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Quantum corrections to the simulated properties of solids
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It is shown that a practical procedure for including both anharmonic and quantum effects in the calculation
of the properties of solids is to combine classical molecular-dynamics simulations with quantum corrections
obtained with the quasiharmonic approximation. The procedure is simple to implement and possesses an
ordered set of anharmonic quantum corrections. It is tested by calculations on a Lennard-Jones model for solid
Ar with nearest-neighbor interactions. The results obtained are competitive with the predictions of effective-
potential Monte CarldEPMC) and are in very good agreement with path-integral Monte Carlo results, which
were obtained with a constant-pressure algorithm that includes higher-order corrections to the Trotter expan-
sion. The lowest-order perturbative correction to EPMC is shown to be the same as the cubic part of the
anharmonic quantum correctiof80163-182608)02302-9

I. INTRODUCTION (SCY) fails at roughly the same temperatures as the GHA.
However, for many solids the improved self-consistent pho-

Once the interatomic potentials are specified, equilibriunnon approximation(ISC) gives excellent results right up to
properties can in principle be obtained from the quantummelting® as does the uncorrelated factors approximation

mechanical expression for the Helmholtz free energy, (UFA).1°
Classical MC and MD simulations fully account for an-
FR=—pB"1In Tre #H, (1) harmonic effects, while the harmonic approximation easily

and fully includes quantum effects. The problem is with the
whereH is the Hamiltonian ang3=1/kgT. In most cases quantum-mechanical treatment of anharmonicity. To date the
In Tr e"#" can only be determined with the aid of approxi- most practical statistical approach to the problem has been
mations. Two characteristically different types of approxima-the effective potential Monte CarlEPMC) methodl~14
tions are available. Statistical approximations, such as thosghich involves making both statistical and analytic approxi-
given by Monte Carlo and molecular-dynamics techniquesmations. Its extension by Acocella, Horton, and Cowfey
are most useful at high temperatures where anharmonic efrrough improved effective potential theory has been used
fects dominate. Analytic approximations, such as the quasigccessiully to study the difficult case of solid Ne in which
harmonic - approximation, perturbation theory, and self-ynharmonic effects are large even near absolute zero. These
consistent phonon theory, are most s_uccessful at IOV{’echniques are less demanding computationally than PIMC,
terrépl):g%g;?sSvivmhEIr:tiglrjlintllj;?n(geffel\%sn?eomc";?ltce'\)l C) and although calculations with them are certainly more involved
molecular-dynamic$MD) techniques possess two desirableth"j‘.n classical MC .ar?d MD simulations. A graphical com-

parison of the predictions of EPMC, UFA, ISC, SC1, QHA,

characteristics: one, their accuracy is limited only by the . L ‘
size of the statistical sample employed, and two, they ar@nd perturbation theory through ordersand\* is given in

capable of giving reliable estimates for the errors inherent irfxef. 10. . . ,
the necessarily finite size of the sample. Quantum effects can AN 0bvious way to include both quantum and anharmonic
be included with path-integral Monte Car{@IMC),X~ but effects. is to correct the resylts of purely classical N
the technique is very demanding of computational resourcedC) simulations with the difference between the quantum
and requires taking the limit of infinite Trotter number, in @nd classical behavior calculated in the QHA. We refer to
addition to infinite sample size, before the results obtainedhis approach as simulations with harmonic quantum correc-
are in principle exact. tions (SHQC'S. Berens, Mackay, White, and WilsBrused
The simplest analytic technique is the quasiharmonic apa similar approach to study liquid water. An ordered se-
proximation(QHA), which typically fails well below half the quence of anharmonic quantum corrections to SHQC'’s can
melting temperature. A well ordered sequence of correctionbe obtained from the well understood results of perturbation
to the QHA can be obtained with perturbation thedfyput  theory. Since the difference between quantum and classical
the resulting sequence diverges at high temperafugadf-  behavior disappears in the high-temperature limit, the high-
consistent phonon theory at the first level of approximatiortemperature divergence of perturbation theory is avoided.
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To facilitate the comparison of the different approxima- wheref,=3B%w,. Classically it is
tions, calculations were performed on a Lennard-Jones
model of solid Ar with nearest-neighbor interactions only.
Since the Lennard-Jones potential is highly anharnfcanicl
since quantum effects are large in solid Ar, although less so
than in Ne, the trends observed should have general signifi- Perturbation theory is based on an expansion of the po-
cance. The SHQC approximation was tested in several wayéential energy in a power series of the displacements,

