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In the Kondo problem the overscreened multichannel model is the only one that can be assessed perturba-
tively. However, until now there are still problems remaining in studies by means of a perturbative renormal-
ization group due to the absence of a proper treatment on the constraint of the pseudofermion. In this paper we
try to settle these problems. We studied the general overscreened multichannel Kondo problem by means of a
field-theory renormalization group with the technique of treating the pseudofermion constraint as developed
recently. We calculated the critical exponent, specific heat, magnetic susceptibility, residue entropy, and Wil-
son ratio for the overscreened multichannel Kondo model. From these results we conclude that all over-
screened multichannel Kondo models with the same channel nushibert differentS have the same fixed
point properties. Therefore, they belong to the same universal class, which agrees with the result obtained by
Bethe ansatz and conformal field theor$0163-182¢08)01713-5

I. INTRODUCTION
S=2 S.palas, 1)

In spite of its long history, the overscreened multichannel @
Kondo problen is still of current interest in condensed mat- wherea! anda, are fermion created and annihilated opera-
ter physics. This is because the overscreened Kondo modairs, respectively.
provides the simplest version of non-Fermi-liquid systems, There is a constraint for the pseudofermion operator,
and up to now we only have known a few systems in high
spatial dimensiond=2) which have non-Fermi-liquid fixed 2 afa =1 @)
points: moreover, the overscreened Kondo model is related o TaTe
to a variety of physical systems, such as heavy fermion
compounds;® mesoscopic quantum boxéspr two-level ~ Which is very hard to deal with.
systems:® A widely used method of dealing with this constraint is

In the past ten years there have been intensive studies f\Prikosov's methodf or its more sophisticated form devel-
this region by a variety of methods, such as the Beth@ped by BamneS and Colemari? In this method we take the
ansatZ,° conformal field!®** numerical renormalization Pseudofermion energy—co to freeze out the contribution
group (NRG),*>~** and perturbative renormalization group Of unphysical states. However, there are some troubles re-
(PRG.>Y7 A fairly complete understanding of this model maining in this way of eliminating the unphysical
has been achieved. contributions?!*® Because of the absence of a proper way to

Even so, there are still some problems remaining. It isuse the pseudofermion representation, some problems have
well known in the Kondo problem that the Overscreenedbeen brought in the study of the multichannel Kondo model
multichannel model is the only one which can be assessely means of the PRG.
perturbatively. But until now consistency between the results N Ref. 16, Grunberg and Keiter obtain that the critical
obtained in the framework of the PRG and the results of th&xponentA of overscreened Kondo model is related to both
Bethe ansatz and conformal field theory has not bee#the channel numbeK and the impurity spinS (an early
achieved. A question arises: What is the origin of thesg€sult aboutA related toS can be seen in Ref. 2&vhich is
problems? Before answering this question, one should beontradict the exact result,
reminded that when studying the Kondo model in the frame-
work of field theory, the constraint of pseudofermions should A 2 3)
be dealt with carefully. 2+K"’

In the Kondo model the local spin operatSrdoes not
satisfy the fermion or the boson algebra, and thus cannot be In a recent work? Fabrizio and Zarand use Abrikosov’s
treated in the field theory framework. To surmount this dif-method to study the overscreened Kondo model with a high-
ficulty one often uses the pseudofermion representation afonductive electron spin. In the framework of the PRG and
the local spin operatd®, introduced by Abrikosov® up to K~3 of the largeK expansion, they obtain that the
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exponentA is not related to the local spi8 and consistent From these properties, the contribution of unphysical states
with the exact result in the sense of th& l¢xpansion. But can be freezed out while the useful linked cluster theorem is
there are still some things needed to be further clarified irpreserved*~2° But for high-spin cases¥>1), there are no
their work, such as if their results can still be arrived at whensuch properties, and the constrai@j is very hard to deal
the calculation of the larg& expansion is up t& 2 or  with.
K4, Recently the constraint problem for high-spin cases has
Beside Abrikosov's method there are also other methodbeen settled’ From decomposing the high-sp@into spin
to deal with the constraint. In the cases of spn1/2 and 1/2, we can utilize Eq4) and the Popov-Fedotov imaginary
S=1, the Hilbert space spanned by the pseudofermion opshemical potentiak, to eliminate the contribution of false
erator has some specific properties, and allows one to freezates in a statistical average.
out the contribution of the unphysical states while the useful For any systems which contain a high-impurity s{8n
linked cluster theorem is preserv&t® The constraint prob- (original systen its partition function is separated into
lem for general spin cases has also been settled reéntly. many partgsubsystemsbecause of the decomposition of the
In this paper we use the method developed in Ref. 27 tdocal spin operator. The recursion formulas of the partition
study the general overscreened Kondo model in the framedunctions are’
work of the PRG. For high-sping>1/2) cases, we decom-
pose the local spirB into spin 1/2. In this procedure, the TrS[e AM=i T3, [e PH—TrS Ve A,
partition function of the original system is separated into the
proper weighed partition functions of subsystems. Therefore TrEf,)z)[e’BH]=i Trgf,glll,%[e";“]—Trgf,_z)l)[e’ﬁ"'].
one can study these subsystems separately. Becaubg all ’
subsystems, induced by the overscreened Kondo model in From these recursion formulas, the partition function of
the procedure of the decomposition, can be assessed perttiie original systen(under an ordinary spin representation
batively, in this paper we only study the overscreened mulcan be transformed into the sum of partition functions of the
tichannel Kondo model. We first study the statistical averag&ubsystem(under a pseudofermion representatiamd the
of physical observables of th subsystem, then consider expansion coefficienM subsystems can be obtained from
its weight, and finally we obtain the statistical average of thethe above recursion formulas. For integer sjrthe result is
physical observables of the original Kondo system.
Because of the proper treatment of the pseudofermion S
constraint, we obtainéd? the correct critical exponent of 2= CiSMIZma ., )
the overscreened Kondo model, which is only relatedfo m=0
and agree with the results of Bethe ansatz and conformal

field solutions in the sense of theKLeéxpansion wheiK>1. C S m]=(—1) (S+m)! 6)
The results of resistivity, specific heat, magnetic susceptibil- e (2m)H(S—m)!’
ity, residue entropy, and Wilson ratio are all satisfactory. D

