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Scaling solution of the overscreened multichannel Kondo model
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In the Kondo problem the overscreened multichannel model is the only one that can be assessed perturba-
tively. However, until now there are still problems remaining in studies by means of a perturbative renormal-
ization group due to the absence of a proper treatment on the constraint of the pseudofermion. In this paper we
try to settle these problems. We studied the general overscreened multichannel Kondo problem by means of a
field-theory renormalization group with the technique of treating the pseudofermion constraint as developed
recently. We calculated the critical exponent, specific heat, magnetic susceptibility, residue entropy, and Wil-
son ratio for the overscreened multichannel Kondo model. From these results we conclude that all over-
screened multichannel Kondo models with the same channel numberK but differentS have the same fixed
point properties. Therefore, they belong to the same universal class, which agrees with the result obtained by
Bethe ansatz and conformal field theory.@S0163-1829~98!01713-5#
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I. INTRODUCTION

In spite of its long history, the overscreened multichan
Kondo problem1 is still of current interest in condensed ma
ter physics. This is because the overscreened Kondo m
provides the simplest version of non-Fermi-liquid system
and up to now we only have known a few systems in h
spatial dimension (d>2) which have non-Fermi-liquid fixed
points: moreover, the overscreened Kondo model is rela
to a variety of physical systems, such as heavy ferm
compounds,2,3 mesoscopic quantum boxes,4 or two-level
systems.5,6

In the past ten years there have been intensive studie
this region by a variety of methods, such as the Be
ansatz,7–9 conformal field,10,11 numerical renormalization
group ~NRG!,12–14 and perturbative renormalization grou
~PRG!.15–17 A fairly complete understanding of this mod
has been achieved.

Even so, there are still some problems remaining. I
well known in the Kondo problem that the overscreen
multichannel model is the only one which can be asses
perturbatively. But until now consistency between the res
obtained in the framework of the PRG and the results of
Bethe ansatz and conformal field theory has not b
achieved. A question arises: What is the origin of the
problems? Before answering this question, one should
reminded that when studying the Kondo model in the fram
work of field theory, the constraint of pseudofermions sho
be dealt with carefully.

In the Kondo model the local spin operatorS does not
satisfy the fermion or the boson algebra, and thus canno
treated in the field theory framework. To surmount this d
ficulty one often uses the pseudofermion representation
the local spin operatorS, introduced by Abrikosov,18
570163-1829/98/57~14!/8381~13!/$15.00
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S5(
a,b

Sa,baa
†ab , ~1!

whereaa
† andaa are fermion created and annihilated ope

tors, respectively.
There is a constraint for the pseudofermion operator,

(
a

aa
†aa51, ~2!

which is very hard to deal with.
A widely used method of dealing with this constraint

Abrikosov’s method18 or its more sophisticated form deve
oped by Barnes19 and Coleman.20 In this method we take the
pseudofermion energyl→` to freeze out the contribution
of unphysical states. However, there are some troubles
maining in this way of eliminating the unphysica
contributions.21,16Because of the absence of a proper way
use the pseudofermion representation, some problems
been brought in the study of the multichannel Kondo mo
by means of the PRG.

In Ref. 16, Grunberg and Keiter obtain that the critic
exponentD of overscreened Kondo model is related to bo
the channel numberK and the impurity spinS ~an early
result aboutD related toS can be seen in Ref. 22! which is
contradict the exact result,

D5
2

21K
. ~3!

In a recent work,23 Fabrizio and Zarand use Abrikosov’
method to study the overscreened Kondo model with a hi
conductive electron spin. In the framework of the PRG a
up to K23 of the largeK expansion, they obtain that th
8381 © 1998 The American Physical Society
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8382 57MING SHAW, XING-WEI ZHANG, AND DUO JIN
exponentD is not related to the local spinS and consistent
with the exact result in the sense of the 1/K expansion. But
there are still some things needed to be further clarified
their work, such as if their results can still be arrived at wh
the calculation of the largeK expansion is up toK22 or
K24.

Beside Abrikosov’s method there are also other meth
to deal with the constraint. In the cases of spinS51/2 and
S51, the Hilbert space spanned by the pseudofermion
erator has some specific properties, and allows one to fre
out the contribution of the unphysical states while the use
linked cluster theorem is preserved.24–26The constraint prob-
lem for general spin cases has also been settled recentl27

In this paper we use the method developed in Ref. 27
study the general overscreened Kondo model in the fra
work of the PRG. For high-spin (S.1/2) cases, we decom
pose the local spinS into spin 1/2. In this procedure, th
partition function of the original system is separated into
proper weighed partition functions of subsystems. Theref
one can study these subsystems separately. BecauseM
subsystems, induced by the overscreened Kondo mode
the procedure of the decomposition, can be assessed pe
batively, in this paper we only study the overscreened m
tichannel Kondo model. We first study the statistical avera
of physical observables of theM subsystem, then conside
its weight, and finally we obtain the statistical average of
physical observables of the original Kondo system.

Because of the proper treatment of the pseudoferm
constraint, we obtained27~a! the correct critical exponentD of
the overscreened Kondo model, which is only related toK,
and agree with the results of Bethe ansatz and confor
field solutions in the sense of the 1/K expansion whenK@1.
The results of resistivity, specific heat, magnetic suscept
ity, residue entropy, and Wilson ratio are all satisfactory.

The paper is organized as follows. In Sec. II we introdu
the method of treating the constraint. Section III is devo
to defining the statistical average of physical observables
der the pseudofermion representation. In Sec. IV, we disc
some problems about the application of the field-theory te
nique to theM subsystem. In Sec. V, we discuss the pert
bative character of theM subsystem. Sections VI and VII ar
the calculations of the critical exponentD, thermodynamic
and transport properties of the overscreened Kondo mo
In Sec. VIII we give our conclusions.

II. SETTLING THE CONSTRAINT PROBLEM
IN THE PSEUDOFERMION REPRESENTATION

The constraint condition~2! can be treated in the sense
a statistical average: that is, we discuss eliminating the c
tribution of unphysical states in a statistical average.

The key point is that for spin 1/2 and spin 1, the Hilbe
spaces spanned by pseudofermions have some specific

erties. For the case of a local spinS5 1
2 , the unphysical

states satisfy

Suunphy&50, ~4!

and for the case of a local spinS51 the unphysical states ar
divided into two parts: one part satisfies Eq.~4!, and another
~redundant states! is isomorphic to the physical subspac
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From these properties, the contribution of unphysical sta
can be freezed out while the useful linked cluster theorem
preserved.24–26 But for high-spin cases (S.1), there are no
such properties, and the constraint~2! is very hard to deal
with.

