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We discuss the theory of the nonzero temperatdre gpin dynamics and transport in one-dimensional
Heisenberg antiferromagnets with a gapFor T<A, we develop a semiclassical picture of thermally excited
particles. Multiple inelastic collisions between the particles are crucial, and are described by a two-pgarticle
matrix which is shown to have superuniversaform at low momenta. This is established by computations on
the O(3) o model, and strong- and weak-coupling expansighs latter using a Majorana fermion represen-
tation) for the two-legS=1/2 Heisenberg antiferromagnetic ladder. As an aside, we note that the strong-
coupling calculation reveals &~ 1, two-particle bound state which leads to the presence of a second peak in
the T=0 inelastic neutron-scatterindgNS) cross section for a range of values of momentum transfer. We
obtain exact, or numerically exact, universal expressions for the thermal broadening of the quasiparticle peak
in the INS cross section, the spin diffusivity, and for the field dependence of the NMR relaxationTrataf 1/
the effective semiclassical model; these are expected to be asymptotically exact for the quantum antiferromag-
nets in the limitT<A. The results for I, are compared with the experimental findings of Takigaval.

[Phys. Rev. Lett76, 2173(1996] and the agreement is quite good. In the regifne T<(a typical micro-
scopic exchangeand we argue that a complementary description in terms of semiclassical waves applies, and
give some exact results for the thermodynamics and dynah864.63-182608)00414-1

I. INTRODUCTION that exploit the conformal invariance of the theory can be
used to determine exactly f@r>0 some dynamical correla-
For more than a decade now, much effort has been ddors that are directly probed by NMR experimehtst’ Simi-
voted to understanding the properties of a variety of insulatlar methods have been used to obtain resultsTiorO on
ing one-dimensional Heisenberg antiferromagnets. By nowstatic properties as welf. Transport properties have also
the basic facts about these systems are very well establishd@gen studied recently, with results that are quite different
Heisenberg antiferromagnetic chains with integer spins afom those we shall obtain here for gapful systgms. -
each site exhibit a gap in their excitation spectrum, while This paper shall deal exclusively with tfie-0 dynamical
those with half-integer spins are gaplé2sAmong the spin-  Properties of gapped Heisenberg spin chains. A portion of

1/2 ladder compounds, those with an even number of legSU" results have appeared earlier in a short reflonthere
exhibit a gap just like the integer spin chafg,while lad- we presented them in the context of the continuumoiNL,

ders with an odd number of legs are gapless analogous to tlptﬁt did not fully discuss their range O.f applicabilit_y. He_re we
half-integer chains. shall take a more general point of view of working directly

Theoretically, the universal low-energy properties of theWIth lattice Heisenberg antiferromagnets. The main, and es-

: . . ~sentially only, requirement on the spin chain being studied is
gapped systems are well described by th? one-dimension at it have an energy gap and that its low-lying excitations
quantumO(3) nonlinearo- model(NLoM) without any to- ot of a triplet of spin-1 particles with the dispersion
pological termf=8 A lot is known exactly about this field
theory’ ! and this is directly useful in understanding the
gapped systems. The spectrum of thenodel consists of a c2k?
triplet of massive spin-1 particles as the lowest energy exci- e(k)=A+ ——+(k%)---. (1.9

. D X . 2A
tations followed by multiparticle continua with no bound
states. Many zero-temperatur€)(properties of the gapped
systems, including low-frequency dynamic correlations, carHere k is being measured from an antiferromagnetic wave
be explained using the exact information available ondhe vectorQ=m/a (k=q—Q, anda is the lattice spacingand
model!2 On the other hand, until very recently exact resultswe have introduced a velocity to parametrize the mass of
for T>0 were restricted to static, thermodynamic the particles ad/c?. This is in keeping with the “relativis-
properties:> while many experimental observablgsich as tic” spectrum of theO(3) o model e(k) = (A?+c?k?)*?,
the inelastic neutron-scatterigNS) cross section and NMR  although most of our results wiliot rely on this relativistic
relaxation ratek directly probe dynamical correlations at form. Gapped spin chains with a spontaneously broken trans-
nonzero temperature. lational symmetry(spin-Peierls ordercan have spin-1/2 par-
(The universal low-energy properties of the gapless systicle excitations: we shall not deal with this case explicitly,
tems have been treated via a mapping to a certain criticalthough we believe most of our results can also be extended
field theory® In contrast to the NizM, powerful techniques to these systems.
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2/ / With this simple form of the” matrix in hand, we will
1 use the semiclassical techniques of Ref. 21 to analyze dy-
namical properties of spin fluctuations nepr 0 andq=Q
in terms of the motion of the dilute gas of quasiparticles.
We will begin by discussing the properties of thé ma-
trix for two-particle scattering in the limit of low momenta in
Sec. Il. In Sec. Il A we consider th&” matrix for theO(3)
nonlinear sigma model. This has been computed for all mo-
t menta by Zamolodchikov and Zamolodchikov, and we shall
show that the zero momentum limit does indeed satisfy Eq.
1 2 (1.2.
However, thes model is a continuum theory; it would be
X much more satisfactory to be able to directly see that Eq.
(1.2 holds for some specific microscopic model, and explic-
FIG. 1. Two-particle collision described by the matrix Eq. ity verify that lattice effects do not affect the simple struc-
(1.2. The momenta before and after the collision are the same, sqire of this limit. One such model is th&= 1/2, two-leg
the figure also represents the space-time trajectories of the pa”ideﬁeisenberg antiferromagnetic ladder with interchain ex-
) ) _ change]; and intrachain exchangk . The properties of the
shall play_ a ce_ntral role i_n our analysis. The major_ity 01_‘ OUrexpansiof? in powers ofJ,/J, for the microscopic lattice
results will be in the regim@ <A (we shall use units with  Hamiltonian of the system. In Sec. II B we shall explicitly
h=kg=1 throughout which we now discuss. ~ verify Eq. (1.2 for vanishing velocities in this lattice model
In this regime, there is a dilute gas of excited particlesyithin this strong-coupling expansion. Parenthetically, we
present, and their motion and collisions dominate the dyngte that our strong-coupling analysis also allows us to make
namical properties we study. In particular their spacingpregictions about interesting features in fie0 dynamic
~ce*'T/(AT)"2is much larger than their thermal de Broglie structure facto(q, ») which are specific to the system con-
wavelength~c/(AT)"2 As argued in Ref. 21, these par- sigered. In particular, we find that, to second orded,ify, ,
ticles can be treated classically except when two of theny two-particleS=1 bound state gives rise tosecondpeak
collide. Such_ two-particle coIIisio_ns need to be t_reateq quangin addition to the usual peak coming from the stable single-
tum mechanically and are described by.@mmatrix, which  particle excitations of the systerin S(q,w) for a range of
is, in general, a complicated function of the particle momentg, 5 es ofg aroundQ. This should be of relevance to inelas-
and spin orientations. Conservation of total momentum ang neutron-scatteringINS) experiments on the ladder com-

energy implies that momenta before and after collisions haVEounds and it is hoped that they experimentally verify the
to be the same, an@®(3) invariance and unitarity impose eayistence of this effect.

further constraints, but a fairly complex structure is still |5 sec. 1C we study the complementary “weak-
permitted—we will see some explicit ex_amples in this Papercoupling” expansion in powers af, /J, for the two-leg lad-
However, 1/the rms thermal velocity of a particle ger, As was shown in Ref. 23, this expansion leads to a
vr=(T/A)"c—0 asT/A—0 and thus we need the'ma-  gescription of the low-energy, long-distance properties of the
trix only in the limit of vanishing incomingand outgoing  |adder in terms of an effective field theory of a triplet of
momenta. One of the central ingredients in our computationg,assive Majorana fermions. The Hamiltonian for the Majo-
will be our claim that in this limit, all of the complexity rana fermions also has a four-fermion coupling which has
disappears, and the” matrix has esuperuniversaform; for  generally been ignored in previous treatments. In the absence
the scattering event shown in Fig. 1 we hlieres;=X,y,.Z  of this scattering, the Majorana fermions are free, and the

are the three possible values of 9¢3) spin labe] resulting.”” matrix doesnot obey Eq.(1.2). In this paper, we
consider the effect of the four-fermion coupling in perturba-
34 ::}”i,(kl Koiky ko) =(— 1)5u1u§5u2u1(277)2 tion theory. We show that this expansion suffers from severe
172

infrared problems which have to be resolved by an infinite-
X 5(ky—kj)8(k,—kp), (1.2 ~ order resummation. The structure of the divergences is very

similar to those also present in the laiyeexpansion of the
Notice especially the opposite pairing of momentum ando model above, and we find that the resulting resumred
spin labels: crudely speaking, the momenta go “through”matrix of the Majorana fermions does indeed obey the ana-
the collision, while the spins “bounce off"—this dichotomy log of Eq. (1.2). So neglecting the four-fermion couplig,
will be crucial to our considerations. We dub this limiting (or even treating it in an unresummed manner at finite order
value of the”-matrix “superuniversal” as it requires only in perturbation theoryis a very bad approximation at low
that the lowest-lying excitations above the gap satisfy Eqmomenta, and we expect that corresponding divergences in
(1.1) at low momenta. The value, however, does not depenthe perturbative evaluation of the spin-spin correlation func-
on parameters such @asand A. Moreover, we expect this tion invalidate the dynamical results of Ref. 24 at IGw
limiting result to hold even at the lattice level for generic  In Sec. Il we shall turn to a discussion of the dynamical
microscopic models of one-dimensional antiferromagnetproperties in the regime<QT<A. Our results apply univer-
with massive spin-one excitations; we shall see one explicisally to all gapped one-dimensional antiferromagnetic sys-
example that bears out this expectation later in the paper. tems with spin-one quasiparticles; indeed they @y on
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2A 1/2
ﬁ) e‘A’T. (1.4)

the dispersion1.1) and the.”” matrix in Eq.(1.2). All our 1
results will be expressed solely in terms of the parameters Xu=g
andA, the temperaturel and the external fieltH.

In Sec. Il A we study the dynamics of the staggered com+ye shall study the dynamics of the magnetization density in
ponent(with wave vector close toQ) of the fluctuations in  sec. 111 B2 We shall show that the long-time correlations of
the spin density. More precisely, we study the dynamicahp effective semiclassical model are characterizedsiiiyp

structure factorS(q, ) for g close toQ. Apart from some iffusion and obtain the following result for its lov-spin-
overall factors, this directly gives the INS cross section at thyiffusion constanDy:

corresponding values of momentum and energy transfer. At
T=0, the dynamical structure factor has a sharply defined )
S-function peak atv=¢(q— Q) for q nearQ. This peak can DS_C_eA/T_ (1.5

be thought of as arising from the ballistic propagation of the 3A

stable quasiparticle of the system. At nonzero temperatures,

the peak broadens as the q_uasiparticle spffers_ co!lisions with Using the Einstein relation for the spin conductivity
other thermally_ excited par_tlcleg. The main objectlvelof S_ec: Dox,, We obtain from Eqs(1.4) and(1.5)

[Il A is to describe the precise line shape of the quasiparticle
peak in the dynamic structure factor foe>0.

