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Spin diffusion and the spin-1/2XXZ chain at T=< from exact diagonalization
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We study the long time behavior of tlzz andxx time-dependent autocorrelation function of the spin-1/2
XXZ chain atT=o by exact diagonalizations on a chain of 16 sites. We find that the numerical results for the
zz correlation are very well fit by the formuler A+ Be™*{"1cosQ(t—ty)]. From this we estimatd as a
function of the anisotropy of the chain and study the crossover from ballistic to diffusive behavior.
[S0163-18298)06014-1

I. INTRODUCTION Sj(t;A):<0'£)(t)0'£)(0)>= lim 2-NTre—itH & e|tHO_£)
N— oo
The phenomenological theory of spin diffusion was pro- (1.9
posed by Bloembergérand de Gennés to give a descrip-
tion of inelastic neutron scattering in magnetic systems af hese correlations have been studied for the isotropic case
elevated temperatures. It is based on the physical argumeAt=1 by numerical and approximation methods for over 30
that at high enough temperatures the modes of the systebﬁfafs‘c-’_
become independent and may be represented as GaussianWhat is very surprising is that after so much effort the
fluctuations. The argument is independent of dimension an@nswer to the question of whether or not there is spin diffu-
one of the elementary consequences of this theory is that &ton in theXXZ model has not been resolvesee Chap. 10
infinite temperature the autocorrelation of a spin whichof Ref. 18 for a detailed discussion of the situation as of
obeys a conservation law has the long-time behavior in di1994. This is all the more surprising since the spin-X/XZ
mensiond model is the oldest known solvable spin chain. However,
after decades of effort the only exact results known for the
S(t)~At~ 92, (1.1  autocorrelation al == Eq. (1.4) are as follows:
(1) The general result proven in Ref. ZWith a mild

This spin-diffusion phenomenology is extensively used toassumptionthat the Fourier transfor®?(w,A) of S¥(t,A)
study neutron scattering in real magnetic syst&ms. must diverge whenv—0 at least as rapidly as dn'! and

It is of considerable interest to demonstrate that this phethat if the asymptotic behavior Eq1.2) holds then asw
nomenology follows in some degree of universality for a~0
large class of conservative systems specified by a Hamil-
tonian and over the years there have been a variety of argu-
ments made for its validity-® In parallel to these investiga-
tions there has been a long series of attempts to find a systegﬁd
sufficiently simple to actually compute an autocorrelation s B 1
function and to then see whether or not the spin-diffusion (2) the results specific td =0 that
behavior actually holds. Most of the studies have been in one

dimension where the long-time dependence of @d) is SZ(I'O)=[Jo(2t)]2:{ifﬂcos 2 <in o4 Br 0o
1 ﬂ_ O .

Sw)~A'w Y2 (1.5

S(t)~At~ 2 1.2
whereJy(2t) is the Bessel function of order zero &Ad*
The most studied quantum-mechanical model is the spin-
1/2 XXZ chain ofN sites with periodic boundary conditions Sx(t,0)=e‘t2. (1.7
specified by the Hamiltonian

The total spin componei!® ;o will only commute with
H if A=1 and hence in general depends on time. Thus
S¥(t,A) is not expected to have spin-diffusion behavior for
_ A#1. However=Y o7 does commute witH and hence
where ¢! is the j=x,y,z Pauli spin matrix at sit¢. The does satisfy the conservation law needed for spin diffusion.
autocorrelation functions at infinite temperature are definedNevertheless for large we see from Eqs(1.6) that S*(t;0)
as behaves as

N
1
=§Z olot ralol  +Aofel, ), (1.3
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TABLE I. The best fit parameters for the system withk- 16 spins. The entriely andt, indicate the time
interval for which the fit(3.1) is good.