Recently the constraint problem for high-spin cases
been settled.27 From decomposing the high-spinS into spin
1/2, we can utilize Eq.~4! and the Popov-Fedotov imaginar
chemical potentialma to eliminate the contribution of false
states in a statistical average.

For any systems which contain a high-impurity spinS
~original system!, its partition function is separated int
many parts~subsystems! because of the decomposition of th
local spin operator. The recursion formulas of the partiti
functions are,27

Tr~S!@e2bH#5 i Tr~1/2!
~S21/2!@e2bH#2Tr~S21!@e2bH#,

Tr~1/2!
~S! @e2bH#5 i Tr~1/2,1/2!

~S21/2!@e2bH#2Tr~1/2!
~S21!@e2bH#.

From these recursion formulas, the partition function
the original system~under an ordinary spin representatio!
can be transformed into the sum of partition functions of
subsystem~under a pseudofermion representation! and the
expansion coefficientM subsystems can be obtained fro
the above recursion formulas. For integer spinS, the result is

Z~S!5 (
m50

S

C1@S,m#Z~2m,1/2! , ~5!

C1@S,m#5~21!S
~S1m!!

~2m!! ~S2m!!
, ~6!

and for half-odd spinS is

Z~S!5 (
m50

S21/2

C2@S,m#Z~2m11,1/2! , ~7!

C2@S,m#5~ i !2S
~S10.51m!!

~2m11!! ~S20.52m!!
. ~8!

In Eqs.~5! and~7!, Z(M ,1/2) is the partition function of the
M subsystem,

Z~M ,1/2!5Tr~M ,1/2!@e2b~H2maNa#, ~9!

wherema is the imaginary chemical potential,ma5 ip/2b,
andNa is the number operator of pseudofermions,

Na5(
i 51

M

Ni5 (
a51

2

(
i 51

M

aa,i
† aa,i ,

whereNi is the pseudofermion number operator ofi th local
spin 1/2.

Equations~5! and ~7! are exact. On the left-hand side o
Eqs.~5! and ~7!, partition functions are in the ordinary spi
representation, and on the right-hand side of Eqs.~5! and~7!,
partition functions are all in a pseudofermion representati
Therefore Eqs.~5! and ~7! give a correct way for using the
pseudofermion representation for high-spin cases.
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III. STATISTICAL AVERAGE

The method of using a pseudofermion representation
high-spin cases developed in Ref. 27 leads to some
characters in the statistical average of physical observab

Let R be the operator which does not contain pseudo
mion operators: for the same reasons as in deducing Eqs~5!
or ~7!, we have

^R&~S!5
Tr~S!@Re2bH#

Tr~S!@e2bH#

5
(MCi@S,M #Tr~M ,1/2!@Re2b~H1maNa!#

Tr~S!@e2bH#

5(
M

D@S,M #^R&~M ,1/2! , ~10!

where

D@S,M #5Ci@S,M #
Tr~M ,1/2!@e2b~H1maNa!#

Tr~S!@e2bH#
, ~11!

^R&~M ,1/2!5
Tr~M ,1/2!@Re2b~H1maNa!#

Tr~M ,1/2!@e2b~H1maNa!#
. ~12!

In Eqs.~10! and~11! the indexi 51,2 corresponds toS being
even and half odd, respectively. For simplicity, in the disc
sions below we shall omit it.

From Eqs.~10!–~12!, we see that under a pseudofermi
representation the statistical average ofR can be treated a
double averages: The first is theM -subsystem ensembl
average defined by Eq.~12!, and the second is for the sub
systems;D@S,M # is treated as the weight of theM sub-
system. It is obvious thatD@S,M # satisfies

(
M

D@S,M #51.

We first study the conductivity under a pseudofermi
representation. Consider the linear response of current,

j n52e(
i

dxn i

dt
, n5x,y,z,

to the external field

V@ t#5e(
i

r i•E@ t#.

From linear response theory, conductivity is defined a28

snn8@w,t#

5 lim
s→`

E
0

`E
0

b

^ j n@0# j n8@ t1 il#&~S!e
2 i ~w1s!tdldt, ~13!

where

^¯&~S!5
Tr~S!@¯e2bH#

Tr~S!@e2bH#
or
w
s.
r-

-

means the statistical average~original system! under an or-
dinary spin representation. From Eq.~10!, we can rewrite Eq.
~13! as

snn8@w,t#

5(
M

D@S,M # lim
s→`

E
0

`E
0

b

^ j n@0# j n8@ t1 il#&~M ,1/2!

3e2 i ~w1s!tdl dt5(
M

D@S,M #s~M ,1/2!
nn8 @w,t#, ~14!

where^¯& (M ,1/2) is defined by Eq.~12!, ands (M ,1/2)
nn8 @w,t# is

the conductivity of theM subsystem. From Eq.~14!, under a
pseudofermion representation, the calculation of the cond
tivity is separated into two parts. The first part is the calc
lation of theM -subsystem average of conductivity under
pseudofermion representation, and the second part is a
the weightD@S,M #; from Eq. ~14! we obtain the total aver-
age of the conductivity.

Now we consider the calculation of the thermodynam
potential under a pseudofermion representation, for any
tem which contains impurity spinS; the thermodynamic po-
tential is written as

V~S!52b21 ln@Z~S!#. ~15!

From Eq.~5! or ~7!, we have

V~S!52b21 lnF(
M

C@S,M #Z~M ,1/2!G
52b21 lnF(

M
C@S,M #e2bV~M ,1/2!G , ~16!

where the thermodynamic potential of theM subsystem is
defined as

V~M ,1/2!52b21 ln@Z~M ,1/2!#. ~17!

From Eq. ~16!, the average of the number of conductio
electrons can be written as

^NC&~S!5
]V~S!

]m
5(

M
D@S,M #^NC&~M ,1/2! ,

^NC&~M ,1/2!5
]V~M ,1/2!

]m
. ~18!

The magnetizationM (S) of the system can be written as

M ~S!52
]V~S!

]B
5(

M
D@S,M #M ~M ,1/2! ,

M ~M ,1/2!52
]V~M ,1/2!

]B
. ~19!

