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Spin dynamics and transport in gapped one-dimensional Heisenberg antiferromagnets
at nonzero temperatures

Kedar Damle and Subir Sachdev
Department of Physics, P.O. Box 208120, Yale University, New Haven, Connecticut 06520-8120

~Received 31 October 1997!

We discuss the theory of the nonzero temperature (T) spin dynamics and transport in one-dimensional
Heisenberg antiferromagnets with a gapD. For T!D, we develop a semiclassical picture of thermally excited
particles. Multiple inelastic collisions between the particles are crucial, and are described by a two-particleS

matrix which is shown to have asuperuniversalform at low momenta. This is established by computations on
the O(3) s model, and strong- and weak-coupling expansions~the latter using a Majorana fermion represen-
tation! for the two-legS51/2 Heisenberg antiferromagnetic ladder. As an aside, we note that the strong-
coupling calculation reveals anS51, two-particle bound state which leads to the presence of a second peak in
the T50 inelastic neutron-scattering~INS! cross section for a range of values of momentum transfer. We
obtain exact, or numerically exact, universal expressions for the thermal broadening of the quasiparticle peak
in the INS cross section, the spin diffusivity, and for the field dependence of the NMR relaxation rate 1/T1 of
the effective semiclassical model; these are expected to be asymptotically exact for the quantum antiferromag-
nets in the limitT!D. The results for 1/T1 are compared with the experimental findings of Takigawaet al.
@Phys. Rev. Lett.76, 2173 ~1996!# and the agreement is quite good. In the regimeD,T,~a typical micro-
scopic exchange! and we argue that a complementary description in terms of semiclassical waves applies, and
give some exact results for the thermodynamics and dynamics.@S0163-1829~98!00414-7#
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I. INTRODUCTION

For more than a decade now, much effort has been
voted to understanding the properties of a variety of insu
ing one-dimensional Heisenberg antiferromagnets. By n
the basic facts about these systems are very well establis
Heisenberg antiferromagnetic chains with integer spins
each site exhibit a gap in their excitation spectrum, wh
those with half-integer spins are gapless.1,2 Among the spin-
1/2 ladder compounds, those with an even number of l
exhibit a gap just like the integer spin chains,3–5 while lad-
ders with an odd number of legs are gapless analogous to
half-integer chains.5

Theoretically, the universal low-energy properties of t
gapped systems are well described by the one-dimensi
quantumO(3) nonlinears model ~NLsM! without any to-
pological term.6–8 A lot is known exactly about this field
theory9–11 and this is directly useful in understanding th
gapped systems. The spectrum of thes model consists of a
triplet of massive spin-1 particles as the lowest energy e
tations followed by multiparticle continua with no boun
states. Many zero-temperature (T) properties of the gappe
systems, including low-frequency dynamic correlations, c
be explained using the exact information available on thes
model.12 On the other hand, until very recently exact resu
for T.0 were restricted to static, thermodynam
properties,13 while many experimental observables@such as
the inelastic neutron-scattering~INS! cross section and NMR
relaxation rates# directly probe dynamical correlations a
nonzero temperature.

~The universal low-energy properties of the gapless s
tems have been treated via a mapping to a certain cri
field theory.14 In contrast to the NLsM, powerful techniques
570163-1829/98/57~14!/8307~33!/$15.00
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that exploit the conformal invariance of the theory can
used to determine exactly forT.0 some dynamical correla
tors that are directly probed by NMR experiments.15–17Simi-
lar methods have been used to obtain results forT.0 on
static properties as well.18 Transport properties have als
been studied recently,19 with results that are quite differen
from those we shall obtain here for gapful systems.!

This paper shall deal exclusively with theT.0 dynamical
properties of gapped Heisenberg spin chains. A portion
our results have appeared earlier in a short report,20 where
we presented them in the context of the continuum NLsM,
but did not fully discuss their range of applicability. Here w
shall take a more general point of view of working direct
with lattice Heisenberg antiferromagnets. The main, and
sentially only, requirement on the spin chain being studied
that it have an energy gap and that its low-lying excitatio
consist of a triplet of spin-1 particles with the dispersion

«~k!5D1
c2k2

2D
1O ~k4!•••. ~1.1!

Here k is being measured from an antiferromagnetic wa
vectorQ5p/a (k5q2Q, anda is the lattice spacing!, and
we have introduced a velocityc to parametrize the mass o
the particles asD/c2. This is in keeping with the ‘‘relativis-
tic’’ spectrum of theO(3) s model «(k)5(D21c2k2)1/2,
although most of our results willnot rely on this relativistic
form. Gapped spin chains with a spontaneously broken tra
lational symmetry~spin-Peierls order! can have spin-1/2 par
ticle excitations: we shall not deal with this case explicit
although we believe most of our results can also be exten
to these systems.
8307 © 1998 The American Physical Society
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The energy gapD is an important energy scale whic
shall play a central role in our analysis. The majority of o
results will be in the regimeT!D ~we shall use units with
\5kB51 throughout! which we now discuss.

In this regime, there is a dilute gas of excited partic
present, and their motion and collisions dominate the
namical properties we study. In particular their spac
;ceD/T/(DT)1/2 is much larger than their thermal de Brogl
wavelength;c/(DT)1/2. As argued in Ref. 21, these pa
ticles can be treated classically except when two of th
collide. Such two-particle collisions need to be treated qu
tum mechanically and are described by anS matrix, which
is, in general, a complicated function of the particle mome
and spin orientations. Conservation of total momentum
energy implies that momenta before and after collisions h
to be the same, andO(3) invariance and unitarity impos
further constraints, but a fairly complex structure is s
permitted—we will see some explicit examples in this pap
However, the rms thermal velocity of a partic
vT5(T/D)1/2c→0 asT/D→0 and thus we need theS ma-
trix only in the limit of vanishing incoming~and outgoing!
momenta. One of the central ingredients in our computati
will be our claim that in this limit, all of the complexity
disappears, and theS matrix has asuperuniversalform; for
the scattering event shown in Fig. 1 we have@herem i5x,y,z
are the three possible values of theO(3) spin label#

S
m

18 ,m
28

m1m2 ~k1 ,k2 ;k18 ,k28!5~21!dm1m
28
dm2m

18
~2p!2

3d~k12k18!d~k22k28!, ~1.2!

Notice especially the opposite pairing of momentum a
spin labels: crudely speaking, the momenta go ‘‘throug
the collision, while the spins ‘‘bounce off’’—this dichotom
will be crucial to our considerations. We dub this limitin
value of theS -matrix ‘‘superuniversal’’ as it requires only
that the lowest-lying excitations above the gap satisfy
~1.1! at low momenta. The value, however, does not dep
on parameters such asc and D. Moreover, we expect this
limiting result to hold even at the lattice level for gener
microscopic models of one-dimensional antiferromagn
with massive spin-one excitations; we shall see one exp
example that bears out this expectation later in the pape

FIG. 1. Two-particle collision described by theS matrix Eq.
~1.2!. The momenta before and after the collision are the same
the figure also represents the space-time trajectories of the part
r
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With this simple form of theS matrix in hand, we will
use the semiclassical techniques of Ref. 21 to analyze
namical properties of spin fluctuations nearq50 andq5Q
in terms of the motion of the dilute gas of quasiparticles.

We will begin by discussing the properties of theS ma-
trix for two-particle scattering in the limit of low momenta i
Sec. II. In Sec. II A we consider theS matrix for theO(3)
nonlinear sigma model. This has been computed for all m
menta by Zamolodchikov and Zamolodchikov, and we sh
show that the zero momentum limit does indeed satisfy
~1.2!.

However, thes model is a continuum theory; it would b
much more satisfactory to be able to directly see that
~1.2! holds for some specific microscopic model, and expl
itly verify that lattice effects do not affect the simple stru
ture of this limit. One such model is theS51/2, two-leg
Heisenberg antiferromagnetic ladder with interchain e
changeJi and intrachain exchangeJ' . The properties of the
ladder can be analyzed using a ‘‘strong-coupling
expansion22 in powers ofJi /J' for the microscopic lattice
Hamiltonian of the system. In Sec. II B we shall explicit
verify Eq. ~1.2! for vanishing velocities in this lattice mode
within this strong-coupling expansion. Parenthetically,
note that our strong-coupling analysis also allows us to m
predictions about interesting features in theT50 dynamic
structure factorS(q,v) which are specific to the system con
sidered. In particular, we find that, to second order inJi /J' ,
a two-particleS51 bound state gives rise to asecondpeak
~in addition to the usual peak coming from the stable sing
particle excitations of the system! in S(q,v) for a range of
values ofq aroundQ. This should be of relevance to inela
tic neutron-scattering~INS! experiments on the ladder com
pounds and it is hoped that they experimentally verify t
existence of this effect.

In Sec. II C we study the complementary ‘‘weak
coupling’’ expansion in powers ofJ' /Ji for the two-leg lad-
der. As was shown in Ref. 23, this expansion leads t
description of the low-energy, long-distance properties of
ladder in terms of an effective field theory of a triplet
massive Majorana fermions. The Hamiltonian for the Ma
rana fermions also has a four-fermion coupling which h
generally been ignored in previous treatments. In the abse
of this scattering, the Majorana fermions are free, and
resultingS matrix doesnot obey Eq.~1.2!. In this paper, we
consider the effect of the four-fermion coupling in perturb
tion theory. We show that this expansion suffers from sev
infrared problems which have to be resolved by an infini
order resummation. The structure of the divergences is v
similar to those also present in the large-N expansion of the
s model above, and we find that the resulting resummedS

matrix of the Majorana fermions does indeed obey the a
log of Eq. ~1.2!. So neglecting the four-fermion coupling,24

~or even treating it in an unresummed manner at finite or
in perturbation theory! is a very bad approximation at low
momenta, and we expect that corresponding divergence
the perturbative evaluation of the spin-spin correlation fu
tion invalidate the dynamical results of Ref. 24 at lowT.

In Sec. III we shall turn to a discussion of the dynamic
properties in the regime 0,T!D. Our results apply univer-
sally to all gapped one-dimensional antiferromagnetic s
tems with spin-one quasiparticles; indeed they relyonly on

so
es.
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57 8309SPIN DYNAMICS AND TRANSPORT IN GAPPED ONE- . . .
the dispersion~1.1! and theS matrix in Eq. ~1.2!. All our
results will be expressed solely in terms of the parametec
andD, the temperature,T and the external fieldH.

In Sec. III A we study the dynamics of the staggered co
ponent~with wave vectorq close toQ) of the fluctuations in
the spin density. More precisely, we study the dynami
structure factorS(q,v) for q close toQ. Apart from some
overall factors, this directly gives the INS cross section at
corresponding values of momentum and energy transfer
T50, the dynamical structure factor has a sharply defin
d-function peak atv5«(q2Q) for q nearQ. This peak can
be thought of as arising from the ballistic propagation of
stable quasiparticle of the system. At nonzero temperatu
the peak broadens as the quasiparticle suffers collisions
other thermally excited particles. The main objective of S
III A is to describe the precise line shape of the quasipart
peak in the dynamic structure factor forT.0.

In the s-model approach, the staggered components
the spin density are represented by the antiferromagnetic
der parameter fieldnW . We will use the semiclassical metho
of Ref. 21 to calculate the space- and time-dependent t
point correlation function of thenW field for T.0. This allows
us to calculate the thermal broadening of the single-part
peak in the dynamical structure factorS(q,v) for wave vec-
tors q nearQ. In particular, we find that the dynamic stru
ture factor in the immediate vicinity of the quasiparticle pe
at (q5Q, v5D) may be written in a reduced scaling for
as

S~q,v!5
AcLt

p2D
FS v2«~k!

Lt
21 D , ~1.3!

wherek5q2Q, A is the ~nonuniversal! quasiparticle am-
plitude of the spin-one excitations of the syste
Lt5ApeD/T/3T is the typical time spent by a thermally ex
cited quasiparticle between collisions with other particl
andF is a completely universalfunction that we determine
numerically in this paper. Notice that temperature enters
scaling form only throughLt . We claim, though this is no
rigorously established, that these results for the broade
are asymptotically exact forT!D: all corrections to the line-
width are expected to be suppressed by positive power
T/D. Some evidence for the exactness of our results eme
from consideration of simpler systems where exact res
for the line broadening are available from the quantum
verse scattering method;25 as we shall see in Sec. III A, ou
semiclassical results are in perfect agreement21 with these. It
is hoped that experimental studies of the temperature de
dence of the INS cross section in this regime will confi
these results, particularly the simple scaling form~1.3!.

In Sec. III B we turn to the correlations of the conserv
magnetization density, or dynamic fluctuations nearq50,
for T!D. Unlike the staggered case, the overall magnitu
of the magnetization density fluctuations is universal a
given byTxu , wherexu is the uniform susceptibility of the
system@the nonuniversal overall scale of the staggered co
ponent is reflected for instance by the presence of the ov
constantA in Eq. ~1.3!#. In this temperature regime, w
have the well-known result forxu :13
-
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xu5
1

cS 2D

pTD 1/2

e2D/T. ~1.4!

We shall study the dynamics of the magnetization density
Sec. III B.20 We shall show that the long-time correlations
an effective semiclassical model are characterized byspin
diffusion, and obtain the following result for its low-T spin-
diffusion constantDs :

Ds5
c2

3D
eD/T. ~1.5!

Using the Einstein relation for the spin conductivityss
5Dsxu, we obtain from Eqs.~1.4! and ~1.5!

ss5
c

3 S 2

pDTD 1/2

.

Notice that the exponentially large factoreD/T has dropped
out, andss diverges with an inverse square-root power inT
asT→0. The semiclassical model possesses an infinite n
ber of local conservation laws: in Appendix A, we discu
how the existence of spin diffusion can be compatible w
these local conservation laws. However, these results do
rigorously allow us to conclude that the ultimate long-tim
correlations of the underlying gapped quantum spin chain
diffusive. This has to do with a subtle question of order
limits: we computed theS matrix ~1.2! in the limit T/D
→0, and then used it to evaluate the long-time limit of co
relations of the magnetization, whereas in reality the lim
should be taken in the opposite order. What we can claim
that our results will apply for all times up to a time sca
which is larger than the collision timeLt by a factor which
diverges with a positive power ofD/T as T→0; there is a
substantial time window in this regime where we have est
lished that the spin correlations are diffusive. For the gene
gapped quantum spin chain, we fully expect that the ultim
long-time correlations are indeed diffusive, and the only co
sequences of the omitted terms in theS matrix are subdomi-
nant corrections to the value ofDs in Eq. ~1.5! which are
suppressed by powers ofT/D. For the continuum NLsM
with a relativistically invariant regularization~this is un-
physical for any experimental application!, the issue is a
little more subtle: this model does possess additional no
cal conserved quantities,26 but we consider it unlikely that
these will modify the long-time limit.27 On the experimenta
side, however, diffusive behavior of the magnetization d
sity has already been convincingly demonstrated in theS51
one-dimensional antiferromagnet AgVP2S6 by the NMR ex-
periments of Takigawaet al.28

As has been argued earlier,29 the dynamic fluctuations
near q50 provide the dominant contribution to the NM
relaxation rate 1/T1 for T!D. Thus, knowing the space- an
time-dependent two-point correlation function of the co
served magnetization density, we are able to compute
field and temperature dependent 1/T1 in this regime. We
shall see that the overall scale of 1/T1 is set by the ratio
Txu /ADS. As was pointed out to us by Takigawa,20 this
immediately leads to an activation gap for 1/T1 given as
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D1/T1
5

3

2
D. ~1.6!

This difference between the activation gaps forxu and 1/T1
appears to clear up puzzling discrepancies in the experim
tal literature28,30,5 for the value of the energy gap in thes
systems obtained from Knight-shift susceptibility measu
ments on the one hand, and 1/T1 NMR relaxation rates on
the other; a systematic tabulation of the activation gaps f
large number of gapped spin chains31 does indeed show a
trend consistent with Eq.~1.6!. The crucial factor of 3/2
clearly arises from the exponential divergence inDs . This
diffusive behavior we find arises entirely from intrinsic in
elastic scattering between the quasiparticles. In real syst
there will also be contributions from elastic scattering
inhomogeneities which will eventually saturate the div
gence ofDs asT→0. However, because of the strong sp
scattering implied by Eq.~1.2! the effects of inelastic scat
tering is particularly strong ind51, and can easily dominat
inhomogeneities in clean samples.

We will give a detailed account of the calculations lea
ing up to our expression for 1/T1 ~some details on the
method used are relegated to Appendix C! and then go on to
compare the theoretical predictions for the field depende
of 1/T1 with the extensive experimental data of Takigaw
et al.28 We will see that our results~without any adjustable
parameters, except for a field-independent background r!
agree with the data extremely well for a range of interme
ate temperatures. At the lowest temperatures for which d
is available, the quality of the fit deteriorates significan
and the 1/AH divergence predicted at small fields seems
get cutoff, presumably by some spin-dissipation mechan
present in the real system. At the present time, we are un
to incorporate this dissipation in any serious way in our
proach. However, following Ref. 28, we can phenomenolo
cally introduce some spin-dissipation in our results for
long-time limit of the autocorrelation function and obtain
corresponding expression for the field dependence of 1T1.
This allows us to fit the data at the lowest temperatures w
a phenomenological form that has one additional adjusta
parameter corresponding to the spin-dissipation rate. We
present results for the temperature dependence of this e
tive rate.

