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Systems undergoing an equilibrium phase transition from a liquid state to an amorphous solid state exhibit
certain universal characteristics. Chief among these are the fraction of particles that are randomly localized and
the scaling functions that describe the order parameteremuivalently the statistical distribution of local-
ization lengths for these localized particles. The purpose of this paper is to discuss the origins and conse-
guences of this universality, and in doing so, three themes are explored. First, a replica-Landau-type approach
is formulated for the universality class of systems that are composed of extended objects connected by
permanent random constraints and undergo amorphous solidification at a critical density of constraints. This
formulation generalizes the cases of randomly cross-linked and end-linked macromolecular systems, discussed
previously. The universal replica free energy is constructed, in terms of the replica order parameter appropriate
to amorphous solidification, the value of the order parameter is obtained in the liquid and amorphous solid
states, and the chief universal characteristics are determined. Second, the theory is reformulated in terms of the
distribution of local static density fluctuations rather than the replica order parameter. It is shown that a suitable
free energy can be constructed, depending on the distribution of static density fluctuations, and that this
formulation yields precisely the same conclusions as the replica approach. Third, the universal predictions of
the theory are compared with the results of extensive numerical simulations of randomly cross-linked macro-
molecular systems, due to Barsky and Plischke, and excellent agreement is[80hé3-182608)04102-2

[. INTRODUCTION In the course of the effort to understand the vulcanization
transition for randomly cross-linked macromolecular sys-
During the last decade there has been an ongoing effort ttems, it has become clear that one can also employ similar
obtain an ever more detailed understanding of the behaviaapproaches to study randombgnd-linked macromolecular
of randomly cross-linked macromolecular systems near theystem$, and also randomly cross-linkethanifolds (i.e.,
vulcanization transitioh=* This effort has been built from higher dimensional objedtS in each case, a specific model
two ingredients:(i) the Deam-Edwards formulation of the has been studied. For example, in the original case of ran-
statistical mechanics of polymer networkand(ii) concepts  domly cross-linked macromolecular systems, the macromol-
and techniques employed in the study of spin gla8%sa ecules were modeled as flexible, with a short-ranged
result, a detailed mean-field theory for the vulcanizationexcluded-volume interaction, and the cross links were im-
transition—an example of an amorphous solidificationposed at random arc-length locations. On the other hand, in
transition—has emerged, which makes the following predicthe case ofend-linked systems, although the excluded-
tions: (i) For densities of cross links smaller than a certainvolume interaction remained the same, the macromolecules
critical value(on the order of one cross-link per macromol- were now modeled as either flexible or stiff, and the random
ecule the system exhibits a liquid state in which all particleslinking was restricted to the ends of the macromolecules.
(in the context of macromolecules, monomease delocal- Despite the differences between the unlinked systems and
ized. (ii) At the critical cross-link density there is a continu- the styles of linking, in all cases identical critical behavior
ous thermodynamic phase transition to an amorphous solidas been obtained in mean-field theory, right down to the
state, this state being characterized by the emergence of raprecise form of the statistical distribution of scaled localiza-
dom static density fluctuationsiii) In this state, a nonzero tion lengths.
fraction of the particles have become localized around ran- Perhaps even more strikingly, in extensive numerical
dom positions and with random localization lengtti®., simulations of randomly cross-linked macromolecular sys-
rms, displacemen}s(iv) The fraction of localized particles tems, Barsky and PlischKe'! have employed an off-lattice
grows linearly with the excess cross-link density, as does thenodel of macromolecules interacting via a Lennard-Jones
characteristic inverse square localization lendth. When  potential. Yet again, an essentially identical picture has
scaled by their mean value, the statistical distribution of lo-emerged for the transition to and properties of the amorphous
calization lengths is universal for all near-critical cross-link solid state, despite the substantial differences between physi-
densities, the form of this scaled distribution being uniquelycal ingredients incorporated in the simulation and in the ana-
determined by a certain integrodifferential equation. For dytical theory.
detailed review of these results, see Ref. 4; for an informal In light of these observations, it is reasonable to ask
discussion, see Ref. 7. whether one can find a common theoretical formulation of
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the amorphous solidification transitignf which the vulca-  straint density exceeds its value at the transition. As we shall
nization transition is a prime examplhat brings to the fore see, the stationarity condition for this general, symmetry-
the emergent collective properties of all these systems thatspired Landau free energy is satisfied by precisely the
are model independent, and therefore provide useful predimrder-parameter hypothesis that exactly solves the stationar-
tions for a broad class of experimentally realizable systemsty conditions derived from semimicroscopic models of
The purpose of this paper is to explain how this can be donecross-linked and end-linked macromolecules. From the prop-
In fact, we approach the issue in two distifbut relatedd  erties of this solution we recover the primary features of the
ways, in terms of a replica order parameter and in terms ofiquid-amorphous solid transition.
the distribution of random static density fluctuations, either In a system characterized by static random density fluc-
of which can be invoked to characterize the emergent amortuations, one might neely be inclined to use the particle
phous solid state. density as the order parameter. However, the disorder-
The outline of this paper is as follows. In Sec. Il we averaged particle density cannot detect the transition be-
construct the universal replica Landau free energy of théween the liquid and the amorphous solid states, because it is
amorphous solidification transition. In doing this, we reviewuniform (and has the same valu: both states: a subtler
the replica order parameter for the amorphous solid state armtder parameter is needed. As shown earlier, for the specific
discuss the constraints imposed on the replica Landau freeases of randomly cross-linked* and end-linkegl macro-
energy by(a) symmetry considerationgh) the smallness of molecular systems, the appropriate order parameter is in-
the fraction of particles that are localized near the transitionstead:
and (c) the weakness of the localization near the transition.
In Sec. Il we invoke a physical hypothesis to solve the sta- 1 N e o g
tionarity condition for the replica order parameter, thereby Qe k=|y > (el (elkTay - gekhay (1)
obtaining a mean-field theory of the transition. We exhibit =1

