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Quantum corrections to the simulated properties of solids
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It is shown that a practical procedure for including both anharmonic and quantum effects in the calculation
of the properties of solids is to combine classical molecular-dynamics simulations with quantum corrections
obtained with the quasiharmonic approximation. The procedure is simple to implement and possesses an
ordered set of anharmonic quantum corrections. It is tested by calculations on a Lennard-Jones model for solid
Ar with nearest-neighbor interactions. The results obtained are competitive with the predictions of effective-
potential Monte Carlo~EPMC! and are in very good agreement with path-integral Monte Carlo results, which
were obtained with a constant-pressure algorithm that includes higher-order corrections to the Trotter expan-
sion. The lowest-order perturbative correction to EPMC is shown to be the same as the cubic part of the
anharmonic quantum correction.@S0163-1829~98!02302-9#
um
m

i-
a
o
e

as
lf

lo

le
h
a
t i
c

rc
in
e

ap

on

io

A.
o-

o
ion

-
ily
he
the
een

xi-

sed
ch
hese

C,
ed

-
A,

nic

m
to
ec-

e-
can
ion
ical

gh-
.

I. INTRODUCTION

Once the interatomic potentials are specified, equilibri
properties can in principle be obtained from the quantu
mechanical expression for the Helmholtz free energy,

FQ52b21 ln Tre2bH, ~1!

where H is the Hamiltonian andb51/kBT. In most cases
ln Tr e2bH can only be determined with the aid of approx
mations. Two characteristically different types of approxim
tions are available. Statistical approximations, such as th
given by Monte Carlo and molecular-dynamics techniqu
are most useful at high temperatures where anharmonic
fects dominate. Analytic approximations, such as the qu
harmonic approximation, perturbation theory, and se
consistent phonon theory, are most successful at
temperatures where quantum effects dominate.

Classical simulations using Monte Carlo~MC! and
molecular-dynamics~MD! techniques possess two desirab
characteristics: one, their accuracy is limited only by t
size of the statistical sample employed, and two, they
capable of giving reliable estimates for the errors inheren
the necessarily finite size of the sample. Quantum effects
be included with path-integral Monte Carlo~PIMC!,1–4 but
the technique is very demanding of computational resou
and requires taking the limit of infinite Trotter number,
addition to infinite sample size, before the results obtain
are in principle exact.

The simplest analytic technique is the quasiharmonic
proximation~QHA!, which typically fails well below half the
melting temperature. A well ordered sequence of correcti
to the QHA can be obtained with perturbation theory,5,6 but
the resulting sequence diverges at high temperatures.7 Self-
consistent phonon theory at the first level of approximat
570163-1829/98/57~2!/833~6!/$15.00
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~SC1! fails at roughly the same temperatures as the QH8

However, for many solids the improved self-consistent ph
non approximation~ISC! gives excellent results right up t
melting,1,9 as does the uncorrelated factors approximat
~UFA!.10

Classical MC and MD simulations fully account for an
harmonic effects, while the harmonic approximation eas
and fully includes quantum effects. The problem is with t
quantum-mechanical treatment of anharmonicity. To date
most practical statistical approach to the problem has b
the effective potential Monte Carlo~EPMC! method,11–14

which involves making both statistical and analytic appro
mations. Its extension by Acocella, Horton, and Cowley14,15

through improved effective potential theory has been u
successfully to study the difficult case of solid Ne in whi
anharmonic effects are large even near absolute zero. T
techniques are less demanding computationally than PIM
although calculations with them are certainly more involv
than classical MC and MD simulations. A graphical com
parison of the predictions of EPMC, UFA, ISC, SC1, QH
and perturbation theory through ordersl2 andl4 is given in
Ref. 10.