From Eq.~19!, the magnetic susceptibility can be calculat
under the pseudofermion representation

x~S!5
]M ~S!

]B
.
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8384 57MING SHAW, XING-WEI ZHANG, AND DUO JIN
The detailed deducing procedure for entropy and spec
heat are given in Appendix B; here we give the results

S~T!5DF ~S!1(
M

D~S,M !S~M , 1/2!~T!, ~20!

C~T!>(
M

D~S,M !C~M , 1/2!~T!, ~21!

whereS(M ,1/2)(T), and C(M ,1/2)(T) are the entropy and th
specific heat of theM subsystem, respectively, and

S~M ,1/2!52
]V~M ,1/2!

]T
,

C~M ,1/2!52T
]S~M ,1/2!

]T
.

From the above discussions we see that theM subsystems
can be studied separately; thus these subsystems are n
statistically independent.

For the overscreened multichannel Kondo model, the p
tition function of theM subsystem is

Z~M ,1/2!5Tr~M ,1/2!@e2b~H1maNa!#, ~22!

and the corresponding Hamiltonian is

H5H01HI ,

H05 (
n51

K

(
k,a

«@k#cna
† @k#cna@k#,

HI5
J

N (
n51

K

(
i 51

M

(
k,k8,a,b,g,s

~cna
† @k#sW ab

3cnb@k8# !•~aig
† sW gsais!, ~23!

wheresW ab is the Pauli matrix.
From Eq.~23! we see that in theM subsystem there ar

M equivalent local spins 1/2 at the impurity site. Because
the local spin indexi is a good quantum number, at the ba
level these local spins 1/2 coupled to theK channel conduc-
tive electrons separately. For the system defined by E
~23!, one can use the standard field-theory technique con
niently.

IV. FUNCTIONAL INTEGRAL TECHNIQUE APPLIED
TO THE M SUBSYSTEM

From the above discussions, we know, under a pseu
fermion representation, that those subsystems defined
Eqs. ~23! are nearly statistically independent, and can
studied separately. As the first step of the study of the ov
screened Kondo model, in this section we apply the stand
field-theory technique to theM subsystem defined by Eq
~23!, and in the later Sec. VI we shall study the fixed po
properties of theM subsystem by means of the PRG.

The generating functional of theM subsystem is written
as29
c

arly

r-

f

s.
e-

o-
by
e
r-
rd

t

Z~M ,1/2!$h̄,h, z̄ ,z%5E Dc̄ Dc Df̄ Df Exp@S$h̄,h, z̄ ,z%#,

S$h̄,h, z̄ ,z%5S01SI1
1

b (
w

H (
n,k,a

~h̄na@k,w#c̄na@k,w#

1hna@k,w#cna@k,w# !1(
i ,a

~ z̄ ia@w#f̄ ia@w#

1z ia@w#f ia@w# !J ,

~24!

S05
1

b (
w

H (
n,k,a

c̄na@k,w#~ iw2«@k#2m!cna@k,w#

1(
i ,a

f̄ ia@w#~ iw2ma!f ia@w#J ,

SI5
J

b3N (
w1¯w4

dw11w2 ,w31w4(n51

K

(
i 51

M

(
k,k8,a,b,g,s

3~ c̄na@k,w1#sW abcnb@k8,w3# !•~f̄ ig@w2#sW gsf is@w4# !,

where the Grassmann variablesc,c̄ denote electron fields
f,f̄ denote pseudofermion fields, andh,h̄ and z, z̄ are the
source fields of the electron and pseudofermion, respectiv

The generating functional of connected diagrams is29

F ~M ,1/2!$h̄,h, z̄ ,z%5 ln@Z~M ,1/2!$h̄,h, z̄ ,z%#. ~25!

The two-point function of the electron and pseudofermion
the M subsystem can be generated from Eq.~25!.29

G~M ,1/2!
~2,0! @k,w#5^c̄na@k,w#cn8a8@k,w#&~M ,1/2!

5
d2

dh̄na@k,w#dhn8a8@k,w#

3F ~M ,1/2!$h̄,h, z̄ ,z%u h̄5h5 z̄5z50 , ~26!

G~M ,1/2!
~0,2! @w#5^f̄ ia@w#f i 8a8@w#&~M ,1/2!

5
d2

dz̄ ia@w#dz i 8a8@w#

3F ~M ,1/2!$h̄,h, z̄ ,z%u h̄5h5 z̄5z50 , ~27!

and the (2m,2n)-point Green functionG(M ,1/2)
(2m,2n)@k,w# can

also be generated from Eq.~25! by the functional derivatives
on the source fieldsh̄, h, z̄, andz.

These Green functions can be calculated purterbatively
the standard diagram technique. Although in the Kon
model the spatial translation symmetry is broken, in ea
interacted vertex point the momentumk of the conduction
electron is not conserved, but in the sense of a random a
age of impurity configurations, we still only need to consid
one-particle-irreducible~1PI! diagrams in a perturbative ex
pansion. According to the standard way in quantum fi
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theory~QFT!, we introduce generating functional of 1PI di
grams through the Legendre transform30,16

G~M ,1/2!$h̄,h, z̄ ,z%1F ~M ,1/2!$h̄,h, z̄ ,z%

5( ~h̄^c&~M ,1/2!1h^c̄&~M ,1/2!!

1( ~z̄^f&~M ,1/2!1z^f̄&~M ,1/2!!. ~28!

FromG (M ,1/2)$h̄,h, z̄ ,z%, we can generate the (2m,2n)-point
vertex function

G~M ,1/2!
~2m,2n!@k1 ,...,k2m ;w1 ,...,w2m12n#

5)
i 51

m
d

d^c̄nia i
@ki ,wi #&~M ,1/2!

)
j 51

m
d

d^cnja j
@kj ,wj #&~M ,1/2!

3)
k51

n
d

d^f̄ i kak
@wk#&~M ,1/2!

)
l 51

n
d

d^f i la l
@wl #&~M ,1/2!

3G~M ,1/2!$h̄,h, z̄ ,z%u h̄5h5 z̄5z50 . ~29!

From Eqs. ~25!–~29!, one can prove that the
(2m,2n)-point Green function can be written as

G~M ,1/2!
~2m,2n!@k1 ,...,k2m ;w1 ,...,w2m12n#

52G~M ,1/2!
~2,0! @k1 ,w1#¯G~M ,1/2!

~2,0! @k2m ,w2m#

3G~M ,1/2!
~0,2! @w2m11#¯G~M ,1/2!