A d A B v Q to t1 t2 X2
0.0 1.000 0159 0159  0.000  4.010 1.976 25 5.0 1.199e-07
0.1 0.961 0156  0.153  0.023  4.009 1.977 25 5.0 1.651e-07
0.2 0.875  0.152 0.141  0.083  4.007 1.976 25 5.0 1.520e-07
0.3 0.810 0156  0.131  0.159  4.007 1.976 25 5.0 1.071e-08
0.4 0.835 0180 0.127  0.217  4.039 1.985 3.0 5.8 1.016e-06
0.5 0.912 0219 0120 0.246  4.080 1.987 35 6.0 7.327e-08
0.6 0.941 0246 0.108 0.290  4.138 1.987 35 6.0 1.659e-07
0.7 0.902  0.251 0.092 0361  4.213 1.989 3.1 6.0 4.273e-06
0.8 0.840 0.249 0.079 0453 4.274 1.973 3.1 6.0 5.789e-07
0.9 0.771  0.248 0.066  0.558  4.353 1.958 3.0 5.7 2.165e-07
1.0 0.705  0.247 0.053  0.668  4.439 1.933 3.2 5.1 4.202e-10
1.1 0.646 0249 0041 0.775  4.568 1.906 3.0 45 9.062e-11
1.2 0.602  0.254  0.027 0811  4.779 1.866 3.0 45 8.756e-11
1.3 0572 0263 0015 0.669  5.010 1.769 3.0 45 8.568e-11

T at T=0, spin diffusion will hold. Thus, as a possibility, it can
1+cog 4t— > be suggested that for the spin-HXZ model there could be
(1.9 a nonanalytic behavior aA=1 such that afT=o there
o ) would be spin diffusion foA>1 and no spin diffusion for
which is certainly not of the forn{l.2). O<A<1.

In the absence of exact computations recourse has been |n this paper we assess the merits of these suggestions by
made to a variety of speculations. For exanfpi&it may be  an extension of the work of Ref. 19. In particular for a spin
place is because it possesses an infinite number of conserge finite-size matrices the spin-correlation functidass).
tion laws and that this violates the assumption of indepenThese results are given in Sec. Il. We then analyze these
dence of modes used in Refs. 2,3. This would argue thalesyits in Sec. Il in terms of the ansatz on the long-time
there is no reason that there should ever be spin diffusion iBehavior of Ref. 13 and conclude with a discussion in Sec.
the model. V.

One can also attempt to gain inspiration from low-  The conclusion of this analysis as given in Tables | and I
temperature and field theory limit computations. As far backs that we do indeed see evidence fos@<1 that spin

as Ref. 11 and most recently in Ref. 27, it is argued that ajiffusion does not hold. Indeed it is consistent with our data
low temperature there is no spin diffusion ferl<sA<1, {hat ast—o

where there is no long-range ordefTat 0. However, from a
low-temperature computation of Sachdev and D&Prfi&it
can be argued that for<lA, where there is long-range order SH(t,A)~Alt for 0sA<], (1.9

F(1:0)~ —cog| 21— 7| = =
' at 4] 2mt

TABLE Il. The best fit parameters for the system witk= 14 spins. The entriets andt, indicate the time
interval for which the fit(3.1) is good.

A d A B y Q to t1 t2 X2
0.0 0.985  0.156  0.157  0.006  4.015 1978 2.0 40  4.283e-08
0.1 0954 0155 0.153  0.028 4013 1978 2.0 40  2.255e-08
0.2 0.882 0154  0.142  0.085 4.008 1977 2.0 4.0 1.474e-09
0.3 0.809 0156  0.131 0158 4.006 1.975 2.0 4.0 1.552e-09
0.4 0784 0168  0.123 0231 4013 1973 25 4.8 1.653e-07
0.5 0.833 0196 0.123 0301 4055 1979 28 50  5.627e-07
0.6 0.885  0.227 0114  0.348 4134 1990 3.0 5.2  4.273e-07
0.7 0.840 0.230  0.103 0446 4.145 1960 25 51  9.297e-06
0.8 0.801 0.236 0.08 0515 4210 1948 25 50  2.759e-06
0.9 0746  0.239 0071 0599 4285 1932 25 48  5.122e-07
1.0 0.694  0.244 0056 0692 4403 1922 28 45  4.914e-09
1.1 0.640  0.247 0041 0773 4536 1.895 2.6 40  5.642e-11
1.2 0.608  0.256  0.027 0.821 4804 1.875 2.6 40  2.236e-10