First, PIMC predictions were obtained for the zero pressure )

nearest-neighbor distance and internal energy. These were D =Vgiart Vot [AV3+ NV i+ ] oy, ®
compared with SHQC predictions, and very good agreemenjhere) is the ordering parameter. The cubic term is

was found. Second, perturbation theory was used to calculate

the anharmonic quantum corrections in the lowest nonvan-

ishing order, which is tha? order. These anharmonic quan- V3:k§|:fn CrimUiciUn - ©)

tum corrections alter the results predicted by SHQC by only

a few percent. Finally, the predictions obtained were com-The quartic ternV/, contains products of four displacements,
pared with available EPMC results and were found to beand so forth. There is no linear term, since it is assumed that
competitive. Because of its relative simplicity, we concludethe lattice sitedR, have been chosen to make it vanish. The
that for most predictions of thermodynamic properties clas€onstant termVgy is the static contribution to the energy,
sical MC or MD simulations with harmonic quantum correc- that is, the energy of the system when every atom is at its
tions are a more efficient alternative to PIMC or EPMC cal-lattice site and there is no vibrational motion. The frequen-
culations. cies wy and the coefficientC,,,,, etc., were obtained by

Perturbation theory is a useful tool for investigating theexpanding® in a Taylor series. Other expansions can be
type of information that is included in different analytic ap- used. The perturbation expansion for the free energy with all
proximation schemes. It is used here to study the differencterms through ordex? included is
between the exact free energy and that of EPMC in the low
coupling approximation. It is found that the lowest-order cor- FO=Vgart FEHFS+H(Va)g+- (10
rection to EPMC is the same as the cubic part of ife
guantum correction to SHQC and is formally similar to the
correction proposed in improved effective potential theGry.

FS=8"12 In(Bhaoy). @)

This is the classical expansion. The quantum-mechanical ex-
pansion has the same form but with the supersdtipte-
placed byQ. The bracketg---)$ and(:--)$ designate clas-
sical and quantum harmonic averages, respectively. The
cubic termsF$ and F$ and the quartic termgV,)S and
The exact Helmholtz free energy with all quantum and(V4)§ are of order A>. The classical and quantum-
anharmonic effects included BR, as given by Eq(1l). A mechanical quasiharmonic free energie§ and F§ are
monatomic solid ofN atoms with a potential energy that is given in Egs.(6) and (7).
the sum of pair potentials is considered. The Hamiltonian is For tQhe study of quantum corrections it is convenient to
write F~ as

IIl. QUANTUM CORRECTIONS

H=K+®, 2

: I FR=FC+(FQ—-FF°). 11
whereK is the kinetic energy and ( ) (3
where FC is the classical free energy, and the quantity in
_ B _ parenthesis is the exact expression for the quantum correc-
o ;J (IR —Ry+u—uy)). 3 lions. Derivatives ofFC can be estimated with classical
) ) ] simulations, andr € itself can be obtained by thermodynamic
U= (U, Uy ,U;z) is the displacement of atoimfrom its lat- jntegration. Substituting the classical and quantum perturba-

tice_ siteR, . The harmonic approximation is based on Hamil-4j5 expansions into the quantity in parenthesis in 8d)
tonians of the form gives

Ho=K+V,, @ FR=FC+(F§—F§) +(F—F)+((Va)§ —(Va)§) +-- |
where the harmonic potential energy function is (12)
which includes all corrections through ordet. This can be

1 1 :
Vo=3 |% D43y ulauJy:Ek > mo?lul®  (5) rewritten as

ally
. ) FQ:FSHQC+ FAQC+ y (13)
®,,3, is @ 3N by 3N matrix of force constants, theNs ) ,
normal mode displacements are related to the atomic dis- Where the classical free energy whrmonicquantum cor-
placementsu,,, by a linear transformation, ana, is the Fections s
frequency of thekth normal mode. Quantum mechanically c Q_C
the quasiharmonic free energy is Fshoc=F~+(Fg—Fg), (14)
and thex? anharmonicquantum corrections are