~0,2! @w2m12n#

3G~M ,1/2!
~2m,2n!@k1 ,...,k2m ;w1 ,...,w2m12n#

1Q~M ,1/2!
~2m,2n! , ~30!

where Q(M ,1/2)
(2m,2n) represents the one-particle-reducible d

grams, andG (M ,1/2)
(2m,2n) is the (2m,2n)-point vertex function.

Equation ~30! gives the rule of calculating the
(2m,2n)-point vertex functionG (M ,1/2)

(2m,2n) from the diagram
rule about Green functionG(M ,1/2)

(2m,2n) . Using the vertex func-
tion to study the renormalization of the interactive model h
its advantage.30

For the electron two-point vertex function we have

G~M ,1/2!
~2,0! @k,w#5

1

G~M ,1/2!
~2,0! @k,w#

5 iw2«@k#2m2S~M ,1/2!@w#, ~31!

whereS (M ,1/2)@w# is the conductive electron self-energy
the M subsystem.

In the M subsystem we have used the Popov-Fedo
imaginary chemical potential to freeze out the contribut
of unphysical states, and so the pseudofermion is dec
strained in the above QFT framework. The cost is that n
we must study theM subsystem and its weight, and th
procedure is more complex than the study of the origi
system.

Now there are some things needed to be further clarifi
We use the imaginary chemical potentialma to freeze out the
-

s

v

n-
w

l

d.

contribution of unphysical states, and this elimination is f
in the exact sense~this corresponding to the fact that th
imaginary parts induced byma are all canceled in the parti
tion functionZ(M ,1/2) exactly!. However, in the perturbative
treatment, this property of the canceling of each other is
realized in each order of the perturbative expansion. I
realized only after all orders of perturbative expansion ter
have been summed. This does not lead to any difficu
because we know that the imaginary parts induced byma are
unphysical and summing the perturbative expansion te
cannot mix the real part and the imaginary part; so throw
away the imaginary parts induced byma in perturbative com-
putations is reasonable.

From this we see that the imaginary chemical poten
method provides a proper way to eliminate the unphys
contribution in perturbative calculations. Throwing awa
some terms in perturbative calculations is similar to Arb
kosov’s method. However, in Appendix A we shall sho
that, at finite temperature, in the calculation of perturbat
diagrams, these two different methods lead to different
sults.

V. PERTURBATIVE CHARACTER
OF THE M SUBSYSTEM

In this paper we intend to study the overscreened mu
channel Kondo model by means of the PRG. A quest
arises: Under which conditions can theM subsystem be
assessed perturbatively?

Similar to Ref. 1, we give an argument on the type of t
fixed point of theM subsystem. This argument is based
the exclusion principle and the following facts: For th
spin exchange model, antiferromagnetic exchange ha
strong-coupling fixed point, while ferromagnetic exchan
has a weak-coupling fixed point. We must point out that
only use this argument to clarify the perturbative characte
the M subsystem. The fixed point configurations ofM sub-
systems are not directly related to the original system,
cause in our formalism one cannot use a singleM subsystem
to determine the properties of the original system@as an ex-
ample see Eq.~10!#. However, there are also possibilitie
where the weightD@S,M # is concentrated on a singleM
subsystem; for this case the fixed point configuration of
original system can be determined by thisM subsystem. We
shall discuss this issue in Sec. VII.

As discussed above theM subsystem can be treated as
system where at an impurity site there areM equivalent local
spins (S51/2). From Eqs.~23! we see that the indexi
~which denotes the local spins! is a good quantum number
thus at the bare level one can suppose that these local s
are coupled to theK channel conductive electrons separate
On the other hand, because of the exclusion principle, th
are onlyK electrons coupled to these local spins at the fi
shell of the impurity site. We first assume a strong-coupl
configuration for theM subsystem at a fixed point; that is
the impurity site traps one electron in each conductive e
tron channel. We separate the discussion into two steps

First we discuss the stable configuration for local sp
trapping the conductive electrons. We first assume for on
the local spin-1/2 traps all theK channel electrons and form
a complex of spinK2 1

2 as shown in Fig. 1~a! ~because of the
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FIG. 1. Schematic strong-coupling configuration for theM subsystem.~a! The unstable configuration for local spins trapping conduct
electrons.~b! The stable strong-coupling configuration for the case ofK,M . ~c! The stable strong-coupling configuration for the case
K5M . ~d! The unstable strong-coupling configuration for the case ofK.M .
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exclusion principle the coupling between the otherM21
local spin-1/2 and the second-shell conductive electron
ferromagnetic, and so the otherM21 local spin-1/2 are as
ymptotically free in relation to the second-shell electron!;
then we consider the exchange coupling between this
complex and the other local spin-1/2. Because the excha
coupling is still antiferromagnetic, the above configuration
unstable. For the same reason, one can see that the con
rations, with one of the local spin-1/2 traps more than o
electron while there are free local spin-1/2, are also unsta

Second we consider the stability of the strong-coupl
configuration. The situation is divided into thre
groups: ~a! The first group corresponds toK,M as shown
in Fig. 1~b!, ~b! the second group corresponds toK5M as
shown in Fig. 1~c!, and ~c! the third group corresponds t
K.M as shown in Fig. 1~d!.

For case~a! the coupling between the dressed impur
site ~which has a residueM2K local spin-1/2 trap! and the
second-shell conductive electron is ferromagnetic; the
configuration shown in Fig. 1~b! is stable. It also clears tha
the second configuration shown in Fig. 1~c! is stable. For
case~c!, there are residue spins complexes at the dres
impurity site, and because of the exclusion principle, th
spin complexes are coupled to second-shell conductive e
trons antiferromagnetically. The third configuration shown
Fig. 1~d! is unstable. On the other hand, the weak-coupl
configuration is also unstable.

From the above discussions we see that theM subsystems
with K<M have strong-coupling fixed points, while theM
subsystems withK.M have an intermediate fixed poin
Therefore only theM subsystem withK.M can be assesse
perturbatively.