Finally, in Sec. IV we will turn to the regimeT@D. We
will do this in the context of the continuumO(3) s model
only. Any continuum theory is applicable to real lattice e
periments only below some energy scale, and a nat
choice for this energy scale is a typical exchange constanJ.
So more specifically, we shall be studying the regim
D!T!J. For T@J we expect the spins to behave indepe
dently, and the system exhibits a Curie susceptibility. It is
open question whether the window of temperaturesD!T!J
with universal behavior exists at all in any given system, a
the answer will surely depend upon details of the microsc
ics. It is unlikely to be present forS51 spin chains, but
appears quite possible forS52 spin chains.32 The static
properties of this regime were first studied by Joliceour a
Golinelli33 using theN5` limit of the O(N) s model of
Ref. 34. We shall present here an exact treatment of s
and dynamic properties for the case of generalO(N); the
numerical values of theN53 static results are significantl
n-

-

a

ms
f
-

-

ce

te
i-
ta

o
m
le
-
i-
e

h
le
so
c-

al

e
-
n

d
-

d

tic

different from the earlierN5` results. We shall show tha
the antiferromagnetic correlations decay with a correlat
length j, which to leading logarithms inD/T is given at
N53 exactly by

j5
c

2pT
lnS 32pe2~11g!T

D
D , ~1.7!

whereg is Euler’s constant. We also obtain the exact u
form susceptibility

xu5
1

3pc
lnS 32pe2~21g!T

D
D ~1.8!

@notice the argument of the logarithm differs slightly fro
Eq. ~1.7!#. It is interesting to compare the two asymptot
results~1.4! and ~1.8!, and we have done that in Fig 2. It i
reassuring to find that the two results are quite compat
for T'D. This suggests that one of either theT!D or T@D
asymptotics are always appropriate. We shall also cons
the nature of spin transport in theD!T!J regime, and show
that it is related to transport in a certain classical statist
problem of deterministic nonlinear waves. We have not
tablished whether spin diffusion exists or not in this classi
problem; if the correlations were diffusive, however, we a
able to precisely predict theT dependence of the spin diffu
sivity:

FIG. 2. Low- and high-temperature asymptotics for the unifo
susceptibilityxu of the continuumO(3) nonlinears model. At
T50, there is an energy gapD to all excitations, andc is the
velocity defined by Eq.~1.1!. The expression in Eq.~1.4! gives the
low-temperature asymptotics, while Eq.~1.8! is used for the high-
temperature asymptotics. Any lattice antiferromagnet will have
very high-temperature (T.J whereJ is a typical microscopic ex-
change constant! Curie susceptibility;1/T which is not shown: the
high-temperature limit of the continuum theory will apply fo
D,T,J.
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Ds5B
T1/2@j~T!#3/2

@3xu~T!/2#1/2
. ~1.9!

Here B is an undetermined universal number, andj(T),
xu(T) are given in Eqs.~1.7! and ~1.8!.

Notice the complementarity in the twoT regimes dis-
cussed above: the description forT!D was in terms of semi-
classical particles, while that forD!T!J is in terms of
semiclassical nonlinear waves.

II. ZERO-TEMPERATURE PROPERTIES

The primary purpose of this section will be to establi
the S matrix by a variety of methods. We will begin in Se
II A by using the relativisticO(3) s model. In Sec. II B we
will consider the strong-coupling expansion of the two-l
ladder in powers ofJi /J' . This section will also presen
supplementary results on some interesting features in
T50 INS cross section of the strongly coupled ladder aris
from the presence of aS51, two-particle bound state in it
spectrum. Finally, Sec. II C will consider the complementa
J' /Ji expansion.

A. O„3… s model

Let us begin with a brief review of thes-model as an
effective field theory for the low-energy properties of t
gapped systems~for a more extensive discussion see Ref.
and references therein!. The imaginary time (t) action of the
s model is

L5
c

2gE0

1/T

dtdxF ~]xna!21
1

c2
~]tna2 i eabgHbng!2G ,

~2.1!

where x is the spatial coordinate,a,b,g51,2,3 areO(3)
vector indices over which there is an implied summatio
eabg is the totally antisymmetric tensor,c is a velocity,Ha is
an external magnetic field~we have absorbed a factor of th
electronic magnetic moment,gemB , into the definition of the
field H!, and the partition function is obtained by integratin
over the unit vector fieldna(x,t), with na

2(x,t)51. The
dimensionless coupling constantg is determined by the un
derlying lattice antiferromagnet at the momentum sc
L; inverse lattice spacing to beg;1/S whereS is the spin
at each site in the original lattice system. Thes model is
used to make statements about physics at length sc
@L21 and time scales@(cL)21; this physics isuniversally
characterized by the dimensionful parametersc, H, T, and
D, the energy gap atT5H50. Though the magnitude ofD
is determined by nonuniversal lattice scale quantit
(D;cLe22p/g for smallg), the long distance physics of th
s model depends on these lattice scale effects only thro
the value ofD, and has no direct dependence ong or L.
Also, the energy-momentum dispersion of the stable parti
like excitation of this model is given by«(k)5AD21k2c2,
and there is a triplet of them. The conserved density of
model corresponding to itsO(3) symmetry is the magneti
zation densityMa(x,t)5dL/dHa(x,t). In the Hamiltonian
formalism, this is represented by the operatorMa(x).
he
g

y

5

,

e

les

s

h

e-

is

Finally, to make contact with the lattice antiferromagn
we must have a prescription for representing the spin-den
operatorsa(x) of the lattice system in terms of the operato
of the s model. It is most convenient to do this in terms
Fourier components. We have

sa~k1Q!}na~k!

~recall thatQ5p/a) and

sa~q!5Ma~q!

for uqu, uku much smaller than some microscopically dete
mined scale;L. The missing proportionality constant in th
first relation is nonuniversal and related to the magnitude
the spin at each site in the original lattice system. Thus, ths
model allows us to represent spin fluctuations nearq5Q
~these being the low-energy degrees of freedom! and near
q50. This is of course because theq50 component of the
spin density is the conserved charge corresponding to
O(3) symmetry of the system, and as such must be inclu
in any description of the slow modes.

The exactS matrix of the collision of two particles in the
s model was computed in a seminal paper of Zamolo
chikov and Zamolodchikov. For the scattering event sho
in Fig. 1 it is @recall m i5x,y,z are the three possible value
of the O(3) spin label#:

S
m

18 ,m
28

m1m2 ~k1 ,k2 ;k18 ,k28!5~2p!2d~k12k18!d~k22k28!

3@s1~u!dm1m2
dm

18m
28

1s2~u!dm1m
18
dm2m

28

1s3~u!dm1m
28
dm2m

18
#, ~2.2!

where u5u12u2 is the ‘‘rapidity,’’ ki5(D/c)sinhui for
i 51,2, andO(3) invariance guarantees a total lack ofH
dependence in the result. The functionss in Eq. ~2.2! are

s1~u!5
2p iu

~u1p i !~u22p i !
,

s2~u!5
u~u2p i !

~u1p i !~u22p i !
, ~2.3!

s3~u!5
22p i ~u2p i !

~u1p i !~u22p i !
.

Now notice the structure of the limitu→0 which is impor-
tant for our purposes in the regionT!D: we find that
s1,2(u→0)50, while s3(u→0)521. This establishes the
key result~1.2! for this continuum model.

B. Strongly coupled two-leg ladders

In this section we concentrate on the properties of a p
ticular model system, the spin-1/2, two-leg Heisenberg a
ferromagnetic ladder, to which the low-energy phenomen
ogy of the preceding section is expected to apply. T
Hamiltonian of the system may be written as
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H5(
i

SW I~ i !•SW II ~ i !1g(
i

@SW I~ i !•SW I~ i 11!

1SW II ~ i !•SW II ~ i 11!#. ~2.4!

Here, theSW I( i ) and SW II ( i ) are spin-1/2 operators at sitei
along the two chains that make up the ladder,g is a dimen-
sionless coupling constant equal to the ratio of the antife
magnetic bond along the individual chainsJi to the bond
along the rungs of the ladderJ' , and we have set the bon
strengthJ'along the rungs to be unity; this defines our u
of energy. We will analyze this model in the limit of smallg;
this ‘‘strong-coupling’’ expansion22 is expected to be quali
tatively correct for allg. For g50, we just have a system o
isolated rungs with the two spins on each rung coupled
tiferromagnetically. The ground state is a product state w
each rung in a singlet state. The lowest-lying excited sta
form a degenerate manifold with precisely one rung p
moted to the triplet state. Perturbative corrections ing would
presumably make this triplet ‘‘particle’’ hop around produ
ing a single-particle band of triplet excitations as the lowe
lying excited states. Thus we expect that our perturba
analysis will be most conveniently performed in a repres
tation that directly describes the state ofindividual rungsof
the ladder. With this in mind, we switch to the ‘‘bond
operator’’ formalism introduced in Ref. 36. Following Re
36, we write the spin operators as

SI
a~ i !5

1

2
@s†~ i !ta~ i !1ta

†~ i !s~ i !2 i eabgtb
†~ i !tg~ i !#,

~2.5!

SII
a ~ i !5

1

2
@2s†~ i !ta~ i !2ta

†~ i !s~ i !2 i eabgtb
†~ i !tg~ i !#,

~2.6!

wherea, b, andg are vector indices taking the valuesx,y,z,
repeated indices are summed over, ande is the totally anti-
symmetric tensor.s†( i ) and ta

†( i ) are, respectively, creatio
operators for singlet and triplet bosons at sitei @in the pre-
vious section we had usedsW(x) to denote the spin density o
the lattice system; here we shall usesW (x) to denote the same
and reserves for the singlet boson operator#. The restriction
that physical states on a rung are either singlets or trip
leads to the following constraint on the boson occupat
numbers at each site:

s†~ i !s~ i !1ta
†~ i !ta~ i !51.

The spin density is given by

sa~ i !52 i eabgtb
†~ i !tg~ i !.

It is also convenient to define

fa~ i !5s†~ i !ta~ i !1ta
†~ i !s~ i !.

The Hamiltonian in terms of these operators is given as

H5H01V , ~2.7!

where
-

t

n-
h
s
-

t-
e
-

ts
n

H05(
i

S 2
3

4
s†~ i !s~ i !1

1

4
ta
†~ i !ta~ i ! D , ~2.8!

and

V 5
g

2(i
@fa~ i !fa~ i 11!2sa~ i !sa~ i 11!#. ~2.9!

In this representation, the ground state forg50 is just the
state with every site occupied by a singlet boson. To zer
order ing, the lowest excited states form a degenerate ma
fold with a triplet boson~of arbitrary polarization! replacing
the singlet particle at precisely one site. Higher excited sta
also form degenerate manifolds labeled by the numbe
singlet particles that are replaced by triplet bosons. In w
follows, we will describe states by the number~which can
only be zero or one! and polarization of the triplet particles a
each site, the singlet occupation numbers being determ
by the constraint. Thus we will loosely refer to the state w
no triplet particles as the ‘‘vacuum.’’ At this order ing, the
physical particlelike excitation of the system is created at
i by the action offa( i ) on the vacuum, and thus coincide
with the bare triplet particle. In general at higher orders ing,
we expect that the physical single particle states of the s
tem will contain an admixture of states with more than o
bare particle present. Similarly, the physical vacuum w
also have a component with nonzero bare particle numb

In fact, it is quite convenient to make a canonical tran
formation ~determined order by order ing) to an auxiliary
problem in which the physical particle states do not cont
admixtures of states with different bare particle number. T
Hamiltonian of the auxiliary problem is related to the orig
nal one by a similarity transformation. The energy eigenv
ues obtained in this manner of course give the energy le
of the original Hamiltonian. However, to recover the corr
sponding wave functions, one has to undo the effects of
canonical transformation. We will use this convenient fo
mulation of perturbation theory below as we discuss
strong-coupling expansion.

The auxiliary Hamiltonian in this approach is given by

H̃5eiWHe2 iW, ~2.10!

whereW is the hermitian operator that generates our cano
cal transformation. We chooseW to meet the following cri-
teria:

~i! The matrix elements ofH̃ between states with differ
ing numbers of bare particles should be zero to a given o
in g. Note that this implies that the elementary excitations
the auxiliary Hamiltonian are just the bare particles. Ho
ever their dynamics, and their mutual interactions~in multi-
particle sectors! are determined by the restriction ofH̃ to the
appropriate subspace of definite particle number. This
striction gives the corresponding energy levels of the origi
HamiltonianH correct to that order ing. This then serves as
our effective Hamiltonian for the corresponding sector of t
original problem.

~ii ! This does not completely specifyW. We therefore
also require thatW have zero matrix elements to a give
order in g between any two states populated by the sa
number of bare particles.
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These criteria fixW uniquely order by order ing and in
general we have an expansion forW that reads:
W5g(W11gW21 . . . ). It is quite straightforward to use
this procedure to generate an expansion ing for the effective
Hamiltonians in the one- and two-particle sector of the ori
nal problem~the ‘‘effective Hamiltonian’’ in the physical
vacuum sector is just a constant equal to the ground-s
energy calculated to the relevant order ing). Solving for the
eigenstates and eigenvalues of these effective Hamilton
is just a simple exercise in elementary quantum mechan
If the eigenstates of the spin ladder are of interest@as they
will be when we calculateS(q,v) perturbatively#, we will
have to obtain them from the eigenstatesuc& of the effective
Hamiltonian using

uc&physical5e2 iWuc&. ~2.11!

After this preamble, we turn to the actual calculations.
we have mentioned earlier, the scattering matrix in the lo
energy limit is a crucial input to the semiclassical calcu
tions at nonzero temperature, and it is therefore interestin
have results for it in our microscopic model. So, to beg
with, let us look at the two-particle sector and work out t
scattering properties of the physical particles.

First we need to find the effective Hamiltonian for th
two-particle sector. To first order ing, this is just given by
the restriction ofH01V to the two-particle subspace. In
stead of introducing a lot of cumbersome notation to wr
this down, we will just list the amplitudes of the variou
processes that are allowed in this two-body problem:

~i! Each particle can hop one site to the left or the rig
with amplitudeg/2 except when the neighboring site in que
tion is occupied by the other particle.

~ii ! When the two particles are at neighboring sites, th
is a nonzero amplitude for spin rotation. Consider the s
u i ,a1 ;( i 11),a2& which has one particle ati with polariza-
tion a1 ~which can be any one ofx,y,z) and another particle
at i 11 with polarizationa2. The amplitude to make a tran
sition from this to the state u i ,b1 ;( i 11),b2& is
(2gegb1a1

egb2a2
)/2.

To solve for the scattering states of this two-body pro
lem, it is more convenient to work in a basis in which w
label the spin part of the two particle states by the to
angular momentumJ and the value of itsz componentJz .
The spin rotation amplitude now becomes just aJ-dependent
nearest-neighbor potential which takes the valuesg/2, 2g/2,
and 2g for J52, 1, and 0, respectively. Note that the p
tential energy is independent ofJz as one would expect from
rotational invariance. It is now quite simple to find the sc
tering eigenstates in each channel. The spatial wave func
in channelJ may be written as

c~x1 ,x2!5 P̂J$@eik1x11 ik2x21r J~k1 ,k2!eik2x11 ik1x2#

3u~x22x1!%, ~2.12!

where P̂J is the symmetrizing operator forJ52,0 and the
antisymmetrizing operator forJ51, andr J is the reflection
coefficient that completely specifies the scattering proper
of the particles. For ther J we have
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r 252
e2 ika22 cos~kcma/2!

eika22 cos~kcma/2!
, ~2.13!

r 152
e2 ika12 cos~kcma/2!

eika12 cos~kcma/2!
, ~2.14!

r 052
e2 ika1cos~kcma/2!

eika1cos~kcma/2!
, ~2.15!

wherek5(k12k2)/2, kcm5k11k2, anda is the lattice spac-
ing along the length of either of the two chains that make
the ladder system. Note thatk1 and k2 both range over the
interval (0,2p/a). The energy of the scattering state label
by $k1 ,k2% ~the energy of the ground state being set to ze!
is given by

E~k1 ,k2!521g cos~k1a!1g cos~k2a!.

This is consistent with the first-order result22 for the single-
particle dispersion relation:E(k)511g cos(ka).

The next step is to use these results for the reflec
coefficients to obtain theS matrix for this two-body prob-
lem in the limit of low velocities. Low velocities imply val-
ues ofk1 andk2 in the vicinity of the band minimum atp/a,
i.e., k close to zero andkcm close to 2p/a. Both r 2 and r 1
have the limiting value21 ask→0, kcm→2p/a. However,
r 0 is singular in the vicinity ofk50, kcm52p/a; its value
depends on the order in which the two limitsk→0 andkcm
→2p/a are taken. This is somewhat disconcerting as
expect a well-defined low-velocity limit which agrees wi
the predictions of theO(3) NLsM field theory.

To identify the source of our problem, let us look mo
closely at the expression forr 0. We notice thatr 0, consid-
ered a function of the complex variablek, has a pole in the
upper half-plane for a range of values ofkcm . This indicates
the presence of a bound state in theJ50 channel for the
corresponding values ofkcm . This bound state hits threshold
i.e., its binding energy goes to zero, askcm→2p/a. It is the
presence of a bound state at threshold that causes the sin
behavior of the reflection coefficient in the limitk→0, kcm
→2p/a. Clearly, if there were a range ofkcm around 2p/a
for which there was no singlet bound state, then we wo
not have this difficulty. It turns out~as we shall briefly out-
line later! that extending our calculation to the next order
g leads us to precisely this conclusion and gives a w
defined limiting value of21 for r 0 ask→0, kcm→2p/a.