An obvious way to include both quantum and anharmo
effects is to correct the results of purely classical MD~or
MC! simulations with the difference between the quantu
and classical behavior calculated in the QHA. We refer
this approach as simulations with harmonic quantum corr
tions ~SHQC’s!. Berens, Mackay, White, and Wilson16 used
a similar approach to study liquid water. An ordered s
quence of anharmonic quantum corrections to SHQC’s
be obtained from the well understood results of perturbat
theory. Since the difference between quantum and class
behavior disappears in the high-temperature limit, the hi
temperature divergence of perturbation theory is avoided
833 © 1998 The American Physical Society
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834 57HARDY, LACKS, AND SHUKLA
To facilitate the comparison of the different approxim
tions, calculations were performed on a Lennard-Jo
model of solid Ar with nearest-neighbor interactions on
Since the Lennard-Jones potential is highly anharmonic6 and
since quantum effects are large in solid Ar, although less
than in Ne, the trends observed should have general sig
cance. The SHQC approximation was tested in several w
First, PIMC predictions were obtained for the zero press
nearest-neighbor distance and internal energy. These
compared with SHQC predictions, and very good agreem
was found. Second, perturbation theory was used to calcu
the anharmonic quantum corrections in the lowest nonv
ishing order, which is thel2 order. These anharmonic qua
tum corrections alter the results predicted by SHQC by o
a few percent. Finally, the predictions obtained were co
pared with available EPMC results and were found to
competitive. Because of its relative simplicity, we conclu
that for most predictions of thermodynamic properties cl
sical MC or MD simulations with harmonic quantum corre
tions are a more efficient alternative to PIMC or EPMC c
culations.

Perturbation theory is a useful tool for investigating t
type of information that is included in different analytic a
proximation schemes. It is used here to study the differe
between the exact free energy and that of EPMC in the
coupling approximation. It is found that the lowest-order c
rection to EPMC is the same as the cubic part of thel2

quantum correction to SHQC and is formally similar to t
correction proposed in improved effective potential theory15

II. QUANTUM CORRECTIONS

The exact Helmholtz free energy with all quantum a
anharmonic effects included isFQ, as given by Eq.~1!. A
monatomic solid ofN atoms with a potential energy that
the sum of pair potentials is considered. The Hamiltonian

H5K1F, ~2!

whereK is the kinetic energy and

F5(
I ,J

f~ uRI2RJ1uI2uJu!. ~3!

uI5(uIx ,uIy ,uIz) is the displacement of atomI from its lat-
tice siteRI . The harmonic approximation is based on Ham
tonians of the form

H05K1V2 , ~4!

where the harmonic potential energy function is

V25
1

2 (
Ia/Jg

F Ia,Jg uIauJg5(
k

1

2
mvk

2uuku2. ~5!

F Ia,Jg is a 3N by 3N matrix of force constants, the 3N
normal mode displacementsuk are related to the atomic dis
placementsuIa by a linear transformation, andvk is the
frequency of thekth normal mode. Quantum mechanical
the quasiharmonic free energy is

F0
Q5b21(

k
ln~2 sinh f k!, ~6!
s
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where f k5 1
2 b\vk . Classically it is

F0
C5b21(

k
ln~b\vk!. ~7!

Perturbation theory is based on an expansion of the
tential energy in a power series of the displacements,

F5Vstat1V21@lV31l2V41•••#l51 , ~8!

wherel is the ordering parameter. The cubic term is

V35(
klm

Cklmukulum . ~9!

The quartic termV4 contains products of four displacement
and so forth. There is no linear term, since it is assumed
the lattice sitesRI have been chosen to make it vanish. T
constant termVstat is the static contribution to the energy
that is, the energy of the system when every atom is at
lattice site and there is no vibrational motion. The freque
cies vk and the coefficientsCklm , etc., were obtained by
expandingF in a Taylor series. Other expansions can
used. The perturbation expansion for the free energy with
terms through orderl2 included is

FC5Vstat1F0
C1F3

C1^V4&0
C1••• ~10!

This is the classical expansion. The quantum-mechanical
pansion has the same form but with the superscriptC re-
placed byQ. The bracketŝ•••&0

C and^•••&0
Q designate clas-

sical and quantum harmonic averages, respectively.
cubic termsF3

C and F3
Q and the quartic termŝV4&0

C and
^V4&0

Q are of order l2. The classical and quantum
mechanical quasiharmonic free energiesF0

Q and F0
C are

given in Eqs.~6! and ~7!.
For the study of quantum corrections it is convenient

write FQ as

FQ5FC1~FQ2FC!. ~11!

where FC is the classical free energy, and the quantity
parenthesis is the exact expression for the quantum cor
tions. Derivatives ofFC can be estimated with classica
simulations, andFC itself can be obtained by thermodynam
integration. Substituting the classical and quantum pertur
tion expansions into the quantity in parenthesis in Eq.~11!
gives

FQ5FC1~F0
Q2F0

C!1~F3
Q2F3

C!1~^V4&0
Q2^V4&0

C!1••• ,
~12!