Under a pseudofermion representation the original sys
is decomposed into proper weighedM subsystems and from
Eqs.~5! and~7! we know that the value ofM ranges from 1
~0 for integer spin! to 2S; there are always someM sub-
systems belonging to the caseK.M . This is not the key
point. Because in the decomposition if there is oneM sub-
is

in
ge
s
gu-
e
le.
g

st

ed
e
c-

g

m

system belonging to the case ofK<M , then according to Eq
~5! or ~7! the original system cannot be assessed pertu
tively. So only the original system in the decomposition
the M subsystems that satisfy the conditionK.M can be
assessed perturbatively. From Eq.~5! or ~7! we see that this
corresponds to the case ofK.2S; the original system cor-
responds to the overscreened multichannel Kondo mode

From the above argument we arrive at the well-kno
result that only the overscreened multichannel Kondo mo
can be assessed perturbatively.

VI. RG EQUATIONS OF THE M SUBSYSTEM
AND THE CALCULATION

OF THE CRITICAL EXPONENT

In the Kondo model some vertex functionsG (M ,1/2)
(2m,2n) de-

fined by Eq.~29! are divergent; from power counting30,22 the
divergence degree is given by

d~2m,2n!512m. ~32!

From Eq. ~32!, we know that only the vertexesG (M ,1/2)
(0,2n)

and G (M ,1/2)
(2,2n) are divergent. The divergence ofG (M ,1/2)

(0,2) and
G (M ,1/2)

(2,2) can be overcome by redefiningJ, and introducing
the renormalization of the pseudofermion field31,16~b!

J→JR ,

f→fR5Z21/2@J,L#f,

f̄→f̄R5Z21/2@J,L#f. ~33!

It is worth pointing out that in Eq.~33! there is no renor-
malization on the conductive electron field; therefore there
no possibility for a conductivity electron field to obtain a
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anomalous dimension. In the Kondo problem if there is
non-Fermi-liquid fixed point, this non-Fermi liquid can on
be local.

From Eqs.~33!, the renormalization vertex is defined a

G~M ,1/2!
~2m,2n!@$k,w%,JR ,L#5Zn@J,L#G~M ,1/2!

~2m,2n!@$k,w%,J,L#.
~34!

From Eq. ~34!, the RG equations of Callen-Symanzy
type31,16 can be written as

H L
]

]L
1b@J#

]

]J
1nh@J#J G~M ,1/2!

~2m,2n!@$k,w%,J,L#50,

~35!

and forn50, we have

H L
]

]L
1b@J#

]

]JJ G~M ,1/2!
~2m,0! @$k,w%,J,L#50. ~36!

In Eqs.~35! and ~36!,

b@J#5L
]

]L
JuR , ~37!

h@J#5L
]

]L
ln Z@J,L#uR , ~38!

whereR means keeping theJR fixed.
Focusing on the purpose of obtaining the critical exp

nent, we only need to study Eq.~36! for the case ofm51.
We first calculate the vertex functionG (M ,1/2)

(2,0) @k,w,J,L# by
means of the standard perturbative diagram technique. F
Eq. ~31! we know this corresponds to the calculation of t
electron self-energy.

For the overscreened Kondo modelK21 is a small param-
eter (K.2S); thus using a largeK expansion15,30 is natural.
In perturbative diagrams,J is counted asK21, and each loop
of electrons contributes a factorK. From these we can selec
the diagrams which must be considered in the largeK ex-
pansion. Similar to Ref. 15, we calculate the electron s
energy up toK24. For theM subsystem, the pseudofermio
operator has two indices:a, the spin (s5 1

2 ) index, and the
i ( i 51,...,M ) index; among themi is a good quantum num
ber. So in diagrams, each loop of pseudofermions will c
tribute a factorM . On the other hand, after averaging t
random impurity configurations, diagrams which containLa

pseudofermion loops will contribute a factorni
La . In the di-

lute limit ni!1, we only need to consider those diagram
which contain one pseudofermion loop. The calculation
self-energy diagrams is too tedious, and we used a comp
to calculate the sum of the internal spin indices and ima
nary frequencies in the self-energy diagrams; then we
formed the integrals of the internal electron energye i at
T50. Apart from a factorM , the electron self-energy of th
M subsystem is the same as the result of Ref. 15: the im
nary part of vertex function ImG(M,1/2)

(2,0) @0,w# is written as
a

-

m

f-

-

s
f
ter
i-
r-

i-

Im G~M ,1/2!
~2,0! @0,w#52M H 3p

16
nig

2F122g ln
w

D
1g2K ln

w

D

1~ ln 221!g2K13g2 ln2
w

D

2
7

2
g3K ln2

w

D
1S 52

5

2
ln 2Dg3K ln

w

D

1g4K2 ln2
w

D

1S 2 ln 22
5

2Dg4K2 ln
w

DG J , ~39!

whereg is a dimensionless coupling constant,g5r fJ, and
D is the bandwidth of the conductive electron,

G~M ,1/2!8~2,0! 5Im G~M ,1/2!
~2,0! also satisfies RG equation~36!,

H L
]

]L
1b@J#

]

]JJ G~M ,1/2!8~2,0! @k,J,L#50, ~40!

whereL5D/w.
The remaining calculations are same as those in Ref.

For theb function, we have

b@g#52g21
K

2
g31

1

2 S 11
3

2
ln 2DKg42

K2

4
g5. ~41!

From b@g* #50, the fixed point coupling constant is

g* 5
2

K S 12
2

K
ln 2D1O@K23#. ~42!

From D5(]/]g) bug* , the critical exponentD of the M
subsystem is

D5
2

K S 12
2

K D1O@K23#. ~43!

From Eq.~43! we see that the critical exponent of theM
subsystem is the same as the one of the spins5 1

2 system,15

and agrees with Eq.~3! whenK@1.
The renormalized coupling constantgR has the

asymptotic form

gR@w#5g* 2§S w

TK
D D

, ~44!

§5~g* 2g!~g* !KD/2e2D/g* . ~45!

Equation~43! is the most important result of this pape
becauseD is not related toM ; all theM subsystems (K.M )
defined by Eq.~23! have the same critical exponentD.

VII. SCALING SOLUTION OF THE OVERSCREENED
MULTICHANNEL KONDO MODEL

Under a pseudofermion representation the overscree
multichannel Kondo system is decomposed intoM sub-
systems which are nearly statistically independent of e
other. From the study in the last section we know that
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these subsystems belong to the same universal class
critical exponentD52/(21K). In this section we return to
the original system, and study the scaling solution of phy
cal observables.