In the o-model approach, the staggered components of ==
the spin density are represented by the antiferromagnetic or- 3
der parameter field. We will use the semiclassical method
of Ref. 21 to calculate the space- and time-dependent twdNotice that the exponentially large factef’™ has dropped
point correlation function of thé field for T>0. This allows  0ut, ando diverges with an inverse square-root poweifin
us to calculate the thermal broadening of the single-particl@sT— 0. The semiclassical model possesses an infinite num-
peak in the dynamica| structure facﬁrq’w) for wave vec- ber of local conservation laws: in Appendix A, we discuss
torsq nearQ. In particu|ar, we find that the dynamic struc- how the existence of spin diffusion can be Compatible with
ture factor in the immediate vicinity of the quasiparticle peakthese local conservation laws. However, these results do not

at (q:Q’ w:A) may be written in a reduced Sca"ng form rigorously allow us to conclude that the ultimate Iong-time
as correlations of the underlying gapped quantum spin chain are

diffusive. This has to do with a subtle question of order of
limits: we computed the”” matrix (1.2) in the limit T/A
AcLky [ w—e(k) —0, and then used it to evaluate the long-time limit of cor-
27 =l (1.3 relations of the magnetization, whereas in reality the limits
t should be taken in the opposite order. What we can claim is
that our results will apply for all times up to a time scale
wherek=q—Q, .7 is the (nonuniversal quasiparticle am- which is larger than the collision timle; by a factor which
plitude of the spin-one excitations of the system,diverges with a positive power af/T asT—O0; there is a
L= me®'T/3T is the typical time spent by a thermally ex- substantial time window in this regime where we have estab-
cited quasiparticle between collisions with other particles/ished that the spin correlations are diffusive. For the generic
and® is acompletely universalunction that we determine gapped quantum spin chain, we fully expect that the ultimate
numerically in this paper. Notice that temperature enters thi#ong-time correlations are indeed diffusive, and the only con-
scaling form only through.,. We claim, though this is not sequences of the omitted terms in thiematrix are subdomi-
rigorously established, that these results for the broadeningant corrections to the value @ in Eq. (1.5 which are
are asymptotically exact faf<A: all corrections to the line- suppressed by powers dA. For the continuum N&M
width are expected to be suppressed by positive powers ofith a relativistically invariant regularizatiofthis is un-
T/A. Some evidence for the exactness of our results emergégysical for any experimental applicatiprthe issue is a
from consideration of simpler systems where exact resultttle more subtle: this model does possess additional nonlo-
for the line broadening are available from the quantum in<cal conserved quantiti€§,but we consider it unlikely that
verse scattering methdd:as we shall see in Sec. Ill A, our these will modify the long-time limit/ On the experimental
semiclassical results are in perfect agreefftesith these. It ~ side, however, diffusive behavior of the magnetization den-
is hoped that experimental studies of the temperature depegity has already been convincingly demonstrated inShel
dence of the INS cross section in this regime will confirmone-dimensional antiferromagnet Agy®; by the NMR ex-
these results, particularly the simple scaling famB). periments of Takigawat al?®
In Sec. 11l B we turn to the correlations of the conserved As has been argued earlrthe dynamic fluctuations
magnetization density, or dynamic fluctuations ngar0, nearg=0 provide the dominant contribution to the NMR
for T<A. Unlike the staggered case, the overall magnitudgelaxation rate I/, for T<A. Thus, knowing the space- and
of the magnetization density fluctuations is universal andime-dependent two-point correlation function of the con-
given byTy,, wherey, is the uniform susceptibility of the served magnetization density, we are able to compute the
system[the nonuniversal overall scale of the staggered comfield and temperature dependentl4/in this regime. We
ponent is reflected for instance by the presence of the overadhall see that the overall scale ofT1/is set by the ratio
constant.Z in Eq. (1.3)]. In this temperature regime, we Tyx,/VDs As was pointed out to us by Takiga®hthis
have the well-known result fog,,:*® immediately leads to an activation gap foif 1/given as

c 2 )l/Z

aAT

S(g,0)=
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3 0.5+
Aln—l: EA (16)

This difference between the activation gaps fgrand 1T,
appears to clear up puzzling discrepancies in the experimen-
tal literaturé®3%% for the value of the energy gap in these + .
systems obtained from Knight-shift susceptibility measure- v ++ ********
ments on the one hand, andT1/NMR relaxation rates on 0.3 +
the other; a systematic tabulation of the activation gaps for a + ox*
large number of gapped spin chathsloes indeed show a e
trend consistent with Eq(1.6). The crucial factor of 3/2
clearly arises from the exponential divergencebig. This 0.2 "
diffusive behavior we find arises entirely from intrinsic in- S+ T<< A, semiclassical particles
elastic scattering between the quasiparticles. In real systems * +
there will also be contributions from elastic scattering off 0.1
inhomogeneities which will eventually saturate the diver-
gence ofDg; asT—0. However, because of the strong spin
scattering implied by Eq(1.2) the effects of inelastic scat-
tering is particularly strong id=1, and can easily dominate O T
inhomogeneities in clean samples. 0 1 2 T/ A

We will give a detailed account of the calculations lead-
ing up to our expression for T{ (some details on the  FIG. 2. Low- and high-temperature asymptotics for the uniform
method used are relegated to Appendjxa@d then go on to  susceptibility y,, of the continuumO(3) nonlinearo model. At
compare the theoretical predictions for the field dependenc&=0, there is an energy gap to all excitations, anct is the
of 1/T, with the extensive experimental data of Takigawavelocity defined by Eq(1.1). The expression in Eq1.4) gives the
et al® We will see that our resultéwithout any adjustable low-temperature asymptotics, while EG..8) is used for the high-
parameters, except for a field-independent backgroungl ratéemperature asymptotics. Any lattice antiferromagnet will have a
agree with the data extremely well for a range of intermedi-~very high-temperatureT(>J whereJ is a typical microscopic ex-
ate temperatures. At the lowest temperatures for which datghange constanCurie susceptibility~1/T which is not shown: the
is available, the quality of the fit deteriorates significantly high-temperature limit of the continuum theory will apply for
and the 1{H divergence predicted at small fields seems t <J.
get cutoff, presumably by some spin-dissipation mechanism
present in the real system. At the present time, we are unabféifferent from the earlieN=o results. We shall show that
to incorporate this dissipation in any serious way in our apihe antiferromagnetic correlations decay with a correlation
proach. However, following Ref. 28, we can phenomenologi{€ngth £, which to leading logarithms il\/T is given at
cally introduce some spin-dissipation in our results for theN=3 exactly by
long-time limit of the autocorrelation function and obtain a

0.4+

* T>>A , semiclassical waves

(A=

corresponding expression for the field dependence Bf.1/ c 3276~ L+ VT
This allows us to fit the data at the lowest temperatures with &= 5T In , 1.7
a phenomenological form that has one additional adjustable m A

parameter corresponding to the spin-dissipation rate. We also
present results for the temperature dependence of this effeahere y is Euler's constant. We also obtain the exact uni-

tive rate. form susceptibility
Finally, in Sec. IV we will turn to the regim&>A. We
will do this in the context of the continuuf®(3) o model 1 3ome- 2T
only. Any continuum theory is applicable to real lattice ex- Xu= ( ) (1.8
periments only below some energy scale, and a natural 3mc A

choice for this energy scale is a typical exchange constant

So more specifically, we shall be studying the regime[notice the argument of the logarithm differs slightly from
A<T<J. For T>J we expect the spins to behave indepen-Eq. (1.7)]. It is interesting to compare the two asymptotic
dently, and the system exhibits a Curie susceptibility. It is arresults(1.4) and(1.8), and we have done that in Fig 2. It is
open question whether the window of temperaturesT <J reassuring to find that the two results are quite compatible
with universal behavior exists at all in any given system, andor T~ A. This suggests that one of either tTh&A or T>A

the answer will surely depend upon details of the microscopasymptotics are always appropriate. We shall also consider
ics. It is unlikely to be present foB=1 spin chains, but the nature of spin transport in tile<T<J regime, and show
appears quite possible f@=2 spin chains$? The static that it is related to transport in a certain classical statistical
properties of this regime were first studied by Joliceour angroblem of deterministic nonlinear waves. We have not es-
Golinelli®® using theN=c limit of the O(N) o model of tablished whether spin diffusion exists or not in this classical
Ref. 34. We shall present here an exact treatment of statigroblem; if the correlations were diffusive, however, we are
and dynamic properties for the case of genédéN); the able to precisely predict th€ dependence of the spin diffu-
numerical values of thé&l=3 static results are significantly sivity:
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TV £(T) 132 Finally, to make contact with the lattice antiferromagnet,
D=7 o —yL (1.9  we must have a prescription for representing the spin-density
[Bxu(T)/2] operators,(x) of the lattice system in terms of the operators

of the o model. It is most convenient to do this in terms of

Here .% is an undetermined universal number, af(d), Fourier components. We have

xu(T) are given in Eqs(1.7) and(1.8).
Notice the complementarity in the tw® regimes dis- s, (k+Q)xn, (k)

cussed above: the description fog A was in terms of semi-

classical particles, while that foA<T<J is in terms of (recall thatQ=s/a) and

semiclassical nonlinear waves.

So(A@)=M,(q)

. ZERO-TEMPERATURE PROPERTIES for |g|, |k| much smaller than some microscopically deter-

The primary purpose of this section will be to establishmMined scale~A. The missing proportionality constant in the
the.”” matrix by a variety of methods. We will begin in Sec. first relation is nonuniversal and related to the magnitude of
Il A by using the relativisticO(3) o model. In Sec. Il B we the spin at each site in the original lattice system. Thusgthe
will consider the strong-coupling expansion of the two-legmodel allows us to represent spin fluctuations ngarQ
ladder in powers of),/J, . This section will also present (these being the low-energy degrees of freeflamd near
supplementary results on some interesting features in th@=0. This is of course because tge=0 component of the
T=0 INS cross section of the strongly coupled ladder arisingsPin density is the conserved charge corresponding to the
from the presence of 8=1, two-particle bound state in its O(3) symmetry of the system, and as such must be included

spectrum. Finally, Sec. Il C will consider the complementaryin any description of the slow modes. _ _
J, 13, expansion. The exact”” matrix of the collision of two particles in the

o model was computed in a seminal paper of Zamolod-

chikov and Zamolodchikov. For the scattering event shown

in Fig. 1 it is[recall u;=x,y,z are the three possible values
Let us begin with a brief review of the-model as an of the O(3) spin labe]:

effective field theory for the low-energy properties of the

gapped systemdor a more extensive discussion see Ref. 35 V#}M/(kl,kz;ki k) =(27)28(ky— k) 8(kp—kb)

and references thergirlhe imaginary time £) action of the Kk

A. O(3) o model

o model is X[ o4(0) 5#1#25%#5
c (vr 1 +0,(0)8, 8, .
= | drdx| (axn)2+ S (0N~ i€apHgn )2, T2 0) Oy u} Oy
2gJo c2 Y Y

wherex is the spatial coordinatey,3,y=1,2,3 areO(3)  Where 6=06,—06, is the “rapidity,” k;=(A/c)sinhg for
vector indices over which there is an implied summation,j=1,2, andO(3) invariance guarantees a total lack tdf
€., IS the totally antisymmetric tensa,is a velocity,H, is ~ dependence in the result. The functiansn Eq. (2.2 are
an external magnetic fielflwe have absorbed a factor of the )

electronic magnetic momendug, into the definition of the 2mi 0

field H), and the partition function is obtained by integrating 71(6)= (0+ai)(6—2mi)’

over the unit vector fieldh,(x,7), with ni(x,r)=l. The

dimensionless coupling constagtis determined by the un- (00— i)

derlying lattice antiferromagnet at the momentum scale oa(0)= O+ m)(0—2m0)" 2.3
A~inverse lattice spacing to g~ 1/S whereS is the spin

at each site in the original lattice system. Ttiemodel is 2 (60— i)

used to make statements about physics at length scales o3(0)= i .