This result can now be used to obtain theS matrix of our
auxiliary two-body problem. We are interested, however,
the S matrix that describes the scattering of the physi
particle-like excitations of the spin-ladder. Thankfully, it
quite easy to see that though the wave functions of the
problems are related by a canonical transformation,
purely ‘‘off-diagonal’’ form of W implies that the two are
the same at least to first order ing. Transforming to the basis
used in Eq.~1.2!, we see that theS matrix in the low veloc-
ity limit is indeed given by Eq.~1.2!. Thus, this superuniver
sal form of theS matrix holds for our lattice model and
lends support to the idea that it is a generally valid con
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quence of just the slow motion of the particles and is in
way dependent on the special properties of the continuums
model.

To wind up this part of our discussion, let us now su
marize the calculation of the reflection coefficients to fi
order ing. We need to find the effective Hamiltonian of ou
auxiliary two-body problem to second order ing. This in-
volves first working outW1 and then using this to obtain th
effective two-body Hamiltonian. ToO (g2), we generate in
this manner an additional next-nearest-neighbor hopp
term and some additionalJ-dependent nearest-neighbor i
teractions. We skip the details as they are somewhat ted
and not particularly illuminating. TheJ50 reflection coeffi-
cient @correct toO (g)] obtained in this manner is given as

r 052
e2 ika1cos~kcma/2!2g cos~kcma!~3e2 ika1eika!/4

eika1cos~kcma/2!2g cos~kcma!~3eika1e2 ika!/4
.

~2.16!

From this, it is easy to see that there is no pole in the up
half k plane as long asukcma22pu,A8g. This means that
there is no singlet bound state possible in this range ofkcm .
This is consistent with our expectation that at the very low
energies, the two-particle spectrum should be free of bo
states in order to match the predictions of thes model.
Moreover, Eq.~2.16! has a well-defined low-velocity limit of
21 as claimed earlier.

The foregoing analysis has shown that the two-part
sector has a spinS50 bound state which leads to som
interesting threshold singularities for the scattering mat
Examining our expressions for the reflection coefficients,
notice that there is in fact a bound state in theS51 channel
as well ~actually, there is also aS52 antibound state; we
will not delve further into that aspect of the spectrum her!.
Now, aS51 excited state can have observable conseque
for the INS cross section of a system and we might expec
see some interesting features in the same as a result of

With this motivation, let us turn to the perturbative calc
lation of the dynamic structure factor atT50. We pick a
coordinate system in which the two chains that make up
ladder are parallel to thex axis and havey coordinates of
1d/2 and 2d/2, respectively, whered is the distance be
tween them~for simplicity, we are assuming here that th
rungs of the ladder are perpendicular to its legs!. The spins
along a chain are located atx values equal to integer mul
tiples of a. We denote the position of each spin in thex-y
plane by RW . We define PW 5(qx ,qy). The T50 dynamic
structure factor may be written as

S~PW ,v!5
1

2pE dt
a

2L(
RW RW 8

^F0uŜRW
z
~ t !ŜRW 8

z
~0!uF0&

3e2 iPW •~RW 2RW 8!1 ivt; ~2.17!

whereuF0& is the ground state of the system,L is the length
of each chain, andŜRW denotes the spin operator atRW in the
Heisenberg representation. Our strategy is to write down
usual spectral representation for Eq.~2.17! and then evaluate
it perturbatively. Actually, a complete calculation of th
second-order contribution would involve the eigenstates w
more than two-particles present; below we will ignore th
o
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complication and confine ourselves to calculating the con
bution of the one- and two-particle sectors, correct to
appropriate order ing.

The spin operator at any site is a sum of two terms
single-particle piece coming from thefa , and a two-particle
part coming from the spin-density operatorsa . From the
structure of the strong-coupling expansion, it is clear that
single-particle part does not have matrix elements betw
the ground state and any state in the two-particle sec
similarly the two-particle piece does not have matrix e
ments between the ground state and any state in the sin
particle sector. Thus, keeping only the contributions from
one- and two-particle sectors, we can write to second or
in g

S~PW ,v!5
1

2 (
12particle states

d~v2E1!u^F1ufz

3~2qx!uF0&u2sin2S qyd

2
D 1

1

2 (
22particle states

d~v

2E2!u^F2usz~2qx!uF0&u2cos2S qyd

2 D , ~2.18!

where uF1& and uF2& denote one and two particle state
respectively, andfz(qx) andsz(qx) denote the discrete Fou
rier transforms offz(x) and sz(x). Let us digress for a
moment and think in terms of the inelastic neutron-scatter
cross section for a process with momentum transferPW and
energy transferv; this coincides with the dynamic structur
factor apart from some geometrical factors. This scatter
can of course produce a single spin-one particle in the s
system. But there is also a nonzero amplitude for produc
a pair of these particles close to each other~as is clear from
the actual calculations described later!. This is the origin of
the second term in Eq.~2.18!.

Now, these two pieces contribute to the structure fac
over very distinct intervals along the frequency axis. While
is, in principle, possible to calculate both terms correct
O (g2), we will confine ourselves below to calculating th
leading perturbative correction for each value ofv. Thus, we
will calculate the single-particle piece only to first order ing,
while doing a full second-order calculation for the tw
particle piece. Below, we give a brief outline of the calcu
tion and then discuss our final results.

To calculate the single-particle piece, we first need to
termine the ground state and the physical one-particle s
wave functions correct toO (g). This involves usingW cor-
rect to first order to obtain the physical wave functions fro
the wave functions of the corresponding auxiliary proble
~for the one-particle sector, these are just plane waves to
orders ing; this follows from translational invariance!. A
simple calculation then gives the one-particle piece as

S1~PW ,v!5
1

2
@12g cos~qxa!#sin2S qyd

2
D d„v2E~qx!…,

~2.19!

whereE(qx)511g cos(qxa).
Turning to the two-particle piece, we see that one c

actually ignore the distinction between the physical tw
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particle wave function and the wave function of the auxilia
two-body problem. Moreover, it suffices to consider the a
iliary problem to first order ing. Also, since the ground stat
has spin zero and we are looking at the matrix elements
vector operator, we need to consider only the triplet (J51)
channel of the auxiliary problem. The only subtlety lies
the fact that we need to consider the bound-state contribu
as well as the usual contribution of the scattering sta
From Eq. ~2.14!, we see that this bound state exists f
p,kcma,p1p/3 and for 3p2p/3,kcma,3p ~remem-
ber kcm ranges from 0 to 4p/a). Thinking in terms of an
inelastic neutron-scattering event with momentum trans
qx in the fundamental domain (0, 2p/a), we see that this
bound state can be excited forp,qxa,p1p/3 and for
p2p/3,qxa,p. In the latter case, momentum is co
served modulo a reciprocal-lattice vector of 2p/a. Of
course, in addition to the bound-state contribution there
background term coming from the scattering states in
channel. Again, the two particles can be created in the s
tering state either with total momentumkcm equal to the
momentum transferqx , or with the two differing by a
reciprocal-lattice vector of 2p/a.

The actual calculations are quite elementary and we p
ceed directly to the results for the two-particle contributio
The bound-state contribution for 2p/3,qxa,4p/3 may be
written as

SB~PW ,v!5
g2

2
cos2S qyd

2
D sin2S qxa

2
D F124 cos2S qxa

2
D G

3d„v2EB~qx!…, ~2.20!

where EB(qx)522g@114 cos2(qxa/2)#/2. On the other
hand, the scattering states give rise to the following ba
ground contribution foruv22u,12gucos(qxa/2)u:

FIG. 3. Positions inv of the single-particle peak~solid line!,
bound state peak~long-dash line!, and the bottom of the two-

particle continuum~short-dash line! in S(QW ,v) plotted as a function
of qx for the strongly coupled ladder~a typical value ofg50.25 is
used!.
-

a

n
s.
r

r

a
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.

-

Ssc~PW ,v!5
g

p
cos2S qyd

2
D sin2S qxa

2
D

3
A4g2cos2~qxa/2!2~v22!2

g12~v22!14g cos2~qxa/2!
. ~2.21!

Note that forqxa52p/3 or 4p/3, there is a square-root di
vergence at the lower threshold to the continuum inv; these
are precisely the values ofqx for which the binding energy of
the triplet bound state goes to zero. This enhanced scatte
can thus be thought of as arising from the presence of
triplet bound state at threshold. The salient features of th
results are summarized in Figs. 3 and 4. Figure 3 is a plo
the positions along thev axis of the single-particle peak, th
bound-state peak, and the bottom of the two-particle c
tinuum as a function ofqx . In Fig. 4, we show the spectra
weight in the single-particle and bound-state peaks as a fu
tion of qx .

Thus, we see that the existence of a triplet bound stat
two elementary spin-one excitations leads to some inter
ing features in the dynamic structure factor. Actually, qua
tatively similar features, again arising from a triplet boun
state, had been predicted earlier37 in the alternating one-
dimensional Heisenberg antiferromagnetic chain. Rec
INS experiments38,39on (VO! 2P2O7 do indeed see a secon
sharply defined peak in the dynamical structure factor fo
range of values ofqx . While this compound had been pre
viously thought to be a good example of a spin ladde40

more recent work41 has favored the alternating chain mode42

and the INS results have been interpreted39 in terms of the
additional bound-state contribution predicted in Ref. 3

FIG. 4. Spectral weight in the single-particle peak~dashed line!

and the bound-state peak~solid line! in S(QW ,v) for a strongly
coupled ladder~a typical value ofg50.25 is used!. Note that the
two curves actually correspond todifferentvalues of the transverse
momentumqy chosen to maximize the respective spectral weigh
the single-particle part is shown forqy5p/d while the bound state
part is shown forqy50 (d is the spacing along the rung of th
ladder!.
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8316 57KEDAR DAMLE AND SUBIR SACHDEV
Thus, our results may not be of direct relevance to this p
ticular experimental system. However, our work does pre
that a second peak in the INS cross section should be se
strongly coupled ladder systems and it is quite possible
the feature persists to all orders in the perturbation expan
we have employed. It would be interesting to confirm th
effect by looking at other systems that are more convincin
modeled by a simple ladder Hamiltonian and it is hoped t
future experiments do indeed see the effects coming from
bound state.

C. Weakly coupled two-leg ladders

In this section, we analyze the ladder system~2.4! in the
complementary weak-coupling limit:J'!Ji . An elegant
mapping developed by Sheltonet al.23 allows one to express
the low-energy, long-distance properties of the model
terms of a continuum theory of weakly interacting mass
Majorana~real! fermions. We will analyze the low-energ
scattering properties of the spin-one excitations of
weakly coupled ladder by working in this Majorana fermio
representation.

We begin with a brief review of the Majorana fermio
representation. We will not attempt here to describe in a
detail the procedure used23 to arrive at this field-theoretic
representation. Instead, we will be content with a rather t
graphic summary of the principal steps involved. To be
with, one writes down the usual, free, massless boso
theory14 for the low-energy properties of each of the tw
S51/2 Heisenberg antiferromagnetic chains that make
the ladder. The interchain exchangeJ' is then turned on,
introducing a local, isotropic~in spin space! coupling be-
tween the spin-density operators of each chain in the bos
representation. This has two pieces to it: one coupling
staggered parts of the spin densities with each other and
other doing the same for the uniform component. Now, o
works with symmetric and antisymmetric combinations
the two boson fields~one for each chain! and transcribes
everything to a fermionic representation, introducing o
Dirac fermion for the symmetric combination and anoth
for the antisymmetric combination in the usual manner~for a
readable account of the relevant machinery of Abel
bosonization, see for instance the review43 by Shankar!. The
last step is to write each Dirac fermion as two Majora
fermions. If one leaves out the uniform part of the coupli
to begin with, the theory in terms of the Majorana fermio
is, remarkably enough, a free-field theory. The staggered
of the coupling just provides a massD to each of the two
Majorana fermions obtained from the symmetric combin
tion of the bosons, while the two Majorana fermions o
tained from the antisymmetric combination acquire masseD
and 23D, respectively,~the actual energy gap is given b
the absolute value of the mass!. The three Majorana fermion
with massD form the spin-one triplet we expect on gene
grounds, and the fourth Majorana fermion represents a h
energy singlet mode that will not be very important for o
purposes. The mass parameterD of the theory is proportiona
to J' with the proportionality constant being nonunivers
Finally, turning on the coupling between the uniform part
the spin densities gives us a four-fermion interaction te
between these massive Majorana fermions which will pla
crucial role in our analysis of theS matrix.
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The procedure outlined above gives us the followi
Hamiltonian for the effective field theory written in terms o
Majorana fermions:

H5 (
a5x,y,z

HD~ja!1H23D~r!1H I ; ~2.22!

here theja andr are Majorana fermion fields with anticom
mutation relations given as

$rR~x!,rR~y!%5d~x2y!,

$rL~x!,rL~y!%5d~x2y!,
~2.23!

$jR
a~x!,jR

b~y!%5dabd~x2y!,

$jL
a~x!,jL

b~y!%5dabd~x2y!,

with all other anticommutators being equal to zero,Hm(f)
is defined in general as

Hm~f!5
ivF

2
E dx~fL]xfL2fR]xfR2mfRfL!,

~2.24!

with vF;Jia and the interaction termH I may be written as

H I5gE dx$jR
x jL

xjR
y jL

y1jR
y jL

yjR
z jL

z1jR
z jL

zjR
x jL

x

2~jR
x jL

x1jR
y jL

y1jR
z jL

z !rRrL%, ~2.25!

with g;J'a. Note that each Majorana fermion is a two
component object, the two components being labeled w
the subscriptsR and L to denote the ‘‘right-moving’’ and
‘‘left-moving’’ parts. To make contact with the original spi
ladder, we also need a prescription for expressing the s
operators of the ladder in terms of the Majorana fermions
sharp contrast to thes model,only the uniform part of the
spin-density operator has a local representation in term
the fermions; the components of the spin density nearq5Q
can be expressed only in terms ofhighly nonlocalfunctions
of the Fermi fields.23 We have the following expressions23

for the uniform parts,JW1 andJW2, of the spin density on each
chain:

J1
a~x!5

i

2 S 1

2
eabcjn

b~x!jn
c~x!1jn

a~x!rn~x! D ,
~2.26!

J2
a~x!5

i

2 S 1

2
eabcjn

b~x!jn
c~x!2jn

a~x!rn~x! D ,

where the indexn takes on valuesR or L and repeated indi-
ces are summed over. Note that the fieldr corresponding to
the nonuniversal high-energy singlet mode drops out of
expression for the uniform part of the total spin-density
the ladder which can then be expressed entirely in term
the spin one triplet fields.

We shall find it convenient, when it comes to actua
doing any calculations, to rewrite all of the foregoing
terms of fermionic creation and annihilation operators. Th
are defined as follows: Letĵn

a(p) and r̂n(p) denote the Fou-
rier transforms ofjn

a(x) andrn(x), respectively. We write
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ĵn
a~p!5 f n~p!ta~p!1 f̄ n~2p!ta

†~2p!,
~2.27!

r̂n~p!5gn~p!s~p!1ḡn~2p!s†~2p!,

where ta(p) and s(p) are the fermionic annihilation opera
tors corresponding to the triplet and singlet modes, resp
tively, and f n(p) andgn(p) are complex-valued functions o
p which we specify below. These creation and annihilat
operators obey the usual anticommutation relations:

$ta~p!,tb
†~q!%52pdabd~p2q!,

~2.28!

$s~p!,s†~q!%52pd~p2q!,

with all other anticommutators equal to zero. In terms
these operators, the noninteracting part of the Hamilton
reads

H05E
2`

` dp

2p
«~p!ta

†~p!ta~p!1E
2`

` dp

2p
«s~p!s†~p!s~p!,

~2.29!

where «(p)5(p2vF
21D2)1/2, «s(p)5(p2vF

219D2)1/2, and
the repeated indexa is summed over. The functionsf n and
gn are actually chosen to ensure that the noninterac
Hamiltonian has this simple diagonal form in terms of t
creation and annihilation operators; this choice guaran
that the operatorss† and ta

† , as defined in Eq.~2.27!, create
the true quasiparticles of the noninteracting system. The
pressions forf n andgn are best written as follows:

f R~p!5uD~p! p.0,

f R~p!5 ivD~p! p,0,

f L~p!5 f̄ R~2p! ;p,

gR~p!5u~23D!~p! p.0,
~2.30!

gR~p!5 iv ~23D!~p! p,0,

gL~p!5ḡR~2p! ;p;

here the functionsum(p) andvm(p) are defined in general a

um~p!5cos„um~p!/2…,
~2.31!

vm~p!5sin„um~p!/2…,

with the angle um(p) being specified by cos„um(p)…
5vFupu/(m21vF

2p2)1/2, sin„um(p)…5msgn(p)/(m2

1vF
2p2)1/2. Now, we can rewrite the interaction term in no

mal ordered form with respect to these singlet and trip
creation and annihilation operators. The quadratic terms
generated give the first-order correction to the masses o
singlet and triplet modes~this correction has already bee
calculated in Ref. 23 by other means!. The quartic term left
over, has, in addition to the usual, normal-ordered, parti
number conserving piece, other pieces that involve pair
ation and destruction. The full expressions are somew
messy and we refrain from displaying them here. Howev
and this is key, we will need only a very simple part~corre-
sponding to the low momentum limit of the particle-numb
c-

n

f
n

g

es

x-

t
so
he

-
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r,

r

conserving piece! of this quartic term for the calculation o
the S matrix in the low-momentum limit; our method o
writing everything in terms of the creation and annihilatio
operators has the advantage of identifying and isolating
piece at the very outset. Finally, as an aside, we note tha
total spin operator of the system may be written in terms
the triplet operators as

Stot
a 5 i eabcE

2`

` dp

2p
tb
†~p!tc~p!; ~2.32!

this confirms that the triplet creation operatorta
† does indeed

create a single spin-one quasiparticle~with polarizationa) of
the noninteracting system.