From discussions in Sec. III the calculation of a statisti
average of physical observables is separated into two s
First we study the average of theM subsystem; second w
calculate the weightD@S,M # for the M subsystem: In the
sense of a RG transformation, the partition function is
mensionless; thusD@S,M # does not contribute an additiona
scaling exponent to the scaling solution of physical obse
ables. Under the scaling approximation we only conside
zero-order partition function in the calculation ofD@S,M #.
From the discussions in Appendix B, we have

D@S,M #5
C@S,M #~22i !M

(MC@S,M #~22i !M . ~46!

We first study the resistivityR(S) of the OSMK system;
from Eq. ~14!, the resistivity can be written as

R~S!5(
M

D@S,M #R~M ,1/2! . ~47!

In computing we only consider second-order electr
self-energy diagrams of theM subsystem.R(M ,1/2) can be
determined by the imaginary part of the self-energy. T
result is

R~M ,1/2!.M
3

16

me

nee
2r

nig
2. ~48!

Equation~48! is the result of a bare perturbative treatme
i.e., the energy scale isD. In the universal region we replac
g in Eq. ~48! by its renormalized formgR given by Eq.~44!,
and so the scaling form ofR(M ,1/2) is

R~M ,1/2!5M
3p2

4K2

ni

ne
r0F12K§S T

TK
D DG , ~49!

wherer054p/kFe2.
From Eqs.~47! and~49!, we arrive at the scaling form o

the resistivity of the overscreened Kondo model,

R~S!@T#5
3p2

4K2

ni

ne
r0S (

M
MD@S,M # D F12K§S T

TK
D DG .

~50!

From Eq.~50! we see that the scaling exponent of the lo
temperature resistivity of the overscreened multichan
Kondo model is independent ofS. On the other hand
(MMD@S,M # depending onS, R(S)@0# does not approach
the unitary limit. Therefore Eq.~50! satisfies the rule of
charge neutrality.32

Second, we study the thermodynamic potential of theM
subsystem. The thermodynamic potential ofM subsystem is
defined as

V~M ,1/2!52b21 ln Z~M,1/2! . ~51!

From the linked cluster theorem,33 V (M ,1/2) can be written
as
ith

i-

l
ps.

-

-
a

n

e

;

-
el

V~M ,1/2!5V02b21(
l 51

`

U ~M ,1/2!
l , ~52!

whereV0 is the thermodynamic potential of theK channel
noninteracting electron gas, withM free local spin-1/2 at
impurity site, and

U ~M ,1/2!
l

5
1

l
@sum of l order connected vacuum diagram#.

We only consider the contribution up to 1/K2; apart from
a M factor, the calculation is the same as Ref. 15. The s
of the thermodynamic potential because of the presence o
impurity spin is

dV~M ,1/2!52TM ln 21M
p2

4
niTS Kg32

3

8
K2g4D ,

~53!

and the scaling form of Eq.~53! is

dV~M ,1/2!@T#52TMS ln 22
p2

2K2D2M
3p2

4
T§2S T

TK
D 2D

.

~54!

From Eq.~54!, the zero-temperature entropy of theM sub-
system is obtained:

S~M ,1/2!~0!52
]

]T
dV~M ,1/2!@T#uT505M S ln 22

p2

2K2D .

~55!

From Eq.~53!, the scaling form of the specific heat shift o
the M subsystem is

dC~M ,1/2!@T#52T
]dS

]T

5M
3

2
p2§2DS T

TK
D 2D

. ~56!

From Eqs.~55! and~B5!, we obtain the zero-temperatur
entropy of the overscreened multichannel Kondo model,

dS@0#5DF ~S!1(
M

D@S,M #S~M ,1/2!

5 lnH(
M

C~S,M !~22i !MJ
2H(

M
D~S,M !M J p2

2K2 . ~57!

It can be proved that there are two important re
tions: For integer spin we have

(
m50

S

C1~S,m!~22i !2m52S11, ~58!

and for half-odd spin we have
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(
m50

S21/2

C2~S,m!~22i !2m1152S11. ~59!

So the residue entropy of the overscreened multichan
Kondo model is

dS@0#5 ln~2S11!2H(
M

D~S,M !M J p2

2K2 . ~60!

From Eq.~60! we know that the ground state of the ove
screened multichannel Kondo model is degenerate. It is w
known that the fixed point coupling constant of the ov
screened multichannel Kondo model isJ* ;1/K. When K
→`, the local spin is asymptotically free in low-energ
physics, and the degeneracy degree of ground states is
the degeneracy degree of a free local spinS. In this paper we
study the overscreened multichannel Kondo model thro
the M subsystem, where whenK→` the ground state de
generacy degree of theM subsystem is 2M. It is quite sur-
prising that Eq.~60! satisfies the relation

lim
K→`

S~0!5 ln~2S11!, ~61!

and we further compare our result and the result of con
mal field theory.

The residue entropyS(0) obtained by a conformal field
is10

Scon~0!5 lnS sin@p~2S11!/~21K !#

sin@p/~21K !# D . ~62!

In Fig. 2~a! and Fig. 2~b!, we plot S(0)-K curves obtained
by the PRG and conformal field theory for the case
S53,9/2, respectively. From Fig. 2~a! and Fig. 2~b! we see
that for largeK the residue entropy obtained by the PRG
consistent with the results of conformal field theory.

From Eqs.~21! and ~56! the scaling form of the specific
heat shift is written as

dC~S!@T#5(
M

D@S,M #dC~M ,1/2!

5S (
M

MD@S,M # D 3

2
p2§2DS T

TK
D 2D

. ~63!

Finally, we consider the magnetic susceptibility of theM
subsystem. Apart from a factorM coming from the pseudo
fermion loop, the result of Ref. 15 can be used:

dx~M ,1/2!@T#5
]dM ~M ,1/2!@T#

]B U
B50

5M S K

2
§ D 2 1

T S T

TK
D 2D

.

~64!

From Eqs.~19! and ~57!, we have

dx~S!@T#.(
M

D@S,M #dx~M ,1/2!@T#

5S (
M

MD@S,M # D S K

2
§ D 2 1

T S T

TK
D 2D

. ~65!
el

ll
-

ust

h

r-

f
From Eqs.~56! and ~58!, we can obtain the Wilson ratio

of the OSMK system in general cases. The Wilson ratio
defined as

WS5
dx~S!@T#

dC~S!@T#

Cb

xb
, ~66!

where Cb and xb are the bulk specific heat and magne
susceptibility, respectively, and

Cb5
2Kp2Tr

3
, xb52Kr, ~67!

and we have

WS5
K3

36
. ~68!