The paper is organized as follows. In Sec. Il we introduceand for half-odd spir8 is
the method of treating the constraint. Section 1l is devoted S—1/2
to defining the statistical average of physical observables un- 7(9= C.ISmlz 7
der the pseudofermion representation. In Sec. IV, we discuss mE:O 2ASMIZamt 102, @)
some problems about the application of the field-theory tech-
nique to theM subsystem. In Sec. V, we discuss the pertur- s (S+0.5+m)!
bative character of thiel subsystem. Sections VI and VIl are Cy[Sm]=(i) Zm+D1(S5=05-mm)!" 8

the calculations of the critical exponent thermodynamic
and transport properties of the overscreened Kondo model.

In Egs.(5) and(7), Z is the partition function of the
In Sec. VIII we give our conclusions. as-(5) (7): Z 1) P

M subsystem,

Il. SETTLING THE CONSTRAINT PROBLEM Zimaiy=Trm gl PH - #aNa], 9

IN THE PSEUDOFERMION REPRESENTATION ) ) ) ) , .
where w, is the imaginary chemical potentigh,=iw/28,

The constraint conditiof2) can be treated in the sense of andN, is the number operator of pseudofermions,
a statistical average: that is, we discuss eliminating the con-
tribution of unphysical states in a statistical average. M 2 M
The key point is that for spin 1/2 and spin 1, the Hilbert Na=2 Ni=2> 2 al,iaa,i ,
spaces spanned by pseudofermions have some specific prop- =1 asbi=t
erties. For the case of a local spB= 3, the unphysical whereN; is the pseudofermion number operatori thf local
states satisfy spin 1/2.
Equations(5) and (7) are exact. On the left-hand side of
Slunphy =0, (4) Egs.(5) and(7), partition functions are in the ordinary spin
representation, and on the right-hand side of Egjsand(7),
and for the case of a local spB8¥ 1 the unphysical states are partition functions are all in a pseudofermion representation.
divided into two parts: one part satisfies E4), and another Therefore Egs(5) and (7) give a correct way for using the
(redundant stateésis isomorphic to the physical subspace. pseudofermion representation for high-spin cases.



57 SCALING SOLUTION OF THE OVERSCREENE. . . 8383

Ill. STATISTICAL AVERAGE means the statistical averagariginal system under an or-
The method of using a pseudofermion representation fodmary spin representation. From E@0), we can rewrite Eq.
. . ; 13) as
high-spin cases developed in Ref. 27 leads to some ne
characters in the statistical average of physical observable%w,[wlt]
Let R be the operator which does not contain pseudofer-
mion operators: for the same reasons as in deducing(ggs.

® (B
or (7, we have =3 orsmim [ [ G000 L)
S— 00
_Tr9[Re A
(R =se=pr] X e W) di= D[S, Moty yolwit], (14
> ,

B SMCI[SM]Tr . 1p[Re AH TN

where(: ) (w112 is defined by Eq(12), anda(V,Cl'Y 2l W,t] is

TrSTe A th o
e conductivity of theM subsystem. From Eq14), under a
pseudofermion representation, the calculation of the conduc-
=2 DISMIR)(m 12 (100 tivity is separated into two parts. The first part is the calcu-
M lation of the M-subsystem average of conductivity under a
where pseudofermion representation, and the second part is about
the weightD[ S,M]; from Eq.(14) we obtain the total aver-
Trim 1ple” PH T raNa)] age of the conductivity.
D[S M]=C{[SM] T (S[e A1} , (11 Now we consider the calculation of the thermodynamic
potential under a pseudofermion representation, for any sys-
Tr(le,z)[Re*f”(H“‘aNa)] tem which contains impurity spi§; the thermodynamic po-

R)m,12= — _ (12)  tential is written as
< ><M'12) Tr(M,l/Z)[e ﬁ(H+#aNa)]

S=_pg-1 (S
In Egs.(10) and(11) the indexi = 1,2 corresponds t8 being o B Iz (19
even and half odd, respectively. For simplicity, in the discus-  From Eq.(5) or (7), we have
sions below we shall omit it.

From Egs.(10)—(12), we see that under a pseudofermion S .
representation the statistical averageRotan be treated as Q¥=-g"In
double averages: The first is théd-subsystem ensemble
average defined by E¢12), and the second is for the sub- 1
systems;D[S,M] is treated as the weight of thel sub- =—p "In
system. It is obvious thdd[S,M] satisfies

% CISMI1Zw 112

. (18

E C[S,M]e Am.u2
M

where the thermodynamic potential of thé subsystem is

D S, M - 1.

Qmap=—B"1IN[Zm 1] (17)

We first study the conductivity under a pseudofermiongrom Eq. (16), the average of the number of conduction
representation. Consider the linear response of current,  glectrons can be written as

. dxvi S
]V:_ezi W, V:X,y,Z; <NC>(S): 07,u, :% D[S,M](Nc>(M'1/2),
to the external field 50 M.172
N =, 18
( c><|v|,1/2) Em (18

V[t]=e2 ri-E[t].

