interaction often restrictednentally by Kazler et all’
further to nearest neighbors. In real magnets, however, there The main topic of this paper is how the dipolar interaction
inevitably exists also the dipolar interaction between thenfluences the effect of the Goldstone modes on the static
spins. Though it is small—corresponding to 10 to 100 mKgysceptibilities in the ordered phase beld. This is of
while typical Curie temperatures range fror_n 10 to 1000 K—interest not only for the study of static critical phenomena
and therefore can often be neglected, in critical phenomenaﬁsehc but also enters prominently the mode-coupling
plays an important role due to the following four prOpertieS'equationé,s describing the dynamic critical phenomena.

(D 1t IS of .I(_)ng range .and therefore de.termmes th? An important observation is that the Goldstone fluctua-
asymptotic critical properties as the correlation length di-

. . o . N tions are not eliminated due to the dipolar interaction but
verges.(2) It is anisotropic introducing the direction of the ather their number is reduced by 1. This reduction from 2 in
wave vector as a preferred direction. This leads to additionarlh ) . v .

e isotropic case to 1 can be obtained from hydrodynamic

angular dependencieq3) It breaks rotation invariance, ¢ X St . 1415
thereby lowering the symmetry, and influencing the dynam-Con_S'd‘?rat'oné’ from spin wave theorie¥"®or from renor-
ics of the order parameter markedi) It introduces a sec- mallzat|.on group theory® Thus, ther_e are still Goldstone
ond length scale in addition to the correlation length, theRnomalies to be expected. Indeed, it can be shown that the
so-called dipolar wave vector. This leads to generalizedongitudinal susceptibility still diverges-1/q but the ampli-
crossover scaling laws. This second temperature-independeide is reduced by a factor of 2. This result has meanwhile
“mass” also suppresses fluctuations. Correspondingly, ther8!S0 been confirmed experimentally for the strongly dipolar
are strong indications that the susceptibility can be describefiaterial EUS.” One of the two transverse susceptibilities
numerically quite well by a renormalized Ornstein-ZernickeOW diverges less rapidly~1/q instead of~1/g?), while
form with effective exponents? This is partly due to the the other one stays as in the isotropic caselfy?), since it
fact that the dipolar coupling does not renormalize undefS associated with the one remaining Goldstone mode.
renormalization group transformations. Furthermore, correc- A further complication belowl ; consists in the occurence
tions to the scaling function seem to be small. of two significant directions: the direction of the spontaneous
Below T, an additional difficulty arises from the sponta- magnetization and of the wave vectgr This reduces the
neously broken symmetry: the occurence of Goldstonesymmetry to a degree that the tensorial character of the static
modes. These massless excitations make the system criticalisceptibility has to be taken fully into account. We stress
in the whole low-temperature phase. In low-dimensional systherefore the importance of a description in terms of eigen-
tems these transverse fluctuations even destroy long-rang@lues and eigenvectors which has not been done in earlier
order completely. In the isotropic Heisenberg model the treatments of this problem.
transverse fluctuations, characterized bygf Bhivergence of The outline of this article is as follows: In Sec. Il we give
the transverse susceptibility, also lead to a divergence of tha short account of a mean-field treatment of the static sus-
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ceptibility, which will give some insight into the fundamen- ;('+ y[(1-28)y (y—1)
tal dependencies on the direction of the magnetization and ,,—(iz = {ﬁ} (5
the wave vectoﬁ. In Sec. lll we sketch a renormalization Xo Al2py—1)

group treatment and derive the dominant contributions to thg.om Ref. 21,4=0.375 from Ref. 22, and/=1.375 andy
static susceptibility due to the fluctuations. The results are- g 943 from Ref. 23. this yields

discussed in Sec. IV and the Appendix, and finally, in the
fifth section, we summarize the main findings. N
—=2.02. (6)
&
To obtain the static susceptibility in mean-field approxi-
mation, we just have to invert the matr&a:

Il. MEAN-FIELD THEORY

We start with a free-energy functional for the spin fields

¢g (a=x,y,2):
1
aB_~ 11> aB
qeg?] Xg =5 Uz (7)
f({¢})=ﬁa (r+a?8+g=cz } ¢’ ¢ 2
a This follows from using the partition functionZ,
+f J S uet ot gl - - =g AIdo17™ |nstead ofg, & andqp we introduce scal-
aJa,JazaB 17927 3" G417 9273 ing variablesx, y and the corresponding polar coordinates
R, ¢ according to
()
Here,r =1/¢5 ~T— T, measures the separation frafg, Jo = ﬂz 1 y= @: 9%
and J characterize the strength of the exchange interaction q gé¢’ q q’ 8
while g measures the relative strength of the dipolar interac- 8)
tion, andu is the usual coupling constant for the quartic Sa— §’2+qu y g
term. Lengths are given in units @f, the lattice constant. R=yx“+y :T' tan ¢=;= E:qu-

Thus, we can define the dipolar wave veaidr=g.
This functional can be derived from the isotropic nearest-The variable¢ is a measure for temperature whire ac-
neighbor Heisenberg Hamiltoniad including the dipolar counts for the wave vectdat fixed temperatuje Then, we

interactiort via the Kac-Hubbard-Stratonovich can write down the eigenvaluésand eigenvectors; of the
transformatiorf’ whereH is given by susceptibility tensor, i.e.,
H:f Uhsis? x55i=;2 v; ©)
-7gq Sa¥-q’ -1
q 2) 2Jq I|
anf in scaling form
af _ af 2,2 caf a9
Ud =—Jo- 0P+ Jyq“a6+g——=—1. .
q 11(R,¢,9)=1, IR, ¢, 9)=1+RF_,, (9, ¢),
_ Be|OV\LIlTC, F is expanded to second.ord_er in the fluctua- 019, B)=PXE,, UaaO,B)=C0OS @yl 9, )P
tions 5¢d about the order parameter, yielding
+sin @o3( 0, P)e,, (10
Fham= 3 UPoglos’ ., where we defined
q,a8
. 1
N q°g? F.(9,¢)= E{1i J1—sir? 2¢ cog 9}, (11
U2 =0 r 676°2+ g2°P 4 g 7|
(3) 1
F=18 ~|T-T4. ¢3( 3, ¢) = @29, ¢)+90°= 5 arccosf (¥, ¢) e[0°,90°],
&_ (or ¢ for shory is the correlation length belowW,. In . B
mean-field theory, we hav@i/gz,zz whereas including f(a,qs)zsmz ¢ ?Oszﬁ cos’ ¢
fluctuations one get§? /&2 =4.08. This ratio can be calcu- V1—sir? 2¢ cos & (12
lated from the corresponding homogeneous static suscepti-
bilities according to 2sit ¢ cos 9—1
= - , f(0°,45%:=-1.
; —~\ U2- ) J1—sir? 2¢ cos o
Xo
§—+=(~—_) . (4)  Wwithout loss of generality, we assume the magnetization to
- Xo

point along thez direction (defined by the unit vectoéz).
Using the expression Basically, the unit vectop is the projection ofﬁ onto the
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FIG. 1. Eigenvector§i of the static susceptibility tensor. Vec-
torse,, M, q, v,, anduy all lie in the same plane;; is perpen-
dicular to that plane.

x-y plane. The angle between the wave veﬁ(amd thex-y

plane ¥ €[0°,90°] and the vectop are defined in the fol-
lowing way:

CoS ¢ CosS ¥
a::q.sgna. sing cosdY |, (13
sin ¥
COoSs ¢
E):: sing |:
0
er(qxez)'Sgna for p:= q)2(+q§¢0'
= p
éy for p=0,
(14
sgnq;, 9,#0,
- sgnqy, q,=0, qu&O,
997 sgna, 9;=9,=0, 0x#0, (19
1, g=0.