With all of this in mind, let us turn to the analysis of th
scattering properties of this model. As we are hoping to c
culate theS matrix perturbatively in the couplingg, it is
convenient to writeS 511 i T . The ‘‘transition matrix’’ T

can then be calculated perturbatively using the stand
field-theoretic prescription that relates it to the correspond
amputated, connected Green’s functions of the theory. Le
make this precise for the case we are interested in: name
scattering process in which the initial state consists of t
particles, one with momentumk1 and spin polarization
m1, and the other with momentumk2 and spin polariza-
tion m2, and the final state has two particles labell
by (k18 ,m18) and (k28 ,m28). Note that we are nownot talking
about the bare particles of the noninteracting theory,
the actual physical quasiparticle states of the system, cor
to the relevant order in the perturbative expansion

g. The corresponding matrix element,S
m

18 ,m
28

m1m2 (k1 ,k2 ;k18 ,k28)

[^k18m18 ,k28m28uS uk1m1 ,k2m2&, may then be written as

S
m

18 ,m
28

m1m2 ~k1 ,k2 ;k18 ,k28!5~2p!2dm1m
18
dm2m

28
d~k12k18!

3d~k22k28!

1~2p!2d~Ef2Ei !d~kf2ki !

3 i M
m

18 ,m
28

m1m2 ~k1 ,k2 ;k18 ,k28!,

~2.33!

whereEf5«(k18)1«(k28) andEi5«(k1)1«(k2) are the final
and initial energies, respectively,kf andki are the total mo-
menta in the final and initial states, respectively, andM is
the ‘‘reduced’’ matrix element~with energy and momentum
conservingd functions removed! for the process under con
sideration.

We now specialize to the casek15k, k252k (k.0);
this special case allows us to make our basic point~regarding
the infrared divergences present in a perturbative calcula
of the scattering properties! while keeping the calculations
simple. In this case, we may decompose the scattering m
as follows:
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S
m

18 ,m
28

m1m2 ~k,2k;k18 ,k28!5d~k182k!d~k281k!

3@S1~k!dm1m2
dm

18m
28

1S2~k!dm1m
18
dm2m

28

1S3~k!dm1m
28
dm2m

18
#. ~2.34!

Now, energy and momentum conservation in one dimens
provide enough constraints on the two-body problem to
sure that the allowed final states have the same set of
mentum labels as the initial state. This allows us to conv
the overall energy and momentum conservingd functions in
the second term of Eq.~2.33! to d functions that identifyk18
with k andk28 with 2k. In the process, we of course intro
duce additional kinematic factors coming from the Jacob
@we are basically usingd„f (x)…5d(x)/u f 8(x)u]. Using this,
we can write

S1~k!5S «~k!

2kvF
2 D iM 1~k!,

S2~k!511S «~k!

2kvF
2 D iM 2~k!, ~2.35!

S3~k!5S «~k!

2kvF
2 D iM 3~k!,

whereM1, M2, andM3 are defined in terms of the following
decomposition forM:

M
m

18 ,m
28

m1m2 ~k,2k;k,2k!5@M1~k!dm1m2
dm

18m
28

1M2~k!dm1m
18
dm2m

28

1M3~k!dm1m
28
dm2m

18
#.

~2.36!

The relations~2.35! are useful because there is a simp
diagrammatic prescription for the perturbative evaluation
M. According to this standard field-theoretic prescription44

i M
m

18 ,m
28

m1m2 (k1 ,k2 ;k18 ,k28) is proportional to the sum of al

‘‘amputated’’ ~factors corresponding to external legs om
ted!, fully connected, one-particle irreducible diagrams co
tributing to the time-ordered four-point function with tw
incoming external lines and two outgoing external lines. T
incoming lines must carry momentak1 and k2, frequencies
v1 andv2 set to their respective ‘‘on-shell’’ values of«(k1)
and «(k2), and spin labelsm1 and m2 , respectively. The
outgoing lines must carry momentak18 and k28 , frequencies
again set to their on-shell values of«(k18) and «(k28), and
spin labelsm18 andm28 , respectively. Denoting the sum of a
such diagrams schematically byG4, we can write

i M
m

18 ,m
28

m1m2 ~k1 ,k2 ;k18 ,k28!

5~AZ!4G4~k1m1 ,k2m2 ;k18m18 ,k28m28!, ~2.37!
n
-
o-
rt

n

f

-

e

where the field-strength renormalization factorZ comes into
play because the singlet and triplet creation operatorss† and
ta
† create the bare particles, while we are asking questi

about the scattering properties of the physical quasipart
excitations. We will not be very careful here about the p
cise definition ofZ; it will soon become apparent that th
does not play any role in the calculation we do.

Before we set about calculatingG4, we need to specify
our conventions regarding the diagrammatic representa
of perturbation theory. As shown in Fig. 5, we denote t
propagator of the triplet particle by a solid line with an arro
carrying momentumk, frequencyv and spin labelm; this
has a factor ofi /@v2«(k)1 ih# associated with it. It turns
out that we do not need to consider any diagrams that h
lines corresponding to singlet particles and we will n
bother to introduce a diagrammatic representation for th
propagator. We also display our diagram convention for
four-point vertices of the theory in the same figure; aga
only the particle number conserving vertices in which
four lines involved correspond to triplet particles have be
assigned a diagram as the others will not play a role in w
follows. One type of vertex, labeled~a! in Fig. 5, depicts a
process in which two particles of momentump3 andp4, both
with spin labelm5x scatter into a final state populated b
two particles with momentap1 andp2, and spin labelm5y.
The full momentum-dependent factor associated with t
diagram is also shown below it. We will need only a ve
simple low-momentum limit of this expression in most
what follows. The other kind of vertex, labeled~b! in Fig. 5,
shows incoming particles with labels (p3y) and (p4x) scat-
tering into a final state populated by particles with lab
(p1x) and (p2y), respectively. Again, the full momentum
dependent factor is displayed alongside for completen

FIG. 5. The Feynman rules we need for the calcu
tion described in Sec. II C. The propagatorD(k,v)
is given as D(k,v)5 i /@v2«(k)1 ih#. The factor corre-

sponding to the vertex~a! is ig@ f R(p3) f̄ R(p1) f L(p4) f̄ L(p2)

1R↔L]/2. The factor corresponding to~b! is ig@ f L(p4) f̄ R(p1)

2 f R(p4) f̄ L(p1)] @ f L(p3) f̄ R(p2)2 f R(p3) f̄ L(p2)#.
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We will mostly need only the value of this factor when a
four momenta equal zero; this is given simply by2 ig. Of
course, all other vertices of the same type, but having dif
ent spin labels that can be obtained from these using
O(3) symmetry of the problem, have the same factors as
ciated with them.

We are now in a position to do some calculations. W
begin by noting that, apart from the overall factor of (AZ)4

which we are ignoring for now,iM 1(k), iM 2(k), and
iM 3(k) are equal to G4(kx,2kx;ky,2ky),
G4(kx,2ky;kx,2ky), and G4(kx,2ky;ky,2kx), respec-
tively. It is quite simple to calculate these three quantities
leading order ing. The diagrams contributing toiM 1 is
shown in Fig. 6, while those contributing toiM 2 andiM 3 are
shown in Fig. 7. Evaluating these ‘‘tree-level’’ amplitude
we obtain

G4~kx,2kx;ky,2ky!5 ig
k2vF

2

«2~k!
,

G4~kx,2ky;kx,2ky!5 ig
D2

«2~k!
, ~2.38!

G4~kx,2ky;ky,2kx!52 ig.

As long as we are interested in only the first-order result
S , we can setZ51 and directly use these expressions to
the following results for the leading low-k behavior ofS1,
S2, andS3 correct to first order ing:

FIG. 6. Feynman diagrams contributing
G4(kx,2kx;ky,2ky) to first order ing. All external lines carry
on-shell frequencies corresponding to the momentum labels sh
r-
he
o-

e

o

r
t

S1~k!5
ig

2vF
S kvF

D D ,

S2~k!511
ig

2vF
S D

kvF
D , ~2.39!

S3~k!52
ig

2vF
S D

kvF
D .

We immediately see that the perturbative expansion can
be trusted in the low-momentum limit because of the infra
divergences present in the expressions forS2 and S3. The
structure of this first-order result is seen to be qualitativ
similar to theO (1/N) result for the two-particleS matrix of
the O(N) s model.10 In the latter case, we know that th
exact value of theS matrix is perfectly well behaved in the
k→0 limit and is in fact given by the superuniversal expre
sion ~1.2!. To obtain the correct result in this limit for ou
problem, we need to identify theleading infrared diver-
gences ateach order in gand perform a resummation. Now
we do not expect any infrared divergences in the perturba
expansion ofZ and as a result the prefactor of (AZ)4 in the
expression forM does not contribute at all to the terms th
need to be resummed; we will forget about this factor fro
now on.

n.

FIG. 7. Feynman diagrams contributing t
G4(kx,2ky;ky,2kx) @diagram ~a!# and G4(kx,2ky;kx,2ky)
@diagram~b!# to first order ing. All external lines carry on-shell
frequencies corresponding to the momentum labels shown.
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Let us now try and identify the leading infrared diverge
diagrams at each order in perturbation theory. First of al
is clear, purely from frequency and momentum conserva
at each vertex, that no diagrams involving pair creation
annihilation can provide the leading divergence at any ord
Moreover, only internal loops in which both propagators
volved point in the same direction give a nonzero result
doing the integral over the frequency running through
loop. A little thought should convince the reader that the
two constraints allow us to conclude that the ladder se
shown in Fig. 8 give the leading infrared divergent terms
S2 andS3 to all orders ing. Turning our attention toS1, we
see immediately that Fermi statistics guarantees that e
vertex in the analogous ladder series forS1 has enough fac-
tors of momentum associated with it to rule out any infrar
divergence appearing inS1. Our task is thus reduced t
evaluating the two series shown in Fig. 8. To do this, we n
that as far as the coefficient of the divergent piece is c
cerned, we can ignore the momentum dependence of
vertex and simply replace it with a factor of2 ig. Each
crossing of the fermion propagators gives a factor of21 and
each loop integral givesD/2kvF

2 . Putting all this together and
summing the resultant geometric series, we obtain the
lowing nonperturbativeresults for the low momentum be
havior of S2 andS3:

FIG. 8. Ladder series giving the leading infrared divergent ter
in the expansion foriM 3 @diagram~a!# and iM 2 @diagram~b!#. All
external lines carry on-shell frequencies corresponding to the
mentum labels shown. The internal lines also carry frequency la
that are not explicitly shown.
t
it
n
r
r.
-
n
e
e
s

ch

d

e
-
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S2~k!5
2ikvF

2

gD12ikvF
2

,

~2.40!

S3~k!5
gD

gD12ikvF
2

.

An interesting feature of these results is the pole in
upper-halfk plane atk5 iDg/2vF

2 which seems to sugges
the presence of a bound state. However, this region ok
space is definitely beyond the domain of validity of E
~2.40! and it is not clear what significance, if any, to ascri
to this curious fact.

Turning to firmer ground, we see that the foregoing im
plies that the low-momentum limit of the two-particleS
matrix is perfectly well defined and is, in fact, given by

S
m

18 ,m
28

m1m2 ~k1 ,k2 ;k18 ,k28!5dm1m
28
dm2m

18
2pd~k12k18!

32pd~k22k28!. ~2.41!

Note that apart from an overall factor of minus one, this
exactly the superuniversal form~1.2!. The relative sign is
simply a consequence of Fermi statistics and our choice
phase for the final state of the scattering process. In any c
we will see that when we use the superuniversal form of
S matrix for discussing spin transport, the overall phase
immaterial. On the other hand, the overall factor of21 in
the superuniversal form~1.2! will be crucial when we work
out the correlators of the staggered component of the m
netization density. This may seem worrisome at first sig
However, as we do not have any local representation of
staggered component of the spin density in terms of the M
jorana fermion operators, there is no contradiction at all.
fact, the semiclassical techniques used in Sec. III A may a
be applied to the problem of calculating the finit
temperature Green function of the fermions; this would c
respond to calculating the finite-temperature correlators
somehighly nonlocalstring operators of the original spi
system. However, as it is difficult to see how these may
accessible at all to any experimental probes, we do not p
sue this line of thought any further.

Thus, we see that the low-momentum behavior of theS

matrix in this fermionic representation of the weakly coupl
ladder is consistent with the superuniversal form~1.2!, al-
though this behavior is definitely not accessible to pertur
tion theory. This leads us to believe that similar infrar
divergences would invalidate any perturbative calculation
dynamical properties at finite temperature~when there will
be a dilute gas of thermally excited particles present! that
uses this representation. In particular, this appears to indi
that the results of Ref. 24 for the NMR relaxation rate 1/T1
are incorrect at lowT.0.

III. DYNAMICS AND TRANSPORT FOR 0 <T!D

The results of this section are expected to apply to
gapped one-dimensional antiferromagnets with massive s
one quasiparticles. We will develop, what we believe is
exact semiclassical theory of dynamics and transport

s

o-
ls
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T!D. We will consider fluctuations nearq5Q in Sec. III A,
and nearq50 in Sec. III B.

A. Thermal broadening of the single-particle peak inS„q,v…

In this section, we present calculations leading up to
results for the thermal broadening of the single-particle p
in the dynamics structure factor.

The inelastic neutron-scattering cross section provide
direct measure1 of the dynamical structure factorS(q,v)
which is defined as

S~q,v!5
1

2pE dteivt^ŝa~q,t !ŝa~2q,0!&; ~3.1!

whereŝa(q,t) is the Heisenberg representation operator c
responding to the component of the spin density at w
vectorq, the expectation values are with respect to the us
equilibrium density matrix and summation over the repea
index a is implied ~note that we are assuming rotation
invariance in spin space and working atH50). We are in-
terested in the structure factor forq close top/a. In this case
we have

S~q,v!}
1

2pE dteivt^n̂a~k,t !n̂a~2k,0!&, ~3.2!

wherek5q2p/a. To get a feel for what Eq.~3.2! looks like
at T50, let us consider a particular lattice regularization
the s model, defined by the quantum rotor Hamiltonian

H5
g

2(i
L̂ i

22
1

g(i
n̂i•n̂i 11 ,

where L̂ i is the angular momentum operator of the rotor
site i , n̂i is the unit vector that denotes the position of t
rotor at sitei and we have temporarily setc5a51. It is not
hard to analyze the properties of this model in a largeg,
strong-coupling expansion; moreover this is expected to
qualitatively correct for allg in one dimension.45 To lowest
order, we can easily see that the ground state would just
product state with each site being in an eigenstate ofL̂ with
zero eigenvalue. The lowest excited states would be a de
erate manifold corresponding to promoting any one site
the L51 state and thereby creating a ‘‘particle’’ at that si
To first order in 1/g, a hopping term would be generated
the effective Hamiltonian for the single-particle sector,
sulting in a band of one-particle excitations. To this ordern̂
is just a sum of creation and annihilation operators for
stable particlelike excitation of the system. At higher ord
in 1/g, n̂ acting on the vacuum will also produce multipa
ticle states, but there will always be some single-parti
component. Reverting back to our continuum theory, we
that Eq.~3.2! evaluated atT50 would have a contribution
;d„v2«(k)… associated with the stable particle. The ne
contribution is actually a continuum above the three-part
threshold.46 Following Ref. 21, we shall now focus exclu
sively on how this one-particle peak broadens asT becomes
nonzero. Let us define

C~x,t !5
1

3
^n̂a~x,t !n̂a~0,0!&, ~3.3!
r
k

a

r-
e
al
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f

t

e
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e
s

e
e

t
e

where the repeated indexa is summed over. LetK(x,t)
denoteC(x,t) evaluated atT50 keeping only the single-
particle contributions. We have

K~x,t !5E dp

2p
D~p!eipx2 i«~p!t. ~3.4!

Here D(p) is a ‘‘form factor.’’ For our Lorentz invariant
continuum model,

D~p!5
Ac

2«~p!
, ~3.5!

whereA is a nonuniversal quasiparticle residue. This giv
K(x,t)5AK0@D(x22c2t2)1/2/c#/(2p), with K0 the modi-
fied Bessel function.

Now let us evaluateC(x,t) for nonzero temperatures us
ing the semiclassical method of Ref. 21. First, it is conv
nient to switch to operatorsn11(x), n21(x) andn0(x), de-
fined as

n115n21
† 5nx2 iny ,

and

n05nz .

n11 is a sum of a creation operator for particles with az
component of spinm equal to11 and an annihilation op-
erator for particles withm equal to 21. n0 is a sum of
creation and annihilation operators for particles withm equal
to 0. In the absence of an external field, we may write

C~x,t !5^n̂0~x,t !n̂0~0,0!&. ~3.6!

We represent Eq.~3.6! as a ‘‘double time’’ path integral,
with the e2 i Ĥt factor coming from the Heisenberg operat
generating paths that move forward in time, and thee1 i Ĥt

producing paths that move backward in time. We begin w
an initial state which is populated by thermally excited p
ticles, the density of particles being;e2D/T and their mean
spacing being much larger than the thermal de Broglie wa
length ;c/(DT)21/2. As argued in Refs. 20 and 21, th
means that the particles can be treated semiclassically. In
semiclassical limit the dominant contribution to the Feynm
sum comes about when the paths going backward in time
exactly the time-reversed counterparts of those going
ward and all particles follow their classical trajectories b
tween collisions.20,21 Whenever two particles collide, energ
and momentum conservation is sufficient to determine
final momenta. However, one cannot entirely ignore qu
tum effects of the collisions. The spins of the particles af
the collision as well as the phase picked up by the wa
function of the system as a result of the collision is det
mined by the quantum-mechanical scattering matrix (S ).
For T!D, the particles all move very slowly and we nee
only the superuniversal low-momentum limit Eq.~1.2!.