The magnetizatioM g of the system can be written as

From linear response theory, conductivity is definetf as a0
Mg=— 7B => DISMIM m,1/2 »
M
O-VV/[W’t]
Q)
w (B _ __ 2t
— lim f f (5, [01] [t+iNT)ge ' dndt, (13) M w112 B (19
s—w J0 JO
From Eq.(19), the magnetic susceptibility can be calculated
where under the pseudofermion representation
Tr(S)[...e—ﬁ'H] M s

<"‘><S)=W X9~ ;g
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The detailed deducing procedure for entropy and specific - _ _ -
heat are given in Appendix B; here we give the results VAR 71777,§.§}=J DyDyDDPEXS{7,7,{,(}],

S(T)=AF® D(S;M)S, T, 20 - — 1 _ _
(T)=AFE+ 2 DEMSw. (T, (20 Sn T =SS+ 53 [n%ma[k,wwna[k,w]
C(T)=2 D(SM)Cou, 12(T), (21 * K Wlgna[k WD)+ 2 (£ia[w]bia[w]
where Sy, 1/2(T), andCy 12(T) are the entropy and the
specific heat of théV subsystem, respectively, and +§ia[W]¢m[W])J,
(24
s _ Q. 1 B
R a S=3 > [; U KWW = £[K] = 1) thnal K, W]
dS
Ciman= T +2 Mw](iw—uama[w]],

From the above discussions we see thatMhsubsystems 3 K M
can be studied separately; thus these subsystems are ne
parately: Y BN 2, v 2 S

statistically independent. " BN W, 8.y
For the overscreened multichannel Kondo model, the par- - ) Kby
tition function of theM subsystem is X (Ynal K W1 100 gtnsl K, Wal) - (i, [ Wo]0 o hi gl Wal),
Zom1p=Trm ple” PHT#aND], (220 where the Grassmann variablgsy denote electron fields,

¢, ¢ denote pseudofermion fields, angs and ¢, are the
source fields of the electron and pseudofermion, respectively.
H=Hq+H, The generating functional of connected diagram$ is

and the corresponding Hamiltonian is

K F(M,1/2){;nazg}:|n[Z(M,1/2){;77:Z§}]- (25
Ho= 2, > elKlc! [Klcnalk],

n=1 ke The two-point function of the electron and pseudofermion of
the M subsystem can be generated from E2%).2°

j KoM i B
H=g 2 2 2 (CoilKloag G2 [k W] = (el K W]y o (K W] 172
52
T el K W1 877r 0 kW]

chﬁ[k ]) (a|y ya—alo')i (23)

wherea, is the Pauli matrix.

From Eq.(23) we see that in thé/ subsystem there are XFwm,v2t 71885 p=7=¢=0, (26)
M equivalent local spins 1/2 at the impurity site. Because of
the local spin index is a good quantum number, at the bare G2 1w W W
level these local spins 1/2 coupled to tkechannel conduc- RURER <¢'a[ 190w lWhm.a
tive electrons separately. For the system defined by Egs. 52
(23), one can use the standard field-theory technique conve- =
niently. 0Lio[W]6Lir o1 [W]
IV. FUNCTIONAL INTEGRAL TECHNIQUE APPLIED XF w2778 =1=¢=0, (27)

TO THE M SUBSYSTEM (2m,2n)

and the (2n,2n)-point Green functionGy 1;[k,w] can
From the above discussions, we know, under a pseuddlso be generated from E@®5) by the functional derivatives
fermion representation, that those subsystems defined tyn the source fields, #, Z, andZ.
Egs. (23) are nearly statistically independent, and can be These Green functions can be calculated purterbatively by
studied separately. As the first step of the study of the overthe standard diagram technique. Although in the Kondo
screened Kondo model, in this section we apply the standamhodel the spatial translation symmetry is broken, in each
field-theory technique to th& subsystem defined by Eq. interacted vertex point the momentuof the conduction
(23), and in the later Sec. VI we shall study the fixed pointelectron is not conserved, but in the sense of a random aver-
properties of theVl subsystem by means of the PRG. age of impurity configurations, we still only need to consider
The generating functional of thil subsystem is written one-particle-irreducibl€1Pl) diagrams in a perturbative ex-
as® pansion. According to the standard way in quantum field
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theory(QFT), we introduce generating functional of 1PI dia- contribution of unphysical states, and this elimination is full

grams through the Legendre transfPrf in the exact senséhis corresponding to the fact that the
_ _ imaginary parts induced by, are all canceled in the parti-
Cov ot n. O+ Fmain .0} tion functionZy 1) exactly. However, in the perturbative

treatment, this property of the canceling of each other is not
realized in each order of the perturbative expansion. It is

=2 (w2 7P, v2) realized only after all orders of perturbative expansion terms
have been summed. This does not lead to any difficulty,
+ E (Um0t L Phm.v2)- (29) because we know that the imaginary parts inducegpbwre

unphysical and summing the perturbative expansion terms
cannot mix the real part and the imaginary part; so throwing
away the imaginary parts induced jy, in perturbative com-
putations is reasonable.

From this we see that the imaginary chemical potential
method provides a proper way to eliminate the unphysical
contribution in perturbative calculations. Throwing away

FromT (. v2{ 7, 7,¢,{}, we can generate the §22n)-point
vertex function

2m,2n) .
EMm1/g)[k1 ver o Kom W, Womy on]

m m
:H 0 H o some terms in perturbative calculations is similar to Arbri-
=1 (Y o [k Wild iz 151 KW LK) W Do 212 kosov's method. However, in Appendix A we shall show
that, at finite temperature, in the calculation of perturbative
ﬁ 1) ﬁ 1) diagrams, these two different methods lead to different re-
X —
k=1 (i, a [Wil) (172 1=1 K iy [Wil) w12 sults.
X w12l & O e == =0 (29) V. PERTURBATIVE CHARACTER