> A "1 and time scales (cA) ~?1; this physics isuniversally (0+ i) (0—2mi)

characterized by the dimensionful parameters1, T, and Now notice the structure of the lim#i—0 which is impor-

' determinac by nonuniversal atice scale. quaniiied2™ fOr OUr pUIPOSES in the regiofi<A: we find that
(A~cAe 279 for smallg), the long distance physics of the 716—0)=0, while 75(6-—0)=~1. This establishes the

o model depends on these lattice scale effects only throughey result(1.2) for this continuum model.
the value ofA, and has no direct dependence @ror A.

Also, the energy-momentum dispersion of the stable particle- B. Strongly coupled two-leg ladders
like excitation of this model is given by(k) = VAZ+k?c?, In this section we concentrate on the properties of a par-

and there is a triplet of them. The conserved density of thisicular model system, the spin-1/2, two-leg Heisenberg anti-
model corresponding to it®(3) symmetry is the magneti- ferromagnetic ladder, to which the low-energy phenomenol-
zation densityM ,(x,7)= 6L/ SH (X, 7). In the Hamiltonian ogy of the preceding section is expected to apply. The
formalism, this is represented by the operatbyg(x). Hamiltonian of the system may be written as
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%’:Ei S.(i>-8..<i>+92i [S()-S(i+1) .%o=2i - s s+ i) |, (28

+S(1)- S (i+1)]. and
Here, theS,(i) and (i) are spin-1/2 operators at site

along the two chains that make up the laddgrs a dimen-
sionless coupling constant equal to the ratio of the antiferro-
magnetic bond along the individual chaidg to the bond In this representation, the ground stateder O is just the
along the rungs of the ladddr, , and we have set the bond state with every site occupied by a singlet boson. To zeroth
strengthJ, along the rungs to be unity; this defines our unitorder ing, the lowest excited states form a degenerate mani-
of energy. We will analyze this model in the limit of smgll ~ fold with a triplet boson(of arbitrary polarizationreplacing

this “strong-coupling” expansioff is expected to be quali- the singlet particle at precisely one site. Higher excited states
tatively correct for allg. Forg=0, we just have a system of also form degenerate manifolds labeled by the number of
isolated rungs with the two spins on each rung coupled ansinglet particles that are replaced by triplet bosons. In what
tiferromagnetically. The ground state is a product state wittfollows, we will describe states by the numb@vhich can
each rung in a singlet state. The lowest-lying excited statesnly be zero or oneand polarization of the triplet particles at
form a degenerate manifold with precisely one rung pro-each site, the singlet occupation numbers being determined
moted to the triplet state. Perturbative correctiong imould by the constraint. Thus we will loosely refer to the state with
presumably make this triplet “particle” hop around produc- no triplet particles as the “vacuum.” At this order o the

ing a single-particle band of triplet excitations as the lowest{physical particlelike excitation of the system is created at site
lying excited states. Thus we expect that our perturbativeé by the action of¢,(i) on the vacuum, and thus coincides
analysis will be most conveniently performed in a represenwith the bare triplet particle. In general at higher orderg,in

(2.9

7253 [BuDbuli+D=ouDoi+D)]). 29

tation that directly describes the stateindividual rungsof
the ladder. With this in mind, we switch to the “bond-
operator” formalism introduced in Ref. 36. Following Ref.
36, we write the spin operators as

B P fo
Si(i)= E[S (Dta() +t,(1)s(i) —i €t (1)1 (1) ],
(2.9

a 1 toi i Ti i i Tei i
||(|): E[_S (I)ta(l)_ta(l)s(l)_Ieaﬂytﬁ(l)ty(l)]l
(2.6
wherea, B, andy are vector indices taking the valuey,z,
repeated indices are summed over, and the totally anti-

symmetric tensors'(i) andtl(i) are, respectively, creation
operators for singlet and triplet bosons at sifgn the pre-

vious section we had uséﬂx) to denote the spin density of

the lattice system; here we shall u%(a) to denote the same
and reserves for the singlet boson operatofThe restriction

we expect that the physical single particle states of the sys-
tem will contain an admixture of states with more than one
bare particle present. Similarly, the physical vacuum will
also have a component with nonzero bare particle number.

In fact, it is quite convenient to make a canonical trans-
formation (determined order by order ig) to an auxiliary
problem in which the physical particle states do not contain
admixtures of states with different bare particle number. The
Hamiltonian of the auxiliary problem is related to the origi-
nal one by a similarity transformation. The energy eigenval-
ues obtained in this manner of course give the energy levels
of the original Hamiltonian. However, to recover the corre-
sponding wave functions, one has to undo the effects of the
canonical transformation. We will use this convenient for-
mulation of perturbation theory below as we discuss the
strong-coupling expansion.

The auxiliary Hamiltonian in this approach is given by

T=eW eV, (210

whereW is the hermitian operator that generates our canoni-

that physical states on a rung are either singlets or tripletgal transformation. We chood# to meet the following cri-
leads to the following constraint on the boson occupationeria:

numbers at each site:
st(i)s(i)+th(i)t,(i)=1.
The spin density is given by
To(i)= =i €t h(I,(i).
It is also convenient to define
ba(i)=S"(D)t (i) + (D).
The Hamiltonian in terms of these operators is given as
=T+ 7, (2.7

where

(i) The matrix elements of7 between states with differ-
ing numbers of bare particles should be zero to a given order
in g. Note that this implies that the elementary excitations of
the auxiliary Hamiltonian are just the bare particles. How-
ever their dynamics, and their mutual interactigmsmulti-

particle sectorsare determined by the restriction G to the
appropriate subspace of definite particle number. This re-
striction gives the corresponding energy levels of the original
Hamiltonian.7Z correct to that order ig. This then serves as
our effective Hamiltonian for the corresponding sector of the
original problem.

(i) This does not completely specifyy. We therefore
also require thatV have zero matrix elements to a given
order ing between any two states populated by the same
number of bare particles.
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These criteria fiX\W uniquely order by order iig and in e ka_2 cogk,al2)
general we have an expansion foW that reads: r=—— , (2.13
W=g(W;+gW,+ ...). It is quite straightforward to use e""—2 cogkema/2)
this procedure to generate an expansiog for the effective
Hamiltonians in the one- and two-particle sector of the origi- e ka4 2 cogk.al2)
nal problem(the “effective Hamiltonian” in the physical M=-—0 , (2.19
vacuum sector is just a constant equal to the ground-state e""+2 cogkema/2)
energy calculated to the relevant ordegin Solving for the
eigenstates and eigenvalues of these effective Hamiltonians e ka4 cogk.a/2)
is just a simple exercise in elementary quantum mechanics. o=~ — , (2.19
If the eigenstates of the spin ladder are of intefestthey e+ codk;mal2)

will be when we calculatéS(q,w) perturbatively, we will

have to obtain them from the eigenstaltgs of the effective  Wherek=(k;—kz)/2, kem=ky+k,, anda is the lattice spac-
Hamiltonian using ing along the length of either of the two chains that make up

the ladder system. Note thief andk, both range over the
interval (0,27/a). The energy of the scattering state labeled
by {k;,k,} (the energy of the ground state being set to xero
is given by

After this preamble, we turn to the actual calculations. As
we have mentioned earlier, the scattering matrix in the low-
energy limit is a crucial input to the semiclassical calcula-
tions at nonzero temperature, and it is therefore interesting to
have results for it in our microscopic model. So, to begin
with, let us look at the two-particle sector and work out the
scattering properties of the physical particles.

First we need to find the effective Hamiltonian for the
two-particle sector. To first order ig, this is just given by
the restriction of 7,+ 7" to the two-particle subspace. In-
stead of introducing a lot of cumbersome notation to write,
this down, we will just list the amplitudes of the various
processes that are allowed in this two-body problem:

(i) Each particle can hop one site to the left or the right

|¢>physical: e_iw|¢>- (2.1

his is consistent with the first-order re<glfor the single-
particle dispersion relatiorE(k) =1+ g coska).

The next step is to use these results for the reflection
coefficients to obtain the” matrix for this two-body prob-
lem in the limit of low velocities. Low velocities imply val-
ues ofk, andk, in the vicinity of the band minimum at/a,

i.e., k close to zero andt.,, close to 2r/a. Bothr, andr,

have the limiting value-1 ask—0, k.,—2m/a. However,

rq is singular in the vicinity okk=0, k.,=2/a; its value

depends on the order in which the two limks-0 andk,,

with amplitudeg/2 except when the neighboring site in ques-_>277/a are taker_L This is som_ewhat_ dlsc_oncertmg as we
expect a well-defined low-velocity limit which agrees with

tion is occupied by the other particle. - !
(ii) When the two particles are at neighboring sites, theré[he predictions of th©(3) NLo'M field theory.

. . . . . To identify the source of our problem, let us look more
is a nonzero amplitude for spin rotation. Consider the state : i )
DT . . L . Closely at the expression fag. We notice thatr o, consid-
li,aq;(i+1),a,) which has one particle atwith polariza-

. ’ . ered a function of the complex variabte has a pole in the
tion a; (which can be any one of,y,Z) and another particle upper half-plane for a range of valueslqf,,. This indicates
ati+1 with polarizationa,. The amplitude to make a tran- PP P 9 j

" , A, ' the presence of a bound state in the O channel for the
?'_t'o: froem th)'72 to the stateli,fy;(i+1).5;) s corresponding values &f,,,. This bound state hits threshold,
9€ypras EvBaa,) < _ _ i.e., its binding energy goes to zero, las,— 27/a. It is the

To solve for the scattering states of this two-body prob-yresence of a bound state at threshold that causes the singular
lem, it is more convenient to work in a basis in which we hanayior of the reflection coefficient in the limit=0, ke,
label the spin part of the two particle states by the total ,5_/4 Clearly, if there were a range &, around 2r/a
angular momentund and the value of itz component;. o which there was no singlet bound state, then we would
The spin rotation amplltqde now becomes justdependent 5t have this difficulty. It turns oufas we shall briefly out-
nearest-neighbor potential which takes the valyl®s —9/2,  |jine |atep that extending our calculation to the next order in
and —g for J=2, 1, and O, respectively. Note that the po- ¢ |eads us to precisely this conclusion and gives a well-
tential energy is independent &f as one would expect from  yefined limiting value of-1 for r, ask—0, key— 277/a.
rotational invariance. It is now quite simple to find the scat-  This result can now be used to obtain tematrix of our
Fering eigenstates in egch channel. The spatial wave functio&m”ary two-body problem. We are interested, however, in
in channeld may be written as the .”” matrix that describes the scattering of the physical

particle-like excitations of the spin-ladder. Thankfully, it is

P(Xq, %)= ﬁj{[eiklxl"'ikZXZ—{-rJ(kl'kz)eik2X1+ik1X2] quite easy to see that though the wave functions of_ the two
problems are related by a canonical transformation, the
X 8(Xa—X1)}, (212 purely “off-diagonal” form of W implies that the two are

the same at least to first ordergn Transforming to the basis
whereP; is the symmetrizing operator fal=2,0 and the used in Eq(1.2), we see that the” matrix in the low veloc-
antisymmetrizing operator fok=1, andr is the reflection ity limit is indeed given by Eq(1.2). Thus, this superuniver-
coefficient that completely specifies the scattering propertiesal form of the.”” matrix holds for our lattice model and
of the particles. For the; we have lends support to the idea that it is a generally valid conse-
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guence of just the slow motion of the particles and is in nocomplication and confine ourselves to calculating the contri-
way dependent on the special properties of the continbum bution of the one- and two-particle sectors, correct to the
model. appropriate order img.