All this leads to the following description ofC(x,t) in
this asymptotic limit:20 At time t50 we begin with an initial
state populated equally~for H50) with three species~corre-
sponding to the three values of spin projectionm) of par-
ticles each uniformly distributed in space with densityr/3,
where the total densityr is given as
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r53E dp

2p
e2~D1c2p2/2D!/T53A TD

2pc2
e2D/T.

The velocities are distributed according to the class
Maxwell-Boltzmann distribution function

P ~v !5A D

2pc2T
e2Dv2/2c2T.

Each particle in the initial state is assigned one of the th
values ofm with equal probability~assumingH50). The
operatorn0(0) acting on this initial state creates at timet50
one extra particle atx50 with spin value equal to 0~the
annihilation part ofn0 gives a contribution which is expo
nentially suppressed and is ignored here!. These particles
follow their classical trajectories forward in time. At eve
collision, we pick up a factor of21 from theS matrix. At
time t, a particle with spin projection of zero is annihilated
x by n0(x). The resulting state is then propagated backw
in time to t50 and its overlap with the initial state calcu
lated. C(x,t) is then given by the average of this overla
over the ensemble specified earlier.

A typical example of a space-time configuration of traje
tories that leads to a nonzero value for this overlap is sho
in Fig. 9. All trajectories in the figure except the dotted li
denote space-time paths that are traversed both forward
backward in time. The dotted line is traversed only forwa
in time as the particle traveling on it is destroyed at timet by
n0(x). A little thought convinces one that this overlap
nonzero only when all particles colliding with a particle tra
eling on the dotted trajectory have the same spinm ~equal to
zero! as it does. Moreover, when this condition is satisfie
the value of the overlap is just (21)nlK(x,t) wherenl is the
number of collisions that the dotted trajectory suffers. T

FIG. 9. A typical set of particle trajectories contributing
C(x,t). Each full line represents paths traversed by particles m
ing both forward and backward in time. The dashed line is traver
only going forward in time. Shown on the trajectories are the val
of the particle spinsmk which are independent oft in the low-T
limit. Notice that all the trajectories intersecting the dashed l
have a spin equal to that of the dashed line: only such config
tions contribute to theC(x,t).
l

e

t
d

-
n

nd

,

e

factor of (21)nl comes from the scattering matrix at ea
collision between a particle on the dotted trajectory and ot
particles. All other collisions occur in pairs~the second
member of the pair coming from the evolution backward
time! and thus do not contribute any phase factor. The fac
of K(x,t) is just the relativistic amplitude for the propagatio
of a single particle fromx50 at t50 to positionx at timet.

All this implies that we can write

C~x,t !5R~x,t !K~x,t !, ~3.7!

which defines the ‘‘relaxation function’’R. For the case
where the particle has onlyone allowed value of its spin
label,m, it is possible to computeR(x,t) analytically,21 and
the resulting expression~3.7! then agrees precisely with
computation using very sophisticated quantum inverse s
tering method:25 this agreement gives us confidence that
physical approach developed here is asymptotically exac
low temperatures.

Let us now turn to the calculation ofR for the case of
interest here. We begin by writing a formal expression forR
based on the foregoing semiclassical description. Let$xk(0)%
be the positions of the thermally excited particles at tim
t50. Let $vk% be their initial velocities. Herek is an index
running from 1 toN, the total number of particles present
the initial state in a system of sizeL. We label the initial
positions with the convention thatxk(0),xl(0) for k, l . Let
Xk(t)[xk(0)1vkt denote thekth space-time trajectory~note
that this is quite distinct from the position of thekth particle
at time t). Let mk(t) denote the spin projection value of th
particle traveling along thekth trajectory at timet. The spin
projections are randomly assigned to each particle at t
t50 as described earlier andmk(t) at later times depends o
which particle is traveling on thekth trajectory at any given
time. We have the following expression forR:

R~x,t !5K)
k

F kL , ~3.8!

with

F k512~11dmk~tk!,1!Q̃k ;

where

Q̃k5u„x2Xk~ t !…u„xk~0!…1u„Xk~ t !2x…u„2xk~0!…,

and

tk5xk~0!t/~x2vkt !.

The angular brackets in Eq.~3.8! denote averaging over th
ensemble of initial conditions specified earlier.

Unfortunately, it does not seem possible to do the
semble average analytically. Using the methods of Refs.
and 48, it is possible to develop a ‘‘cumulant’’ expansion f
the logarithm ofR.49 This expansion, however, is essentia
a short-time expansion which is not uniformly converge
and thus not very useful for our purposes as we eventu
need to Fourier transformC(x,t). It is also possible to de-
velop a ‘‘mean-field’’ approximation to this classical mod
that ignores the complicated correlations between themk(t)
at different times~see Appendix D!. This proves to be rea
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57 8323SPIN DYNAMICS AND TRANSPORT IN GAPPED ONE- . . .
sonably accurate at least forR(0,t), though the high-
accuracy numerics we describe next show clear deviat
from the mean-field results. So, although we have an asy
totically exact formulation for the nonzero temperatu
C(x,t) at distances much larger than the thermal de Bro
wavelength and times much larger thanT21, we need to
numerically determine the relaxation functionR to actually
calculate anything accurately. This is what we turn to ne

An important property ofR(x,t), which follows directly
from Eq. ~3.8! is that it can be written in a scaling form a
R(x,t)5R̃( x̃ , t̃ ) with x̃5x/Lx and t̃ 5t/Lt where

Lx5
1

r
,

and

Lt5
1

rS D

2c2T
D 1/2

.

Thus it is most convenient for the numerics to meas
length in units ofLx and time in units ofLt and directly
calculateR̃. We start with a system size ofL5400 ~in units
of Lx) and impose periodic boundary conditions. The dens
in these units is unity and so the initial state is populated
400 particles with their initial positions drawn from a un
form ensemble. This system size is large enough that fin
size effects are negligible for our purposes. Each particl
assigned a velocity from the classical thermal ensemble
these new units this implies that we choose velocities fr
the distribution

P̃ ~ ṽ !5
1

Ap
e2 ṽ 2

.

An important advantage of our method is that we do
average over the spin values analytically. To do this, we n
that it is possible to reformulate the calculation ofR̃ by writ-
ing

R̃5^T~C !&,

whereC denotes a given space-time configuration of traj
tories, the angular brackets denote averagesonly over the
initial positions and velocities that define this configuratio
andT(C ) is defined as

T~C !5~21!nhS 1

3D np

.

Here,nh is the total number of collisions involving a partic
traveling on the dotted trajectory of Fig. 9 andnp is the
number ofdifferentthermally excited particles that have ha
collisions with a particle traveling on the dotted trajecto
Now, T(C )50 for all configurationsC in which the pres-
ence of the extra particle~that starts out on the dotted traje
tory! affects the evolution of the various spin valuesmk(t).
So we might as well forget about the particle traveling on
dotted trajectory and consider an auxiliary space-time d
gram that now involves only the thermally excited particle
We now agree to ignore the spin label on the dotted line
Fig. 9; the dotted line now doesnot denote the trajectory o
ns
p-

e
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e
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y
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is
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e
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.

e
-
.
f

any particle. In terms of this picture we can definenh as the
number of times any solid line crosses the dotted line, andnp

as the number ofdifferent thermally excited particles tha
cross the dotted line.

With this new formulation in hand, calculatingT(C ) re-
duces to some simple bookkeeping that keeps track of th
two integers for a given configurationC . We implement the
ensemble average by averaging over 43106 configurations
drawn from the appropriate distribution. The combined a

solute error~statistical and finite-size! in R̃( x̃ , t̃ ) for values
of x̃ , t̃ of interest to us is estimated to be less than ab
531024.

With R̃ available, it is a simple matter to numerical
Fourier transform the resultingC(x,t) and obtain the dy-
namic structure factorS(q,v). Details of the numerical pro-
cedure used are relegated to Appendix B. Here we only c
ment on some conceptual issues involved and discuss
results.

There is an important subtlety associated with doing
Fourier transform that needs to be first addressed. As
cussed in Ref. 21, the semiclassical result forC(x,t) is valid
as long as bothx and t are not very small; the results brea
down whenx;lT andt;1/T (lT being the thermal de Bro
glie wavelength!. However, the Fourier transform ofC ~at
wave vectork5q2p/a) is an asymptotically valid approxi
mation toS(q,v) only for v close to«(k). The reason for
this can be understood by noting that the long-time asym
totics of our form forC(x,t) have an oscillatory characte
with oscillations on the scale ofD21. Put another way, it is
the spectral weight in the one-particle peak that plays
dominant role in determining the long-time, large-distan
asymptotics ofC(x,t) and so we can learn only about th
feature in the spectral weight by Fourier transforming o
form for C.

With this caveat in mind, we have

FIG. 10. S(q,v) rescaled by a factor ofAcLt /(p2D) plotted
againstdṽ5Lt(v2D) with q5p/a for D/T52, 3, 4, and 5. Note
the scaling collapse of the curves corresponding to the three lo
temperatures.
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S~q,v!5
1

2pE E dtdxeivt2 ikxK~x,t !R~x,t !, ~3.9!

where k5q2p/a. We have not attempted to exhaustive
map outS(q,v), although it would be quite straightforwar
to get more extensive numerical results should they be
interest in some experimental context. Below we confi
ourselves to discussing our results forS(q,v) for a couple of
sample values ofq. Figure 10 shows scans in frequen
across the quasiparticle peak inS(q,v) for q5Q at four
different values of temperature. It is interesting to note t

FIG. 11. S(p/a1k,v) rescaled by a factor ofAcLt /(p2D)

plotted against the rescaled variablek̂5kc(Lt /D)1/2 with v5D for
D/T52, 3, 4, and 5. Again, note the scaling collapse of the cur
corresponding to the three lowest temperatures.

FIG. 12. The scaling curve of Fig. 11~defined by the data for
D/T54 and D/T55) plotted against the independent variab

(2 k̂2/2) compared to the scaling curve of Fig. 10~again defined by
the data forD/T54 andD/T55) for the corresponding negativ
values ofdṽ. The two coincide within our numerical errors.
of
e

t

when rescaled byLt and plotted against a rescaled frequen
variable dṽ5(v2D)Lt , the three curves forD/T53, 4,
and 5 seem to collapse on top of one another within
numerical errors~which are conservatively estimated to be
few percent at the most!. In Fig. 11, we show a scan in wav
vector across the same peak forv5D, again at the same fou
values of temperature. The curves at the lower temperat
again show scaling collapse; when rescaled byLt and plotted
against the rescaled variablek̂5kcALt /D, they seem to all
fall on top of one another. Moreover, the scaling curve
Fig. 11, when plotted as a function of the independent v
able 2 k̂2/2 coincides within our numerical error with th
scaling function of Fig. 10 fordṽ,0; this is displayed in
Fig. 12. While we do not have any reason to expect that
scaling is generally true, all three observations may be
together in terms of a scaling form that is validlocally in the
neighborhood of the quasiparticle peak forq5Q; more for-
mally we write

S~q,v!5
AcLt

p2D
FS v2«~k!

Lt
21 D . ~3.10!

We also investigatedS(q,v) in the vicinity of the quasi-
particle peak corresponding toq5Q1D/c; for this to be
meaningful, we of course needD/c to be much less than th
microscopic scale;a21 beyond which our continuum
theory does not work. We again tried to check if the ana
gous scaling form,

S~q,v!5
AcLt

p2D
FD/cS v2«~k!

Lt
21 D , ~3.11!

is approximately valid. Figure 13 shows scans in frequen
across the peak withk held fixed atD/c, for D/T52, 3, 4,
and 5. We see that the curves do not really appear to scal
Fig. 14, we show scans in wave vector, withv held fixed
equal toA2D for the same values of the ratioD/T. We plot

s

FIG. 13. S(k1p/a,v) rescaled by a factor ofAcLt /(p2D)
plotted againstdṽ5Lt(v221/2D) with k5D/c for D/T52, 3, 4,
and 5.
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57 8325SPIN DYNAMICS AND TRANSPORT IN GAPPED ONE- . . .
the data ~rescaled byLt) against the rescaled variab
d k̂5cLt(k2D/c) ~note the difference in the choice of re
caling of the independent variable from the earlier cas!.
Again, in sharp contrast to theq5p/a peak, we see that th
curves do not show any signs of scaling; our local scal
form is not a very good way of organizing the data in th
case.

These scaling properties are best understood as follo
Imagine developingR(x,t) in an expansion aboutx50 for
constantt and then calculating the Fourier integral in E
~3.9!. The zeroth-order term clearly gives us a result
S(q,v) which is compatible with the scaling form we hav
postulated for asymptotically low temperatures. Howev
before we can trust this result, we need to check that
corrections to the leading behavior go to zero in the limitT
→0. This is where the difference between the two peaks
looked at becomes apparent. It is easy to see that this is
only for values ofq such thatc2ukuLt /DLx→0 asT→0 and
this explains why the scaling form~3.11! does not work.
Now consider the peak atq5Q: The zeroth-order scaling
result has most of its weight in the regionuku<AD/cALt. For
uku;AD/cALt, the corrections to this leading result do i
deed go to zero and this establishes the scaling form~3.10!.
An interesting feature of this result is that the scaling fun
tion F is completely determinedby thex50 partR(0,t) of
the relaxation function. More precisely, we have

F~z!5
p

4E2`

`

dseizsR̃~0,s!. ~3.12!

A useful check on all of our calculations is thus to compa
the scaling function obtained in Figs. 10 and 12 with E
~3.12! evaluated numerically~it is possible to do this to a
high accuracy; details may be found in Appendix B!. The
results of such a comparison are shown in Fig. 15 and
agreement is seen to be quite good. While the numer
results forR(0,t) show a clear deviation from the simp
exponential decay predicted by the ‘‘mean-field’’ theory r
ferred to earlier, we do find that the corresponding sim

FIG. 14. S(k1p/a,v) rescaled by a factor ofAcLt /(p2D)

plotted against the rescaled variabled k̂5cLt(k2D/c) with
v521/2D for D/T52, 3, 4, and 5.
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Lorentzian form for the Fourier transform
F(z)5pa/2(a21z2) ~with a'0.71) provides an excellen
approximation to the line shape~the ‘‘mean-field’’ theory,
however, gives a value of 4/3Ap'0.7523 fora—see Ap-
pendix D!.

We thus have results for the thermally broadened qu
particle peak in S(q,v); the accuracy of these in th
asymptotic regime (T!D) is limited only by the computer
time spent in numerically evaluating the relaxation functi
and doing the Fourier transform. These results, especially
scaling properties in the vicinity of the peak corresponding
q5Q, should be of relevance to neutron-scattering exp
ments on gapped one-dimensional Heisenberg antiferrom
nets performed at temperaturesT!D and it is hoped that this
study provides a useful paradigm for organizing the exp
mental results.

B. Low-temperature spin diffusion probed by 1/T1

In this section, we shall present a detailed comparison
our results20 for the field (H) and temperature (T) depen-
dence of the NMR relaxation rate 1/T1 ~in the regimeT,
H!D) with the experimental data of Ref. 28 on the NM
relaxation rate in the compound AgVP2S6 which is thought
to be aS51 one-dimensional antiferromagnet with a lar
gapD'300 K and single-ion anisotropy energy of about 4
K.28 We will ignore this anisotropy for the most part in ou
theoretical analysis~although we are forced to phenomen
logically introduce spin dissipation into our theoretical r
sults in order to fit the data of Ref. 28 at low temperatur
we do not have any theory that gives the detailed temp
ture dependence of this spin dissipation rate starting from
anisotropic coupling term in the Hamiltonian!.

For completeness, let us begin with a detailed review
the calculations leading up to our expression for 1/T1. The
NMR relaxation rate is given in general by an expression
the form

FIG. 15. The scaling functionF(z) determined directly from
Eq. ~3.12! compared with the scaling curve defined by the resu
already shown in Figs. 10 and 12.
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1

T1

5 (
a5x,y

(
b,g5x,y,z

E dq

2p
Aab~q!Aag~2q!Sbg~q,vN!,

~3.13!

where Sbg(q,v) is the Fourier transform of the spin-sp
correlation function@the subscripts refer to theO(3) indices
of the spin operators#, vN5gNH is the nuclear Larmor fre-
quency (gN is the nuclear gyromagnetic ratio!, the field H
points in thez direction, andAab are the hyperfine coupling
constants. Theq integral in Eq.~3.13! is dominated by val-
ues ofq near 0~Ref. 29! and we can thus work out the fiel
and temperature dependence of 1/T1 knowing theT.0 cor-
relators of the conserved magnetization density of theO(3)
NLsM field theory. This is what we turn to next.

We define the correlation functions

Cu,zz~x,t !5^L̂z~x,t !L̂z~0,0!&2^L̂z&
2,

~3.14!

Cu,21~x,t !5^L̂2~x,t !L̂1~0,0!&;

here the angular brackets denote averaging over the u
equilibrium density matrix,L̂z(x,t) is the Heisenberg repre
sentation operator corresponding to thez component of the
magnetization density, andL̂6 are operators correspondin
to the circularly polarized components of the magnetizat
density defined asL̂6[L̂x6 i L̂ y . As argued in Refs. 20 an
21, these correlation functions in the asymptotic regime m
be evaluated by writing down a double-time path-integ
representation for them and evaluating it semiclassically

This leads to the following prescription20 for Cu,zz(x,t):
At time t50 we begin with an initial state populated wit
three species~corresponding to the three values of spin p
jection m) of particles each uniformly distributed in spac
with densities given, respectively, by

rm5Edp

2p
e2~D2mH1c2p2/2D!/T5A TD

2pc2
e2~D2mH!/T,

and with velocities distributed according to the classi
Maxwell-Boltzmann distribution function

P ~v !5A D

2pc2T
e2Dv2/2c2T.