the universal properties of this solution and, in particular, the\'/vhereN is the total number of particles, (with i=1,... N)
b e R

scaling behavior pf certain central physical quantities. Inis the position of particlé, the wave vectork? k2, .. k9 are
Sec. IV we describe an alternative approach to the amor:

phous solidification transition, in which we construct ang2roitrary, (- ), denotes a thermal average for a particular

analyze the Landau free energy expressed in terms of thréeallzatlonx of the disorder, and:--] represents averaging

A . . : over the disorder.
Q|str|but|on of s_tatlc density f!uctuatlons. Alth_ough we shall We make the Deam-Edwards assumptitat the statis-
invoke the replica approach in the construction of this Lan-,

. : - tics of the disorder is determined by the instantaneous corre-
dau free energy, its ultimate form does not refer to replicas;_ . ; :
[ations of the unconstrained systefit is as if one took a

As we show, however, the physical content of this Landau : .
theory is identical to that of the replica Landau theory ad_snapshot of the system and, with some nonzero probability,

dressed in Secs. Il and Ill. In Sec. V we exhibit the predicteoadded constraints only at those locations where two particles

- . L . .—_are in near contagt.This assumption leads to the need to
universality by examining the results of extensive numerical . s
. . X work with then—0 limit of systems oih+ 1, as opposed to
simulations of randomly cross-linked macromolecular net—n replicas. The additional replica. labeled 0 reore
works, due to Barsky and Plischke. In Sec. VI we give some_’ b y plica, o by-0, rep
. sents the degrees of freedom of the original system before
concluding remarks. . . : !
adding the constraints, or, equivalently, describes the con-

straint distribution.

Il. UNIVERSAL REPLICA FREE ENERGY FOR THE We assume, for the most part, that the free energy is in-

AMORPHOUS SOLIDIFICATION TRANSITION variant under the grouf,., of permutations of then+1
replicas. In this replica formalism, the replica order param-
We are concerned, then, with systems of extended obeter turns out to be

jects, such as macromolecules, that undergo a transition to a

state characterized by the presence of random static fluctua- 1 N P
tions in the particle density when subjected to a sufficient Q&E<_ E exmﬁ.{;i)> 2)
density of permanent random constraifitse character and N =1 nt1

statistics of which constraints preserve translational and ro-
tational invariance In such states, translational and rota- Here, hatted vectors denote replicated collections of vectors,
tional symmetry are spontaneously broken, but in a way tha¥iz., 9={v°,v',...v"}, their scalar product being
is hidden at the macroscopic level. We focus on the longd -W=X"_,v®-w®, and(---)", , denotes an average for an
wavelength physics in the vicinity of this transition. effective pure(i.e., disorder-frepsystem ofn+1 coupled

In the spirit of the standard Landau approach, we envisageeplicas of the original system. We use the teons-replica
that the replica technique has been invoked to incorporate theectorandhigher-replica sectoto refer to replicated vectors
consequences of the permanent random constraints, and pmith, respectively, exactly one and more than one replica
pose a phenomenological mean-field replica free energy, thier which the corresponding vect&f is nonzero. In particu-
n— 0 limit of which gives the disorder-averaged free energy,lar, the order parameter in the one-replica sector reduces to
in the form of a power series in the replica order parameterthe disorder-averaged mean particle density, and plays only a
We invoke symmetry arguments, along with the recognitionminor role in what follows. The appearancerof 1 replicas
that near to the transition the fraction of particles that ardn the order parameter allows one to probe the correlations
localized is small and their localization is weak. The controlbetween the density fluctuations in the constrained system
parameter is proportional to the amount by which the con- and the density fluctuations in the unconstrained one.
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We first StUdy the transformation properties of the Ordel’]eading order terms ||ﬁ, in the cubic term in the order pa-