OF THE M SUBSYSTEM
From Egs. (25—-(29), one can prove that the

channel Kondo model by means of the PRG. A question
fnmf/g [Kys.. Kom Wiy Woms2n] arises:  Under which conditions can thé subsystem be
assessed perturbatively?
= M 1/2)[k1,W1] Gfﬁzio)l/z)[kZm-Wzm] . Similqr to Ref. 1, we give an argument on the_ type of the
' fixed point of theM subsystem. This argument is based on
X Gint1a Wams 11+ G{mi Lz Wams 2n] the exclusion principle and the following facts: For the
(2m.2n) spin exchange model, antiferromagnetic exchange has a
XT3 [K s Kom sW1 - Wom on] strong-coupling fixed point, while ferromagnetic exchange
+Q(2m’2”> (30) has a weak—coupling fixed po.int. We must pqint out that we
(M,1/2) » only use this argument to clarify the perturbative character of

where Qﬁmﬁg) represents the one-particle-reducible dia-the M subsystem. The fixed point configurationshfsub-
m,2n) systems are not directly related to the original system, be-

grams, and‘(M 1/2) 1S the (2m,2n)-point vertex function.
Equation (30) gives the rule of calculating the cause in qurformallsm one cannot use a sindlsubsystem
(2m,2n)-point vertex functionT 2™2Y) from the diagram to determine the properties of the original systers an ex-
(M.1/2) ample see Eq(10)]. However, there are also possibilities
where the weightD[S,M] is concentrated on a single

rule about Green functio {73 . Using the vertex func-
tion to study the renormalization of the interactive model ha%ubsystem; for this case the fixed point configuration of the

; 0
its advantagé’ _ _ original system can be determined by tMssubsystem. We
For the electron two-point vertex function we have shall discuss this issue in Sec. VII.
1 As discussed above thd subsystem can be treated as a
§A0)1/2)[k w]= ST Wl system where at an impurity site there dMesquivalent local
Gm 12 K.W] spins S=1/2). From Egs.(23) we see that the index

_ (which denotes the local spings a good quantum number;
=iw=e[kl=p=2maz[Wl, (3D thus at the bare level one gan supgpose ?hat these local spins
whereX y 1 W] is the conductive electron self-energy of are coupled to th& channel conductive electrons separately.
the M subsystem. On the other hand, because of the exclusion principle, there
In the M subsystem we have used the Popov-Fedotoware onlyK electrons coupled to these local spins at the first
imaginary chemical potential to freeze out the contributionshell of the impurity site. We first assume a strong-coupling
of unphysical states, and so the pseudofermion is decorconfiguration for theM subsystem at a fixed point; that is,
strained in the above QFT framework. The cost is that nowhe impurity site traps one electron in each conductive elec-
we must study theM subsystem and its weight, and the tron channel. We separate the discussion into two steps.
procedure is more complex than the study of the original First we discuss the stable configuration for local spins
system. trapping the conductive electrons. We first assume for one of
Now there are some things needed to be further clarifiedthe local spin-1/2 traps all thi€ channel electrons and form
We use the imaginary chemical potentig to freeze out the a complex of spirk — 3 as shown in Fig. (8) (because of the
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| ¢ 1
* f 1
| f ¢
BRRE oo ARAL 1

(a) first shell second shell (¢)  first shell second shell

T

T ?
% ¢ T
AR T * e RN T * e

(by first shell second shell (@) first shell second shell

FIG. 1. Schematic strong-coupling configuration for Mesubsystem(a) The unstable configuration for local spins trapping conductive
electrons.(b) The stable strong-coupling configuration for the cas&efM. (c) The stable strong-coupling configuration for the case of
K=M. (d) The unstable strong-coupling configuration for the cask ofM.

exclusion principle the coupling between the ottdr1  system belonging to the casekbf& M, then according to Eq.
local spin-1/2 and the second-shell conductive electrons i) or (7) the original system cannot be assessed perturba-
ferromagnetic, and so the othr—1 local spin-1/2 are as- tively. So only the original system in the decomposition all
ymptotically free in relation to the second-shell elections the M subsystems that satisfy the conditish>M can be
then we consider the exchange coupling between this spiassessed perturbatively. From Eg) or (7) we see that this
complex and the other local spin-1/2. Because the exchangmrresponds to the case Kf>2S; the original system cor-
coupling is still antiferromagnetic, the above configuration isresponds to the overscreened multichannel Kondo model.
unstable. For the same reason, one can see that the configu-From the above argument we arrive at the well-known
rations, with one of the local spin-1/2 traps more than onegesult that only the overscreened multichannel Kondo model
electron while there are free local spin-1/2, are also unstablean be assessed perturbatively.

Second we consider the stability of the strong-coupling
configuration. The situation is divided into three
groups: (a) The first group corresponds E0<M as shown
in Fig. 1(b), (b) the second group correspondske=M as
shown in Fig. 1c), and(c) the third group corresponds to

K>M as shown in Fig. ). In the Kondo model some vertex functioli$y"73) de

For case(a) the coupling between the dressed impurity fined by Eq.(29) are divergent; from power countiﬁ@zthe
site (which has a residut —K local spin-1/2 trapand the  divergence degree is given by
second-shell conductive electron is ferromagnetic; the first
configuration shown in Fig.(b) is stable. It also clears that
the second configuration shown in Figcllis stable. For
case(c), there are residue spins complexes at the dressed
impurity site, and because of the exclusion principle, these From Eq.(32), we know that only the verteerEf,ﬁ'{)Z)
spin complexes are coupled to second-shell conductive eleand Fgff'l‘}z) are divergent. The divergence Bﬁﬂ/z) and
trons antiferromagnetically. The third configuration shown inp(aZilz) can be overcome by redefininly and introducing
Fig. 1(d) is unstable. On the other hand, the weak-couplinghe renormalization of the pseudofermion eI
configuration is also unstable.