FE=p7"2 In@sinny, © Fage=(F§—FH+((V)S—(Va)$). (19
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IIl. EFFECTIVE POTENTIAL APPROXIMATION That is, effective-potential theory in the LCA expresses the
. . . i ree energy as a sum of a fully quantum-mechanical har-
The.effe_ctwe potential _method is based on a variationa onic part plus an anharmonic part that becomes exact in the
approximation to the path integral representation of the exa igh-temperature limit
free energyFQ. The result i$® g pere - , :
The classical harmonic average on the right-hand side of
Eq. (21) can be expanded with the aid E&) and the cumu-

m 3N/2 ]

Fep=— B 1n (T,Bfﬂ) J' d3Nue AVett| (16) lant expansion,
In(e™X)=—(X)+ 2 ((XZ) = (X)) +--- . 22
which has the form of a classical free energy with the poten- e X0+ 2((X5 =007 22
tial energy replaced by the effective potential By settingX=(® — Vg~ V,)§ it follows through ordem?

that
1 1 _
Ver=(®)5-2 7 molact 5 2 In(sinhfi/f),  (17) Fep=F§ +Vaart (Va+ Va)o)g

B

where =5 ({(Va)0) 25— (({Va)0)g) 21+ . (23
fh cothf, 2 The classical harmonic average of a smeared function can be
o= 2 =2((u)g—(up)s),  (18) 9

My Bmwy shown to be equal to the quantum harmonic average of the

function without smearing. Specifically,
where (u?)S and (u?)$ are the quantum and classical har-

monic mean-square displacements of kile normal mode. (Ve =(Va)§, (24
<CI>)8 is the smeared potential energy. Smeared quantities al

re . . Q:
the functions of thai;,, defined by and similarly forV;. Since(V3)5=0, the double average

((V3)5)$ vanishes. For lattices in which every site is a cen-
ter of inversion it can be shown that

ex% _ﬁlgy dl_a],.JyxlaXJy ﬁ IB
DyaC_ _ P \,2c_pC
/—WSN”dm,Jy” ) (((V3)g)2e= 5 (V3)o=F3. (25

(8= [ o™

XE(C o UigF X o), (19 This somewhat surprising result states that xecontribu-
tion of V3 is simply theclassicalperturbation terniFg in Eq.

wheref(--- U, X4, -*) is some function of the atomic (10). By combining these results it follows through order

displacementsy,, that has had each,, replaced byu,,  that
+X/,. The 3N by 3N matrix dl_al’J7 is the inverse of

Fep=Veart Fe+ (V) +FS+ - . (26)

- Q_ c
Graay=2(thalliy)o ~ {Uatloylo). 0 Subtracting this from the perturbation expansionFé& and

and|d,,.;,|| is its determinant. Equationd@é) through(20)  including all terms through ordex” gives

are equivalent to Eqq419) of Ref. 13, where the displace- o cc

mentsu, are represented by, . When the potential energy is FO=Fgpt (F§—F3)+-- . 27

a sum of pair potentials, as in ER), the smeared potential -y, ¢ thex2 correction to the effective-potential free energy
energy can be reduced to the more easily evaluated quantify ihe same as the cubic part of the anharmonic quantum
K(R) defined in Ref. 13. correction toF gqc.

Equatlon(lﬁ) has.a for”? that allpws the properties of " eoctive potential calculations usually do not use a Tay-
solids to be determined with classical Monte Carlo techq < iag expansion of to determine the normal-mode

nigues. In principle, the variational choice for the harmonictransformation, frequencies, and coefficiefg,,. Except

force constants should be done in such a way that th?or the method used to determine these quantities, the cor-

normal-mode transformation and the associated frequencie; : Q_ Cy ; ; ;
. S . tion —F3) in Eq. (27) is th m that intr
wy are functions of the atomic displacements, but this re-gc on F3—Fs) d. (27) Is the same as tha oduced