parameter under translations and rotations, and then make . ~tar we keep only the leading termkinThus, the func-

use of the resulting information to determine the possiblg;,, g5 in Eq. (5) is replaced by a constant and the function
terms appearing in the replica free energy. Under indepen-

dent translations of all the replicas, i.e%—¢*+a“, the rep- 92 15 expgndeq to quadratic order k By angllyUuEy a_nd
! rotational invarianceg, can only depend ofk”,... k"} via
lica order parameter, E@2), transforms as 012 N2 ; . . «
{1k%%,...,|k"|?}, and, in particular, terms linear kare ex-
Qs )l =l hook®a%(y. 3 cIudgd. In addition, by the permutation symmetry among the
K25 k @ replicas, each ternk®|? must enter the expression fgp
Under independent rotations of the replicas, defined byvith a common prefactor, so that the dependence is in fact

Ro={R%?°, ... RW" andc’—R“c’, the order parameter on k2. Thus, the replica free energy for long-wavelength
transforms as density fluctuations has the general form;
Qi— Q= Q1. (4) nNdF,({Q) = E ‘ —ae+g|k|2)|ﬂﬁ|2
As discussed in detail in Ref. 4, because we are concerned K
with the transition between liquid and amorphous solid -
states, both of which have uniform macroscopic density, the _C&%& Qi O, Qi Oy iy rk.0- - (7)
1273

one-replica sector order parameter is zero on both sides of

the transition. This means that the sought free energy can bgy streamline the presentation, we take advantage of the
expressed in terms of contributions referring to the higherfreedom to rescalé?,, ¢, andk, thus setting to unity the

replica sector order parameter, alone. parameters, b, andc. Thus, the free energy becomes
We express the free energy as an expansiofiniegra)

powers of the replica order paramefeg, retaining the two |R|2

lowest possible powers di, which in this case are the ndF({QH =2 | —e+ - |07

square and the cube. We consider the case in which no ex- k

ternal potential couples to the order parameter. Hence, there —

is no term linear in the order parameter. We make explicit 2 Q0005 kg (©

use of translational symmetry, E3), and thus obtain the kykoks
following expression for the replica free energ@er particle

per space dimensiorF, ({Qq}): 12 By taking the first variation with respect @ _j we ob-

tain the stationarity condition for the replica order parameter:

ndZ,({Qi)= 2 g2(k)|Q? T T B L PR e N
K =n 50 . et k < K k25k1+k2,k-
- E gs(Rl,kzﬁs) ©)
kikoks This self-consistency condition applies for all valueskof
XleQ%Q&ngﬁkz%s'b_ (5) lying in the higher-replica sector.
Here, the symboE denotes a sum over replicated vectirs lI. UNIVERSAL PROPERTIES OF THE ORDER

lying in the higher-replica sector, and we have made explicit PARAMETER IN THE AMORPHOUS SOLID STATE
the fact that the right-hand side is linearnn(in the n—0
limit) by factoringn on the left-hand side. In a microscopic
approach, the functiong,(k) and gz(k;,k,,ks) would be
obtained in terms of the control parametertogether with
density correlators of an uncross-linked liquid having inter-

actions renormalized by the cross linking. Here, however, Werized by a probability distribution & 3p(£-2) for their

will ignore the microscopic orgins @, andgs, and instead localization lengths. Such a characterization weaves in the
use symmetry considerations and a long-wavelength expan- = . .

; ) . physical notion that amorphous systems should show a spec-
sion to determine only their general forms. In the saddle;

point approximation, then, the disorder-averaged free energ&?um of possibilities for t_he beha_vpr Of. their constituents,
. . o nd adopts the perspective that it is this spectrum that one
f (per particle and space dimensjas given by

should aim to calculate. This hypothesis translates into the
f=1lim min F,({Q). (6) following expression for the replica order paramétér:
n—0 {Of}

Generalizing what was done for cross-linked and end-
linked macromolecular systems, we hypothesize that the par-
ticles have a probabilitg of being localizedalso called the
“gel fraction” in the context of vulcanizationand 1—q of
being delocalized, and that the localized particles are charac-