From the above discussions we see thatMhsubsystems

VI. RG EQUATIONS OF THE M SUBSYSTEM
AND THE CALCULATION
OF THE CRITICAL EXPONENT

Semany=1—m. (32

with K=M have strong-coupling fixed points, while thé I=Jg,
subsystems witiK>M have an intermediate fixed point.
Therefore only theVl subsystem withK >M can be assessed d— dpr=2"Y7J3,A]0,
perturbatively.
Under a pseudofermion representation the original system — — _y
is decomposed into proper weighbt subsystems and from - dr=2"Y43,A14. (33
Egs.(5) and(7) we know that the value dfl ranges from 1
(0 for integer spip to 2S; there are always some sub- It is worth pointing out that in Eq(33) there is no renor-

systems belonging to the cag&e>M. This is not the key malization on the conductive electron field; therefore there is
point. Because in the decomposition if there is dhesub-  no possibility for a conductivity electron field to obtain an
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anomalous dimension. In the Kondo problem if there is a 20 37,
non-Fermi-liquid fixed point, this non-Fermi liquid can only Im I'(;";,[0w]=—M 16 M9
be local.

From Eqgs.(33), the renormalization vertex is defined as

12|W+2K|W
9”59 n5

w
+(In2—1)g?K+3g? |n25
L& ikwh,Ig, AT=Z"3, AT G E0 {k,wh,J, A .

7 W 5 w
(34 — oK In2— = 3 _
2gKInDJrS 2In29KInD
From Eq. (34), the RG equations of Callen-Symanzyk w
type’16 can be written as +g°K? |n25
J J (2m,2n) 22 2] gtk2 (39)
A =% B o5 +nal3] T iz [Tk, whJ,A]=0, 2/9 DI[

(35 whereg is a dimensionless coupling constagt: p;J, and

D is the bandwidth of the conductive electron,
and forn=0, we have

T\ lp=Im 5%, also satisfies RG equatiof86),

9 9| ~emo -
|A&A+,3[J] &JJF(M,1/2)[{k’W}’J’A] 0. (36 [A%+B[J] %]F{&%’%[k,lf\]=oy (40)

In Egs.(35) and(36), whereA =D/w.
The remaining calculations are same as those in Ref. 15.
9 For the 8 function, we have
BLII=A—+Jlr, (37)
8A|R —2K3113I2K4K2541
Bl9l=—g°+ 59+ 5 |1+ 5In2]Kg"— -g° (41

,][J]:A%m Z[J,A]|r, (39 From B[g* ]=0, the fixed point coupling constant is

+O[K™3]. (42)

2 2
whereR means keeping thay fixed. 9" = K (1_ K2
Focusing on the purpose of obtaining the critical expo-
nent, we only need to study E¢B6) for the case ofn=1. From A=(d/g) B|g« , the critical exponent of the M
We first calculate the vertex functidi{y’),,[k,w,J,A] by ~ Subsystem is
means of the standard perturbative diagram technigue. From 5
Eq. (31) we know this corresponds to the calculation of the A= —
electron self-energy. K
For the overscreened Kondo modiel ! is a small param-
eter (K>29); thus using a larg& expansiofr’is natural.
In perturbative diagrams, is counted a& %, and each loop
of electrons contributes a factr. From these we can selec
the diagrams which must be considered in the lafgex-
pansion. Similar to Ref. 15, we calculate the electron sel
energy up tK 4. For theM subsystem, the pseudofermion w A
operator has two indices:a, the spin 6=3) index, and the grlw]=g* —g(—) , (44)
i (i=1,... M) index; among them is a good quantum num- T
ber. So in diagrams, each loop of pseudofermions will con- .
tribute a factorM. On the other hand, after averaging the s=(g*—g)(g*) 4% 89", (45

dom i it fi tions, di hich tiaj : . : .
random Impurrty configurations, ciagrams Which confag Equation(43) is the most important result of this paper,

pseudofermion loops will contribute a facto}'a. In the di- because is not related tM; all theM subsystemsK > M)
lute limit n;<1, we only need to consider those diagramsyefined by Eq(23) have thé same critical exponeht
which contain one pseudofermion loop. The calculation of

self-energy diagrams is too tedious, and we used a comput

to calculate the sum of the internal spin indices and imagi—%' SCALINI\GAUSL?I‘(L:JJL\OI\I%SLFggNED%VEFé%%RLEENED

nary frequencies in the self-energy diagrams; then we per-
formed the integrals of the internal electron energyat Under a pseudofermion representation the overscreened
T=0. Apart from a factoM, the electron self-energy of the multichannel Kondo system is decomposed imfo sub-

M subsystem is the same as the result of Ref. 15: the imagsystems which are nearly statistically independent of each

nary part of vertex function Irﬁgf,,’?l),z)[o,w] is written as other. From the study in the last section we know that all

2 -3
1- | +O[K 3], (43)

From Eq.(43) we see that the critical exponent of the
subsystem is the same as the one of the spif system'®
¢ and agrees with Eq3) whenK>1.
The renormalized coupling constangg has the
sasymptotic form
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these subsystems belong to the same universal class with ©

critical exponentA =2/(2+K). In this section we return to Q2= — B> Ulyua (52)

the original system, and study the scaling solution of physi- =1

cal observables. _ _ . WwhereQ is the thermodynamic potential of the channel
From dlscu55|_ons in Sec. Il thg calculation O_faStat'St'Calnoninteracting electron gas, withl free local spin-1/2 at

average of physical observables is separated into two Steq?npurity site, and

First we study the average of thé subsystem; second we

calculate the weighD[S,M] for the M subsystem: In the !

sense of a RG transformation, the partition function is di- (M.172)

mensionless; thuB[S,M] does not contribute an additional

scaling exponent to the scaling solution of physical observ-

ables. Under the scaling approximation we only consider a

1
=T [sum of | order connected vacuum diagrams

zero-order partition function in the calculation Bf S,M . We only consider the contribution up toKl; apart from
From the discussions in Appendix B, we have aM factor, the calculation is the same as Ref. 15. The shift
M of the thermodynamic potential because of the presence of an
D[S,M]= CISM](—2i) (a6)  impurity spin is
’ SuCISM](—2)V" ,
T 3
We first study the resistivityR sy of the OSMK system; Qm,12=~TM In2+M TniT( Kg®- §K294),
from Eq. (14), the resistivity can be written as (53)
and the scaling form of Eq53) is
Ris =2 DISMIRw,uz- (47