which includes all corrections through orderl2. This can be
rewritten as

FQ5FSHQC1FAQC1••• , ~13!

where the classical free energy withharmonicquantum cor-
rections is

FSHQC5FC1~F0
Q2F0

C!, ~14!

and thel2 anharmonicquantum corrections are

FAQC5~F3
Q2F3

C!1~^V4&0
Q2^V4&0

C!. ~15!
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III. EFFECTIVE POTENTIAL APPROXIMATION

The effective potential method is based on a variatio
approximation to the path integral representation of the ex
free energyFQ. The result is13

FEP52b21lnF S m

2pb\2D 3N/2E d3Nue2bVeffG , ~16!

which has the form of a classical free energy with the pot
tial energy replaced by the effective potential

Veff5^F&0
D2(

k

1

4
mvk

2ak1
1

b (
k

ln~sinh f k / f k!, ~17!

where

ak5
\ cothf k

mvk
2

2

bmvk
2 52~^uk

2&0
Q2^uk

2&0
C!, ~18!

where ^uk
2&0

Q and ^uk
2&0

C are the quantum and classical ha
monic mean-square displacements of thekth normal mode.
^F&0

D is the smeared potential energy. Smeared quantities
the functions of theuIa defined by

^ f &0
D5E d3Nx

expS 2b (
IaJg

dIa,Jg
21 xIaxJgD

Ap3NidIa,Jgi

3 f ~••• ,uIa1xIa ,••• !, ~19!

where f (••• ,uIa1xIa ,•••) is some function of the atomic
displacementsuIa that has had eachuIa replaced byuIa

1xIa . The 3N by 3N matrix dIa,Jg
21 is the inverse of

dIa,Jg52~^uIauJg&0
Q2^uIauJg&0

C!, ~20!

and idIa,Jgi is its determinant. Equations~16! through~20!
are equivalent to Eqs.~19! of Ref. 13, where the displace
mentsuI are represented byRI . When the potential energy i
a sum of pair potentials, as in Eq.~3!, the smeared potentia
energy can be reduced to the more easily evaluated qua
K(R) defined in Ref. 13.

Equation ~16! has a form that allows the properties
solids to be determined with classical Monte Carlo te
niques. In principle, the variational choice for the harmo
force constants should be done in such a way that
normal-mode transformation and the associated frequen
vk are functions of the atomic displacements, but this
quires a separate normal-mode transformation for every c
figuration sampled. To avoid the computational complex
that would result, the harmonic force constants are usu
chosen so that the transformation and frequencies are i
pendent of the displacements. Such choices are referred
low coupling approximations~LCA!.13,14,17,18When a LCA
is made, several of the quantities involving the frequenc
can be taken outside of the integral in Eq.~16!. By doing this
and rearranging terms, the effective-potential approxima
to the free energy becomes

FEP5F0
Q2b21 ln^e2b^F2V2&0

D
&0

C . ~21!
l
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That is, effective-potential theory in the LCA expresses
free energy as a sum of a fully quantum-mechanical h
monic part plus an anharmonic part that becomes exact in
high-temperature limit.

The classical harmonic average on the right-hand side
Eq. ~21! can be expanded with the aid Eq.~8! and the cumu-
lant expansion,

ln^e2X&52^X&1 1
2 ~^X2&2^X&2!1••• . ~22!

By settingX5^F2Vstat2V2&0
D it follows through orderl2

that

FEP5F0
Q1Vstat1^^V31V4&0

D&0
C

2
b

2
@^~^V3&0

D!2&0
C2~^^V3&0

D&0
C!2#1••• . ~23!

The classical harmonic average of a smeared function ca
shown to be equal to the quantum harmonic average of
function without smearing. Specifically,

^^V4&0
D&0

C5^V4&0
Q , ~24!

and similarly for V3 . Since ^V3&0
Q50, the double average

^^V3&0
D&0

C vanishes. For lattices in which every site is a ce
ter of inversion it can be shown that

2
b

2
^~^V3&0

D!2&0
C52

b

2
^V3

2&0
C5F3

C . ~25!

This somewhat surprising result states that thel2 contribu-
tion of V3 is simply theclassicalperturbation termF3

C in Eq.
~10!. By combining these results it follows through orderl2

that

FEP5Vstat1F0
Q1^V4&0

Q1F3
C1••• . ~26!