With this choice of signs, the eigenvalues as well as the

eigenvectors share the symmetrf—q)=1;(q), vi(—q)
=5i(ﬁ) with the Hamiltonian. The function§. have the
following properties:

F,.=F_e[0,1/2], 16

F.(9,90°— ¢)=F.(9,¢).
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As shown in Fig. 1 the eigenvectors define an orthonor-
mal right-handed coordinate system. The one remaining

Goldstone moddeigenvaluel; and eigenvector?l) is per-
pendicular toﬁ and the magnetizatioﬁl. (It costs no energy
to rotateM around the direction otﬁ.) The other two modes

lie in the plane defined by andM, wherev is rotated by
an anglep; out of thex-y plane(see Fig. 1 This direction
is to be identified with the “longitudinal” mode since its
eigenvalud ; is the largest of thé, and becomes the inverse
longitudinal susceptibility in the two limiting cases of isotro-
pic exchange interaction only=0°) and at the Curie tem-
peratureT=T. (¢=90°). In the vicinity of these two limit-

ing casesﬁg, is approximately parallel to the magnetization

M or the wave vectoﬁ, respectively. Note, however, that
the deviation from these directions as givendayin Eq.(12)

can become as large as 45°. The border line between these
two limiting cases is given by the condition

tan p=1. 17
Fordlll\7| (99=90°), the dipolar interaction enters only in the
longitudinal mode and we regain two Goldstone modes per-
pendicular to M. The longitudinal susceptibility has
Ornstein-Zernicke form with an additional “massj3 . As
is evident from Eq.(10) the susceptibilities in the general
case are described by expressions of Ornstein-Zernicke form
with “anisotropic” (angle dependentmasses. A detailed
discussion of the eigenvalues and hence the susceptibilities
will be deferred to the next section, where fluctuations are
included.

As a prerequisite for the next section, we restate the final
results of this section, Eqg8)—(12), by introducing the

quantitiesr fo,(x,y) =x2, Rygy, and oy according to
Rio)(R,#)= o) (x,y) +y?=R,

tan E(O)(Rr ¢)= y/F(o)(X,y) =tan ¢

(18

in the following form for the eigenvalues:

11(R¢,9)=1, I4R,¢,9=1+RF_.(9,R¢),
(19

F.(9R¢)= %{u V1-sir? 2o, cog 9},
and the eigenvectors or eigendirections
v1(9,R $)=pXe,,
02 9,R, ) =C0S 5 §,R, ) P+5IN 05 3, R, e,
¢3(9,R, #)=¢a(9,R, ¢) +90°

1
=3 arccosf(9,R, ¢) €[0°,907],
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b

F”"=q2+mg— ;D—'— —

[y

Sin? b(0,cos 23 —cog g

f(9,R,9)=
V1-sir? 2¢(0) cOg @

(20

I
HON O
c s o o
T
no o
- G_O-(S - G_O_U - G;EG
o c
no
G()ﬂ:
n

f(0°,R,45°%:=—1.

rom=g, PE"— ke, — A —

IIl. MASS RENORMALIZATION n s

™= g2 Pet(gotg?) PEA— #de — L
Now we include fluctuations in our considerations. Let us

start with the isotropic ferromagnet. Below., the trans- n Y

verse Goldstone modes have the pronounced effect of alter- - :F*Cc)‘n - n‘*@*‘n - iKX=
ing also the longitudinal susceptibility, . Instead of being

finite at all temperatures away froif, as suggested by the (22)

mean field theoryy, actually diverges at all temperatures as o
1/q with the wave vector. In Ref. 10 Mazenko has given an!he indicesa, refer to then—1 fransverse components
analytic expression for the longitudinal susceptibility of the (7“), while o"is thenth, longitudinal component. The quan-

isotropic Heisenberg model based on a reexponentiation prdly Mo is proportional to the order parameter, agylagain
measures the strength of the dipolar interaction. Finally, we