. . in the improved effective potential methdd.
quires a separate normal-mode transformation for every con-
figuration sampled. To avoid the computational complexity
that would result, the harmonic force constants are usually IV. CALCULATIONS AND RESULTS
chosen so that the transformation and frequencies are inde- ap fec solid with a Lennard-Jones 6-12 potential acting
pendent of the displacements. Sucg(l:?(l)?iclgs are referred 10 B8yween nearest neighbors only was used to test the theory.
low coupling approximation$LCA).”>**""**When a LCA  The dimensional parameters for the model are Boltzmann’s
is made, several of the quantities involving the freq“enc'e%onstanth, Planck’s constant, the massm, the depth of
can be taken outside of the integral in E4). By doing this e potential wells, and the core diameter. The minimum
and rearranging terms, the effective-potential approximationy¢ e potential is aR,= 216, The dimensionless quantities
to the free energy becomes used in the calculation are the de Boer parameter
0 o1 B@—V)P\C =#/\Jmea?, the reduced temperatulgT/e, and the re-
Fep=Fg—B " In(e” A ~V2lo)5. (21)  duced nearest-neighbor distarRg,/o. The dimensionless
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forms for the internal energy and heat capacityldfdle and 2Ton
Cy/Nkg. The value used for the de Boer parameter is 1---
=0.025 51, which is appropriate when modeling solid'Ar. jshe
All results were obtained for a cubic system 108 at- I wo
oms with periodic boundary conditions. The small number of ] —-
atoms is partially accounted for in the MD, QHA, and SHQC 2 1%
results by dividing the vibrational contributions By—1, 7 14 epmc
while the static contributions are divided bl For example, > ] %AQC
10
Uvib Vstat 1
U/Ng= (N-1)s + Ne - (28 ]
° 00 o1 o2 03 o4 05
Similar results hold for the heat capacity, to whi¢h,,does kgT/€

not contribute, and for the free energy. . ) . .

The PIMC simulations were carried out with a constant- FIG. 2. Dimensionless —internal energy/Ne minus
pressure path-integral Monte Carlo technique that includelo/Ne =6 vs temperature at zero pressure, and 10 times the an-
the higher-order corrections to the Trotter expansion prol2MMonic quantum correction 1/Ne obtained fromF aqc

posed by Li and Broughtoff. These greatly improve the rate The standard formulas of perturbation theowere used
of convergence to the exact quantum limit. Constant-

. ) oo = to calculate thé\? anharmonic quantum corrections. Sinde
pressure PIMC simulations based on the primitive algorithm . L
with no higher-order corrections have been describe ndCy depend linearly on the fr:eehenergé/, SUbSt't?tmg the
. : ; tiofr into the thermodynamic formu-
reviously??° as have constant volume PIMC simulations | cc cner9y COITECtion agc . -
b v las that relatedd and C,, to the free energy gives additive

that include higher-order correctiofls.The method used ) . o .
here differs from these in that higher-order corrections wergorrections. Obtaining additive corrections to the zero pres-
sSure nearest-neighbor distance is more involved. Since the

included in constant-pressure simulations. .
The PIMC results in the figures and the table were 0b_tsrif(r:ren?gzn\?c:?:lﬁngq]suISr;%roFr)trigiilljrt% Hﬁe—éﬂ 0Y‘R?T ani?
i itha T f T=0. nn»
tained with a Trotter number of 8, except kT =0.05 llows that (9F/dR,,)t=0 whenP=0. LetR; andR, rep-

where a Trotter number of 16 was used. The heat capacit t th | hen the f
was not calculated because of the large statistical errors th Sent the zero pressure va uesRyf, when the free energy
is taken to beF;=FgpygcandF,=F;+Faqc, respectively.

occur in PIMC evaluations of the fluctuation formula for

cy.Y It then follows thatdF,(R;)/dR,,=0 and that
The SHQC predictions were obtained by combining the (Ry)  dFy(Ry)  &%FH(Ry)

MD results of Lacks and Shuldawith quantum corrections —= 2> — — 21 21

obtained with the QHA. These MD results, which were ob- IRnn IRnn IRmn

tained by thermodynamic integration, were reduced to a pagy approximating=, by F; in the second derivative term, by

rametrized expression for the temperature and volume deqeglecting higher powers ofR,—R;), and by solving for
pendence of the free energy. This expression was then useg,—R,) it follows that

to obtain the predicted zero pressure nearest-neighbor dis-
tanceR,,, internal energyJ, and heat capacitZ . IF aac(R1)/dRnp