To wind up this part of our discussion, let us now sum- The spin operator at any site is a sum of two terms: a
marize the calculation of the reflection coefficients to firstsingle-particle piece coming from thg,, and a two-particle
order ing. We need to find the effective Hamiltonian of our part coming from the spin-density operatef,. From the
auxiliary two-body problem to second order ¢n This in-  structure of the strong-coupling expansion, it is clear that the
volves first working outV; and then using this to obtain the single-particle part does not have matrix elements between
effective two-body Hamiltonian. Te”(g?), we generate in the ground state and any state in the two-particle sector;
this manner an additional next-nearest-neighbor hoppingimilarly the two-particle piece does not have matrix ele-
term and some additiondl-dependent nearest-neighbor in- ments between the ground state and any state in the single-
teractions. We skip the details as they are somewhat tedioysarticle sector. Thus, keeping only the contributions from the
and not particularly illuminating. Thd=0 reflection coeffi- one- and two-particle sectors, we can write to second order
cient[correct to7(g)] obtained in this manner is given as in g

e S cotken@l2) ~g cotkon@)(Be NI g, % > Se—El(®4le,
e|ka+ COS( kcma/2)—g COS( kcma)(3e'ka+e"ka)/4 1-particle states
(2.16 q 1
From this, it is easy to see that there is no pole in the upper X(_qX)|‘Do>|25in2(%) + EZ—panicle Statef(w

half k plane as long a{skcma—27r|<\/@. This means that
there is no singlet bound state possible in this range.Qf
This is consistent with our expectation that at the very lowest —Ea) (P, o,(— 9, | Do) |*cos
energies, the two-particle spectrum should be free of bound
states in order to match the predictions of themodel. ~ where |®;) and |®,) denote one and two particle states,
Moreover, Eq(2.16) has a well-defined low-velocity limit of respectively, an@,(q,) ando,(qy) denote the discrete Fou-
—1 as claimed earlier. rier transforms of¢,(x) and o,(x). Let us digress for a
The foregoing analysis has shown that the two-particlenoment and think in terms of the inelastic neutron-scattering
sector has a spits=0 bound state which leads to some cross section for a process with momentum tran&feand
interesting threshold singularities for the scattering matrixenergy transfew; this coincides with the dynamic structure
Examining our expressions for the reflection coefficients, wefactor apart from some geometrical factors. This scattering
notice that there is in fact a bound state in 8v1 channel can of course produce a single spin-one particle in the spin
as well (actually, there is also &=2 antibound state; we system. But there is also a nonzero amplitude for producing
will not delve further into that aspect of the spectrum here a pair of these particles close to each ottas is clear from
Now, aS=1 excited state can have observable consequenceise actual calculations described latéFhis is the origin of
for the INS cross section of a system and we might expect tehe second term in Edq2.18).
see some interesting features in the same as a result of this. Now, these two pieces contribute to the structure factor
With this motivation, let us turn to the perturbative calcu- over very distinct intervals along the frequency axis. While it
lation of the dynamic structure factor &t=0. We pick a s, in principle, possible to calculate both terms correct to
coordinate system in which the two chains that make up our’(g?), we will confine ourselves below to calculating the
ladder are parallel to the axis and havey coordinates of |eading perturbative correction for each valuawfThus, we
+d/2 and —d/2, respectively, wherel is the distance be- will calculate the single-particle piece only to first ordeigin
tween them(for simplicity, we are assuming here that the while doing a full second-order calculation for the two-
rungs of the ladder are perpendicular to its }ed$e spins  particle piece. Below, we give a brief outline of the calcula-
along a chain are located atvalues equal to integer mul- tion and then discuss our final results.

q,d
7) (2.18

tiples of a. We denote the position of each spin in the To calculate the single-particle piece, we first need to de-
plane by R. We define F-S:(quqy)- The T=0 dynamic termine the ground state and the physical one-particle state
structure factor may be written as wave functions correct t¢’(g). This involves using/V cor-
rect to first order to obtain the physical wave functions from
- 1 a "y on the wave functions of the corresponding auxiliary problem
S(P,w)= EJ dtZZ, <®0|S§(t)8§,(0)|®0> (for the one-particle sector, these are just plane waves to all
RR orders ing; this follows from translational invariang.eA
x @~ iP-(R=R')+int. (2.17  simple calculation then gives the one-particle piece as

where|®,) is the ground state of the systeljs the length . 1 q,d

of each chain, an&; denotes the spin operator &tin the Si(P,w)= 5[1_9 coiqxa)]gnz(?) d(w—E(ay)),
Heisenberg representation. Our strategy is to write down the 2.19
usual spectral representation for EB.17) and then evaluate '

it perturbatively. Actually, a complete calculation of the whereE(q,)=1+g cos(a).

second-order contribution would involve the eigenstates with Turning to the two-particle piece, we see that one can
more than two-particles present; below we will ignore thisactually ignore the distinction between the physical two-
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FIG. 3. Positions inw of the single-particle peaksolid line),
bound state peaklong-dash ling and the bottom of the two-
particle continuun{short-dash lingin S(Q, w) plotted as a function
of q, for the strongly coupled laddéa typical value ofg=0.25 is
used.

FIG. 4. Spectral weight in the single-particle pedished ling
and the bound-state pedkolid line) in S(Q,w) for a strongly
coupled laddefa typical value ofg=0.25 is usefl Note that the
two curves actually correspond tlifferentvalues of the transverse
momentumg, chosen to maximize the respective spectral weights:

. . . .. the single-particle part is shown faqy=#/d while the bound state
particle wave function and the wave function of the auxiliary . -~ . )
part is shown forq,=0 (d is the spacing along the rung of the

two-body problem. Moreover, it suffices to consider the AUXaqded,
iliary problem to first order irg. Also, since the ground state
has spin zero and we are looking at the matrix elements of a
vector operator, we need to consider only the triplet () S(Pw)= gcog(M> sinz( qxa)
channel of the auxiliary problem. The only subtlety lies in @ T
the fact that we need to consider the bound-state contribution
as well as the usual contribution of the scattering states. « \/4gzco:s’-(qxa/2)—(w—2)2
From Eg. (2.14), we see that this bound state exists for _ .
T<kema<w+w/3 and for 3r— 7/3<k;,a<3w (remem- 9+2(w=2)+4g cos(g,a/2)
ber ke, ranges from 0 to 4/a). Thinking in terms of an  Note that forg,a=27/3 or 4/3, there is a square-root di-
inelastic neutron-scattering event with momentum transfegergence at the lower threshold to the continuunmirthese
dx in the fundamental domain (0,72a), we see that this are precisely the values g, for which the binding energy of
bound state can be excited fer<g,a<m+a/3 and for  the triplet bound state goes to zero. This enhanced scattering
m—m/3<qa<w. In the latter case, momentum is con- can thus be thought of as arising from the presence of the
served modulo a reciprocal-lattice vector ofr/a. Of triplet bound state at threshold. The salient features of these
course, in addition to the bound-state contribution there is @esults are summarized in Figs. 3 and 4. Figure 3 is a plot of
background term coming from the scattering states in thishe positions along the axis of the single-particle peak, the
channel. Again, the two particles can be created in the scabound-state peak, and the bottom of the two-particle con-
tering state either with total momentuky,, equal to the tinuum as a function ofj,. In Fig. 4, we show the spectral
momentum transfer,, or with the two differing by a weight in the single-particle and bound-state peaks as a func-
reciprocal-lattice vector of 2/a. tion of q,.

The actual calculations are quite elementary and we pro- Thus, we see that the existence of a triplet bound state of

(2.29

ceed directly to the results for the two-particle contributions.two elementary spin-one excitations leads to some interest-
The bound-state contribution foriZ3<q,a<4w/3 may be ing features in the dynamic structure factor. Actually, quali-
written as tatively similar features, again arising from a triplet bound-
state, had been predicted earlein the alternating one-
. g? ayd) (0@ g,a dimensional Heisenberg antiferromagnetic chain. Recent
Sp(P,w)= ?COS2 > sir? - 1—4 cog Y INS experiment®3°on (VO),P,0- do indeed see a second
sharply defined peak in the dynamical structure factor for a
X 8(w—Eg(ty)), (2.20 range of values of},. While this compound had been pre-
viously thought to be a good example of a spin ladfer,
where Eg(g,)=2—9g[1+4 cog(qa/2)]/2. On the other more recent work has favored the alternating chain mddel
hand, the scattering states give rise to the following backand the INS results have been interpréted terms of the
ground contribution fofw—2|< + 2g|cos@a/2)|: additional bound-state contribution predicted in Ref. 37.
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Thus, our results may not be of direct relevance to this par- The procedure outlined above gives us the following
ticular experimental system. However, our work does predicHamiltonian for the effective field theory written in terms of
that a second peak in the INS cross section should be seenMajorana fermions:
strongly coupled ladder systems and it is quite possible that
the feature persists to all orders in the perturbation expansion W= T (E+ T o .

. . : . = T +.9%_ +.7; 2.2
we have employed. It would be interesting to confirm this azg,y,z a(&%) 3a(p) ' (.22
effect by looking at other systems that are more convincingly a . L . .
modeled by a simple ladder Hamiltonian and it is hoped tha{1ere t_heg almo_lp are_MaJorana fermion fields with anticom-
future experiments do indeed see the effects coming from th@utation relations given as

bound state. {pr(X),pr(Y)}=8(x—y),

C. Weakly coupled two-leg ladders {pL(X),pL(Y)}=8(x—Y)
In this section, we analyze the ladder systegh) in the (.23
complementary weak-coupling limitJ, <J,. An elegant {£R(X), ER(Y)} = 8apd(x—Y),
mapping developed by Sheltet al?® allows one to express
the low-energy, long-distance properties of the model in {£00,£2(y)} = Sapd(x—y),

terms of a continuum theory of weakly interacting massive . . :

Majorana(rea) fermions. We will analyze the low-energy Y!t(?ei‘i'lr!;(;hﬁr aenr']cg:r(;rn;r;utators being equal to zerm(¢)

scattering properties of the spin-one excitations of the ! ing

weakly coupled ladder by working in this Majorana fermion iv

representation. w (¢):_Ff dX( by — drdybr—Mbrd, ),
We begin with a brief review of the Majorana fermion " 2 LxPL™ Proudr R

representation. We will not attempt here to describe in any (2.29

detail the p_rocedure us&tto arrive at this f!eld—theoret|c with v~ J;a and the interaction tern¥; may be written as
representation. Instead, we will be content with a rather tele-

graphic summary of the principal steps involved. To begin

with, one writes down the usual, free, massless bosonic .%,:gJ' AX{EREL EREL + EREY EREL + ERELEREL
theory* for the low-energy properties of each of the two

S=1/2 Heisenberg antiferromagnetic chains that make up — (ERE + ELE + ERE) proL ) (2.2

the ladder. The interchain exchande is then turned on, . . .
introducing a local, isotropidin spin spack coupling be-  With 9~J,a. Note that each Majorana fermion is a two-
tween the spin-density operators of each chain in the bosonf?MPonent object, the two components being labeled with
representation. This has two pieces to it: one coupling th&1® subscriptsR and L to denote the “right-moving” and

staggered parts of the spin densities with each other and thé€ft-moving” parts. To make contact with the original spin
other doing the same for the uniform component. Now, ondadder, we also need a prescription for expressing the spin

works with symmetric and antisymmetric combinations ofoperators of the ladder in terms of the M:_;ljorana fermions. In
the two boson fieldfone for each chajnand transcribes SNarp contrast to thee model, only the uniform part of the

everything to a fermionic representation, introducing oneSPIN-density operator has a local representation in terms of
Dirac fermion for the symmetric combination and anotherth€ férmions; the components of the spin density mgaQ

for the antisymmetric combination in the usual manfiera ~ €an be expressed gnly in termsaghly nonlocalfunctions
readable account of the relevant machinery of AbeliarPf the Fermi fields We have the following expressidtis
bosonization, see for instance the revidlwy Shankar. The  for the uniform partsJ; andJ,, of the spin density on each
last step is to write each Dirac fermion as two Majoranachain:

fermions. If one leaves out the uniform part of the coupling 11

to begin with, the theory in terms of the Majorana fermions afyy— | — _abcgb c a

is, remarkably enough, a free-field theory. The staggered part i) = 2 ( 2€ §V(X)§”(X)+§”(X)p”(x))’
of the coupling just provides a maasto each of the two