cedure: X A g 5
introduced the projectorsP*= q*gf/g?, and P;=1,
— P, wherel, is the nXn unity matrix. Leaving out the
diagrams(or settinge =0), we just recover the mean field
Sl gLy (n+8)+(5—n/2)e results, which can equivalently be stated as in E48)—
X 9+(n—1)x° (20). . L
Since we are interested in critical phenomena, we study
9¢ 5 Vi+4x2—1 ) the coexistence limitd—0). In this limit, it can be showi
“o7g 1T Vi+aAxTIn 2% +0(e) that to leading one loop order only the expressionIT6f is
modified by the fluctuations while all the other diagrams
Liy? 29 21 cancel or are of higher order:
T 1grax @1 ]
rao’=q2+mg_ E,_Cﬂ)_,_ﬁ , (23)

For the number of components we have 3 and the sepa-

ration from the upper critical dimensiah,=4 ise=d.—d

=1. Although the derivation of Eq21) in Ref. 10 is not where the propagator is given by
rigorous, a more sophisticated treatment yields essentially
the same resul?®® It is interesting to note that the 1 _ 1 _
asymptotic 14 divergence shows up rather latat very P Py? +W_ﬁ PP (29
smallq). Only atx~100 does the effective exponent start to

get close to-1 (see Fig. 2 Experimentally it is much more Here, we defined the n=1)x(n—1) matrices EL
likely to detect the minimum in the effective exponentxat _ P [q2/(q2—qﬁ)] and ET: 1n71_5L' This result

~3.3 with a value of—1.4 for the effective exponent. In- amounts simply to a modification of the wave-vector depen-

deed, the If singularity has not been observed up to now,dence through the renormalized mass term. Thus, in order to

while the associated {H singularity has recently been get an expression for the susceptibility including fluctua-

detected’ tions, we only have to insert a renormalized mass into the
Now, our aim is to generalize the res(fl) to the case formulas(18)—(20) for the susceptibility. In the case of the

including the dipolar interaction. There, due to the one Gold-sotropic limit this expression was reexponentiafem ob-

stone mode remaining, fluctuations will still influence thetain Eq.(21). The mean field resul’ng is replaced by

result. To this end, we take a look at the associated pertur- .

bation theory which has been developed byuler and mi— Ot

Schwabl in Refs. 13, 19. This will tell us how to modify the "

mean-field result$18)—(20) in order to take account of the where now, the propagator has the forgy€0)

fluctuations. For details of the perturbation theory and for the

analytic expressions we also refer the reader to Refs. 13, 19. T i 1 25)

We just present here the corresponding Feynman diagrams Tgp Tl

for the Cartesian components of the two-point-vertex func- R

tion T, which in the static limit is proportional to the inverse In scaling variables, this yields a replacementréj)(x,O)

susceptibility: =x? by

T



8434 H. SCHINZ AND F. SCHWABL 57

) (n+8)+(5—n/2)e
9+x°[n—2]

1+1+4x%In

d log %, /d log x P2

=

+O(82)]

22 9x? \/1+4x -1
~T8vox 11 1+V1+4x2 In ”
+0(&?). (27)

Settinggy—, the propagator in Eq23) may be written as

2.0 _ N _]

v v v vl e 1

0.01 0.1 1 10 100 X 1000 = @ P’ (28)

FIG. 2. Effective exponent of the longitudinal static susceptibil- For the general case, i.e. for arbitrary wave number, we
ity d log x. /dlog x vs scaling variablex=1/q¢. Solid: Eq.(21);  note that in dimensional regularization the evaluation of the