1.3 0.577 0.265 0.015 0.654 5.025 1.774 3.0 4.0 4.089%e-12
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FIG. 1. (a) The correlation functiorg*(t,A) as computed from
the N=16 spin chain for 8A=<1.3 in steps of 0.1. On this scale
the curves are monotonic functions &fwith A=0 lying lowest.
The curve forA=1 is dashed(b) The correlation functiors*(t,A)
of (a) on the time range $t<6. The curve foA =1 is dashed and
for A=0.5 is dot dashed. On this scale we see that tre&r.0 that
for 0<A=<0.5 there is crossing of the curves.

which is the same as the ballistic behavior of the 0 (free
fermion casg Moreover atA=1 we find strong evidence
supporting the behavior

SA(t, 1)~ A/t 7% (1.10

which is neither ballistic nor diffusive. This result is in

agreement with the estimate of Ref. 18 ti&{ ) diverges
asw 237012354y —0. ForA>1 we cannot be so positive

as to whether or not spin diffusion exists and we defer fur-

ther discussion to the end of Sec. Ill.

II. FINITE-SIZE RESULTS FOR N=16

We have evaluate®*(t,A) for chains up to siz&N=16

using the methods of exact diagonalization presented in Ref.

19. We plot our results for€A<1.3 in steps of 0.1 in Fig.

1. The results presented here extend the previous work prin-
cipally in that data is used which range over a larger time g5 3 (

interval and many more values daf have been studied.
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FIG. 2. Comparison of the exact result 2$(t,0) (solid line)
with the finite-size computations fod=12 (long dashes N=14
(dot dashes andN= 16 (short dashes

to tell us how much of th&l= 14 data can be used. However
the N= 16 data will agree with th&l = curve for a longer
time interval. We estimate this larger interval in two ways.
First by comparing the exact resylt.6) for A=0 with the
finite-size result forN=16. The second is by making an
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a) The correlation functiors8*(t,A) as computed from
the N=16 spin chain for the value\=0.0, 0.1, 0.3, 0.5,

Data on finite-size systems will only well approximate 9.7 0.9, 1.0, 1.1, and.3. The curve\ =1 is dashed and for 0
infinite-size systems for some finite time interval. In Ref. 19<t<1.2 the curves are monotonic in with A=0 lying highest.

the criteria used was that the data fd=14 andN=16
should closely agree. This amounts to using lthe 16 data

(b) The correlation functior8*(t,A) of (a) on the time interval 1
<t=<#6. The values ofA are indicated on the curves.
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FIG. 4. Least-squares fisolid line) of the N=16 data(vertical crossesfor S*(t,A) in the form(3.3) to the form(3.2) for A=0.5. The
values of the parameters aile=0.912,A=0.219,B=0.120,y=0.246,() =4.080,t,=1.987, and the interval of best fit is 3%<6.0. The
data forN=14 (diagonal crossesandN=12 (triangles are also shown.

extrapolation using the data fof=12, 14, and 16. We make . ASYMPTOTIC FITTING

';hes_,e (lzomparlsdons n Fig. Zc:ﬁr: 0. Th|s_gllgwshgshto ef- In order to analyze the existence of spin diffusion we
ectively extend the range df from tmq,=5.0 WhICh Was st extract the long-time behavior of the correlation func-
what was used in Ref. 19 tg,,,= 6 or greater in some Cases. ion (¢, A). It is obvious from Fig. 1 that for times up to
The maximum time is estimated for eahseparately, since _g that there are oscillations in the data and that a simple
with the normalization of Eq(1.3) the maximum time will  hower law will not be adequate to describe the results. Here
decrease aa increases. Itis possible to introduce a normal-ye confront this problem by fitting the curves with an exten-
ization which makes 5 relatively independent o but  sjon of the simple ansatz proposed in Ref. 13 which incor-
since this is somewhatd hocand arbitrary we will not do  porates a decaying oscillation as well as a decay with an

this here. o ~arbitrary power law
We have also made a similar study for the correlation