The Wilson ratio obtained in Eq.~68! is the same as the on

obtained in Ref. 15 which studied the case of spinS5 1
2 , and

agrees with the result of the conformal fie

W5 1
18 (21K2)(21K/2) in the sense ofK@1.

VIII. DISCUSSION AND CONCLUSION

In this paper we study the scaling solution of the ov
screened multichannel Kondo model by means of the PR
The results we obtained are consistent with the results of

FIG. 2. TheS(0)-K curves of the overscreened multichann
Kondo model obtained by the PRG and conformal field theo
respectively. Dotted lines denote the results of a conformal fi
and the solid lines denote the results of the PRG.~a! For the case of
S53, and~b! for the case ofS59/2.
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Bethe ansatz or conformal field theory. But there are s
some things that need more discussion.

The first thing one needs to discuss is the perturba
treatment of theM subsystem. One can say the reason t
we arrive at Eq.~43! is the assumption ofni!1 which al-
lows us to neglect interference effects. It is indeed so. Ho
ever, we must point out that the physics of magnetic im
rities in a Fermi sea are divided into two parts:~a! isolated
magnetic impurity effects and~b! interference effects be
tween impurities. Among them the isolated magnetic imp
rity effects are the typical many-body effects. Because
ground states with up impurity spin and down impurity sp
are orthogonal,34 the spin flipping scattering excites infinit
particle-hole pairs. The isolated magnetic impurity in
Fermi sea leads to complex many-body effects~orthogonal-
ity catastrophe effect!, and the Kondo model has no trivia
infrared properties. In the study of the Kondo (s-d) model,
we are mainly concerned with isolated magnetic impur
effects. From this point of view, we sayni!1 is not only an
assumption. In this paper we study the Kondo model thro
theM subsystem, and from the argument given in Sec. V,
see that only theM subsystem withK.M can be assesse
perturbatively. For the case ofK<M , the perturbative treat
ment is ineffective, but we still can learn from Eq.~39!. As
discussed above we only study isolated magnetic impu
effects, and from Eq.~39! we conjecture thatM is unimpor-
tant in determining the low-temperature universal proper
of subsystems. It may be related to the well-known fact t
the universal properties of the local Fermi liquid fixed po
~underscreened or screened multichannel Kondo model! are
independent ofS.

Second we discuss the calculation ofD@S,M # andDF (S).
The conditionK.M is quite important. For overscreene
multichannel Kondo models, all theM subsystems satisfy
the conditionK.M , and so can be assessed perturbative
the perturbative computations ofD@S,M # andDF (S) are re-
liable. We use a zero-order partition function of theM sub-
system to calculate the weightD@S,M # andDF (S) in Appen-
dix B, and this leads to the correct asymptotic form of t
degenerate degree of ground states of the overscre
Kondo model whenK→`. So the perturbative approxima
tion in the calculation ofD@S,M # andDF (S) is correct quan-
titatively.

For underscreened and screened multichannel Ko
models, the subsystems are separated into two groups.
first group satisfies the conditionK.M which can be as-
sessed perturbatively and has non-Fermi-liquid fixed poi
the second group satisfies the conditionK<M which cannot
be assessed perturbatively and has Fermi liquid fixed po
From Eq.~B3! we see, for computingD@S,M # and DF (S),
one needs to compute all the subsystem partition functio
Although for the first group subsystems the perturbative p
tition functions are reliable, the computation of the partiti
functions in the second group subsystems goes beyond
turbative theory. Therefore from perturbative theory, we c
not deduce whether the second group subsystems dom
the low-energy physics. However, the logic structure of
decomposition formalism gives some insight. The scree
multichannel Kondo model is the interesting case, wh
K52S, and in decomposition all the subsystems belong
the first group but one withK5M belongs to the secon
ll

e
t

-
-

-
e

h
e

ty

s
t

t

;

ed

o
he

s;

ts.

s.
r-

er-
-
ate
e
d
e
o

group. From the discussions in Sec. V we know that for
first group subsystems the ground states are degene
while for the M subsystem withK5M there is a singlet
ground state. We conjecture~but cannot prove! for this case
that the partition functions have an asymptotic for
Z(I ,1/2);e2ba I, I 5M ,K, whenT!1 ~wherea I may be re-
lated to the ground state energy of theM subsystem!, and
aK,aM . From Eq.~B3! we see that, whenT→0, this leads
to D@S,K#51, D@S,M #50 (MÞK), and DF (S)50. From
Eq. ~20! we see this leads to the residue entropy of the or
nal system as the well-known result:S(0)50. From the for-
mula of the static magnetic susceptibility@see Eq.~19! and
below# we see that this also leads tox (S)5x (K) .

Now we give the summary. In this paper we used
method developed in Ref. 27 to deal with the constraint
pseudofermions. We decomposed the high-spinS into spin
1/2. In this procedure the partition function of the origin
system is decomposed into proper weighed partition fu
tions of the subsystem. We studiedM subsystems of the
overscreened multichannel Kondo model in the framew
of the PRG; then we calculated the weight of theM sub-
system by a perturbative approximation. From this pro
dure, we have achieved the fine results of the residue ent
and the scaling solution of the resistivity, specific heat, a
susceptibility. From the scaling form of resistivity, specifi
heat, and susceptibility we deduced that the critical expon
of overscreened multichannel Kondo model is

D5
2

K S 12
2

K D1O~K23!,

which agrees with the results of the Bethe ansatz and c
formal field theory whenK@1.
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APPENDIX A: THE ROLE OF THE IMAGINARY
CHEMICAL POTENTIAL

IN THE PERTURBATIVE EXPANSION

In the imaginary chemical potential method we introdu
ma to eliminate the contribution of unphysical states, a
have the relation

Z~1/2!5 iZ ~1/2!5 i Tr~1/2!@eb~H2ma!#5 iZ ~1/2! , ~A1!

whereZ(1/2) is in ordinary spin representation andZ(1/2) is in
a pseudofermion representation.

The term on the left-hand side of Eq.~A1! is real, and on
the right-hand side of Eq.~A1! imaginary parts cancel eac
other exactly. But when we calculate the partition functi
perturbatively this canceling is not realized in each order
the perturbative expansion.27~b! It does so when all order per
turbative expansion terms have been summed. It is the s
for the calculation of the statistical average of the operatoR
which does not contain pseudofermion operators,
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^R&~S!5(
M

D@S,M #^R&~M ,1/2! . ~A2!