Majorana fermions obtained from the symmetric combina- 1

tion of the bosons, while the two Majorana fermions ob- Jg(x):E(§€abcfg(x)§5(x)_fi(X)Pv(X))a
tained from the antisymmetric combination acquire madses ] o
and —3A, respectivelythe actual energy gap is given by where the index takes on value® orL and repeateq indi-
the absolute value of the mas$he three Majorana fermions CeS are summed over. Note that the figldorresponding to
with massA form the spin-one triplet we expect on general the nonuniversal high-energy singlet mode drops out of the
grounds, and the fourth Majorana fermion represents a higrXPression for the uniform part of the total spin-density of
energy singlet mode that will not be very important for our the Iad_der Whl(_:h can then be expressed entirely in terms of
purposes. The mass parameleof the theory is proportional  the Spin one triplet fields. _

to J, with the proportionality constant being nonuniversal. e shall find it convenient, when it comes to actually
Finally, turning on the coupling between the uniform part ofd0ing any calculations, to rewrite all of the foregoing in
the spin densities gives us a four-fermion interaction ternf€MS of fermionic creatlop and ann|Ah|Iat|on operators. These
between these massive Majorana fermions which will play sre defined as follows: Lef(p) andp,(p) denote the Fou-
crucial role in our analysis of the” matrix. rier transforms oft3(x) andp,(x), respectively. We write

(2.26
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2a0 0 Tt conserving pieceof this quartic term for the calculation of
SR =Pt (=Pt~ P), (2.27  the.” matrix in the low-momentum limit; our method of

~ _ — Nt writing everything in terms of the creation and annihilation
Pu(P)=0,(PIS(P)+8u(—P)ST(—P), operators has the advantage of identifying and isolating this
wheret,(p) ands(p) are the fermionic annihilation opera- piece at the very outset. Finally, as an aside, we note that the
tors corresponding to the triplet and singlet modes, respeqotal spin operator of the system may be written in terms of
tively, andf,(p) andg,(p) are complex-valued functions of the triplet operators as

p which we specify below. These creation and annihilation

operators obey the usual anticommutation relations:

= d
{ta(P) th(@)} =27 8ap8(p— ), (2.29 sgt:ieamﬁw%tg(p)tc(p); (2.32
{s(p).s"(a)}=27(p—q),

with all other anticommutators equal to zero. In terms ofthis confirms that the triplet creation operatdroes indeed
these operators, the noninteracting part of the Hamiltoniageate a single spin-one quasipartieAéth polarizationa) of
reads the noninteracting system.
= dp = dp With all of this 'in mind,. let us turn to the analygis of the
.%Ozf Z—s(p)t;(p)ta(p)Jrf z—as(p)s’f(p)s(p), scattering properties of this model. As we are hoping to cal-
ekl i culate the.”” matrix perturbatively in the coupling, it is
(2.29 convenient to write”’=1+1.7. The “transition matrix”.7
where g(p)=(p2Z+A?)2 ey(p)=(p2wZ+9A%)*¥2 and can then be calculated perturbatively using the standard
the repeated indea is summed over. The functiorfs and  field-theoretic prescription that relates it to the corresponding
g, are actually chosen to ensure that the noninteracting@mputated, connected Green’s functions of the theory. Let us
Hamiltonian has this simple diagonal form in terms of themake this precise for the case we are interested in: namely, a
creation and annihilation operators; this choice guaranteescattering process in which the initial state consists of two
that the operators’ andt], as defined in Eq(2.27), create  particles, one with momenturk; and spin polarization
the true quasiparticles of the noninteracting system. The exx,, and the other with momenturk, and spin polariza-

pressions forf , andg, are best written as follows: tion w,, and the final state has two particles labelled
) B 0 by (ki,u1) and kj,u5). Note that we are nowot talking
rR(P)=Us(p)  p>0, about the bare particles of the noninteracting theory, but

the actual physical quasiparticle states of the system, correct

fr(p)=iva(p)  p=0, to the relevant order in the perturbative expansion in

o . . S M 1M2 1!
fL(p)=Ta(—p) Vp, g. The corresponding matrix eIemerirf,#i’Mé(kl,kz,kl,kz)
0 =(kju1,kousl.71kipq,Kopmo), may then be written as
=u._ >
gr(P)=U(—3a)(p) p>0, (2.30
=iv <O, » o ’
9r(P) =iv(—3a)(P) P 7 er;(kl'kz;kl’kz):(Zﬁ)zéﬂlﬂiéﬂzﬂéé(kl_ K1)
(P)=gr(—P) Vp;
gL(P)=grl—P p X 8(ky—K})

here the functions,(p) andv ,(p) are defined in general as
Um(P) = cog0m(p)/2),

Um(P)=Sin(0(p)/2),

with the angle 6,,(p) being specified by cd§,(p))

=ve|p|/(m*+vEp?) Y2, Sin(0m(p)) = msgn(p)/ (m?

+v2p?) 2 Now, we can rewrite the interaction term in nor- whereE=z(k;) +¢(k;) andE;=¢&(k,) + (k) are the final
mal ordered form with respect to these singlet and tripletand initial energies, respectivell; andk; are the total mo-
creation and annihilation operators. The quadratic terms smenta in the final and initial states, respectively, arflis
generated give the first-order correction to the masses of thide “reduced” matrix elementwith energy and momentum
singlet and triplet modesthis correction has already been conservingé functions removeyfor the process under con-
calculated in Ref. 23 by other mean3he quartic term left sideration.

over, has, in addition to the usual, normal-ordered, particle- We now specialize to the cadg =k, k,=—k (k>0);
number conserving piece, other pieces that involve pair crethis special case allows us to make our basic pggdarding
ation and destruction. The full expressions are somewhahe infrared divergences present in a perturbative calculation
messy and we refrain from displaying them here. Howeverpf the scattering propertigsvhile keeping the calculations
and this is key, we will need only a very simple pérorre-  simple. In this case, we may decompose the scattering matrix
sponding to the low momentum limit of the particle-numberas follows:

+(2m)?8(Es—E;) 8(k¢—k;)
(2.3)) Xi 22 (ke kK] LKD),
Hqiky

(2.33
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o2 (kLK) = (K, — K) S(kp+K) Propogator denoted as

Kby k,w on the left.
_— . .
Associated expression
XES1(K) OOy is denoted as D( k, w).

+55(k) 5,“1#1 Kok

+85(K) 8, 1 Byt (2.34

Now, energy and momentum conservation in one dimension Vertex (a)
provide enough constraints on the two-body problem to en-
sure that the allowed final states have the same set of mo-
mentum labels as the initial state. This allows us to convert
the overall energy and momentum conservéhfunctions in
the second term of Eq2.33) to & functions that identifyk;
with k andk; with —k. In the process, we of course intro-
duce additional kinematic factors coming from the Jacobian
[we are basically using(f(x))= 8(x)/|f’(x)|]. Using this, Vertex (b)
we can write
Si(k)= (k) iM(k),
1 zka ! FIG. 5. The Feynman rules we need for the calcula-
tion described in Sec. IIC. The propagatoD(k,w)
&(K) is given as D(k,w)=i/[w—e(k)+in]. The factor corre-
S,(k)=1+ 5 | 1M 2(k), (2.39  sponding to the vertex(@ is ig[fr(ps)fr(P1)fL(Pa)fL(P2)
Ur +R«L]/2. The factor corresponding t) is ig[f (pa) fr(P1)
e (k) —fr(P4) FL(PD)]LTL(P3) FR(P2) — Fr(P3) FL(P2)]-
Sg(k)=< iM 3(k), , o _
2ka where the field-strength renormalization facfkbcomes into

_ ) _ play because the singlet and triplet creation operatbemd
whereM,, M, ?”d!\ﬁ? are defined in terms of the following {1 create the bare particles, while we are asking questions
decomposition for/Z: about the scattering properties of the physical quasiparticle

excitations. We will not be very careful here about the pre-

H1K2
5 g (k —kk—k)= [Ml(k)ﬁl‘"l/"z iy cise definition ofZ; it will soon become apparent that this
does not play any role in the calculation we do.
M2(K) Byt Oyl Before we set about calculatirig,, we need to specify
our conventions regarding the diagrammatic representation
Ma(k) 5,u1,u2 uzug]- of perturbation theory. As shown in Fig. 5, we denote the

(2.36 propagator of the triplet particle by a solid line with an arrow
' carrying momentunk, frequencyw and spin labelu; this

The relations(2.35 are useful because there is a simplehas a factor of/[w—&(k) +i 7] associated with it. It turns
diagrammatic prescription for the perturbative evaluation ofout that we do not need to consider any diagrams that have

7. According to this standard field-theoretic prescriptién, lines corresponding to singlet particles and we will not
i /"2 (K, ko:K} K}) is proportional to the sum of all bother to introduce a diagrammatic representation for their

T propagator. We also display our diagram convention for the
“amputated” (factors corresponding to external legs omit- four-point vertices of the theory in the same figure; again,
ted), fully connected, one-particle irreducible diagrams con-only the particle number conserving vertices in which all
tributing to the time-ordered four-point function with two four lines involved correspond to triplet particles have been
incoming external lines and two outgoing external lines. Theassigned a diagram as the others will not play a role in what
incoming lines must carry momenkg andk,, frequencies follows. One type of vertex, labele@) in Fig. 5, depicts a
wq andw, set to their respective “on-shell” values efk;) process in which two particles of momentygmandp,, both
and e(k,), and spin labelsw; and w,, respectively. The with spin labelu=x scatter into a final state populated by
outgoing lines must carry momenkd andk;, frequencies two particles with momentp; andp,, and spin label =Y.
again set to their on-shell values sfk;) ande(kj), and  The full momentum-dependent factor associated with this

spin labelsu} andu}, respectively. Denoting the sum of all diagram is also shown below it. We will need only a very

such diagrams schematically By, we can write simple low-momentum limit of this expression in most of
what follows. The other kind of vertex, labelél) in Fig. 5,
i./Z”}MZ,(kl ko K} k) shows incoming particles with labelp{y) and (psx) scat-

1 tering into a final state populated by particles with labels

4 o (p1x) and (p,y), respectively. Again, the full momentum-
=(NZ)*T a(kyptq KopziKipeg Komh), (237 dependent factor is displayed alongside for completeness.
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k -k k -k
y y y X
k -k k -k

k -k
FIG. 6. Feynman diagrams contributing to
I,(kx, —kx;ky,—ky) to first order ing. All external lines carry Diagram (b)

on-shell frequencies corresponding to the momentum labels shown.