Subtracting this from the perturbation expansion forFQ and
including all terms through orderl2 gives

FQ5FEP1~F3
Q2F3

C!1••• . ~27!

Thus, thel2 correction to the effective-potential free energ
is the same as the cubic part of the anharmonic quan
correction toFSHQC.

Effective potential calculations usually do not use a Ta
lor series expansion ofF to determine the normal-mod
transformation, frequencies, and coefficientsCklm . Except
for the method used to determine these quantities, the
rection (F3

Q2F3
C) in Eq. ~27! is the same as that introduce

in the improved effective potential method.15

IV. CALCULATIONS AND RESULTS

An fcc solid with a Lennard-Jones 6-12 potential acti
between nearest neighbors only was used to test the the
The dimensional parameters for the model are Boltzman
constantkB , Planck’s constant\, the massm, the depth of
the potential well«, and the core diameters. The minimum
of the potential is atR0521/6s. The dimensionless quantitie
used in the calculation are the de Boer parametera
5\/Am«s2, the reduced temperaturekBT/«, and the re-
duced nearest-neighbor distanceRnn /s. The dimensionless
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836 57HARDY, LACKS, AND SHUKLA
forms for the internal energy and heat capacity areU/N« and
CV /NkB . The value used for the de Boer parameter
a50.025 51, which is appropriate when modeling solid Ar11

All results were obtained for a cubic system ofN5108 at-
oms with periodic boundary conditions. The small number
atoms is partially accounted for in the MD, QHA, and SHQ
results by dividing the vibrational contributions byN21,
while the static contributions are divided byN. For example,

U/N«5
Uvib

~N21!«
1

Vstat

N«
. ~28!

Similar results hold for the heat capacity, to whichVstat does
not contribute, and for the free energy.

The PIMC simulations were carried out with a consta
pressure path-integral Monte Carlo technique that inclu
the higher-order corrections to the Trotter expansion p
posed by Li and Broughton.19 These greatly improve the rat
of convergence to the exact quantum limit. Consta
pressure PIMC simulations based on the primitive algorit
with no higher-order corrections have been describ
previously,2,20 as have constant volume PIMC simulatio
that include higher-order corrections.21 The method used
here differs from these in that higher-order corrections w
included in constant-pressure simulations.

The PIMC results in the figures and the table were
tained with a Trotter number of 8, except atkBT50.05e
where a Trotter number of 16 was used. The heat capa
was not calculated because of the large statistical errors
occur in PIMC evaluations of the fluctuation formula f
CV .17

The SHQC predictions were obtained by combining
MD results of Lacks and Shukla22 with quantum corrections
obtained with the QHA. These MD results, which were o
tained by thermodynamic integration, were reduced to a
rametrized expression for the temperature and volume
pendence of the free energy. This expression was then
to obtain the predicted zero pressure nearest-neighbor
tanceRnn , internal energyU, and heat capacityCV .

FIG. 1. Dimensionless nearest-neighbor distanceRnn /s minus
R0 /s521/2 vs temperature at zero pressure, and 10 times the
harmonic quantum corrections~AQC! to Rnn /s obtained from
FAQC .
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The standard formulas of perturbation theory5 were used
to calculate thel2 anharmonic quantum corrections. SinceU
and CV depend linearly on the free energy, substituting t
free energy correctionFAQC into the thermodynamic formu
las that relateU and CV to the free energy gives additiv
corrections. Obtaining additive corrections to the zero pr
sure nearest-neighbor distance is more involved. Since
thermodynamic formula for pressure isP52(]F/]V)T and
since the volumeV is proportional to the cube ofRnn , it
follows that (]F/]Rnn)T50 whenP50. Let R1 andR2 rep-
resent the zero pressure values ofRnn when the free energy
is taken to beF15FSHQC andF25F11FAQC, respectively.
It then follows that]F1(R1)/]Rnn50 and that

]F2~R2!

]Rnn
5

]F2~R1!

]Rnn
1

]2F2~R1!

]Rnn
2 ~R22R1!1•••50. ~29!

By approximatingF2 by F1 in the second derivative term, b
neglecting higher powers of (R22R1), and by solving for
(R22R1) it follows that

~R22R1!'
]FAQC~R1!/]Rnn

]2FSHQC~R1!/]Rnn
2 . ~30!

n-

FIG. 2. Dimensionless internal energyU/N« minus
U0 /N«526 vs temperature at zero pressure, and 10 times the
harmonic quantum correction toU/N« obtained fromFAQC .