SY(t;A). These results are presented graphically in Fig. 3. f(t;d,A,B,y,Q,to)=t A+Be ""cosQ(t—tg)].
There are two qualitative features of these graphs which 3.1
should be noted. First of all in the graph f&8'(t,A) the
long-time behavior oA =1 lies higher than all other values
of A. This is expected from fact that k=1 then SX(t)
=S’(t) and thus the long-time behavior must be algebraic g:(t;B,7,Q,t5)=Be "t cos Q(t—ty) (3.2
which is to be contrasted with the exponential decay ex- ] . .
pected for all other values af where there is no conserva- 0 the function obtained from th=16 data of Fig. 1
tion of Eja}‘. However neait=6.0 the curves fon=0.9

In Figs. 4, 5, and 6 we illustrate this fitting procedure by
showing a least-squares fit of

. —t+daz - _
andA=1.0 are so very close that this change in asymptotic 9s(L,d,AA)=US(LA) —A 3.3
behavior cannot yet be seen in the data. for the valuesA=0.5, 1.0, and 1.3.
The other point to note is that in Fig(d) we see clearly More systematically we present in Table | the parameters

that neart=5.0 there is crossing of curves fosQA<0.5.  of the form (3.1) which best fit all the data witiN=16
This effect is real and is not an artifact of the sike 16. We  presented in Fig. 1 and the time intervals over which the fit is
interpret this as evidence that if<CA<0.5 thent must be valid. In Table Il we give the corresponding fitting param-
greater than 5.0 before the true long-time asymptotic regimeters and time intervals for the data with=14. We note

is seen. In other words we take this as evidence that there fsom Eq. (1.8) that atA=0 the exact values of the param-
a crossover in the system. eters are
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FIG. 5. Least-squares fisolid line) of the N=16 data(vertical crossesfor S*(t,A) in the form(3.3) to the form(3.2) for A=1.0. The
values of the parameters ale=0.705,A=0.247,B=0.053,y=0.668,(0 =4.439,t,=1.933, and the interval of best fit is 3:2<5.1. The
data forN=14 (diagonal crossg¢sandN= 12 (triangles are also shown.

d=1 A=B=1/27=0.159155.., y=0, O=4., IV. DISCUSSION

The conclusion of the previous section is that in the spin-
1/2 XXZ model specified by Eq1.3) there is no spin diffu-
sion for 0<A=<1. This needs to be discussed both as to its
correctness and its implications.

It is very instructive to compare the values of the fiting We first acknowledge that it is possible to make contra-
parameters as obtained in the two tables. &er0 and 1 the ~dictory suggestions as to what is to be expected and that
values ofd changes little in going frolN =14 toN=16. But  different authors seem to implicitly start from different con-
this is not the case for all values af and we compare the ceptions of what is going on. For example, the authors in the
casesN=14 andN=16 in Fig. 7. First of all we see that for mid 1960s speak of their work as the hydrodynamic approxi-
0.4<A<0.9 there is a great deal of variationdnas we go mation and thus is sometimes said to be inapplicable to one
from N=14 toN=16. We interpret this as an indication that and two dimensions where the Fourier transform of the au-
there is a crossover in the behavior from small to large timestocorrelation function diverges. This would argue that one
We expect that aBl increases this trend will continue for all dimension always needs a separate treatment. However, most
0<A<1.0 and eventually the data fordA<0.4 will be  of the more recent authors seem to write as if the diffusion
affected also. We cannot definitively say from these plotsorm (1.2) is to be expected in one dimension if only in the
what the true value ofl will be for N—« but because the fact that deviations from it are called “anomalous.”
fitted value ofd is increasing in our tables for<OA <1 we Indeed, the question of whether or not this anomalous
conclude that the spin-diffusion value of 1/2 is never at-diffusion occurs in the classical one-dimensional Heisenberg
tained. AtA=1 the valued=0.705 is seen to be quite stable model has been a subject of some controversy in the past 10
and we note that to within our accuracy it is equal ©2.  years®*-*°|t is agreed by all that for times up to about 50 an
From our analysisl could either be a continuous function of exponent ofd~0.61 can be obtained from computer simula-
A at A=1 or we could havael=1 for 0s<A<1. tions. What is controversial is the ultimate long-time behav-