. . FIG. 7. Feynman diagrams contributing to
We will mostly need only the value of this factor when all I'4(kx —ky:ky,—kx) [diagram (] and Ts(kx.—Ky:kx,~ ky)

four momenta equal_zero, this is given simply byg Of. [diagram(b)] to first order ing. All external lines carry on-shell
course, all other vertices of the same type, but hav'ng_d'fferTrequencies corresponding to the momentum labels shown.
ent spin labels that can be obtained from these using the
0O(3) symmetry of the problem, have the same factors asso- _
ciated with them. S (K _ g kv
We are now in a position to do some calculations. We 1(K) '

- 2v
begin by noting that, apart from the overall factor qfZ)* F

A

which we are ignoring for now,iM ;(k), iM,(k), and .

iMa(k)  are  equal to  Tu(kx,—kxKy,—ky), S,(k)=1+ ﬁ(i), (2.39
I"4(kx,—ky;kx,—ky), and I',(kx,—ky;ky,—kx), respec- 2v \ kvg

tively. It is quite simple to calculate these three quantities to

leading order ing. The diagrams contributing toM ; is ig [ A

shown in Fig. 6, while those contributing it™ , andiM ; are Sy(k)=— _(_> .

shown in Fig. 7. Evaluating these “tree-level” amplitudes, 2vg | kur

we obtain

We immediately see that the perturbative expansion cannot
, 2 be trusted in the low-momentum limit because of the infrared
K divergences present in the expressions $grand S;. The
£2(k) structure of thris first-order result is seen to be qualitatively
similar to thec?(1/N) result for the two-particle”” matrix of
the O(N) o modell® In the latter case, we know that the
exact value of the” matrix is perfectly well behaved in the
e2(k)’ (2.39 k— 0 limit and is in fact given by the superuniversal expres-
sion (1.2). To obtain the correct result in this limit for our
problem, we need to identify théeading infrared diver-
I'4(kx,—ky;ky,—kx)=—ig. gences atach order in gand perform a resummation. Now,
we do not expect any infrared divergences in the perturbation
As long as we are interested in only the first-order result forexpansion ofZ and as a result the prefactor ofZ)* in the
., we can seZ=1 and directly use these expressions to getexpression for# does not contribute at all to the terms that
the following results for the leading low-behavior ofS;, need to be resummed; we will forget about this factor from
S,, andS; correct to first order irgy: now on.

[ 4(kx,—kx;ky,—Ky)=ig

2

I 4(kx,—Kky;kx,—Kky)=ig



8320 KEDAR DAMLE AND SUBIR SACHDEV 57

(2.40

An interesting feature of these results is the pole in the
upper-halfk plane atk=iAg/2u§ which seems to suggest
the presence of a bound state. However, this regiok of
space is definitely beyond the domain of validity of Eqg.
(2.40 and it is not clear what significance, if any, to ascribe
to this curious fact.

Turning to firmer ground, we see that the foregoing im-
plies that the low-momentum limit of the two-particle”
matrix is perfectly well defined and is, in fact, given by

S8y 28Ky —K})

AMIM2 LT 1y —
'/uiyﬂé(kl'kz’kl’kz) 5““‘& Mamy

X 27 8(Ky—K)). (2.4

Note that apart from an overall factor of minus one, this is
exactly the superuniversal forifi.2). The relative sign is
simply a consequence of Fermi statistics and our choice of
phase for the final state of the scattering process. In any case,
FIG. 8. Ladder series giving the leading infrared divergent termave will see that when we use the superuniversal form of the
in the expansion forM ; [diagram(a)] andiM , [diagram(b)]. All " matrix for discussing spin transport, the overall phase is
external lines carry on-shell frequencies corresponding to the maimmaterial. On the other hand, the overall factor-ol in
mentum labels shown. The internal lines also carry frequency labelthe superuniversal forrfiL.2) will be crucial when we work
that are not explicitly shown. out the correlators of the staggered component of the mag-
netization density. This may seem worrisome at first sight.
However, as we do not have any local representation of the
staggered component of the spin density in terms of the Ma-
jorana fermion operators, there is no contradiction at all. In
Let us now try and identify the leading infrared divergentfact, the semiclassical techniques used in Sec. Ill A may also
diagrams at each order in perturbation theory. First of all, ifoe applied to the problem of calculating the finite-
is clear, purely from frequency and momentum conservatiof€mperature Green function of the fermions; this would cor-
at each vertex, that no diagrams involving pair creation of€spond to calculating the finite-temperature correlators of
annihilation can provide the leading divergence at any orderSMehighly nonlocalstring operators of the original spin
Moreover, only internal loops in which both propagators in-System. However, as it is difficult to see how these may be

volved point in the same direction give a nonzero result Orficcess_ml_e at all to any experimental probes, we do not pur-
sue this line of thought any further.

doing the integral over the frequency running through the Thus, we see that the low-momentum behavior of. tie

loop. A little thought should convince the reader that thesematrix in this fermionic representation of the weakly coupled

two constra}lnts a!low us to qonglude that .the ladder SEMep dder is consistent with the superuniversal fofb2), al-
shown in Fig. 8 give the Ieadmg infrared d|v§rgent terms Inthough this behavior is definitely not accessible to perturba-
S, ands; to all orders ing. Turning our attention t&;, W yinn theory. This leads us to believe that similar infrared
see immediately that Fermi statistics guarantees that eagflergences would invalidate any perturbative calculation of
vertex in the analogous ladder series Syrhas enough fac-  gynamical properties at finite temperatuiehen there will

tors of momentum associated with it to rule out any infraredpe 3 dilute gas of thermally excited particles presenat
divergence appearing i§;. Our task is thus reduced to yses this representation. In particular, this appears to indicate
evaluating the two series shown in Fig. 8. To do this, we not@hat the results of Ref. 24 for the NMR relaxation rat& 1/
that as far as the coefficient of the divergent piece is conare incorrect at lowl >0.

cerned, we can ignore the momentum dependence of each
vertex and simply replace it with a factor oefig. Each
crossing of the fermion propagators gives a factor-df and

each loop integral gives/2kv2 . Putting all this together and The results of this section are expected to apply to all
summing the resultant geometric series, we obtain the folgapped one-dimensional antiferromagnets with massive spin-
lowing nonperturbativeresults for the low momentum be- one quasiparticles. We will develop, what we believe is an
havior of S, and S;: exact semiclassical theory of dynamics and transport for

Series (b)

[ll. DYNAMICS AND TRANSPORT FOR 0 <T<A
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T<A. We will consider fluctuations near=Q in Sec. lll A,  where the repeated index is summed over. LeK(x,t)

and neag=0 in Sec. Ill B. denoteC(x,t) evaluated afT=0 keeping only the single-
particle contributions. We have

A. Thermal broadening of the single-particle peak inS(q, w)

dp N
In this section, we present calculations leading up to our K(x,t)= f 2—D(p)e'px"8<p>t. (3.9
. . . a
results for the thermal broadening of the single-particle peak
in the dynamics structure factor. Here D(p) is a “form factor.” For our Lorentz invariant

The inelastic neutron-scattering cross section provides aontinuum model,
direct measureof the dynamical structure factd®(q,w) P
which is defined as 2C
) D(P)= 55y (3.5
S(q,w)= ZJ dteY(s,(a,0)S.(—a,0)); (3.1  where. 7 is a nonuniversal quasiparticle residue. This gives
A K(x,t)=.7ZK[A(x?—c?t?)Y?c]/(2), with K, the modi-
wheres,(q,t) is the Heisenberg representation operator corfied Bessel function.
responding to the component of the spin density at wave Now let us evaluat€(x,t) for nonzero temperatures us-
vectorq, the expectation values are with respect to the usuahg the semiclassical method of Ref. 21. First, it is conve-
equilibrium density matrix and summation over the repeatediient to switch to operatons, ;(x), n_1(x) andny(x), de-
index « is implied (note that we are assuming rotational fined as
invariance in spin space and workingtdt=0). We are in- ; _
terested in the structure factor fgrclose torr/a. In this case Ny 1=N_ =Nk~ 1Ny,

we have
and

S(q, ) %f dte“in,(k,t)n(—k0), (3.2 No=n,.

n., is a sum of a creation operator for particles wittz a
component of spirm equal to+1 and an annihilation op-
erator for particles withm equal to—1. ny is a sum of

creation and annihilation operators for particles witlequal

to 0. In the absence of an external field, we may write

wherek=q— m/a. To get a feel for what E(q3.2) looks like
at T=0, let us consider a particular lattice regularization of
the o model, defined by the quantum rotor Hamiltonian

95 el . s
4 in Li gzi Ni-Nitq, C(X,t):<ﬁo(X,t)ﬁo(oaO)>- (3.6

whereL; is the angular momentum operator of the rotor atWe represent Eq(3.6) as a “double time” path integral,
sitei, f; is the unit vector that denotes the position of thewith the e™'”* factor coming from the Heisenberg operator
rotor at sitei and we have temporarily se=a=1. It is not generating paths that move forward in time, and et
hard to analyze the properties of this model in a lagge producing paths that move backward in time. We begin with
strong-coupling expansion; moreover this is expected to bgp initial state which is populated by thermally excited par-
qualitatively correct for alfy in one dimensioff® To lowest ticles, the density of particles beinge /T and their mean
order, we can easily see that the ground state would just begpacing being much larger than the thermal de Broglie wave-
product state with each site being in an eigenstate wfith  length ~c/(AT) Y2 As argued in Refs. 20 and 21, this
zero eigenvalue. The lowest excited states would be a degemeans that the particles can be treated semiclassically. In this
erate manifold corresponding to promoting any one site tasemiclassical limit the dominant contribution to the Feynman
theL=1 state and thereby creating a “particle” at that site. sum comes about when the paths going backward in time are
To first order in 1¢, a hopping term would be generated in exactly the time-reversed counterparts of those going for-
the effective Hamiltonian for the single-particle sector, re-ward and all particles follow their classical trajectories be-
sulting in a band of one-particle excitations. To this order, tween collisiong%2* Whenever two particles collide, energy
is just a sum of creation and annihilation operators for theand momentum conservation is sufficient to determine the
stable particlelike excitation of the system. At higher orderdfinal momenta. However, one cannot entirely ignore quan-
in 1/g, fi acting on the vacuum will also produce multipar- tum effects of the collisions. The spins of the particles after
ticle states, but there will always be some single-particlehe collision as well as the phase picked up by the wave
component. Reverting back to our continuum theory, we seéunction of the system as a result of the collision is deter-
that Eq.(3.2 evaluated aff=0 would have a contribution mined by the quantum-mechanical scattering matrix).(

~ 8(w—e(k)) associated with the stable particle. The nextFor T<A, the particles all move very slowly and we need
contribution is actually a continuum above the three-particleonly the superuniversal low-momentum limit EG.2).
threshold*® Following Ref. 21, we shall now focus exclu- All this leads to the following description of(x,t) in
sively on how this one-particle peak broadensTasecomes  this asymptotic limi2° At time t=0 we begin with an initial
nonzero. Let us define state populated equallyor H=0) with three specie&orre-
sponding to the three values of spin projectioih of par-
ticles each uniformly distributed in space with densit\3,

1
Coxt= §<na(x,t)na(0,0)>, 3.3 where the total density is given as
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factor of (—1)™ comes from the scattering matrix at each
collision between a particle on the dotted trajectory and other
particles. All other collisions occur in pairghe second
member of the pair coming from the evolution backward in
time) and thus do not contribute any phase factor. The factor
of K(x,t) is just the relativistic amplitude for the propagation
of a single particle fromx=0 att=0 to positionx at timet.