dashed: Result of the mean-field theg@rnstein-Zernikg diagram in Eq.(23) yields results of (—1)q ° and (O
—2)q ¢ for the isotropic and dipolar limit, respectively.
R (n+8)+(5—n/2)e Due to its angular dependency, the propagdfs is ex-
r2(x,0)=x? = tremely complicated in the general case and it would be very
9+x°[n—1] |
cumbersome to evaluate the diagram exactly. Instead, we
/1+4X2_ 1 propose to interpolate its value according to Table I.
1+ V1+4x?In ” In scaling variables, this amounts to using
0(82)} FZ(X y)= 5 (n+8)+(5_n/2)8
9+x°[(N—2)+(1+y?) ~*?]
292 9x? V1+4x2 —1”
= o ax = 1T 1+1+4x2 In % 1+4x*—1
18+ 4x - 1+V1+4x%In 2—”
X
+0(&?) (26)
: : : +0(&?)
in Egs. (18)—(20). This leads to the expressid@l) for the
longitudinal susceptibilityy, .*° 2Ox2 9x2

To obtain the result in the general case, i.e. for arbitrary _ Rt
wave number, we would have to evaluate the diagram in Eq. 18+ 2x[1+(1+y2)‘1’2] 11
(23) for go#0. For the extreme dipolar limit, we get the

same result as for the istropic limit except for a factor of 1+4x2—1
(n—1)/(n—2)=2.° This factor stems from the reduction of X | 1+V1+4x? In +0(?)
the number of the Goldstone modes by one in the presence of

the dipolar interactiof? In scaling variables this amounts to (29

TABLE I. Values of the diagram for the mass renormalization in the isotrogpie=Q) and dipolar limit
(go==) and in the general case.

Propagator Value of the diagram
om0 Too,, # O ~ (=1 g~
8= 1=q—12ﬁ;" c*@*c ~(n=2)q"°
go 1=%P¥B+ 2+golcos gﬁaﬁ E*C:)_G ~ (n=2) ¢+ (g )"
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THD IHD
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// qD
' ™

' IH ' . MHD

0 0

15 10

X T>T X, 'DC
FIG. 3. Six characteristic regions for the static susceptibility DHD .

belowT. in thex-y plane.(See text for the abbreviationsShaded: % a 10q,
Dipolar dominated regions beloW, . Dashed: Borders of the cor- 1€

responding regions abovi, .
FIG. 4. Six characteristic regions for the static susceptibility

for the Goldstone-mode renormalized mass, instead of it881OW Te I the ku-«z plane (e, = 1p¢, k= a/qp). Shaded: Di-

. ~ 5 polar dominated regions. Inset: The remaining three regions in the
unrenormalized counterparl(zo)(x,y)zx - Analogously 10 case of very weak dipolar interaction.
Ref. 10, a reexponentiation procedure is employed to obtain

these results. sir? & cos 29— cog &

This result is only an approximation. For example, we f(9,R, ¢)= ,
neglected possible angular dependencies in the average over \/1—sir12 2¢ cog 9
then—2 Goldstone modes and the one “dipolar mode.” But (32
since this simplification only affects the precise form of the f(0°,R,¢):=—1 (R, such that$=45°).

crossover while the limiting cases are correctly implemented
(we have to say more about thatve believe that this ex-
pression will reproduce correctly the essential physical prop-
erties in a qualitative way. Anyhow, even if it were possible | order to better understand the resii8)—(32) we dis-

to calculate the diagram exactly, the remaining uncertaintyss several limiting cases. To this end we neglect the nu-
introduced by_the reexpor!entiation procedure is hard to OVeimerically unimportant second term involving the logarithm
come. To improve this procedure would be veryiy gq. (29). The border line for the eigenvectors between

cumbersome—if feasible at all. Thus from E¢$8)—(20) . R -
we end up with the final formulas for the scaling functiops approximately paEa-IIeI -to the magnetizatibh and approxi
mately parallel tog is given by[cf. Eq. (17)]

of the static susceptibilitiegiiz 1/219%;

IV. DISCUSSION

tan ¢=1. (33

(R, ¢,9)=1, lyiR,¢,NH=1+R*F_, (9,R,¢),
1(R..9) 2R, 9) r+{ ¢) (30) In terms ofx andy this is a line determined by

y L1+ (1+y?) ]