Each particle in the initial state is assigned one of the th
values ofm with probability f m5emH/T/@112 cosh(H/T)#.
The operatorL̂z(0) merely keeps track of the local value
the z component of the spin. Acting on the initial state,
measures thez component of the magnetization density
the initial state at positionx50. These particles then follow
their classical trajectories forward in time. At every collisio
the particles retain their spin labels. In addition, the st
picks up a factor of21 from theS matrix at each collision.
At time t, the operatorL̂z(x) measures the value of thez
component of magnetization density at positionx. The state
is then propagated backward in time tot50 and its overlap
with the initial state calculated.Cu,zz(x,t) is then given by
the average of this overlap over the ensemble specified
lier. As all collisions have a time-reversed counterpart,
phase of the scattering matrix does not matter here and
ual
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overlap we are interested in equals the two-point correla
function of the classical observable

%z~x,t !5(
k

mkd„x2xk~ t !…; ~3.15!

where we are labeling particles consecutively from left
right with an indexk, xk(t) denotes the position of thekth
particle at timet, andmk is thez component of the spin o
the kth particle. This correlation function is calculated usin
the ensemble of initial conditions outlined above. The d
namics governing the time evolution of thexk is just that of
particles moving ballistically except for elastic collisions
which they retain their spin values.

Thus we can write

Cu,zz~x,t!5(
k,l

^mkd„x2xk~ t !…mld„xl~0!…&, ~3.16!

here the angular brackets refer to averaging over the
semble of spin labelsmk , initial velocitiesvk(0), andinitial
positionsxk(0) specified earlier. Now as the spin projectio
mk are not correlated with the initial positions or velocitie
the averages factorize. The correlators of themk are easily
evaluated as

^mkml&5A11A2dkl , ~3.17!

where A15( f 12 f 21)2 and A25 f 11 f 212( f 12 f 21)2 are
simple, dimensionless, known functions ofH/T only. Using
Eq. ~3.17! we have

Cu,zz~x,t !5A1@^r~x,t !r~0,0!&2r2#

1A2(
k

^d„x2xk~ t !…d„xk~0!…&, ~3.18!

where r(x,t)5(kd„x2xk(t)… is the space-time-depende
total density, all averages are now with respect to initial p
sitions and velocities, andr[^r(x,t)&5(mrm . The two-
point correlators ofr(x,t) are also easy to evaluate: if th
spin labels are neglected, the collisions have no effect
correlators of the total density can be obtained by consid
ing an ideal gas of point particles. The second correlato
Eq. ~3.18!, multiplying A2, is more difficult: it involves the
self two-point correlation of a given particlek, which fol-
lows a complicated trajectory. Fortunately, precisely this c
relator was considered three decades ago by Jepsen47 and a
little later by others;48 they showed that, at sufficiently lon
times, this correlator has a Brownian motion form. In A
pendix C, we give a self-contained summary of Jepsen’s
culation. Here we just write down the final results20 for the
correlation function:

Cu,zz~x,t !5r2FA1F1S uxu

Lx

,
utu

Lt
D 1A2F2S uxu

Lx

,
utu

Lt
D G , ~3.19!

wherer2F1 is the connected density correlator of a classi
ideal gas ind51,

F1~ x̃ , t̃ !5e2 x̃2/ t̃ 2
/ t̃ Ap, ~3.20!
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andr2F2 is the correlator of a given labeled particle,47,48

F2~ x̃, t̃ !5F@2G1~u!G1~2u!1F1~ x̃, t̃ !#I0@2 t̃ AG2~u!G2~2u!#

1
G1

2~u!G2~2u!1G1
2~2u!G2~u!

AG2~u!G2~2u!

3I 1@2 t̃ AG2~u!G2~2u!#Ge2@G2~u!1G2~2u!# t̃

~3.21!

with u[ x̃ / t̃ , G1(u)5erfc(u)/2, andG2(u)5e2u2
/(2Ap)

2uG1(u). For u t̄ u!u x̄u!1, the functionF2 has the ballistic
form F2( x̄, t̄ )'F1( x̄, t̄ ), while for u t̄ u@1,uxu it crosses over
to thediffusiveform

F2~ x̄, t̄ !'
e2Ap x̄2/2 t̄

~4p t̄ 2!1/4
for large t̄ . ~3.22!

In the original dimensionful units, Eq.~3.22! implies a spin-
diffusion constantDs , given exactly by

Ds5
c2eD/T

D@112 cosh~H/T!#
. ~3.23!

This result has been obtained by the solution of a class
model which possesses an infinite number of local conse
tion laws: in Appendix A, we explicitly show how the exis
tence of these local conservation laws is not incompat
with diffusive spin dynamics. It must be noted that the res
~3.23! does not imply that we have rigorously establish
that the ultimate long-time correlations of the quantu
model are also diffusive: the reasons for this and rela
comments were made earlier in Sec. I below Eq.~1.5!.

Let us now summarize the calculation of the correlator
the transverse components of the magnetization density.
semiclassical prescription for evaluatingCu,21(x,t) is again
quite straightforward: We begin with an initial state chos
from the same ensemble as before.L̂1(0) acting on the ini-
tial state gives zero unless there is a particle atx50 with
spin labelm50, 21, in which case it raises them value of
that particle by 1 and multiplies the state by a factor ofA2
~coming from the usual properties of raising operators for
spin-one representation of the angular momentum algeb!.
The resulting state is then propagated forward in time w
all the particles moving along their classical trajectories
before. At time t, the operatorL̂2(x) acting on this state
gives zero unless there is a particle atx with spin label
m50, 1, in which case it lowers the spin value of that p
ticle by 1 and again multiplies the state by a factor ofA2.
This state is then propagated backward in time and its o
lap with the initial state calculated.Cu,21(x,t) is given by
this overlap averaged over the ensemble of initial conditio
Here, as before, the phase factor of21 coming from each
collision does not matter as each collision has a tim
reversed counterpart. Also, it is easy to see that in this c
the overlap with the initial state is zerounless Lˆ 2(x) lowers
the spin of precisely the particle whose spin was raised
al
a-
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L̂1(0). Lastly, we see that there is an overall factor ofe1 iHt

coming from the unitary time evolution as the total spin
the state during its evolution forward in time is greater th
the total spin during its evolution backward in time by pr
cisely one. Similar considerations apply toCu,12 . Putting
all of this together we see that

Cu,76~x,t !52r2e6 iHtA7F2S uxu

Lx

,
utu

Lt
D , ~3.24!

whereA7[ f 01 f 71.
Now, we may express the NMR relaxation rate in term

of the correlation functions of the conserved magnetizat
density as

1

T1
5 (

a5x,y
(

b,g5x,y,z
AabAagSbg~vN!, ~3.25!

where the local dynamic structure factorSbg(vN) is defined
as

Sbg~vN!5E dteivNtCu,bg~0,t !; ~3.26!

note that we have neglected theq dependence of the hyper
fine couplings and ignored the contribution of the antifer
magnetic spin fluctuations to the integral overq in Eq.
~3.13!. At this point we have to address an important subtl
that arises in calculating the local dynamic structure fac
from the autocorrelation function. We are treating the s
dynamics semiclassically to arrive at our expressions for
correlation functions. This gives rise to a characteristict
divergence at short times in the corresponding autocorr
tion functions. This is basically a signature ofclassicalbal-
listic spin transport; at these short-time scales collisions p
no role. As a result, the integral as written is logarithmica
divergent at short times. Our semiclassical expressions
the correlation functions do not make sense for very sh
times. This is natural as our whole approach has been ge
towards calculating these correlations at time scales m
larger than 1/T and length scales much larger than the th
mal de Broglie wavelength; our method fails when bo
these conditions are simultaneously violated.21 The semiclas-
sical expressions forCu(0,t) are thus only valid fort.e t
wheree t is a short-time cutoff;1/T. Introducing this short-
time cutoff will give a well-defined result forSab(vN) at the
price of introducing an arbitrary scalee t;1/T; this does not
seem very promising as our results forSzz(vN) @S67(vN)#
will depend sensitively upone t except for very small fields
such that we are in the collision dominated diffusive regim
gNH!1/Lt (H!1/Lt). Note that the range ofH for which
the results are insensitive to the cutoff differs for the tra
verse components of the local dynamic structure factor
cause of the overall oscillatory factor ofe6 iHt in the corre-
sponding autocorrelation functions~this factor always
dominates asgN!1). However, we can still use our ap
proach to compute theSab(vN). The point is that, at very
short times, the collisions between the thermally excited p
ticles do not matter, and the spin dynamics is ballistic. T
means thatSab(vN), for high frequenciesvN ~such thatvN
is much larger than the mean collision rate;1/Lt), may be
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8328 57KEDAR DAMLE AND SUBIR SACHDEV
calculated exactly by doing a full quantum calculation fo
gas of noninteracting spin-one particles.29 Now, we can ex-
pand our semiclassical result~obtained by using a cutoffe t)
for vN@1/Lt and match the leading term in this large H
expansionwith the small H limit @for Szz (S67) this would
be the regimegNH!T (H!T)] of the quantum calculation
of Ref. 29. This, then, will uniquely fixe t and give us results
for the Sab(vN) that will work reasonably well even fo
H;T @though strictly speaking they are valid only in th
rangegNH!T (H!T) for Szz (S67)].

To see explicitly how this procedure works, consid
Szz(vN). It is quite easy to see that thevN@1/Lt limit of the
semiclassicalSzz(vN) is

De2D/T

pc2
~eH/T1e2H/T!lnS e2g

e tvN
D ,

whereg'0.577 216 is Euler’s constant. ThevN!T limit of
the full quantum calculation reads:29

De2D/T

pc2
~eH/T1e2H/T!lnS 4Te2g

vN
D .

Thus we can sete t51/4T to match the two logarithms. It is
easy to check that the same choice works for the transv
correlators. It is now quite straightforward to do thet inte-
grals and obtain the following results20 for the local dynamic
structure factor:

Szz~vN!5
r

c
A2D

pT
@A1$ ln~TLt!1F1~ApuvNuLt!%

1A2$ ln~TLt!1F2~ApuvNuLt!%#,
~3.27!

S76~vN!5
2rA7

c
A2D

pT
$ ln~TLt!1F2~ApuvN6HuLt!%.

The ln(TLt) terms logarithmically violate the purely classica
reduced scaling forms,34 and were fixed using the matchin
procedure just outlined. The scaling functionsF1,2(V) were
determined in Ref. 20 to be

F1~V!5 lnS 4Ape2g

V
D ,

~3.28!

F2~V!5F1~V!1
p@~A41V212!1/22AV#2

4AV~A41V212!1/2

2 ln
@11V2/C2~V!#1/2@11C~V!#

2V
,

where g50.577 21 . . . is Euler’s constant, and
C(V)5(VA11V2/42V2/2)1/2. Note that the above ex
pression forF2(V) clearly shows the expected crossov
from the large frequency ballistic behaviorF2(V
→`)5 ln(1/V), to the small frequency diffusive form
F2(V→0)5p/(2AV).
r

se

r

Let us now use all of this to make contact with the e
perimental results of Ref. 28. For this particular experimen
setup, the expression for 1/T1 simplifies and to a very good
approximation we can write28

1

T1

5G13Sxx~vN!; ~3.29!

here the relevant hyperfine coupling constant is known28 to
have the valueG1'(7.53105) K s21 ~note that we have
used units such that\5kB51 in our computation of the
correlation functions and thus time is being measured in
verse Kelvins!. To begin with, we straightforwardly attemp
to fit the field dependent 1/T1 with our results. We use the
valuesD5320 K andc53.32D ~we are working in units
where the lattice constanta is set to one! extracted from the
susceptibility data.50 In actual fact, we introduce an add
tional, field-independentbackground rateRb that we add on
to our theoretical result for 1/T1. This serves as our fitting
parameter; we choose it at each temperature to achieve
best agreement with the results of Ref. 28. We show
resulting fits forT5320, 220, and 160 K in Fig. 16. We se
that the theoretical curves account for the field depende
of 1/T1 extremelywell in this temperature range~of course
the agreement forT5320 K should not be taken too ser
ously as our theory is valid only for temperatures sma
than the gap!. In particular, the data seems to clearly exhi
the theoretically predicted 1/AH divergence at low fields
which is a characteristic of diffusive spin dynamics. In Fig
17 and 18, we compare the theoretical predictions with
experimental data atT5120, 100, 90, 80, 70, and 60 K. A
these lower temperatures this divergence seems to get cu
below some threshold field and the quality of the fit deter

FIG. 16. Field dependence of 1/T1 for T.120 K. The experi-
mental data of Ref. 28 is compared with the theoretical predicti
offset by a field-independent background rateRb which is the only
free parameter of the fit; the fit value ofRb is shown under the
theory column.
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rates rapidly. This indicates the presence of some s
dissipation mechanism which becomes significant at th
lower temperatures and rounds off the diffusive 1/Av diver-
gence in the local dynamic structure factor. Both interch
coupling and single-ion anisotropy of the intrachain coupl
are expected to contribute to the spin dissipation rate. H
ever, we do not have any real theory that can work out

FIG. 17. Field dependence of 1/T1 for a few temperatures
T,120 K. The experimental data of Ref. 28 is compared with
theoretical predictions offset by a field-independent backgro
rateRb which is the only free parameter of the fit; the fit value ofRb

is shown under the theory column.

FIG. 18. Field dependence of 1/T1 for the lowest temperature
for which data is available. The experimental data of Ref. 28
compared with the theoretical predictions offset by a fie
independent background rateRb which is the only free parameter o
the fit; the fit value ofRb is shown under the theory column.
n-
se

n

-
e

effects of these terms in the Hamiltonian on the field a
temperature dependence of 1/T1.

We can only attempt to phenomenologically introdu
some spin dissipation in our theoretical results for the s
correlators. Following Ref. 28, we do this by simply intro

e
d

s
-

FIG. 19. Field dependence of 1/T1 fit to the phenomenologica
form described in the text. The experimental data of Ref. 28
T5120, 100, and 90 K is compared to our phenomenological fo
that incorporates a spin-dissipation rateg in addition to a field
independent background rateRb . The values ofRb ,g are listed
under the theory column.

FIG. 20. Field dependence of 1/T1 fit to the phenomenologica
form described in the text. The experimental data of Ref. 28
T580, 70, and 60 K is compared to our phenomenological fo
that incorporates a spin-dissipation rateg in addition to a field-
independent background rateRb . The values ofRb ,g are listed
under the theory column.
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8330 57KEDAR DAMLE AND SUBIR SACHDEV
ducing an exponential cutoff to the long-time tail of the a
tocorrelation function; thus we write Cu,xx8 (0,t)
5e2gtCu,xx(0,t). It is straightforward, though somewhat t
dious to work out the corresponding local dynamic struct
factor by doing the Fourier transform and we will spare t
reader the details. This now gives us a phenomenolog
result for 1/T1 with an additional tunable parameterg. We
choose this spin-dissipation rate at each temperature
achieve the best fit with the data. The resulting curves
shown in Figs. 19 and 20 for a few representative tempe
ture values. We see that it is possible to fit the data mod
ately well; discrepancies are however clearly visible and i
not clear how much significance to attach to the sharp
crease ing as the temperature is lowered. The quality of o
fit seems at first sight to be much worse than the correspo
ing fit to a purely classical diffusive form employed in Re
28. However, it is important to note that the phenomenolo
cal model of Ref. 28 used the diffusion constant as an a
tional fitting parameter; we do not have any such freedo
Moreover, both the diffusion constant and the constant ba
ground rate extracted from the fit in Ref. 28 take on unphy
cal values below about 100 K.28 This is because, at thes
lower temperatures, we are in theballistic regime of spin
transport for a significant portion of theH axis and the con-
tribution from the ‘‘free-boson logarithms’’ cannot be n
glected. As the crossover to the ballistic regime is alrea
incorporated in our form, the present results for the ba
ground rate do not suffer from any such obvious proble
@the diffusion constant of course is just given by Eq.~3.23! in
our approach#. In Figs. 21 and 22, we plot the correspondi
values of the spin-dissipation rateg and the background rat
Rb as a function of temperature. The spin-dissipation rat
seen to increase rapidly as the temperature is decreased
the other hand, we see that the temperature dependenceRb

may be fit approximately by an activated form with activ
tion gap close to 3D/2.

FIG. 21. Temperature dependence of the spin-dissipation rag
determined by fitting our phenomenological form for 1/T1 to the
experimental data of Ref. 28.
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IV. HIGH- T REGION „T@D… OF THE CONTINUUM s
MODEL

We consider here the possibility that it may be possible
find gapped spin chains which satisfyD!J, whereJ is a
typical exchange constant. In this case, it becomes poss
to access a higher temperature regime where a contin
field theory description is possible in the regimeD!T!J. In
particular, we expect that the continuums model to apply in
such a regime.33 It is our hope that such a universal high-T
regime can be experimentally accessed inS52 spin
chains.32 Moreover, the study of such a high-T regime is of
importance as matching its results with theT!D theory can,
in principle, help us estimate the values ofT to which the
low-T results can be applied.

An important property of this regime33 is that equal-time
two-point correlator ofna , C(x,0) @Eq. ~3.3!# decays at
largex with a correlation length

j;
c

T
ln~T/D!. ~4.1!