In ^R& (M ,1/2) the imaginary parts induced byma ~not includ-
ing the intrinsic imaginary part if there is one! canceled each
other exactly.

We have pointed out in Sec. IV that this does not lead
any difficulty, and throwing away the imaginary parts i
duced byma is reasonable. The imaginary chemical poten
method provides a proper way to freeze out unphysical c
tributions in perturbative calculations. In this appendix w
show this procedure concretely, and compare the results
tained with the imaginary chemical potential method a
Abrikosov’s method, respectively.

As an example we calculate a fourth-order conduct
electron self-energy diagrams shown in Fig. 3. We cons
the single-channel spin-1/2 Kondo model. The zero-or
pseudofermion two-point function is written as
i
s

es
o

l
n-

b-
d

e
r
r

G0
~0,2!@w#5

1

iw2u
, ~A3!

whereu in the imaginary chemical potential method isma ,
and in Arbrikosove’s method isl.

We calculate the diagram at finite temperature. After su
ming the internal spin indices and imaginary frequencies,
have

FIG. 3. Electron self-energyS4@v#.
S4@v#5
21

8
~J!4nir f

3E E E
2D<e i<D

de1de2de3H 2
3

4

~11ebu! f @e1#~ebu f @e2#1 f @2e2# !~ebu f @e3#1 f @2e3# !

~e12e2!~e12e3!~ iv2e1!

1
1

4

~e2bu f @2e1#1 f @e1# !~ebu f @e3#1 f @2e3# !~ebu f @e2#1 f @2e2# !

~ iv2e1!~ iv2e2!~ iv2e3! J . ~A4!

For the imaginary chemical method,u5ma andebma5 i , and from Eq.~A4! we have

S4@v#5
21

8
~J!4nir f

3E E E
2D<e i<D

de1de2de3H 2
3

4

~11 i ! f @e1#~ i f @e2#1 f @2e2# !~ i f @e3#1 f @2e3# !

~e12e2!~e12e3!~ iv2e1!

1
1

4

~2 i f @2e1#1 f @e1# !~ i f @e3#1 f @2e3# !~ i f @e2#1 f @2e2# !

~ iv2e1!~ iv2e2!~ iv2e3! J . ~A5!

For the reasons discussed above, we further throw away the imaginary part induced byma , and have

S4@v#5
21

8
~J!4nir f

3E E E
2D<e i<D

de1de2de3

3H 3

4

f @e1# f @e2# f @e3#1 f @e1# f @2e2# f @e3#1 f @e1# f @e2# f @2e3#2 f @e1# f @2e2# f @2e2#

~e12e2!~e12e3!~ iv2e1!

1
1

4

2 f @e1# f @e2# f @e3#1 f @2e1# f @2e2# f @e3#1 f @2e1# f @e2# f @2e3#1 f @e1# f @2e2# f @2e2#

~ iv2e1!~ iv2e2!~ iv2e3! J . ~A6!
the
Throwing away some terms in perturbative calculations
similar to Abrikosov’s method, and we further compare the
two methods. In Arbrikosov’s methodu5l, and we take
l→` to freeze out the contribution of the unphysical stat
For the electron self-energyS@v# the operation is

lim
l→`

ebl

2S11
S4@w#,

and from Eq.~A4! we have
s
e

.

S4@v#5
21

16
~J!4nir f

3E E E
2D<e i<D

de1de2de3

3H 23
f @e1# f @e2# f @2e3#

~e12e2!~e12e3!~ iv2e1!

2
f @2e1# f @2e2# f @2e3#

~ iv2e1!~ iv2e2!~ iv2e3! J . ~A7!

Comparing Eqs.~A6! and ~A7!, we see that the two dif-
ferent methods lead to different results. The existence of
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differences between the results obtained by the two meth
is general in the calculation of perturbative diagrams, and
conclude that at finite temperature the two different meth
give different results.

APPENDIX B: THE FORMULAS OF THE ENTROPY
AND SPECIFIC HEAT

In this appendix we give a detailed procedure of the c
culation of the entropy and specific heat under a pseudo
mion representation. The entropy of the original system
defined as

S@T#52
]

]T
V~S!. ~B1!

From Eq.~16!, we have

S~T!5 lnF(
M

C~S,M !e2bV~M ,1/2!G
1b

(MC~S,M !V~M ,1/2!e
2bV~M ,1/2!

(MC~S,M !e2bV~M ,1/2!

1(
M

D~S,M !S~M ,1/2!

5DF ~S!1(
M

D~S,M !S~M ,1/2!~T!, ~B2!

where S(M ,1/2) is the entropy of the M subsystem
S(M ,1/2)@T#5(2]/]T) V (M ,1/2) , and D(S,M ) is the weight
of the M subsystem.D(S,M ) andDF (S) can be written as

D@S,M #5
C@S,M #Z~M ,1/2!

(MC~S,M !Z~M ,1/2!
,

DF ~S!5H ln Z~S!2
d

dl
lnF(

M
C~S,M !e2lbV~M ,1/2!G J U

l51

5H d

dl
ln

@(MC~S,M !Z~M ,1/2!#
l

(MC~S,M !@Z~M ,1/2!#
l J U

l51

. ~B3!
ds
e
s

l-
r-

is

From Eq.~B3! we see that bothDF (S) andD@S,M # have
the form

partition functions

partition functions
.

In this paper we seek the scaling solution of the ov
screened Kondo model. In the sense of the scaling trans
mation the partition function is dimensionless.DF (S) and
D@S,M # would not contribute extra scaling exponents in
scaling solution of physical observables. Furthermore, for
overscreened multichannel Kondo model allM subsystems
can be assessed perturbatively. We use the zero-order p
tion function of theM subsystem,

Z~M ,1/2!
0 5~22i !M)

k
~11e2be~k!!2K, ~B4!

to calculateDF (S) andD(s,M ).
From Eqs.~B3! and ~B4! we have

DF ~S!5H d

dl
ln

@(MC~S,M !~22i !M#l

(MC~S,M !~22i !Ml J U
l51

5 lnH(
M

C~S,M !~2i !MJ 2H(
M

D~S,M !M J ln 2,

~B5!

D~S,M !5
C~S,M !~22i !M

(MC~S,M !~22i !M . ~B6!

From the above discussions, it is clear from the unders
ing approximation that the specific heat can be written a

C~S!~T!>(
M

D~S,M !C~M ,1/2!~T!. ~B7!
hys.
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