P PERNUET() N I —K2r2r
Bearing in mind the physical notion that near the transi- Q=1 Q)ék’°+q5kv0fo dr p(re ' (10

tion any localization should occur only on long length scales, _

we examine the long-wavelength limit by also performing awhere we have used the notatikr =" _ k®. The first term
low-order gradient expansion. In the term quadratic in theon the right-hand side term represents delocalized particles,
order parameter we keep only the leading and next-toand is invariant under independent translations of each rep-
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lica [cf. Eqg.(3)]. In more physical terms, this corresponds to All parameters can be seen to play an elementary role in this
the fact that not only the average particle density but theequation by expressing(7) in terms of a scaling function:
individual particle densities are translationally invariant. The
second term represents particles that are localized, and is p(r)=(2le)m(6); 7=(€l2)6. (15
only invariant under common translations of the replicas
(i.e., translations in which*=a for all ). This corresponds Thus, the universal functiom(6) satisfies
to the fact that the individual particle density for localized
particles is not translationally invariant, so that translational 5
invariance is broken microscopically, but the average density 0_ d_77
remains translationally invariant, i.e., the system still is mac- 2 do
roscopically translationally invariant.

By inserting the hypothesid0) into the stationarity con-
dition (9), and taking then—0 limit, we obtain

=(1-6)mw(6)— fogdﬂ’w(ﬂ’)w(ﬁ— 0'). (16)

Solving this equation, together with the normalization condi-
tion 1= [5d6éw(6), one finds the scaling function shown in
Refs. 3,4. The functionr(6) has a peak af=1 of width of
" R order unity, and decays rapidly both é&s-0 andfd—o. By
0= 5%"2){ 2(39%— Eq+qk2/2)J dr p(T)e—k2/2T combining these features af(#) with the scaling transfor-
’ 0 mation (15) we conclude that the typical localization length
scales ag~ 2 near the transition. The order parameter also

_3q2j:d7'1p(7'1) J:dq.zp(q.z)eRZ/Z(HHz)]_ (11  has a scaling form near the transition:

~ R . (d) L
In the limit k2— 0, the equation reduces to a condition for the Qi=[1-(2€/3)]8; o+ (2€/3) & o (V2K €),
localized fractionq, viz.,

w(k)= f " dom(6)e 2 (17)
0=—2qe+ 302 (12 °

Equation(16) and the normalization condition on(6) are
For negative or zere, corresponding to a constraint density precisely the conditions that determine the scaling function
less than or equal to its critical value, the only physical sofor the cross-linked and end-linked cases; they are discussed
lution is =0, corresponding to the liquid state. In this state,extensively, together with the properties of the resulting dis-

all particles are delocalized. For positiegcorresponding to  tripution of localization lengths and order parameter, in Refs.
a constraint density in excess of the critical value, there arg 4, and 8.

two solutions. One, unstable, is the continuation of the liquid  As discussed in this section, the localized fractig(e)
stateq=0; the other, stable, corresponds to a nonzero fracand the scaled distribution of inverse square localization

tion, lengths () are universal near the transition. We now dis-
cuss this issue in more detalil.
q= Ee (13) First, let us focus at the mean-field level. Recall the mean-
3 field theory of ferromagnetistiand, in particular, the expo-

. . _ . . nent B, which characterizes the vanishing of the magnetiza-
being localized. We identify this second state as the amorg,, density order parametéfrom the ferromagnetic state
phous solid state. From the dependence of the localized fracs 5 function of the temperature at zero applied magnetic
tion g on the control parameterand the form of the order fig|q The exponeng takes on the value of 1/2, regardless of
parameter Eq(10) we conclude that there is a continuous e getails of the mean-field theory used to compute it. The
phase transition between the liquid and the amorphous SOI'ﬂJnctionsq(e), 7(0), and w(k) are universal in the same

states ate=0, with localized fraction exponeri=1 (i.e.,  gense The case gfe) is on essentially the same, standard,
the classical exponefij. It is worth mentioning that micro- footing as that of the magnetization density. What is not