We will shortly determine the exact values of the prefac
and the argument of the logarithm in Eq.~4.1!. At distances
of order or shorter than this correlation length we m
crudely expect that a weak-coupling, spin-wave picture w
hold, and excitations will have energy of order or smal
thancj21, which is logarithmically smaller than the therm
energyT; in other words

cj21

T
;

1

ln~T/D!
,1. ~4.2!

So the occupation number of these spin-wave modes
then be

FIG. 22. Temperature dependence of the background rateRb

determined by fitting our phenomenological form for 1/T1 to the
experimental data of Ref. 28. We plot ln(Rb) against 1/T to check
for activated behavior and indeed find an approximate linear r
tion, the best fit for the slope being 468 K.
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1

ecj21/T21
'

T

cj21
.1. ~4.3!

The last occupation number is precisely that appearing
classical description of thermally excited spin waves, wh
suggests that a classicalwave description should yield an
appropriate picture of the dynamics of this high-T region.
However, notice that classical thermal effects are only lo
rithmically preferred, and any predictions of a classical d
namical theory will only be correct to leading logarithms.

We begin our analysis by first focusing on theequal-time
correlations in this region. We shall use a method origina
introduced by Luscher.51 The main idea of Luscher is to
develop an effective action for only thezero Matsubara fre-
quency(vn50) components ofna after integrating out all
thevnÞ0 modes~thevn50 modes are related to the equa
time correlations via the fluctuations-dissipation theorem
the Kramers-Kronig relations52!. This is expected to yield the
following partition function for at-independent fieldna(x):

Z5E Dna~x!d~na
221!expX2

~N21!j

4 E dxS dna~x!

dx
D 2C.
~4.4!

We have now generalized to a fieldna with N components,
and will quote many of our results for generalN; the physi-
cal case is of courseN53. The coupling constant in Eq
~4.4! is written in a form such thatj is the exact correlation
length: this follows from the easily computable exact cor
lations ofZ by interpreting it as the quantum mechanics o
single quantum rotor. The value ofj can be computed in a
perturbation theory ing on the quantum model~2.1!: the
vnÞ0 modes can be integrated out using a now stand
approach45

~N21!jT

2
5

c

g
2c2~N22!E dk

2p
T (

vnÞ0

1

c2k21vn
2

.

~4.5!

The integral on the right-hand side is not ultraviolet conv
gent. We evaluate it using the renormalization procedure
cussed by Brezin and Zinn-Justin.53 We introduce a momen
tum scalem at which coupling constants are defined, a
generalize Eq.~2.1! to a model ind spatial dimensions. We
now define the renormalized dimensionless coupling

gR~m!5meZ1g, ~4.6!

wheree[12d, and the renormalization constantZ1 is de-
termined in dimensional regularization to be53

Z1512
~N22!

2p

gR~m!

e
1¯. ~4.7!

We now need to express Eq.~4.5! in terms ofgR , and evalu-
ate the integral on the right-hand side ind512e dimen-
sions. Let us display a few steps of the latter evaluation:
a
h

-
-

y

d

-

rd

-
s-

T (
vnÞ0

E d12ek

~2p!12e

1

c2k21vn
2

5E d12ek

~2p!12eFT (
vnÞ0

1

c2k21vn
2

2E dv

2p

1

c2k21v21T2G1c12eE d22ep

~2p!12e

3
1

c2p21T2
5

1

cS T

c D 2eH E d12ek

~2p!12eF 1

2k
coth

k

2

2
1

k2
2

1

2Ak211
G1

G~e/2!

~4p!12e/2J . ~4.8!

We are only interested in the poles ine and the accompany
ing constants, and to this accuracy the first integral on
right-hand side can be evaluated directly ate50, while the
G function yields a pole. Now combining Eqs.~4.6!, ~4.7!,
and~4.8! into Eq.~4.5! we find that the poles ine cancel~as
they must!, and

~N21!jT

2c
5

1

gR~m!
2

~N22!

2p
ln~cm/TAG !, ~4.9!

where the constantG is

G 54pe2g57.055 507 955 . . . ~4.10!

with g Euler’s constant. Now we use the conventional re
tionship betweenm and the renormalization-group invarian
LMS ~Refs. 53 and 51!

LMS5mAG S ~N22!

2p
gR~m! D 21/~N22!

3expS 2
2p

~N22!gR~m!
D ~4.11!

to eliminate the scalem from Eq. ~4.9!. As expected, the
couplinggR(m) drops out of the resulting expression, and w
get

j5
c~N22!

Tp~N21! H lnF G T

cLMS
G1

1

~N22!
lnln

T

cLMS

1O S lnln~T/cLMS!

ln~T/cLMS!
D J . ~4.12!

Finally, we can express this in terms of theT50 gapD by
using the relationship betweenLMS andD obtained using the
Bethe ansatz solution of thes model54

D

cLMS

5
~8/e!1/~N22!

G„111/~N22!…
. ~4.13!

The results~4.12,4.13! lead to theN53 result forj quoted
earlier in Eq.~1.7!.

Having obtained the classical model~4.4! for the equal-
time correlations, and the precise value of the couplingj in
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8332 57KEDAR DAMLE AND SUBIR SACHDEV
Eq. ~4.12!, we now turn to an examination of unequal tim
correlations in the high-T region T@D. We employ an ap-
proach related to that used in the study of the quantums
model ind52 in Ref. 55 in alow-T region; unlike Eq.~4.4!,
the equal-time correlations ind52 were described by a
theory that was not ultraviolet finite, and this will lead
significant differences in the analysis and physical proper
here. To obtain classical equations of motions we clea
need to extend the classical Hamiltonian in Eq.~4.4! by in-
cluding a kinetic energy term, expressed in terms of a
nonical conjugate momentum tona . The obvious approach
is to take the quantum equations of motion, and to sim
treat the variables asc-number classical degrees of freedo
In particular, we treat the rotor-angular momentumL as a
classical variable, and augment the classical Hamiltonian
the kinetic energy of rotational motion. The moment of ine
tia of the rotor is related to the response of the system
magnetic fieldH, and we therefore need to study the beha
ior of xu in the T@D regime.

We will determinexu by strategy similar to that employe
above in the computation ofj: first integrate out the nonzer
frequency modes, and then perform the average over the
frequency fluctuations. We choose anH which rotatesna in
the 1–2 plane, and define

na~x,t!5A12pW 2~x,t!na~x!1 (
a51

N21

pa~x,t!eaa~x!,

~4.14!

where na(x), eaa(x) are a set ofN mutually orthogonal
vectors in spacetime, andpa(x,t) represent the finite fre
quency degrees of freedom which must be integrated
We expand the partition function to quadratic order inH,
drop all terms proportional to the spatial gradients ofna(x)
or eaa(x) ~these can be shown to be logarithmically su
dominant to the terms kept!, and find that theH-dependent
terms in the free-energy density are

2
H2

2cg
F ~n1

21n2
2!S 12(

a
^pa

2& D 1(
ab

~ea1eb11ea2eb2!

3^papb&2
1

cg(
abcd

~ea1eb22ea2eb1!~ec1ed22ec2ed1!

3E dxdt^pa]tpb~0,0!;pc]tpd~x,t!&G . ~4.15!

Evaluating the expectation values of thep fields, and using
orthonormality of the vectorsna , eaa , expression~4.15!
simplifies to

2
H2

2cg
F ~n1

21n2
2!S 12c~N22!gT (

vnÞ0
E dk

2p

1

c2k21vn
2D

12cg~12n1
22n2

2!T (
vnÞ0

E dk

2p

c2k22vn
2

~c2k21vn
2!2G . ~4.16!

Finally to obtain the susceptibilityxu , we have to evaluate
the expectation value of the zero-frequency fieldna under
the partition function ~4.4!. This simply yields
s
ly

-

y
.

y
-
a
-

ro

t.

-

^n1
2&5^n2

2&51/N. The first frequency summation is precise
the same as that evaluated earlier forj in Eq. ~4.5!, while the
second is explicitly finite ind51 and can directly be evalu
ated; in this manner we obtain our final result forxu :

xu~T!5
2

N F ~N21!Tj

2c2
2

~N22!

2pc G
~4.17!

5
~N22!

Npc
lnS G T

LMSe
D .

We have omitted the form of the subleading logarithm
which are the same as those in Eq.~4.12!. This result was
quoted earlier in Eq.~1.8!.

We have now assembled all the information necessar
describe the effective classical dynamics in the regionT@D.
The classical partition function is given by the followin
phase-space functional integral, which generalizes Eq.~4.4!
~and we will now specialize the remainder of the discuss
to the special caseN53):

Z5E Dna~x!DLa~x!d~na
221!d~Lana!expS 2

Hc

T
D ,

Hc5
1

2E dxFTjS dna

dx
D 2

1
1

xu'

La
2 G , ~4.18!

where La is the classical angular momentum density, a
La , na are classical commuting variables. The second te
in Hc was absent in Eq.~4.4!, and represents the kineti
energy of the classical rotors: integrating outLa we obtain
Eq. ~4.4!. By evaluating the linear response to a field und
which

Hc→Hc2E dxHaLa , ~4.19!

we find

xu5
2

N
xu' ~4.20!

with N53 ~we have given, without proof, the expression f
general N); the factor of 2/3 comes from the constrai
La•na50. Using Eq.~4.17!, we then have the value ofxu' .

We can finally specify the manner in which time
dependent correlations have to be computed in this effec
classical model. The classical equations of motion are
Hamilton-Jacobi equations of the HamiltonianHc , with
Poisson brackets which are the continuum classical limit
the quantum commutation relations :

$La~x!,Lb~x8!%PB5eabgLg~x!d~x2x8!,

$La~x!,nb~x8!%PB5eabgng~x!d~x2x8!, ~4.21!

$na~x!,nb~x8!%PB50.

The equations of motion are
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]na

]t
5S 1

xu'

D eabgLbng ,

~4.22!

]La

]t
5~Tj!eabgnb

]2ng

]x2
.

The classical correlation functions are obtained by averag
these deterministic equations over an ensemble of initial c
ditions specified by Eq.~4.18!. Note also that simple dimen
sional analysis of the differential equations~4.22! shows that
disturbances travel with a characteristic velocityc(T) given
by

c~T!5@Tj~T!/xu'~T!#1/2. ~4.23!

Notice from Eqs.~4.12! and~4.17! that to leading logarithms
c(T)'c, but the second term in the first equation of E
~4.17! already shows that exact equality does not hold.

We complete the relationship of the quantum to the cl
sical model, by noting that there is also an additional wa
function renormalization of thena field45,53 which appears
when the nonzero frequency modes are integrated out.
final result for the correlatorC in Eq. ~3.3! then takes the
form

Cab~x,t !5A G̃ F lnS T

D D G ~N21!/~N22!

^na~x,t !nb~x,t !&c .

~4.24!

The subscriptc represents the classical average specified
Eqs. ~4.18! and ~4.22!. The constantA is the T50 quasi-

particle residue which appeared in Eq.~3.5!. The constantG̃
is an unknown universal number which cannot be obtai
by the present methods. It could, in principle, be obtain
from the Bethe-ansatz solution. There is no similar renorm
ization of the correlator of the magnetization density,Cu in
Eq. ~3.14!, which is precisely equal to the two-point co
relator ofLa under Eqs.~4.18! and ~4.22!.

It is now possible to perform a simple rescaling and
show that the classical dynamics problem above is free
any dimensionless couplings, and is a unique, parameter
theory. This will allow us to completely specify theT depen-
dence of observables up to unknown numerical consta
Let us perform the following rescalings on Eqs.~4.18! and
~4.22!:

x5 x̄j,

t5 t̄Ajxu'

T
, ~4.25!

La5L̄aATxu'

j
.

Then the partition function~4.18! is transformed to
g
n-

.

-
-

ur

y

d
d
l-

of
ee

ts.

Z̄5E Dna~ x̄!D L̄a~ x̄!d~na
221!d~ L̄a•na!exp~2H c̄!.

H c̄5
1

2E dx̄F S dna

dx̄
D 2

1L̄a
2 G , ~4.26!

while the equations of motion become

]na

] t̄
5eabgL̄bng ,

~4.27!

]L̄a

] t̄
5eabgnb

]2ng

] x̄2
.

Notice that coupling constants and parameters have b
scaled away, and Eqs.~4.26! and ~4.27! constitute a unique
problem that must be solved exactly. TheT and D depen-
dences of all quantities arise only through the rescalings
fined in Eq. ~4.25! and the results~4.12! and ~4.17!, and
~4.20! for j andxu' given earlier. A complete description o
the correlators now requires exact solution of Eqs.~4.26! and
~4.27!. The equal-time correlations are of course known fro
Eq. ~4.26!:

^L̄a~ x̄,0!L̄b~0,0!& c̄5
2

3
dabd~ x̄!,

~4.28!

^na~ x̄,0!nb~0,0!& c̄5
1

3
dabe2u x̄u.

Even though the equations of motion constitute an integra
system with an infinite number of nonlocal conservati
laws,56,57 it is not known how to analytically compute corre
lations averaged over the initial conditions of a thermal e
semble, or whether the correlator^L̄a( x̄, t̄ )L̄b(0,0)& c̄ has a
diffusive form at long times and distances. If diffusion d
exist in the continuum equations~4.28!, the present analysis
does allows us to completely specify theT dependence of the
diffusion constant; by a simple dimensional analysis of E
~4.25!, we get

Ds5B
T1/2@j~T!#3/2

@xu'~T!#1/2
, ~4.29!

whereB is an unknown universal number, and theT depen-
dences ofj andxu' are in Eqs.~4.12! and ~4.17!, ~4.20!.

In this context, it is interesting to note that rece
measurements58 of the field dependence of 1/T1 in the com-
pound ~VO! 2P2O7 at temperaturesT@D seem to provide
clear evidence for spin diffusion. However, the bulk of t
data is at temperatures comparable to the microscopic
change constants of the system and it is not clear if the fo
going description based on the universal high-tempera
properties of the continuum field theory is applicable in t
temperature regime studied experimentally. It is interest
that the experimental results appear to suggest thatDs;cj,
which is consistent with Eq.~4.29! if xu;Tj/c2 @as is the
case with our results~1.7! and ~1.8! to leading logarithms#.
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V. CONCLUSIONS

The main results of the paper are already summarize
Sec. I, and here we will note some unresolved issues
directions for future work. All experimental realizations
gapped antiferromagnets have additional complicati
which have not been included in the model systems stud
here. Most important among these are the spin anisotro
away from perfect Heisenberg symmetry and the interch
couplings which make the system only quasi-on
dimensional.

Consider first the consequence of anisotropy. The th
fold degenerate quasiparticle spectrum will now be lifte
and three resulting particles will have different energy ga
and masses. Further, these parameters will depend in a
plicated way upon the external field. Nevertheless, we exp
that the simple structure of theS matrix in Eq.~1.2! will be
retained, as it only depends upon simple dimensional pr
erties of slowly moving particles with a quadratic dispersio
Correlations of the particle density can probably be co
puted along the semiclassical lines of this paper: one ha
deal with a classical gas of particles of different masses
average densities. The latter problem is considerably m
complex than the equal mass case, and there is probab
alternative to numerical simulations. Correlations of the s
operators appear more problematical—these will invaria
change the labels of the particles when they act, and th
fore lead to differences in the labels in the forward and ba
ward trajectories. Combined with the complication that t
masses of the different particles are different, and so t
trajectories will have different velocities, we are faced w
what appears to be a very complex problem with quant
and classical effects intertwined.

Interchain couplings will eventually require us to consid
dynamics in two or three dimensions. If temperatures are
enough that the interchain motion is coherent, then we h
to consider theS matrix for scattering in higher dimension
In this case the low-momentum behavior is quite different
fact the T matrix vanishes at low momenta ford>2. We
would then expect all scattering to be dominated by ela
scattering of impurities which would control the behavior
the spin-diffusion constant and the quasiparticle broaden
On the other hand, systems with only incoherent hopp
between chains will probably be dominated by the inela
scattering along the one-dimensional chains, and display
havior qualitatively similar to that discussed in this paper
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APPENDIX A: LOCAL CONSERVATION LAWS
AND SPIN DIFFUSION

The computation of the spin diffusivity in Sec. III B wa
carried out using the exact solution a simple classical mo
of point particles in one dimension. This model is exac
solvable47 and possesses an infinite number of local cons
vation laws, as we will show explicitly below. The existen
of spin diffusion then appears to run counter to the conv
tional wisdom that the time evolution of a integrable syste
is not ‘‘chaotic’’ enough to be compatible with diffusion. I
particular, one might expect that any nonzero spin curr
produced in the system will not ultimately decay to ze
because the numerous conservation laws prevent it. In
appendix we will show that this expectation does not h
for the particular model being studied, and that an import
‘‘particle-hole’’-like symmetry allows complete decay o
any spin current. A closely related particle-hole symme
also played an important role in the appearance of a fi
conductivity in our recent quantum transport analysis in t
dimensions.59

The classical model of Secs. III A and III B consisted
particlesk51 . . .N with spins mk chosen randomly from
1,0,21. At time t50 the particles had uncorrelated rando
positionsxk(0), andsubsequently they occupied ‘‘trajecto
ries’’ Xk(t)[xk(0)1vkt wherevk are uncorrelated random
velocities chosen from a Boltzmann distribution. The po
tion xk(t) of particle k was however a rather complicate
function of time, and was chosen from the set of trajector
$Xk(t)%, such that for allt, xk(t),xl(t) for everyk, l .

It is useful at this point to note two discrete symmetries
the above classical statistical problem. The first is the tim
reversal symmetryT under which both spins and velocitie
change sign:

T:vk→2vk , mk→2mk . ~A1!

The second is the ‘‘particle-hole’’ symmetryP, under which
only the spins reverse direction:

P:vk→vk , mk→2mk . ~A2!