« 1 ~ _ i
F.(9,R.$)=5{1= V1-sir 2§ cos 0}. x=f(y):= 59
. ) .~ - y4[1+(1+y2)—1/2]2 18y2
Here, we introduced the new scaling functidRe@nd ¢: + >F + 29" (34
R(R,¢)= w/FZ(x,y)+y2, tan B(R, ) =y/T (X,y), Below, we will define regions in thg-y plane, correspond-

(31  ing to these limiting cases and we will denote them with
(for isotropig, M (for the intermediate or crossover regjon
instead ofR )= R and oy = ¢ in Eq. (18). The correspond- if tan $<1, or D (for dipolay if tan ¢>1.
ing directions or eigenvectors are given by The eigenvalues or susceptibilities behave qualitatively
different, depending on the demoninator of the first term in

> A A Eq. (29). Two cases can be identified, separated by the line
01(9,R,4)=px&,, 929 P Y

9
v2/3(9,R, ¢) =cos p2/3(9,R, d)p+sin ¢2/3(9,R, p)ez, x=fy(y):= [ (1+yd) 7 (35

1 Forx< f,(y) we haver2~x2, which amounts to a “critical”
¢3(0,R,¢) = ¢2(9,R, ¢) +90°= 7 arccosf(3,R, $) or Ornstein-Zernike-like behavior for the susceptibility.
Thus, we useC (for critical) or M (again for intermediate or
e[0°,90°, crossover regionin this case. The other case is characterized
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TABLE Il. Leading order of the static susceptibilities in the six different regions defined in the main text.

)Sl . X2 . . X3

Region (Lqg,M) (L EV) for gL M for gqlIM (Il EV) EV

IC 1 1 1 M
2)¢ 23¢ 23¢

IM 1 1 1 1 1 M
2J¢ 2)(0P+q3 cod 9) 2J(P+aB) 237 2]+ (29/189 ¢ 7]

IHD 1 1 1 M
23 23 (29/2Jq¢ 1

MHD 1 1 1 1 1 M
23 2J(oP+0B cog 9) 236, 23¢ 290q¢ *

DHD 1 1 1 1 1 q
2J¢ 2 P+(29/2)q¢ T cod I 290q¢ T 2J° 2353

DC 1 1 1 1 1 q
2J¢ 2JP+(29/18 € 2 cog 9] 2J[P+(29/18 ¢ 2] 2JF 23(q%+q3)

by FZ"’X which leads to the Wsinglﬂarity_ Therefore’ we plitude, howeve)r. In the ultimate limit of VaniShing wave
have chosen the abbreviation H®r hydrodynamig in this ~ Vector, it is finite due to demagnetization effects. The second

case. transverse susceptibilitwhich in the isotropic case corre-
Finally, we get a third line defined by sponds to a Goldstone madalso still diverges but has a
smaller exponent. Instead efq~? the leading asymptotics

y=1, (36) is~q L

. : T . To facilitate the comparison between experiment and
separating regions where the susceptibility is more dipolar O{heory we also include the same diagram in the physically
more isotropic. Altogether, we have therefore six regions in : . - = -
the x-y plane, where the static suceptibilities show qualita- 0 ¢, Tansparent variables; = x/y= 1/qpé and x,= 1ly

tively different behavior. These regions are shown in Fig. 3. 9/dp, i.e., essentially in the temperature—wave-vector
, . ; lane(1/¢ q plane. We therefore measure these quantities in
Also included are the corresponding four regions above’

' . . . units of the dipolar wave vect see Fig. 4.
T. as defined in Ref. 24. Note that we use different scaling In the insetpof Fig. 4 we shccg\?tge corrgsgonding diagram

variablesx, andx_ above and belowW ., respectively. This for very smallqp , i.e., for negligible dipolar interaction
.. . D LG, .
corresponds to the distinction betwegn anq £ . In these units we get the expected result that dipolar ef-
In the Appendix we gathered the analytic expressions fo ; ) o
. 2 SR cts become important in the vicinity df. and also for
the leading dependencies of the three susceptibilities in all_ "> = . .
vanishingg. The regionDC is reached wheiq and 1£ are

six cases. Obviously, the results abgsee Ref. Jtand be- smaller thangpy which was to be expected. To enter region

lOViTC join continuously aff¢ (x=0). In the |sqtrop|c_ case DHD, however,q quite unexpectedly has to be small com-
(y=0) our result reproduces the expression given by
ared to one tenth afy or even less.