51 [ T] TM(I 2 772) M7 Z(T “
. . =-— N2— —=|—-M—Ts%| —
In computing we only consider second-order electron (M.112) 2K? 4 Tk

self-energy diagrams of thkl subsystemRy 1, can be (54
determined by the imaginary part of the self-energy. Thq:rom Eq.(54), the zero-temperature entropy of the sub-

result is system is obtained:
3 mg 2
=M — ———n:.a? d T
Rm.12=M ¢ neeZp 19 “8) S(M,1/2)(O):_(9_T§Q(M,1/2)[T]|T—0:M(In 2— W)
Equation(48) is the result of a bare perturbative treatment; (55)

i.e., the energy scale 3. In the universal region we replace From Eq.(53), the scaling form of the specific heat shift of
g in Eq. (48) by its renormalized forng given by Eq.(44),  the M subsystem is
and so the scaling form d®(y, 1/2) is

d6S
37° n, T\* oCm 12l T]= T
Rim,19=M 775 —po| 1=Ks| —| |, (49
4K*“ ng Tk =
3 T
wherepo=4m/kee?. =M 7%%A| —| . (56)
2 Tk

From Egs.(47) and(49), we arrive at the scaling form of

the resistivity of the overscreened Kondo model, From Egs.(55) and (B5), we obtain the zero-temperature

entropy of the overscreened multichannel Kondo model,

3772 n; T A
R(S)[T]zmn—po(z MD[S,M]) 1-Ks T—) :
e M K
(50) 5S[O]IAF(S)+% D[S,M]S(M’l/z)
From Eq.(50) we see that the scaling exponent of the low-
temperature resistivity of the overscreened multichannel :|n[2 C(S,M)(—Zi)""]
Kondo model is independent d6. On the other hand, M

2yMD[S,M] depending or5, Rig[0] does not approach 72
the unitary limit. Therefore Eq(50) satisfies the rule of _[E D(S,M)M} —. (57)
charge neutrality? M 2K

Second, we study the thermodynamic potential of the

subsystem. The thermodynamic potentiaMfsubsystem is |t can be proved that there are two important rela-
defined as tions: For integer spin we have
S
Q =—p1tinz : 51 _
(M,1/2) B (M<1/2) ( ) E Cl(S,m)(_2|)2m:28+ 1, (58)
m=0

From the linked cluster theoref’ﬁﬂ(le,z) can be written
as and for half-odd spin we have
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S-1/2 510)
> Cx(Sm)(—2i)2™1=2S+1. (59)
m=0

2}

So the residue entropy of the overscreened multichanne
Kondo model is

772
5S[O]=|n(2s+1)—[% D(S,M)M] sz (60)

From Eq.(60) we know that the ground state of the over-
screened multichannel Kondo model is degenerate. It is wel
known that the fixed point coupling constant of the over-
screened multichannel Kondo model J$~1/K. When K @°* E w1 2 25 s 35 dot
—oo, the local spin is asymptotically free in low-energy .,
physics, and the degeneracy degree of ground states is ju
the degeneracy degree of a free local spin this paper we
study the overscreened multichannel Kondo model througt
the M subsystem, where whel— o the ground state de-
generacy degree of thd subsystem is . It is quite sur- L5t
prising that Eq.(60) satisfies the relation

lim S(0)=In(2S+1), 61)

K—o

and we further compare our result and the result of confor- "
mal field theory.

10The residue entropgp(0) obtained by a conformal field () ° : T T 3 75 £ 3 70§

is
FIG. 2. TheS(0)-K curves of the overscreened multichannel
sif m(2S5+1)/(2+K)] Kondo model obtained by the PRG and conformal field theory,
sinf 7/ (2+K)] (62) respectively. Dotted lines denote the results of a conformal field,
and the solid lines denote the results of the PR{GFor the case of
In Fig. 2(a) and Fig. Zb), we plotS(0)-K curves obtained S=3, and(b) for the case o= 9/2.
by the PRG and conformal field theory for the case of
S=3,9/2, respectively. From Fig.(® and Fig. Zb) we see From Eqgs.(56) and (58), we can obtain the Wilson ratio
that for largeK the residue entropy obtained by the PRG isof the OSMK system in general cases. The Wilson ratio is

Seorf0)=1In

consistent with the results of conformal field theory. defined as
From Egs.(21) and (56) the scaling form of the specific
heat shift is written as _SxslT] Cp 66
5C(S)[T] Xb'
5C(S)[T]:% DIS,M]6C w112 where C, and y,, are the bulk specific heat and magnetic
susceptibility, respectively, and
3 T\
=<Z MD[S,M]) —wzng(—) . (63 2K 72Tp
M 2 Tk Co=—73— Xxo=2Kp, (67)
Finally, we consider the magnetic susceptibility of e 5,4 we have
subsystem. Apart from a factéd coming from the pseudo-
fermion loop, the result of Ref. 15 can be used: K3
ISM (m.12[ T] K \21( T\
) (Tl=——f— =M|=s| =|=—]| . . . . . .
X(M,112 JB - 2 T\ Tk The Wilson ratio obtained in E¢68) is the same as the one
(64)  obtained in Ref. 15 which studied the case of spin3, and
agrees with the result of the conformal field
From Eqs.(19) and(57), we have W= i (24+K?)(2+K/2) in the sense ok> 1.
5X(S)[T]:% DISM]éxm,12[T] VIIl. DISCUSSION AND CONCLUSION