scopic approaches go beyond this linear behavior near thganqard, however, is that describing tequilibrium) order
transition, yielding a transcendental equationdge), valid parameter is a universal scalifignction w(k) [or, equiva-
for all values of the control parameter see Refs. 3, 4. lently, 7(6)] that is not a simple power law. This feature
From Eq.(8) it is evident that the liquid state is locally 4 jses hecause the usual presence of fields carigtegnal
stable(unstablg for negative(positive € : the eigenva[ljzes of indices, such as Cartesian vector indices in the case of fer-
the resulting quadratic form are given hyk)=—e+k“/2.  omagnetism, is replaced here by the external continuous
Now concentrating on the amorphous solid state, by injepjicated wave-vector variable There are two facets to
serting the value of the localized fraction into EG1), we  his yniversal scaling behavior of the order parameter. First,
obtain the following integrodifferential equation for the ¢, ystems differing in their microscopic details and their
probability distribution for the localization lengths: constraint densities there is the possibility of collapsing the
distribution of localization lengths on to a single function,
solely by rescaling the independent variable. Second, there is
i (__ T) p(7)— € J'TdTlp(Tl)p(T— r). (14 @ definite prediction for the dependence of this rescaling on
2 Jo the control parametex.
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Now, going beyond the mean-field level, in the context offamiliar, however, is that in the present setting thdepen-
vulcanization de Genn&shas shown that the width of the dentvariables for the variatiofi.e., the distribution of static
critical region, in which fluctuations dominate and mean-density fluctuationsthemselves constitute a functional.
field theory fails, vanishes in the limit of very long macro-  Our aim, then, is to work not with the replica order pa-
molecules in space dimensids= 3 or higher. Thus, one may rameten();, but instead with the disorder-averaged probabil-
anticipate that for extended objects the mean-field theory disty density functional for the random static density
cussed here will be valid, except in an exceedingly narrowfluctuationst®* A{{p,}), which is defined via
region around the transition. Nevertheless, if—as is usually
the case—the effective Hamiltonian governing the fluctua- N
tions is the Landau free energy then the universality dis- 1 )
cussed here is expected to extemjtatis mutandisinto the Mird) =y 21 l_k[ Sclpi—(explik-¢)),) |. (19
critical regime.

That the amorphous solid state given by EL) is stable
with respect to small perturbatiofise., is locally stablecan  Here. Il denotes the product over all vectorsk, and the
be shown by detailed analysis. Moreover, as we shall see iRirac é function of complex argumeng(z) is defined by
Sec. V, it yields predictions that are in excellent agreemenfd(2)=9(Re2&Im z), where Re and Imz, respectively,
with subsequent computer simulations. However, there is, if€note the real and imaginary parts of the complix number
principle, no guarantee that this state is globally stabe, ~2- From the definition of\{{p\}), we see thap _, = pi and
that no states with lower free energy exist po=1. Thus we can take as independent variapjetor all

Up to this point we have assumed that the free energy i§ vectorsk in the half-space given by the conditiénn>0
invariant under interchange of all replicas, including the onefor a suitable unitl vectorn. In addition, V{{py}) obeys the
representing the constraint distributioa=0), with any of normalization condition
the remaininqn, i.e., that the free energy is symmetric under
the groupS,, ., of permutations of allh+1 replicas. This
need not be the case, in general, as the system can be f DpNUp})=1. (20)
changed/e.g., by changing the temperatum&ter the con-
straints have been imposed. In this latter case, the free energy
retains the usudb, symmetry under permutations of replicas It is straightforward to check that, for any particular positive
a=1,...n. The argument we have developed can be reprointegerg, the replica order parametér is agth moment of
duced for this more general case with only a minor changeN({py}):
in the free energy, we can no longer invaRe, ; symmetry
to argue that all of thék®|? must enter the expression fgs
with a common prefactor. Instead, we only have permutation L
symmetry among replicag=1,... n and, therefore, the pref- f PoNUpd)papie - po= Qe e (21)
actorb for all of these replicas must be the same, but now
the prefactorb, for replica a=0 can be different. This We useDp to denote the measuld, dRep, dim p, .
amounts to making the replacement The merit of the distribution functional/({p,}) over the

replica order paramete® is that, as we shall soon see, it
n allows us to formulate a Landau free energy for the amor-
fo T 11,012 w2 phous solidification transition, depending d({p\}), in
k= k*=bob™*[k] +aZl [k (18 which replicated quantities do not appear, while maintaining
the physical content of the theory. At the present time, this

in the free energy. Both the rest of the derivation and the2PProach is not truly independent of the replica approach, in

results are unchanged, except tkéheeds to be replaced by the f?]”()\]fvmg Sense. v&/eSemplgy thle rﬁp”C; approachfto de-
k2, throughout. We mention, in passing, that no s::lddk:_'r"\’et e free energy, Ed8), and only then do we transform

points exhibiting the spontaneous breaking of replica permu—rom the language of order parameters to the language of the

tation symmetry have been found, to date, either for system@ismbl“'ti.On of sFatic density fIL_Jctuations. We are not yet i_n
with S, ., or S, symmetry. possession of either an analytical scheme or a set of physical
arguments that would allow us to construct the Landau free
energy directly. Nevertheless, we are able, by this indirect
method, to propose &eplica-free free energy, and also to
hypothesizéand verify the correctness)dd stationary value
of N{{pi}). It would, however, be very attractive to find a
The aim of this section is to construct an expression forscheme that would allow us to eschew the replica approach
the disorder-averaged Landau free energy for the amorphowsd work with the distribution of static density fluctuations
solidification transition,F, in terms of the distribution of from the outset.
static density fluctuations. We present this approach as an To proceed, we take the replica Landau free enefgy
alternative to the strategy of constructing a replica free enEq. (8), in terms of the replica order paramet8;, and
ergy F, in terms of the replica order paramet@r In the  replace()j by its expression in terms of then¢1)th mo-
familiar way, the equilibrium state will be determined via a ment of M{({p\}). Thus, we arrive at the replica Landau free
variational principle:5F=0 and§2F>0. What may be less energy:

IV. FREE ENERGY IN TERMS OF THE DISTRIBUTION
OF STATIC DENSITY FLUCTUATIONS
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n+1

1
+ E(n+ 1)f Dp1N{p1x}) Dp N p2x})

ndfn:E_2+(3_E)f Dle{Pl,k})DPZN({PZ,k})(; P1kP2,~k

X

Ek: kzPl,kpz,k)(Ek: Pl,kpz,k) _f Dpi N p1x}) Dpo N p2xt) PpsN pakt)

X

n+1
> P1k,P2k,P3~ klkz) : (22)
Ko ko

In order to obtain the desire@eplica-independepfree energy, we take the limit—0 of Eq. (22):

1
+§fpplj\/({pl’k})'DpzM{Pz,k})

dF=d lim 7,=(3—¢) f Dp1N<{p1,k}>DpzN({pz,k}>(g m,m,«)ln(@ PLkP2,k

n—0

X

EK kzpl,kpz,—k)m(; P1,kP2,—k) _f DpsN{p1x}) DN p2x}) DpsN{pak})

X

> Pl,klpz,kzps,—kl—kz)ln( > pl,klp2,k2P3,—kl—k2)- (23
Ko ko Ky ks

In deriving the above free energy we have employed the
physical fact that the average particle density is uniform. In  0=Nd+2(3— f)f Dp N({p1x})
other words, the replica order parameter is zero if all but one
of the replicated wave vectors is nonzero which, translated in 2 | E
the language of the distribution of static density fluctuations, = PkP1-k [N 2 PRP1-k
means that the first moment of the static density distribution
equalsdy . It is worth noting that, within this formalism, the
replica limit can already be taken at the level of the free
energy, prior to the hypothesizing of an explicit form for the
stationary value of the order parameter. On the one hand, this
is attractive, as it leads to a Landau theory in which replicas _3f Dp1Nip1ih) DpaNipah)
play no role. On the other hand, the approach is, at present,
restricted to replica-symmetric states.
We now construct the self-consistency condition that fol- % g pkpl‘k'pz‘_k_k') In( % pkpl’k'pz’_k_k') '
lows from the stationarity of the replica-independent free en-
ergy. We then proceed to solve the resulting functional equa- (25
tion exactly, by hypothesizing a solution having precisely the
same physical content as the exact solution of the replica To solve this self-consistency condition faf({p,}) we
self-consistency condition discussed in Sec. lll. import our experience with the replica approach, thereby
To construct the self-consistency condition fgt{p}) it constructing the normalized hypothesis
is useful to make two observations. Firsf({p,}) obeys the
normalization conditior20). This introduces a constraint on
the variations ofV({py}) which is readily accounted for via NUp)=(1—q) 64 po— 1)1_[ 5(p)
Lagrange’s method of undetermined multipliers. Second, as k#0
mentioned above, not all the variablgs} are independent: de =
we have the relations,=1 andp_,=pj . In principle, one +qJ _ j drp(n]] 5c(pk—ei°'k"‘2’27),
could proceed by defining a new distribution that only de- Vi Jo K
pends on the independent elementd @f}, and re-express
the free energy in terms of this new distribution. However,
for convenience we will retainv{{p,}) as the basic quantity

to be zarled, and be_ar in mind the_ fact th_l and and p(7) (which is regular and normalized to unjtis the
p—x=pic - By performing the constrained variation d¥ gisribution of localization lengths of localized particles. It is
with respect to the functionalV{({p.}) straightforward to show that by taking the{ 1)th moment

P of M({py}) we recover the self-consistent form of the replica

0= m (]—'H\f DpiN{p1x}) |, (24)  order parameter, Eq10).

Pk By inserting the hypothesi®6) into Eq.(25), making the
whereX is the undetermined multiplier, we obtain the self- replacemenpy,— 1, and performing some algebra, the self-
consistency condition obeyed bY({p\}): consistency condition takes the form

y + [ Douation)

X

; kszPl,k) In( Ek: PkP1—k

(26)

in which g (which satisfies 8sq=<1) is the localized fraction
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~302 [ drp(ryp(o- 71)] — 5007 | anp(r)drp(r IV, rome 7)) A @)