Mazenko'® This expression has basically been confirmed b)P
sophisticated renormalization group calculations in Refs. 12,
13. Furthermore, our result is also in accord with renormal- V. SUMMARY
ization group calculations in the so-called coexistence limit
including dipolar interactiorS (where the wave vectoq
vanishes and we reach the extreme dipolar regibmpar-
ticular this holds for the reduction factor of(for n=3 com-
ponent magnejsby which the longitudinal susceptibility is
reduced in the dipolar region. This result corresponds to th

To summarize, we have derived analytic expressions for
the static susceptibilities of the isotropic Heisenberg ferro-
magnet belowT, including the dipolar interaction and in-
cluding fluctuations induced by the Goldstone mofiegs.
30)—(32)]. Special emphasis was put on the necessity to
discuss eigenvalues and eigenvectors of the susceptibility
: . ) S f&nsor. It has been shown again that the number of Goldstone
the c_i|po.lar case. In t.h!s. caseasin ‘T"” other "T”'“”g cases thEodes is reduced from 2 to 1 due to the dipolar interaction,
longitudinal susceptibility is to leading order Lsotromdnes which leads among other effects to a reduction of the ampli-
not depend on the angle between magnetizatloand wave  tude of the divergent longitudinal susceptibility by a factor of
vectorq). This is also true exactly of course for the remain-2. While one of the transverse susceptibilities—belonging to
ing Goldstone mode, while the second “transverse” modethe one Goldstone mode remaining—stays unaltered, the
does show an angular dependence. Due to the dipolar inteother one still diverges, but less rapidly beingdl/q instead
action fluctuations are reducéthere is an additional “mass of ~1/g? in the isotropic limit. Although the magnitudes of
term” in the theory. Accordingly, the susceptibilities are the susceptibilities are generally reducdmbcause fluctua-
reduced compared to the isotropic case. Nevertheless, thi®ns are diminisheddue to the additional mass introduced
longitudinal susceptibility still diverge&wvith a smaller am- by the dipolar interaction, the longitudinal susceptibility still
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diverges~1/q as the wave vectoq approaches 0, until it APPENDIX

enters the region where demagnetization effects become im-

portant which keep the susceptibility finite. Thigyldiver- In this appendix we summarize the analytic results for the
gence is very hard to see experimentally because it shows Upading dependencies of the static susceptibilities in the six
only at very tiny values ofi¢ (¢ is the correlation lengthlt  different regions defined in the main text. The longitudinal
seems more promising to search for the minimum in thesysceptibilityy; is to leading order independent of the angle
effective exponentcf. Fig. 2. Finally, in the Appendix, we . The corresponding eigendirection is approximately paral-

presented expressions for the susceptibilities to leading ordefél to the maanetizatioVi or. in the dipolar dominated re-
in six characteristic regions in the temperature—wave-vector 9 ' P

plane. The dipolar dominated region neégy (the inverse  9ions, to the wave vectar. [Note, however, that the devia-
correlation length there has to be smaller than the dipolafion from these directions, given by the anglgin Eq. (32)
wave vectorgp) is reached if the wave vector is small com- ¢an be quite substantialThe two cases are indicated by the
pared togp . Unexpectedly, the asymptotic dipolar region far symbolM or ﬁ respectively, in the column EV of Table II.
from T, can be reached only for wave vectors smaller than &he one remaining Goldstone-mode dominated susceptibility

tenth ofqp or even lesgcf. Fig. 4).
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