5 2A In this paper we study the scaling solution of the over-
_ 2 MD[S,M] (Eg) _(_) . (65) screened multichannel Kondo model by means of the PRG.
™ ’ 2 T\T The results we obtained are consistent with the results of the
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Bethe ansatz or conformal field theory. But there are stillgroup. From the discussions in Sec. V we know that for the
some things that need more discussion. first group subsystems the ground states are degenerate,

The first thing one needs to discuss is the perturbativevhile for the M subsystem withK=M there is a singlet
treatment of theM subsystem. One can say the reason thaground state. We conjectutbut cannot provefor this case
we arrive at Eq(493) is the assumption of;<1 which al- that the partition functions have an asymptotic form
lows us to neglect interference effects. It is indeed so. Howz(|yl,2)~e*ﬁal, I=M,K, whenT<1 (wherea, may be re-
ever, we must point out that the physics of magnetic impudated to the ground state energy of the subsysterny and
rities in a Fermi sea are divided into two parta) isolated ax<a), . From Eq.(B3) we see that, wheii— 0, this leads
magnetic impurity effects andb) interference effects be- to D[S,K]=1, D[S,M]=0 (M#K), and AF®®=0. From
tween impurities. Among them the isolated magnetic impu£q. (20) we see this leads to the residue entropy of the origi-
rity effects are the typical many-body effects. Because th@al system as the well-known resu¢0)=0. From the for-
ground states with up impurity spin and down impurity spinmula of the static magnetic susceptibiliigee Eq.(19) and
are orthogonat? the spin flipping scattering excites infinite below] we see that this also leads {@s)= x (k) -
particle-hole pairs. The isolated magnetic impurity in @ Now we give the summary. In this paper we used a
Fermi sea leads to complex many-body effgaigthogonal-  method developed in Ref. 27 to deal with the constraint of
ity catastrophe effegtand the Kondo model has no trivial pseudofermions. We decomposed the high-spimto spin
infrared properties. In the study of the Kond®-d) model,  1/2. In this procedure the partition function of the original
we are mainly concerned with isolated magnetic impuritysystem is decomposed into proper weighed partition func-
effects. From this point of view, we say<1 is not only an  tions of the subsystem. We studidd subsystems of the
assumption. In this paper we study the Kondo model througlpverscreened multichannel Kondo model in the framework
theM subsystem, and from the argument given in Sec. V, wef the PRG; then we calculated the weight of thie sub-
see that only thel subsystem wittK>M can be assessed system by a perturbative approximation. From this proce-
perturbatively. For the case &f<M, the perturbative treat- dure, we have achieved the fine results of the residue entropy
ment is ineffective, but we still can learn from E@9). As  and the scaling solution of the resistivity, specific heat, and
discussed above we only study isolated magnetic impuritgusceptibility. From the scaling form of resistivity, specific
effects, and from Eq39) we conjecture thall is unimpor-  heat, and susceptibility we deduced that the critical exponent
tant in determining the low-temperature universal propertie®f overscreened multichannel Kondo model is
of subsystems. It may be related to the well-known fact that
the universal properties of the local Fermi liquid fixed point
(underscreened or screened multichannel Kondo madel A= K
independent of.

Second we discuss the calculationffS,M] andAF (.
The conditionK>M is quite important. For overscreened
multichannel Kondo models, all th® subsystems satisfy
the conditionK>M, and so can be assessed perturbatively;
the perturbative computations B S,M] andAF® are re- ACKNOWLEDGMENTS
liable. We use a zero-order partition function of tklesub-

2
1——

K +0O(K™3),

which agrees with the results of the Bethe ansatz and con-
formal field theory wherkK>1.

. Y ) M.S. would like to thank Professor Z. B. Su for encour-
system fo calculate the weigb{ S,M ] andAF ™ in Appen agement and support in computer sources. M.S. also thanks

dix B, and this leads to the correct asymptotic form of the . -
L.,F. Xu for carefully reading the manuscript.

degenerate degree of ground states of the overscreened

Kondo model wherK —o. So the perturbative approxima-

tion in the calculation 0D[S,M] andAF(® is correct quan- APPENDIX A: THE ROLE OF THE IMAGINARY
titatively. CHEMICAL POTENTIAL
For underscreened and screened multichannel Kondo IN THE PERTURBATIVE EXPANSION

models, the subsystems are separated into two groups. The , . . . .

first group satisfies the conditioi>M which can be as- In the_lmaglnary chemlgal potenual methqd we introduce
sessed perturbatively and has non-Fermi-liquid fixed pointsia 10 €liminate the contribution of unphysical states, and
the second group satisfies the conditiose M which cannot ave the refation

be assessed perturbatively and has Fermi liquid fixed points.

From Eq.(B3) we see, for computindp[S,M] and AF(®, 202 =iZ 1 =1 TrplefH r]=iZ 1, (A1)
one needs to compute all the subsystem partition functions.

Although for the first group subsystems the perturbative parwhereZ(*2) is in ordinary spin representation a#g ) is in
tition functions are reliable, the computation of the partitiona pseudofermion representation.

functions in the second group subsystems goes beyond per- The term on the left-hand side of E@Al) is real, and on
turbative theory. Therefore from perturbative theory, we canthe right-hand side of EqAl) imaginary parts cancel each
not deduce whether the second group subsystems dominatther exactly. But when we calculate the partition function
the low-energy physics. However, the logic structure of theperturbatively this canceling is not realized in each order of
decomposition formalism gives some insight. The screenethe perturbative expansiéf® It does so when all order per-
multichannel Kondo model is the interesting case, wherdurbative expansion terms have been summed. It is the same
K=2S, and in decomposition all the subsystems belong tdor the calculation of the statistical average of the operBtor
the first group but one witiK=M belongs to the second which does not contain pseudofermion operators,



57 SCALING SOLUTION OF THE OVERSCREENE. . . 8391

<R>(s>:% DI[SMKR)wm,1/2 - (A2) NS N N

In (R)(m,1/2) the imaginary parts induced hy, (not includ- .
ing the intrinsic imaginary part if there is oneanceled each S
other exactly.
We have pointed out in Sec. IV that this does not lead to FIG. 3. Electron self-energ¥ [ w].
any difficulty, and throwing away the imaginary parts in-
duced byu, is reasonable. The imaginary chemical potential 1
method provides a proper way to freeze out unphysical con- GPL[w]=——, (A3)
tributions in perturbative calculations. In this appendix we w—¢
show this procedure concretely, and compare the results ob-
tained with the imaginary chemical potential method and \where g in th h | notential method
Abrikosov’s method, respectively. ered in the imaginary chemical potential methodug,
and in Arbrikosove’s method is.