1+2 pke—ic»k—k2/27 In
kZ0

. d
1+ 2, pke"°'k‘k2/27){2q<—e+3q)p<r)—qd—[272p<r>]
k#0 T

in terms of the undetermined multiplier. To determine  erties of the amorphous solid state, inasmuch as they indicate
we insert the choicey= &y o, which yields that(i) there exists @cross-link—density-controllgdontinu-
3 ous phase transition from a liquid state to an amorphous
Y e o/d solid state(ii) the critical cross-link density is very close to
A=34 J'O d71p(7)d7mop( ) IMV™ry mof2me( 71+ 7)) one cross link per macromolecul@i) q varies linearly with
(28)  the density of cross links, at least in the vicinity of this tran-
) ) o ) sition (see Fig. 1; (iv) when scaled appropriate{ye., by the
By using this result to eliminatg from the self-consistency mean |ocalization lengihthe simulation data for the distri-
condmpn, and observmg' that this con(.jlltlon must be satisfieq) jtion of localization lengths exhibit very good collapse on
for arbitrary{p,}, we arrive at a condition og andp(7),  to a universal scaling curve for the sevetakar-critical
vIZ., cross-link densities and macromolecule lengths considered
q (see Figs. 2 and)3and(v) the form of this universal scaling
0=2q(— e+3q)p(7)—q—[272p(7)] curve appears to be in remarkably good agreement with the
dr precise form of the analytical prediction for this distribution.
T It should not be surprising that by focusing on universal
—3q2f drp(r)p(7—71). (29 quantities, one finds agreement between the analytical and
0 computational approaches. This indicates that the proposed
Landau theory does indeed contain the essential ingredients
necessary to describe the amorphous solidification transition.
Let us now look more critically at the comparison be-
tween the results of the simulation and the mean-field theory.
With respect to the localized fraction, the Landau theory is
eliminate it from Eq.(29), thus arriving at the same self- only capable .O.f showing the linearity Of_ the dependenc_e,
near the transition, on the excess cross-link density, leaving

consistency condition op(7) as was found in Eq(14) of : . ) i .
the previous section. Thus, we see that these conditions, orlfé]determmed the proportionality factor. The simulation re

) sults are consistent with this linear dependence, giving, in
for g and one forp(7), are precisely the same as thoseaddition the amplitude. There are two facets to the univer-
arrived at by the replica method discussed in Sec. . ’ b '

sality of the distribution of localization lengths, as mentioned

in Sec. lll. First, that the distributions can, for different sys-

V. COMPARISON WITH NUMERICAL SIMULATIONS: tems and different cross-link densities, be collapsed on to a
UNIVERSALITY EXHIBITED universal scaling curve, is verified by the simulations, as

The purpose of the present section is to examine the cor0inted out above. Second, the question of how the scaling
clusions of the Landau theory, especially those concernin§@rameter depends on the excess cross-link density is diffi-
universality and scaling, in the light of the extensive ult to address in currenfc S|r_nulat|ons, becaus_e thg dynam_lc
molecular-dynamics simulations, performed by Barsky and2ng€ for the mean localization length accessible in them is
Plischke!®!! These simulations address the amorphous Soljm!ted, SO that its predicted divergence at the transition is
lidification transition in the context of randomly cross-linked difficult to verify.
macromolecular systems, by using an off-lattice model of
macromolecules interac_ting via a Lennard-Jones po_tent?al. VI. SUMMARY AND CONCLUDING REMARKS

It should be emphasized that there are substantial differ-
ences between ingredients and calculational schemes used inTo summarize, we have proposed a replica Landau free
the analytical and simulational approaches. In particular, thenergy for the amorphous solidification transition. The
analytical approach(i) invokes the replica techniquéii)  theory is applicable to systems of extended objects undergo-
retains interparticle interactions only to the extent that macing thermal density fluctuations and subject to quenched ran-
roscopically inhomogeneous states are disfavdied, the  dom translationally invariant constraints. The statistics of the
one-replica sector remains stable at the transitiGii) ne- quenched randomness are determined by the equilibrium
glects order-parameter fluctuations, its conclusions thereforéensity fluctuations of the unconstrained system. We have
being independent of the space dimension; @wydis solved shown that there is, generically, a continuous phase transi-
via an ansatz, which is not guaranteed to capture the optimaion between a liquid and an amorphous solid state, as a
solution. function of the density of random constraints. Both states are

Nevertheless, and rather strikingly, the simulations yielddescribed by exact stationary points of this replica free en-
an essentially identical picture for the transition to and prop-ergy, and are replica symmetric and macroscopically trans-