All this implies that we can write

C(x,1) =R(x,1)K(x,t), (3.7

which defines the “relaxation function'R. For the case
where the particle has onlgne allowed value of its spin
label, m, it is possible to comput®(x,t) analytically?* and

the resulting expressiofB.7) then agrees precisely with a
computation using very sophisticated quantum inverse scat-
tering method? this agreement gives us confidence that the
X physical approach developed here is asymptotically exact at

: ) _ _ o low temperatures.
FIG. 9. A typical set of particle trajectories contributing to Let us now turn to the calculation d® for the case of
C(x,t). Each full line represents paths traversed by particles mov-

ing both forward and backward in time. The dashed line is traverse%] ;;r;sgget;]ee. fowri b;gln St;ymvivcr;gggi f a{%rgilrieﬁgge{sksﬁl(%gor
only going forward in time. Shown on the trajectories are the value% going P ;

of the particle spinsn, which are independent dfin the low-T e the positions of Fhe _thermally_ gxcited pa_rticlesf at time
limit. Notice that all the trajectories intersecting the dashed Iinetzo‘_ Let{v} be their initial velocities. Herd,x IS an 'ndex,
have a spin equal to that of the dashed line: only such configuradNNing from 1 toN, the total number of particles present in
tions contribute to th€(x, ). the initial state in a system of size. We label the initial
positions with the convention thaf(0)<x,(0) for k<lI. Let
dp ., TA Xk(t)E.Xk.(O)-l*' vt anote thekth space_—"time trajector(ypte
p=3| ——e (4+c?P2M)T_3 e AT that this is quite distinct from the position of théh particle
2w 2mc? at timet). Let my(t) denote the spin projection value of the
article traveling along thkth trajectory at timd. The spin
rojections are randomly assigned to each particle at time
t=0 as described earlier ama,(t) at later times depends on

The velocities are distributed according to the cIassicaE
Maxwell-Boltzmann distribution function

A which particle is traveling on thkth trajectory at any given
Av)= [ 2 a-avc?T time. We have the following expression fBt
2mc?T
Each particle in the initial state is assigned one of the three R(X,t)=<1_k[ T > (3.9

values ofm with equal probability(assumingH=0). The
operatomg(0) acting on this initial state creates at time0  ijth
one extra particle ak=0 with spin value equal to @the
annihilation part ofng gives a contribution which is expo- =11+ 6m () D0
nentially suppressed and is ignored her€hese particles K
follow their classical trajectories forward in time. At every where
collision, we pick up a factor of-1 from the.” matrix. At _
timet, a particle with spin projection of zero is annihilated at 0= 8(x— X, (1)) (X, (0)) + (X (t) — x) O(— %, (0)),
X by ng(x). The resulting state is then propagated backward
in time tot=0 and its overlap with the initial state calcu- and
lated. C(x,t) is then givgn by thg average of this overlap F= X (O (X—v ).
over the ensemble specified earlier.

A typical example of a space-time configuration of trajec-The angular brackets in E¢3.8) denote averaging over the
tories that leads to a nonzero value for this overlap is showensemble of initial conditions specified earlier.
in Fig. 9. All trajectories in the figure except the dotted line  Unfortunately, it does not seem possible to do the en-
denote space-time paths that are traversed both forward ais¢mble average analytically. Using the methods of Refs. 47
backward in time. The dotted line is traversed only forwardand 48, it is possible to develop a “cumulant” expansion for
in time as the particle traveling on it is destroyed at tifiy ~ the logarithm ofR.*® This expansion, however, is essentially
ng(x). A little thought convinces one that this overlap is a short-time expansion which is not uniformly convergent,
nonzero only when all particles colliding with a particle trav- and thus not very useful for our purposes as we eventually
eling on the dotted trajectory have the same spifequal to  need to Fourier transforr@(x,t). It is also possible to de-
zerg as it does. Moreover, when this condition is satisfied,velop a “mean-field” approximation to this classical model
the value of the overlap is just(1)"K(x,t) wheren, is the that ignores the complicated correlations betweennth@)
number of collisions that the dotted trajectory suffers. Theat different times(see Appendix I This proves to be rea-
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sonably accurate at least fdR(0t), though the high- 2.5+
accuracy numerics we describe next show clear deviations AT
from the mean-field results. So, although we have an asymp- aﬁ% YD
totically exact formulation for the nonzero temperature 2] f .3
C(x,t) at distances much larger than the thermal de Broglie S o e <4
wavelength and times much larger than!, we need to (Q,®) 25 o5
numerically determine the relaxation functiéhto actually 1.5 & Xs
calculate anything accurately. This is what we turn to next. ; X
An important property oR(x,t), which follows directly 0 )
from Eq.(3.8) is that it can be written in a scaling form as . & %
R(x,t)=R(X,T) with X=x/L, andT =t/L, where o;f*
=-—, 0.5 %
X p +++
and el
0 T 1 T T 1
1/ A\ 2 -1 0 1 2 3
pl2c?T) 3w

: 2
Thus it is most convenient for the numerics to measurea ;:‘cit,glvo_,f(?,ai)Ar)es\;\cI;;I}ed_by/z iztrztzr”(_)f_é;Ltg/(I ﬁgdpgozi?e
length in units ofL, and time in units ofL, and directly 29 @ e q=m _ oS ;

— the scaling collapse of the curves corresponding to the three lowest
calculateR. We start with a system size &f=400(in units  emperatures.
of L,) and impose periodic boundary conditions. The density
in these units is unity and so the initial state is populated by . . _
400 particles with their initial positions drawn from a uni- @Y particle. In terms of this picture we can defmeas the
form ensemble. This system size is large enough that finitg?Umber of times any solid line crosses the dotted line,rgnd
size effects are negligible for our purposes. Each particle i@S the number otlifferent thermally excited particles that
assigned a velocity from the classical thermal ensemble. 1§0Ss the dotted line.

these new units this implies that we choose velocities from With this new formulation in hand, calculating(?) re-

the distribution duces to some simple bookkeeping that keeps track of these
two integers for a given configuratiofi. We implement the
— 1 = ensemble average by averaging ovet X©° configurations
7 (V)= \/—;e ' drawn from the appropriate distribution. The combined ab-

. . solute error(statistical and finite-si2ein R(X,T) for values
An important advantage of our method is that we do the

. ; . of X, T of interest to us is estimated to be less than about
average over the spin values analytically. To do this, we not%>< 10-4

that it is possible to reformulate the calculationfoby writ- L= . i . .
ing With R available, it is a simple matter to numerically
Fourier transform the resultin@(x,t) and obtain the dy-

’|§:<T( 7)), namic structure facto®(q, ). Details of the numerical pro-

,‘ ) _ _ _ ~ cedure used are relegated to Appendix B. Here we only com-
where 7" denotes a given space-time configuration of trajeCment on some conceptual issues involved and discuss our
tories, the angular brackets denote averagely over the | egyits.

initial positions and velocities that define this configuration,  There is an important subtlety associated with doing the

andT(7) is defined as Fourier transform that needs to be first addressed. As dis-
Np cussed in Ref. 21, the semiclassical result@¢x,t) is valid
T( %)=(—1)“h(—) . as long as botlkx andt are not very small; the results break
3 down whenx~\; andt~1/T (At being the thermal de Bro-
Here,ny, is the total number of collisions involving a particle glie wavelength However, the Fourier transform & (at
traveling on the dotted trajectory of Fig. 9 amd is the  wave vectolk=qg— w/a) is an asymptotically valid approxi-
number ofdifferentthermally excited particles that have had mation t0S(qg,w) only for & close toe(k). The reason for
collisions with a particle traveling on the dotted trajectory.this can be understood by noting that the long-time asymp-
Now, T(%)=0 for all configurationsz” in which the pres- totics of our form forC(x,t) have an oscillatory character
ence of the extra particlghat starts out on the dotted trajec- with oscillations on the scale af ~*. Put another way, it is
tory) affects the evolution of the various spin valueg(t).  the spectral weight in the one-particle peak that plays a
So we might as well forget about the particle traveling on thedominant role in determining the long-time, large-distance
dotted trajectory and consider an auxiliary space-time diaasymptotics ofC(x,t) and so we can learn only about this
gram that now involves only the thermally excited particles.feature in the spectral weight by Fourier transforming our
We now agree to ignore the spin label on the dotted line oform for C.
Fig. 9; the dotted line now doetot denote the trajectory of With this caveat in mind, we have
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FIG. 13. S(k+ m/a,w) rescaled by a factor afZcL,/(7?A)
FIG. 11. S(w/a+k,w) rescaled by a factor afZcL,/(w2A)  Plotted agains@=L(w—2"A) with k=A/c for A/T=2, 3, 4,
plotted against the rescaled variate ko(L,/A)*2 with w=A for ~ and 5.

A/T=2, 3, 4, and 5. Again, note the scaling collapse of the curves )
corresponding to the three lowest temperatures. when rescaled bl; and plotted against a rescaled frequency

variable so=(w—A)L,, the three curves foA/T=3, 4,
1 and 5 seem to collapse on top of one another within our
S(q,w)= _f f dtdxé«t kK (x,t)R(x,t), (3.99  numerical errorgwhich are conservatively estimated to be a
27 few percent at the mostin Fig. 11, we show a scan in wave
vector across the same peak & A, again at the same four
wherek=q—m/a. We have not attempted to exhaustively yajues of temperature. The curves at the lower temperatures
map outS(q, ), although it would be quite straightforward again show scaling collapse; when rescaled.pgnd plotted

to get more extensive numerical results should they be_ Oégainst the rescaled variabite- keyL /A, they seem to all
. i &all on top of one another. Moreover, the scaling curve in
ourselves to discussing our results 8, ) for a couple of i 11 \yhen plotted as a function of the independent vari-

sample values ofy. Figure 10 shows scans in frequenc ~ L. L ) .
P b 9 9 yable —k3/2 coincides within our numerical error with the

across the quasiparticle peak 8{q,w) for q=Q at four i : : R .
different values of temperature. It is interesting to note thal c;almg function of Fig. 10 fos®<0; this is displayed in

ig. 12. While we do not have any reason to expect that this
scaling is generally true, all three observations may be put

251 AT together in terms of a scaling form that is validtally in the
S(k, ®) . 4o neighborhood of the quasiparticle peak tpr Q; more for-
’ ’ f mally we write
o +5,® o
x4,k g L, | w—s(K)
°5,k ) S(A,0)=—5 = | ———|. (3.10
1.5 P A L,
]
f We also investigate®(q, ) in the vicinity of the quasi-
& particle peak corresponding fp=Q+ A/c; for this to be
1 * meaningful, we of course need/c to be much less than the
x"¥9 microscopic scale~a~! beyond which our continuum
& theory does not work. We again tried to check if the analo-
0.5- N Pid gous scaling form,
M*"*&G‘*
X Sq.0) ol (w—s(k)) a1
q,0)= Alel T =1 |1 .
0 T T T T 1 1
25 =2 45 1 05 0 7?A L

FIG. 12. The scaling curve of Fig. (Hefined by the data for IS approximately valid. Figure 13 shows scans in frequency
A/T=4 and A/T=5) plotted against the independent variable across the peak witk held fixed atA/c, for A/T=2, 3, 4,
(—k?/2) compared to the scaling curve of Fig. (@jain defined by ~and 5. We see that the curves do not really appear to scale. In
the data forA/T=4 andA/T=5) for the corresponding negative Fig. 14, we show scans in wave vector, withheld fixed
values ofdw. The two coincide within our numerical errors. equal toy2A for the same values of the rati/T. We plot
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FIG. 14. S(k+ w/a,) rescaled by a factor afZcL,/(7?A) 0_4 3 7 1 )
plotted against the rescaled variablék=cL,(k—A/c) with z

w=2Y2A for A/T=2, 3, 4, and 5.
FIG. 15. The scaling functio®(z) determined directly from

the data (rescaled byL,) against the rescaled variable Eqg. (3.12 comp_areql with the scaling curve defined by the results
sk=cL,(k—A/c) (note the difference in the choice of res- 2"€ady shown in Figs. 10 and 12.