These symmetries will be crucial in our discussion below
Let us now explicitly identify the local conserved quan

ties of this classical dynamics. All of the velocitiesvk are
clearly constants of the motion. However, we would like
work with locally conserved quantities which can be writt
as the spatial integrals over local observables, and which
invariant under permutation of the particle labels; so we
fine

Vn5E dxF (
k51

N S dxk~ t !

dt
D n

d„x2xk~ t !…G
5 (

k51

N

vk
n ~A3!

with n51 . . .N @notice dxk(t)/dtÞvk5dXk(t)/dt, but the
result holds after summation overk because the set$xk(t)%
differs from the set$Xk(t)% only by a renumbering#. All the
Vn are constants of the motion. Similarly, with spinsmk we
can define
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M p5 (
k51

N

mk
p ~A4!

with p51,2, as additional locally conserved quantities@M1
is the spatial integral of%z(x,t) in Eq. ~3.15!, and a similar
result holds ofM2]. We can now easily work out the signa
ture of theVn and M p under the discrete symmetries not
earlier, and tabulate the results:

P T

Vn ,n odd 1 21

Vn ,n even 1 1

M1 21 21

M2 1 1

~A5!

The central quantity in spin transport is the total spin c
rent J(t), which is not a constant of the motion. It is als
given by an integral over a local quantity as

J~ t !5E dxF (
k51

N

mk

dxk~ t !

dt
d„x2xk~ t !…G

5 (
j ,k51

N

mjvkAjk~ t !, ~A6!

where Ajk is defined to be equal to 1 if particlej is on
trajectoryk at time t and 0 otherwise; we will analytically

FIG. 23. Deterministic time evolution of the spin currentJ(t)
@defined in Eq.~A6!# for two systems of 400 particles on a circ
with the same initial conditions; the value ofJ(t) changes in dis-
crete steps at each collision between a pair of particles. For on
systems, there is an impulse in velocities given by Eq.~A8! at a
time t052. This produces a macroscopically significantJ(t), which
however decays away in a few collision times. The only remnan
the impulse is a ‘‘heating’’ of the system, reflected in the larg
amplitude of the orderAN fluctuations inJ(t) for the impacted
system.
-

study the functionAjk in Appendix C, but here we will be
satisfied by a numerical simulation. Again, as in Eq.~A5! it
is useful to note the signature ofJ under the discrete sym
metries:

P T

J 21 1
~A7!

As will become clear shortly, one of the central points of th
appendix is that the signatures in Eq.~A7! differ from all of
those of the conserved quantities in Eq.~A5!. The current
J(t) is the sum ofN random numbers of each sign, and so
expected to be of orderAN for a typical initial condition
chosen from the ensemble defined above. We show thede-
terministic time evolution ofJ(t) for one such initial condi-
tion for a system of 400 particles in Fig. 23: notice that it
rather noisy looking and repeatedly changes its sign. A
among the constants of the motion above, we expectVn with
n odd andM1 to be of orderAN ~provided n is not too
large!, andVn with n even andM2 to be of orderN for a
typical initial condition; notice that it is only the conserve
quantities of orderAN that can distinguish left movers from
right movers, or spin up from down.

Let us now create a macroscopic spin current~of orderN)
in this system. We do this by hitting the system with a ma
netic field gradient impulse at a timet5t0, and subsequently
setting the field to zero. As a result of the impulse, the
locities of the particles with spin up are assumed to incre
by v0, while those of spin down are assumed to decrease
v0. Formally, this can be written as

vk→vk1mlv0 where l is unique solution ofAlk~ t0!51.
~A8!

Immediately after the impulse,J(t) will have a macroscopic
value

J~ t0
1!5

2

3
Nv01O ~AN!. ~A9!

The subsequent deterministic time evolution ofJ(t) is also
shown in Fig. 23: it decays in a few collision times to a val
of orderAN and then appears to chaotically oscillate in tim
The basic point is now easy to see. Becausemk is as likely to
be 11 or 21, the impulse on any given particle is equal
likely to be1v0 or 2v0. Hence theVn , with n odd, remain
of orderAN even after the impulse. This is simply a man
festation of the fact that the signatures ofJ underP andT are
different from those of theVn . A nonzeroJ is therefore not
correlated with an induced value of a conserved quan
which could prevent the decay ofJ to nonmacroscopic val-
ues.

APPENDIX B: NUMERICAL COMPUTATION OF THE
FOURIER TRANSFORM OF THE CORRELATION

FUNCTION C

In this appendix we outline the numerical method e
ployed in calculatingS(q,v) starting from the numerically
determined semiclassicalC(x,t) and the procedure used t
directly determine the scaling functionF(z) @see Eq.~3.12!#.
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As the numerical determination ofR̃( x̃ , t̃ ) is the most
time consuming part of the entire procedure, we calculateR̃
only at a predetermined grid of points in thex̃2 t̃ plane. We
chose t̃ values from 0 to 7.0 at intervals of 0.2. For ea
such value oft̃ , we chose about 20 points so as to sampleR̃

as well as possible in the region in whichR̃.531023; this
choice was made to reflect the fact that our absolute erro
R̃ was estimated to be about 531024. This then defined our
grid. At each t̃ , we fit R̃ as a function ofx̃ to the form

ln~R̃!52
a1a21a3 x̃1a4 x̃ 21 f x̃ 3

a21a5 x̃1 x̃ 2
,

where f 54/3 anda152 ln„R̃(0, t̃ )…. The rationale behind
our choice of the value off is as follows: Whenx̃@ t̃ , the
complicated correlations between the spin labels of a gi
classical trajectory at different times do not matter andR is
well approximated by our ‘‘mean-field’’ theory~see Appen-
dix D!. The mean-field theory in this limit give
ln(R̃);24x̃/3 and this is what determines our choice off .
The error in the fit was estimated to be roughly the same
the error in the original computation ofR̃; thus we did not
lose anything by doing the fit. Having tabulated the fitti
parameters for each value oft̃ on the grid, we evaluated th
spatial Fourier transform numerically. The resulting functi
of t̃ is expected to be smooth as long asdṽ5„v2«(k)…Lt
is not too large. More precisely, we do not expect any os
lations on the scale of our grid spacing int̃ as long as
0.2dṽ!2p. As we are interested only indṽ;1, we can
safely interpolate the resulting function int̃ . In practice we
use a cubic spline to do the interpolation. Lastly, we do tht̃
integral numerically to obtainS(q,v). The accuracy of both
numerical integrations is quite high and so we expect that
dominant error in our calculation comes from the interpo
tion; this is conservatively estimated to be a few percen
the most for the largest values ofdṽ.

Let us now briefly indicate the procedure used in obta
ing the Fourier transform ofR̃(0, t̃ ) needed for the calcula
tion of the scaling functionF(z). The available data for
R̃(0, t̃ ) is fit extremelywell by the following form:

ln~R̃!52
a t̃ 1a t̃ 21b t̃ 3

11c t̃ 1d t̃ 2
,

where the choicea54/3Ap is again motivated by ‘‘mean
field’’ considerations. It is now a simple matter to do th
Fourier integral to a very high accuracy using this fit and
estimate the errors involved to be less than 0.5% at the m

APPENDIX C: CALCULATION OF TAGGED PARTICLE
CORRELATIONS IN THE CLASSICAL MODEL

In this appendix, we shall attempt to give a self-contain
account of the method devised by Jepsen47 for the calcula-
tion of the tagged particle correlations in the classical mo
introduced in Ref. 47. We will try to adhere to the notati
and conventions of Ref. 47 as far as possible.

The model is defined as follows: We begin withN par-
in

n

s

l-

e
-
t

-

e
st.

d

l

ticles of mass m distributed uniformly along a one
dimensional segment of lengthL with periodic boundary
conditions~we will eventually take the thermodynamic lim
L→` with N/L fixed to be equal to the densityr). At time
t50 each particle is assigned a velocity from the class
thermal ensemble defined by the usual Maxwell-Boltzma
distribution functiong(v)5(m/2pT)1/2e2mv2/2T. The subse-
quent evolution of the system is purely deterministic; t
particles travel without any change in their velocities un
they collide with another particle. Every collision is elast
and the particles merely exchange their velocities as a re
of the collision.

To begin our analysis, let us label the particles from left
right with an index i running from 0 toN21. Thus the
particles are initially at positionsxi(0) such that
xi(0),xj (0) for i , j . Actually, it is convenient to identify
i 1N with i because of the periodic boundary conditions e
ployed which identify the endsx50 andx5L of the inter-
val. Note that this labeling of the particles is left invariant b
the dynamics. We also labeltrajectories ~which follow the
straight line defined byXi(t)5xi(0)1v i t on the space-time
diagram representing the evolution of the system! with an
index i , again with the convention thatxi(0),xj (0) for i , j
~herev i is the initial velocity of thei th particle!. Let xi(t)
denote thepositionof the i th particle at timet. We wish to
calculate the correlatorB(x,t)5^d„x2xk(t)…d„xk(0)…&
where summation over the repeated indexk is implied and
the angular brackets refer to averaging over the ensemb
initial conditions specified earlier.

Let us now consider the quantityAjk(t), introduced in
Appendix A, which is defined to be equal to 1 if particlej is
on trajectoryk at time t and 0 otherwise. Another usefu
quantity is the numbernk of ~signed! crossings suffered by
the kth trajectory up to timet. Every time this trajectory is
hit from the left,nk decreases by 1 and every time it is h
from the right nk increases by 1. Clearly,Ajk(t)51 for
j 5k1nk(t) and zero otherwise. We may probe the dyna
ics a bit more by defining another quantityr n(h,k,t) which
equals 1 if trajectoryh has crossed trajectoryk preciselyn
times up to timet and zero otherwise. Here too, we a
talking of signedcrossings; if trajectoryh crosses from the
left this is a negative crossing and if it crosses from the ri
it is a positive crossing. Clearlyr n has the interpretation of a
probability when averaged over any ensemble of initial co
ditions. Let us also define the corresponding ‘‘generat
function’’ as

s~u;h,k,t !5 (
n52`

`

r n~h,k,t !einu. ~C1!

The reason for introducingr n and s(u) is that Ajk(t),
which is clearly a central quantity of interest, may be ve
conveniently expressed in terms ofs(u) as

Ajk~ t !5
1

N (
l 50

N21

e2 ~2p i /N! ~ j 2k!l )
m50

N21

sS 2p l

N
;m,k,t D ;

~C2!

here we are using the convention thats(u;k,k,t)[1. This is
quite easy to check from the definitions ofs(u) and Ajk .
Moreover, it is possible to write down a fairly explicit ex
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pression fors(u;h,k,t). This takes a slightly different form
depending on whetherh is greater or less thank. If h.k, we
have

s~u;h,k,t !5S@u,wkh#, ~C3!

while if h,k, we have

s~u;h,k,t !5e2 iuS@u,wkh#. ~C4!

S@u,wkh# used above is defined as

S@u,wkh#5einu, ~C5!

wherewkh[xk(0)2xh(0)1(vk2vh)t, andn is the integer
that satisfies (n21)L,wkh,nL. Using this definition, we
can write the following compact expression forAjk(t) in
terms ofS:

Ajk~ t !5
1

N (
l 50

N21

e2 2p i l j /N )
h50

N21

SF2p l

N
,wkhG . ~C6!

With all this machinery in place, it is a relatively straigh
forward matter to calculate the correlation function we ne
We begin by explicitly writing out the ensemble averag
involved:

B~x,t !5
N!

LNE $dx%E @dv#S )
l 50

N21

g~v l !D d„x0~ t !2x…,

~C7!

where we have used the definitions

E $dx%[E
0

L

dxN21E
0

xN21
dxN22 . . . E

0

x2
dx1

and

E @dv#[E
2`

`

dvN21E
2`

`

dvN22 . . . E
2`

`

dv0

with xk(0)[xk , and it is understood thatx0(0) is set equal
to 0 when evaluating the right-hand side of Eq.~C7!. Now
we can transform from particle positions to trajectories
writing

d„x0~ t !2x…5(
k

A0kd„Xk~ t !2x….

Using this and writingA0k in terms ofS@u,wkh# allows us to
express our correlation function as

B~x,t !5
N

LNE @dx#E @dv#

3S )
l 50

N21

g~v l !D 1

N (
k,l 50

N21

)
h50

N21

SF2p l

N
,wkhG

3d„Xk~ t !2x…. ~C8!

Here we have also used the fact that the integrand in
representation is explicitly symmetric in the spatial integ
tion variables to change the spatial integration
*@dx#[*0

LdxN21*0
LdxN22 . . . *0

Ldx1.
.
s

y

is
-

It is now convenient to defineR@u,xk1vkt2xh#
[*2`

` dvhg(vh)S@u,wkh#. Using this we can rewrite our ex
pression for the correlation function as

B~x,t !5
r

N(
u

F E dv0g~v0!d„X0~ t !2x…

3S 1

LE0

L

dxhR„u,X0~ t !2xh…D N21

1
N21

L E
0

L

dxkE
2`

`

dvkg~vk!R„u,Xk~ t !…

3d„Xk~ t !2x…S 1

LE0

L

dxhR„u,Xk~ t !2xh…D N22G ,
~C9!

wherekÞh, k,hÞ0, u[2p l /N and(u[( l 50
N21. To proceed

further we need to work out R@u,Xk(t)# and
(1/L)*0

LdxhR@u,Xk(t)2xh#. This is quite straightforward to
do in the limit of largeL and we only give the final result
below:

R@u,Xk~ t !#5
1

2
Ec~y!1S 12

1

2
Ec~y! Deiu,

~C10!

1

LE0

L

dxhR@u,Xk~ t !2xh#511
1

L
~12e2 iu!T@u,Xk~ t !#,

where

T@u,Xk~ t !#5A2T

m
tF yeiu1

eiu21

2
S 1

Ap
e2y2

2yEc~y!D G ,

Ec~y!5
2

Ap
E

y

`

dze2z2
, ~C11!

y5Am

2T

Xk~ t !

t
.

Now, in the thermodynamic limit specified earlier we ca
write

S 11
1

L
~12e2 iu!T@u,Xk~ t !# D N2n

5exp„r~12e2 iu!T@u,Xk~ t !#…,

valid for any finite numbern. Using this and Eq.~C10! in the
expression~C9! for the correlation function and doing th
remaining integrals over positions and velocities gives us

B~x,t !5rE
0

2p du

2p Fr„2 f 1~w! f 2~w!1eiu f 2
2~w!

1e2 iu f 1
2~w!…exp„r~12e2 iu!T@u,x#…

1
1

t
A m

2pT
e2w2

exp„r~12e2 iu!T@u,x#…G ,
~C12!
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here we have replaced the sum overu by the corresponding
integral in the thermodynamic limit and used the definitio
f 1(w)[Ec(w)/2, f 2(w)[12 f 1(w) and w[(m/2T)1/2x/t.
To do theu integral, we note thatT may be expressed a
Geiu2A, whereA and G are functions purely ofx and t.
This allows us to use the standard Bessel function ident

1

2pE0

2p

due2 inuexp„r~12e2 iu!~Geiu2A!…

5S G

A D n/2

e2r~A1G!I n~2rAAG!, ~C13!

to finally arrive at the results quoted in Eq.~3.21! of Sec.
III B upon using the appropriate values forr andm.

APPENDIX D: APPROXIMATE ANALYTICAL
CALCULATION OF THE RELAXATION FUNCTION

In this appendix, we briefly outline our approxima
‘‘mean-field’’ theory for the relaxation functionR(x,t). We
begin by noting that the classical model defined in Sec. II
has been solved exactly in Ref. 21 for the special cas
which there is only one possible value for the spin labelm.
All of the difficulties we encounter in attempting to genera
ize this solution to the case of interest here stem from the
that there are complicated correlations between themk(t)
~defined in Sec. III A! at different times.

Our mean-field approximation consists of simply ignori
these correlation effects~hence our choice of terminology t
describe our approximation!. Having made this uncontrolled
-
ti-
on

-

w,

s.

of
s

,

in

ct

approximation, it is now a fairly straightforward matter
obtain a closed form expression forR(x,t) in analogy with
the corresponding discussion in Ref. 21. The actual calc
tion proceeds as follows: Letq be the probability that any
given solid line in Fig. 9 intersects the dotted line. If w
ignore the correlations between themk(t) at different times,
then the probability that this line carries a spin label equa
the spin label of the dotted line is 1/3. So given that the l
intersects the dotted line, this intersection contributes a fa
of 21 to R(x,t) with probability 1/3 and a factor of 0 with
probability 2/3 ~if the line does not intersect at all, we o
course get a factor of 1). Within our mean-field theory,R is
just a product of such factors, one from each solid line. T
givesR(x,t)5(12q2q/3)N, whereN is the total number of
thermally excited particles in the system. Now, usi
q5^ux2vtu&/L ~Ref. 21! ~where the angular brackets deno
averaging over the Maxwell-Boltzmann distribution functio
for v andL is the length of the system! and taking the ther-
modynamic limit, we obtainR(x,t)5exp„24r^ux2vtu&/3….
We can now do our usual rescalings and write down
main result of our mean-field theory:

R̃~ x̃ , t̃ !5exp~24^u x̃2 ṽ t̃ u&/3!, ~D1!

where the angular brackets now denote averaging over
distribution P̃ ( ṽ )5 (1/Ap) e2 ṽ 2

and x̃ and t̃ are defined
as in Sec. III A. In particular, note that this implie
R̃(0, t̃ )5e24u t̃ u/3Ap; this turns out to be reasonably accura
for some purposes@see the discussion on the approxima
form of the scaling functionF(z) in Sec. III A#.
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