As an example we calculate a fourth-order conductive W oul he di f Aft
electron self-energy diagrams shown in Fig. 3. We consider e calculate the diagram at finite temperature. After sum-

the single-channel spin-1/2 Kondo model. The zero- ordef“'”g the internal spin indices and imaginary frequencies, we

pseudofermion two-point function is written as have
|
3 (1+e’")fle1](e7f[ ;] + [ — €;]) (e €3]+ [ — e3])
v e
4[w]— (J) 'pff f f D<e,<Ddeld€2d63{ (61— €)(€1—€3)(iw—¢€)
L1 1(e” ’”f[—61]+f[61])(e’”f[63]+f[—63])(eﬁ9f[ez]+f[—ez]) Al
4 (io—€)(io—e€p)(iw—€3) (A4)
For the imaginary chemical methodl= u, ande®#a=i, and from Eq.(A4) we have
3 (1+D)f[er](if[ex]+f[—ex])(if[ €3]+ f[ —€3])
) J)* de de,d —
Zalo] ( 'pffffo<e,<o cife 63( (61— €x)(€1—€3)(iw—€)
1(—if[—e]+f )(if +f[— if +f[—
4z ( [—e]+fledD(if[es]+F[—ea])(if[ex]+f[ 62]) (A5)
4 (|(1) 61)(|w 62)(|(1) 63)
For the reasons discussed above, we further throw away the imaginary part induggd agd have
21 3
24[‘”]:_(‘])4nipff jf dejdexdes
8 —D=<g<D
X( 3 flelf[ex]fles]+ flen]f — ealfles]+ fler]f[ 2] — €3] — flei]f[ — €] f[ — €]
4 (€1~ €)(e1— €3)(iw—€y)
1 —fle]fle]f[ 3]+ f[ — €, Jf[ — ex]f[ €3]+ f[ — €1 ]f[ €2]f[ — €3]+ fl € ]f[ — €] f[ — €]
. (AB6)
4 (Iw—el)(lw—ez)(lw—e3)
|
Throwing away some terms in perturbative calculations is
similar to Abrikosov’s method, and we further compare these 4[0)]—16 |Pff ff _ deiderdes
two methods. In Arbrikosov's method=\, and we take D=e=D
A—o to freeze out the contribution of the unphysical states. fle]f[ €] — €3]
For the electron self-energy{ w] the operation is Xy —=3—— — —
(61— €)(€1—€3)(iw—€y)
A M- ealfl - elf[ ] (A7)
lim mziw]v (ilo—€)(iw—€y)(iw—e€3) |

A—
Comparing Eqs(A6) and (A7), we see that the two dif-
and from Eq.(A4) we have ferent methods lead to different results. The existence of the
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differences between the results obtained by the two methods From Eq.(B3) we see that both F(® andD[S,M] have
is general in the calculation of perturbative diagrams, and wehe form
conclude that at finite temperature the two different methods

give different results.

APPENDIX B: THE FORMULAS OF THE ENTROPY
AND SPECIFIC HEAT

In this appendix we give a detailed procedure of the cal-

partition functions
partition functions

In this paper we seek the scaling solution of the over-

culation of the entropy and specific heat under a pseudofeficreened Kondo model. In the sense of the scaling transfor-
mion representation. The entropy of the original system ignation the partition function is dimensionlessF(® and

defined as
J (S
STl=— 70 (B1)
From Eq.(16), we have
S(T)=In| X, C(S,M)e Almz
M
EMC(S,M)Q(Myl,z)efﬁﬂ(m,l/z)
SuC(S,M)e Amae
+% D(S,M)Sim 112
=AFO+> D(S,M)Sim 112(T), (B2)
M

where Sy 1) is the entropy of the M subsystem
S T1=(=3/dT) Qv 12y, andD(S,M) is the weight
of the M subsystemD(S,M) andAF(® can be written as

CISMIZw 112
EMC(SM)Zim 1’

D[S,M]=

d
(S = (S_
AF {In Z d)\In o

> C(S,M)e‘*ﬁ“w,l/aH

A=1

[EMC(S,M)Z(M,UZ)])\] (B3)

d
={—In
[d)\ SMC(SM)[Zy 1]

A=1

D[S,M] would not contribute extra scaling exponents in a
scaling solution of physical observables. Furthermore, for the
overscreened multichannel Kondo model Ml subsystems
can be assessed perturbatively. We use the zero-order parti-
tion function of theM subsystem,

(B4)

Z?M,l/z):(_Zi)Ml_k[ (1+e Pe)2K

to calculateAF® andD(s,M).
From Egs.(B3) and (B4) we have

[ d [EnCSM)(—2D)M
AF(S)‘[&'” S uC(SM)(—20)" )

A=1

=In[% C(S,M)(Zi)M] —[% D(S,M)M]In 2,

(B5)

—_92i\M
D(sMy= SEM(2)

- SuC(S,M)(—2i)M" (B6)

From the above discussions, it is clear from the underscal-
ing approximation that the specific heat can be written as

cmm% D(S,;M)Cwm.12(T). (B7)
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