For 1<A we cannot be so positive in our conclusion. Forior. The arguments are summarized in Ref. 18. What is im-
A=1.2,1.3 the fitted values af do indeed decrease &  portant for us here is to note that for the spin-1/2 quantum-
goes from 14 to 16 and it is not out of the question that asnechanical case it is not possible with current computing
N—o the limiting value could be 1/2 for all values of 1 power to go to anything approaching the large time of these
<A. However this is not mandated by our results. classical computations. Thus all speculations and conjectures

to=57/8=1.9635... . (3.4)
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FIG. 6. Least-squares fisolid line) of the N=16 data(vertical crossesfor S*(t,A) in the form(3.3) to the form(3.2) for A=1.3. The
values of the parameters aie=0.572,A=0.263,B=0.015,y=0.669,() =5.010,t,=1.769, and the interval of best fit is 3:@<4.5. The
data forN=14 (diagonal crossesandN=12 (triangles are also shown.
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FIG. 7. Comparison of the best fit valuesaffor N=14 andN=16.
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about the long-time behavior of the spin-1/2 model are subsuch low-temperature properties as whether or not there is a
ject to the proviso that we assume that times up=® are gap in the excitations above the ground state should make
able to teach us about the tries0 behavior. It is our belief  any difference. It would seem that to maintain that there is
that the integrability of the spin-1/XZ chain will rule out  nonanalytic behavior aA =1 we must violate our physical
the possibility of a new time scale appearing for large timesntuition.
but there is no way of verifying this short of an exact com- The resolution to this would seem to lie in the integrabil-
putation. ity of Eq. (1.3). Indeed the thermodynamics have been stud-

If it is accepted that the estimate of the asymptotic behavied by means of the thermodynamic Bethe’'s ansatz method
ior we have presented here is indeed correct for the modeind a set of two coupled nonlinear integral equations has
(1.3 it must then be asked whether or not this is generic irbeen derivetf*° whose solution gives the free energy at all
any sense. It is here that the question of the relation of aif. These integral equations have the feature that they do take
integrable to a generic system needs to be addressed. two distinct forms depending on which of the two regindes

In the first place there is ample computer evidéhteat lies in. In a more picturesque fashion we can say that the
if a sufficiently strong next-nearest-neighbor interaction isintegrability of the model extends the low temperature de-
added to Eq.(1.3 then the level spacing statistics will scription in terms of particles to all temperatures. For this
change from Poisson for E41.3) to those of the Gaussian reason we expect that the dynamics at infinite temperature of
orthogonal ensemble of random matrices. It thus might behe spin-1/2XXZ model are not generic. The study of the
supposed that this will change the long-time behavior of theerossover from integrable to generic behavior as next-
correlation functions. We have indeed looked at this in thenearest-neighbor interactions are added would constitute a
N=16 system but find that the asymptotic behavior up tomajor step towards formulating what should be called a
time t=6 does not change. But, of course, this proves littlequantum version of the theorem of Kolmogorov, Arnold, and
or nothing since if a scale is opened up at larger times thoser. Such a theorem would go a long way towards clari-
N =16 system can hardly be expected to see it. It is certainlyying the status of diffusion at high temperatures in quantum-
possible that all the complications seen in the classical sygnechanical systems.
tem can occur for the nonintegrable quantum spin chain if Finally we remind the reader that because of the integra-
we could go to large enough times. This is the place wherdility of the spin-1/2XXZ chain it is firmly to be expected
ideas of quantum chaos should be able to intersect manyhat the time-dependent correlations studied in this paper can
body condensed matter physics. be exactly evaluated. We hope that the numerical results pre-

We also comment further on our suggestion of nonanasented here will stimulate the analytic solution of this prob-
lytic behavior atA=1. It is of course perfectly reasonable lem.
that atT=0 there will be a marked difference in the physics
of 0<A=<1 and X<A. In the first case there is no long-
range order and no gap in the spectrum, while in the second
case there is both long-range order and a gap in the We are pleased to acknowledge useful discussions with
spectrunt’ 8|t is exactly these qualitative differences which A. Kllimper and S. Sachdev. This work is supported in part
feature in the low-temperature computations of Refs. 27, 28yy the National Science Foundation under Grant No. DMR
and 29. But at high temperature it seems unreasonable th@7-03543.
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