We integrate this equation over all valuesoénd use the
normalization condition op(7) to arrive at the same equa-
tion relatingq ande as was found in Eq12) of the previous
section, the appropriate solution of which is given by
g=2¢/3, i.e., Eq.(13). Finally, we use this result foq to
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FIG. 1. Localized fractiom as a function of the number of cross FIG. 3. Probability distribution(symbolg Pg of localization
links per macromolecule, as computed in molecular-dynamics lengthsé, scaled with the sample average of the localization lengths
simulations by Barsky and PlischkRef. 11). L is the number of  &,,, as computed in molecular-dynamics simulations by Barsky and
monomers in each macromolecul¢;is the number of macromol- Plischke(Ref. 11). Note the apparent collapse of the data on to a
ecules in the system. The straight line is a linear fit tokhe200  single universal scaling distribution, as well as the good quantitative
data. Note the apparent existence of a continuous phase transiti@greement with the mean-field prediction for this distributisolid
nearn=1, as well as the apparent linear variatiorgofvith n, both  line). In the simulation the number of segments per macromolecule
features being consistent with the mean-field description. is 10; and the number of macromolecules is 200. The mean-field

prediction for Pg{&/&,,) is obtained from the universal scaling
lationally invariant. They differ, however, in that the liquid is function m(6) by Ps(y)=(2s/y®)m(s/y?), where the constant
translationally invariant at the microscopic level, whereas the=1.224 is fixed by demanding thfdyyP.(y)=1.
amorphous solid breaks this symmetry.

We have also shown how all these results may be reCO\}:_)hysical quantities, the fraction of localized particles and the

ered using an alternative formulation in which we focus |esschar_acter|st|c INVErse square Iocahzat_lon Iength of Ioc_allzed
articles. The smallness of the localized fraction validates

on the replica order parameter and more on the distributio . t th . f the f .
of random static density fluctuations. In particular, we con-U€ truncation of the expansion of the iree energy in powers

struct a representation of the free energy in terms of thi§’f the order parame'ter.. The smallness of the characteristic
distribution, and solve the resulting stationarity condition. 'NVE'S€ square |0£<';1|IZ&'[IOI’I length leads to a very simple de-
Lastly, we have examined our results in the light of thePendence=;_o|k*/*, on then+1 independent wave vec-
extensive molecular-dynamics simulations of randomlytors of the replica theory, well beyond the permutation in-
cross-linked macromolecular systems, due to Barsky an¥ariance demanded by symmetry considerations alone. As a
Plischke. Not only do these simulations support the generdfSult, near the transition, the amorphous solid state is char-
theoretical scenario of the vulcanization transition, but alsgicterizable in terms of a single universal function of a single
they confirm the detailed analytical results for universalvariable, along with the localized fraction. o
quantities, including the localized fraction exponent and the Although throughout this paper we have borne in mind
distribution of scaled localization lengths. the examplg of randomly _cross-lmked macromplecular sys-
The ultimate origin of universality is not hard to under- tems, the circle of ideas is by no means restngted to such
stand, despite the apparent intricacy of the order paramet§yStéms. To encompass other systems possessing externally-

associated with the amorphous solidification transition. adnduced quenched random constraints, such as networks
we saw in Secs. Il and Ill, there are two small emergemformed by the permanent random covalent bonding of atoms

or small moleculege.g., silica gelgs requires essentially no
further conceptual ingredientand only modest further tech-

i JCag o o M0 nical oneg.*’
at N % 2;1j05 One may also envisage applications to the glass transition.
Pu X8 £ & n=1.075 Although it is generally presumed that externally-induced
3 §<° ° quenched random variables are not relevant for describing
° the glass transition, it is tempting to view the freezing-out of
2L % some degrees of freedom as the crucial consequence of the
temperature-quench, with a form of quenched disorder
1+ % thereby being developed spontaneously. The approach pre-
O
F S5 sented in the present paper becomes of relevance to the glass
00’1 - Iotzl transition if one accepts this view of the temperature quench,

and thus models the nonequilibrium state of the quenched
liquid by the equilibrium state of a system in which some
FIG. 2. Unscaled probability distributio®, of localization ~ fraction of covalent bonds has been rendered permatieant
lengths & (in units of the linear system sizeas computed in deeper the quench the larger the fractibhThis strategy,
molecular-dynamics simulations by Barsky and PlisctiRef. 17).  Viz., the approximating of pure systems by ones with “self-
In the simulations the number of segments per macromolecule ignduced” quenched disorder, has also been invoked in very
10; and the number of macromolecules is 200. interesting work on the Bernasconi model for binary se-
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quences of low autocorrelatidil Interesting connections are DMR94-24511(W.P., P.G) and DMR91-57018P.G), from
also apparent with recent effective-potential approaches tthe University of lllinois at Urbana-Champaid@H.C.), from
glassy magnetic systems, in which one retains in the partitioNATO through CRG 94090P.G., A.Z), and from the DFG
function only those configurations that lie close to the equithrough SFB 345A.Z.). Michael Plischke has generously
librium state reached at the glass transition temperafure. provided us with unpublished results from his extensive
computational studies of vulcanized macromolecular net-
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