FIG. 3. Dimensionless heat capacityCV /NkB vs temperature at
zero pressure, and 10 times the anharmonic quantum correctio
CV /NkB obtained fromFAQC .
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TABLE I. Predictions for the zero-pressure nearest-neighbor distanceRnn , the internal energyU, and the
heat capacityCV . The minimum static potential energyU0526N« occurs whenRnn5R0521/2s. The
1AQC predictions were obtained by adding the corrections obtained fromFAQC to the SHQC predictions.
The 2nd order EPMC values are from Ref. 11.

kBT/« 0.05 0.10 0.20 0.30 0.40 0.50

(Rnn2R0)/s SHQC 0.0142 0.0152 0.0208 0.0293 0.0404 0.055
1AQC 0.0141 0.0151 0.0206 0.0291 0.0400 0.0549
PIMC 0.0141 0.0150 0.0205 0.0289 0.0396 0.0536

(U2U0)/N« SHQC 0.532 0.571 0.773 1.059 1.394 1.790
1AQC 0.555 0.593 0.793 1.079 1.414 1.811
PIMC 0.553 0.588 0.784 1.063 1.387 1.765

CV /NkB SHQC 0.25 1.27 2.29 2.55 2.61 2.60
1AQC 0.25 1.24 2.28 2.55 2.61 2.60
EPMC 0.18 1.16 2.26 2.54 2.60 2.63
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This is the approximation used to estimate the anharmo
quantum corrections toRnn at zero pressure.

The results of our calculations are presented in Figs. 1
and 3. To illustrate the effects of anharmonicity and quant
mechanics, fully anharmonic MD predictions and ful
quantum-mechanical QHA predictions are also included
are the 2nd-order EPMC predictions for Ar of Liu, Horto
and Cowley.11 The values plotted are all for the neare
neighbor distance that leads to zero pressure in the indic
approximation. The anharmonic quantum corrections
tained fromFAQC are also given. So that they can be clea
seen, they were multiplied by 10 before being plotted.

The anharmonic quantum correction toU does not tend to
zero at high temperature. This results from the fact that
quartic part of the correction toU, which arises from the
term (̂ V4&0

Q2^V4&0
C) in Eq. ~15!, tends to a constant valu

in the limit of high temperatures whenRnn is fixed~while the
total internal energy tends to infinity!. The cubic part of the
correction toU, which arises from the term (F3

Q2F3
C), and

both the cubic and quartic parts of the correction toCV tend
to zero at high temperatures. Also, the cubic and qua
parts of the correction toCV tend to zero in the limit of low
temperatures.

For the Lennard-Jones system considered the quartic
of the corrections to bothU andCV have roughly twice the
magnitude of the cubic parts and have the opposite s
Thus, since thel2 correction to the EPMC free energy is th
same as the cubic part of the correctionFAQC, the correction
to an EPMC prediction can be expected to have roughly
same magnitude as the anharmonic quantum corrections
SHQC prediction.

There is very good agreement between the solid lines
resenting the SHQC results in the figures, the crosses re
senting the PIMC results, and the open circles represen
-
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the EPMC results. The most significant disagreements are
the zero pressure value ofRnn at high temperatures and fo
CV at low temperatures. To put these disagreements in
spective, note that atkBT50.05« the heat capacity in the
thermodynamic limit ofN5` is roughly 8% larger than it is
in a system ofN5108 atoms, as estimated with the QHA
The quantitative effect of adding the anharmonic quant
corrections obtained fromFAQC to the SHQC results can b
seen in Table I.

A calculation of anharmonic quantum corrections can
used both to improve the accuracy of SHQC predictions
to test their accuracy. The type of solid for which SHQC
not satisfactory is one in which the interplay between anh
monicity and quantum effects is characteristically grea
than in solid Ar. Solid Ne is such a system. The warning t
the SHQC approach does not work for Ne is indicated by
unphysical results obtained in the perturbative calculation
the anharmonic corrections.

We conclude that a classical MC or MD simulation wi
harmonic quantum corrections would usually be prefera
to a PIMC or EPMC calculation, because of its compu
tional efficiency and conceptual simplicity. Nevertheless
appears that the search for a simple and efficient method
determining the properties of all types of solids that is ac
rate from absolute zero to the melting temperature is not
over.
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