R,—R,) =~ .
(Re= R~ e . o RO RS,

(Ry—Ry)+---=0. (29
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FIG. 1. Dimensionless nearest-neighbor distaRgg/o minus
Ro/o=2%2 vs temperature at zero pressure, and 10 times the an- FIG. 3. Dimensionless heat capacify,/Nkg vs temperature at
harmonic quantum correction®AQC) to R,,/o obtained from zero pressure, and 10 times the anharmonic quantum corrections to
Faoc- Cy/Nkg obtained fromF soc.
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TABLE I. Predictions for the zero-pressure nearest-neighbor disf@@pcethe internal energy, and the
heat capacityCy. The minimum static potential enerdy,=—6Ne occurs whenR,,=R,=2?¢. The
+AQC predictions were obtained by adding the corrections obtained Frggg to the SHQC predictions.
The 2nd order EPMC values are from Ref. 11.

kgT/e 0.05 0.10 0.20 0.30 0.40 0.50

(Ran—Ro)/o SHQC 0.0142 0.0152 0.0208 0.0293 0.0404 0.0558
+AQC 0.0141 0.0151 0.0206 0.0291 0.0400 0.0549
PIMC 0.0141 0.0150 0.0205 0.0289 0.0396 0.0536

(U—-Ug)/Ne SHQC 0.532 0.571 0.773 1.059 1.394 1.790
+AQC 0.555 0.593 0.793 1.079 1.414 1.811
PIMC 0.553 0.588 0.784 1.063 1.387 1.765

Cyv/Nkg SHQC 0.25 1.27 2.29 2.55 2.61 2.60
+AQC 0.25 1.24 2.28 2.55 2.61 2.60
EPMC 0.18 1.16 2.26 2.54 2.60 2.63

This is the approximation used to estimate the anharmonithe EPMC results. The most significant disagreements are for
guantum corrections tR,,, at zero pressure. the zero pressure value B, at high temperatures and for
The results of our calculations are presented in Figs. 1, 2Cy, at low temperatures. To put these disagreements in per-
and 3. To illustrate the effects of anharmonicity and quantunspective, note that dtgT=0.0% the heat capacity in the
mechanics, fully anharmonic MD predictions and fully thermodynamic limit ofN=co is roughly 8% larger than it is
quantum-mechanical QHA predictions are also included, ai, a system ofN=108 atoms, as estimated with the QHA.
are the 2nd-order EPMC predictions for Ar of Liu, Horton, The quantitative effect of adding the anharmonic quantum
and Cowley'' The values plotted are all for the nearest- corrections obtained frorf soc to the SHQC results can be
neighbor distance that leads to zero pressure in the indicategben in Table |I.
approximation. The anharmonic quantum corrections ob- A calculation of anharmonic quantum corrections can be
tained fromF ,oc are also given. So that they can be clearlyused both to improve the accuracy of SHQC predictions and
seen, they were multiplied by 10 before being plotted. to test their accuracy. The type of solid for which SHQC is
The anharmonic quantum correctionodoes not tend to  not satisfactory is one in which the interplay between anhar-
zero at high temperature. This results from the fact that thenonicity and quantum effects is characteristically greater
quartic part of the correction tdJ, which arises from the than in solid Ar. Solid Ne is such a system. The warning that
term (V.)§—(V,)§) in Eq. (15), tends to a constant value the SHQC approach does not work for Ne is indicated by the
in the limit of high temperatures whey,,, is fixed (while the ~ unphysical results obtained in the perturbative calculation of
total internal energy tends to infinityThe cubic part of the the anharmonic corrections.
correction toU, which arises from the ternF@— Fg), and We conclude that a classical MC or MD simulation with
both the cubic and quartic parts of the correctiorCtptend ~ harmonic quantum corrections would usually be preferable
to zero at high temperatures. Also, the cubic and quartié0 @ PIMC or EPMC calculation, because of its computa-
parts of the correction t€,, tend to zero in the limit of low tional efficiency and conceptual simplicity. Nevertheless, it
temperatures. appears that the search for a simple and efficient method for
For the Lennard-Jones system considered the quartic pafetermining the properties of all types of solids that is accu-
of the corrections to botk) andC,, have roughly twice the rate from absolute zero to the melting temperature is not yet
magnitude of the cubic parts and have the opposite sigr2Ver.
Thus, since tha.? correction to the EPMC free energy is the
same as the cubiq part of the correctfog,c, the correction ACKNOWLEDGMENTS
to an EPMC prediction can be expected to have roughly the
same magnitude as the anharmonic quantum corrections to a This work was supported in part by the Center for Mate-
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