caling of the independent variable from the earlier gase Lorentzian  form  for  the  Fourier  transform:
Again, in sharp contrast to tlee= 77/a peak, we see that the O (2) = mal2(a?+7%) (with a~0.71) provides an excellent

curves do not show any signs of scaling; our local scalinga . . . . S
form is not a very good way of organizing the data in this pproxmatl_on to the line shapehe “mean-field” theory,
ya y 9 g however, gives a value of 4{Br~0.7523 fora—see Ap-

case. i
These scaling properties are best understood as foIIowQend'X D. .
g Prop We thus have results for the thermally broadened quasi-

Imagine developin ,t) in an expansion abow=0 for X . :
g velopin®(x.t) i xpansi particle peak inS(q,w); the accuracy of these in the

constantt and then calculating the Fourier integral in Eq. ; . N
(3.9. The zeroth-order term clearly gives us a result fora}symptotlc _reg|me'(_<A) IS I|m|te_d only by the _compute_r
time spent in numerically evaluating the relaxation function

S(q,w) which is compatible with the scaling form we have . i .
postulated for asymptotically low temperatures. However,and doing the Fourier transform. These results, especially the

before we can trust this result, we need to check that thgcaling properties in the vicinity of the peak corres.ponding o
corrections to the leading behavior go to zero in the lifit 4~ Q. Should be of relevance to neutron-scattering experi-

—0. This is where the difference between the two peaks wéhents on gapped one-dimensional Heisenberg antiferromag-

looked at becomes apparent. It is easy to see that this is rJiets perfor_med at temperatur‘é_gA anditis hpped that this .
only for values ofg such thac?|k|L,/AL,—0 asT—0 and study provides a useful paradigm for organizing the experi-

this explains why the scaling forn8.11) does not work. mental results.
Now consider the peak aj=Q: The zeroth-order scaling
result has most of its weight in the regitid=< A/c\L,. For B. Low-temperature spin diffusion probed by 1/T;

|k|~VA/cyL,, the corrections to this leading result do in-  |n this section, we shall present a detailed comparison of
deed go to zero and this establishes the scaling {&10.  our result&” for the field (H) and temperatureT) depen-

An interesting feature of this result is that the scaling func-gence of the NMR relaxation rate T/ (in the regimeT,

tion @ is completely determineby thex=0 partR(0t) of  H<A) with the experimental data of Ref. 28 on the NMR
the relaxation function. More precisely, we have relaxation rate in the compound Ag\yBs which is thought

to be aS=1 one-dimensional antiferromagnet with a large
gapA~300 K and single-ion anisotropy energy of about 4.5
K.?® We will ignore this anisotropy for the most part in our
theoretical analysigalthough we are forced to phenomeno-
A useful check on all of our calculations is thus to comparelogically introduce spin dissipation into our theoretical re-
the scaling function obtained in Figs. 10 and 12 with Eqg.sults in order to fit the data of Ref. 28 at low temperatures,
(3.12 evaluated numericallyit is possible to do this to a we do not have any theory that gives the detailed tempera-
high accuracy; details may be found in Appendix Bhe ture dependence of this spin dissipation rate starting from the
results of such a comparison are shown in Fig. 15 and thanisotropic coupling term in the Hamiltonian

agreement is seen to be quite good. While the numerical For completeness, let us begin with a detailed review of
results forR(0}t) show a clear deviation from the simple the calculations leading up to our expression foF;1/The
exponential decay predicted by the “mean-field” theory re-NMR relaxation rate is given in general by an expression of
ferred to earlier, we do find that the corresponding simplehe form

®(2)= %ficdsézsﬁ(o,s). (3.12
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1 overlap we are interested in equals the two-point correlation

dq . .
. > > jﬁAaﬂ(q)Aay(—q)Sﬂy(q,wN), function of the classical observable
1 aoXY By=xy.z
(3.13

where Sg,(q,w) is the Fourier transform of the spin-spin
correlation functior{the subscripts refer to th@(3) indices
of the spin operatolls wy=yyH is the nuclear Larmor fre- where we are labeling particles consecutively from left to
quency (yy is the nuclear gyromagnetic ratjahe fieldH right with an indexk, x,(t) denotes the position of thieh
points in thez direction, andA ,; are the hyperfine coupling particle at timet, andm, is thez component of the spin of
constants. The integral in Eqg.(3.13 is dominated by val- thekth particle. This correlation function is calculated using
ues ofg near 0(Ref. 29 and we can thus work out the field the ensemble of initial conditions outlined above. The dy-
and temperature dependence of ,1knowing theT>0 cor-  namics governing the time evolution of tlg is just that of
relators of the conserved magnetization density of@{8)  particles moving ballistically except for elastic collisions in
NLoM field theory. This is what we turn to next. which they retain their spin values.

We define the correlation functions Thus we can write

cu,zgx,o:;<mx—xk<t)>m.a(xl<o>)>, (3.16

ez<x,t>=§ M S(X— Xy (1)); (3.19

/T i _ /1 \2
CuzAX D) =(LAX,1)L,(0,0)—(L,)*, (3.14

o - . here the angular brackets refer to averaging over the en-
Cu—+ (6 =(L-(x.)L.(0.0); semble of spin labelm,, initial velocitiesv,(0), andinitial
here the angular brackets denote averaging over the usul®sitionsx,(0) specified earlier. Now as the spin projections

equilibrium density matrix_(x,t) is the Heisenberg repre- Mk &re not correlate_d with the initial positions or veloc_ities,
sentation operator corresponding to theomponent of the the averages factorize. The correlators of theare easily

o . ~ . evaluated as
magnetization density, and.. are operators corresponding
to the circularly polarized components of the magnetization

density defined a.=L,=iL,. As argued in Refs. 20 and
21, these correlation functions in the asymptotic regime mayyhere A;=(f,—f_,)2 and A,=f,;+f_,—(f,—f_;)? are
be evaluated by writing down a double-time path-integralsimple, dimensionless, known functionstéfT only. Using
representation for them and evaluating it semiclassically. Eq. (3.17) we have

This leads to the following prescriptiéhfor C,, ,Ax,t):
At time t=0 we begin with an initial state populated with Cu 2% 0 =A[(p(x,1)p(0,0)) — p?]
three speciegcorresponding to the three values of spin pro- e
jection m) of particles each uniformly distributed in space

(mymp)=A;+ A8, (3.17

with densities given, respectively, by +A22k (8(x—x(1))8(x(0))), (3.18
dp —(A—mH+c%p?20)/T TA A-mH)/T ; ;
Pr= Ee( mH+CTpT2A)/T — . se A M, where p(x,t) =3, 8(x—x,(t)) is the space-time-dependent
mC

total density, all averages are now with respect to initial po-

and with velocities distributed according to the classicalsitions and velocities, ang=(p(x,t))=Zmpy,. The two-

Maxwell-Boltzmann distribution function point correlators ofp(x,t) are also easy to evaluate: if the
spin labels are neglected, the collisions have no effect and

A , correlators of the total density can be obtained by consider-
2 (v)= —ze*Av 126%T ing an ideal gas of point particles. The second correlator in
2mc T Eq. (3.18, multiplying A,, is more difficult: it involves the
Each particle in the initial state is assigned one of the thret?e']c two-pow:.t corzjelat!on of a given palrt|cle V\.’h'clh qu'
values ofm with probability f,,=e™T/[1+2 cosht/T)] ows a complicated trajectory. Fortunately, precisely this cor-
- m ' relator was considered three decades ago by J&pard a
The operatolt,(0) merely keeps track of the local value of jitte |ater by other$® they showed that, at sufficiently long
the z component of the spin. Acting on the initial state, it times, this correlator has a Brownian motion form. In Ap-
measures the component of the magnetization density in pendix C, we give a self-contained summary of Jepsen’s cal-
their classical trajectories forward in time. At every collision, correlation function:
x| [t x| It]
- 5y +A2F2 -y
Ly L, Ly L,

the particles retain their spin labels. In addition, the state
picks up a factor of-1 from the.”” matrix at each collision.

wherep?F, is the connected density correlator of a classical
adeal gas ind=1,

At time t, the operatorl,(x) measures the value of the CuzdX,t)=p?
component of magnetization density at positiariThe state
is then propagated backward in timette 0 and its overlap
with the initial state calculatedC,, ,(x,t) is then given by
the average of this overlap over the ensemble specified e
lier. As all collisions have a time-reversed counterpart, the pn

phase of the scattering matrix does not matter here and the FiuX, D) =e Xt m, (3.20

AF, , (3.19
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andp®F, is the correlator of a given labeled parti¢fe?® L. (0). Lastly, we see that there is an overall factoredt™
coming from the unitary time evolution as the total spin of
the state during its evolution forward in time is greater than
the total spin during its evolution backward in time by pre-
cisely one. Similar considerations apply @, ;. _ . Putting
Gf(U)Gz( —u)+ Gf( —u)G,(u) all of this together we see that

VG,(u)Gy(—u)

X 15[ 2TVGo(u)G(—u)] [e (G2 Col-ulT
whereA;=fy+f;.

(3.2) Now, we may express the NMR relaxation rate in terms

. . 2 of the correlation functions of the conserved magnetization
with u=%/T, G,(u)=erfc(u)/2, andG,(u)=e " Y/(2/m) density as

—uG;,(u). For|t[<|x[<1, the functionF, has the ballistic

Fo(X, 1) ={[2G1(W)Gy(—u)+F1(X, DI J2TVG2(u) Go(—u)]

mm) 524
L, L’ ’

X t

Cyz=(Xt)= 2p’e"MALF,

form F,(X, t)=F (X, t), while for | t[>1,|x| it crosses over 1
A —= A AL, Ss(wN), 3.2
to thediffusiveform T a;}(’y B’YZEXM pPaySpy(©N) (3.29
e Ym _ where the local dynamic structure fac®,(wy) is defined
Fa(X, )mm for large t. (3.22 as
In the original dimensionful units, E¢3.22 implies a spin- _ Lonit )
diffusion constanD, given exactly by Sgylon)= | dIE®NCy 5,(01); (3.26
c2eAIT note that we have neglected thedependence of the hyper-
= . (3.23  fine couplings and ignored the contribution of the antiferro-
A[1+2 costiH/T)] magnetic spin fluctuations to the integral ovgrin Eq.

This result has been obtained by the solution of a classicdP19- At this point we have to address an important subtlety
model which possesses an infinite number of local conservglat arises in calculating the local dynamic structure factor
tion laws: in Appendix A, we explicitly show how the exis- rom th_e autoc_orrelgtlon functl(_)n. We are treating the spin
tence of these local conservation laws is not incompatiblélynamics semiclassically to arrive at our expressions for the
with diffusive spin dynamics. It must be noted that the resul€orelation functions. This gives rise to a characteristic 1/
(3.23 does not imply that we have rigorously establishedd'vergenc_e at sh(_)rt_t|mes_ in the cprrespondlng _autocorrela-
that the ultimate long-time correlations of the quantumtion functions. This is basically a signature @assicalbal-
model are also diffusive: the reasons for this and relatedStic SPin transport; at these short-time scales collisions play
comments were made earlier in Sec. | below Egp). no role. As a result, the integral as written is logarithmically
Let us now summarize the calculation of the correlator ofdiVergent at short times. Our semiclassical expressions for
the transverse components of the magnetization density. THB® correlation functions do not make sense for very short
semiclassical prescription for evaluatify . (x,t) is again ~ Umes. This is natural as our whole approach has been geared
quite straightforward: We begin with an initial state chosentowards calculating these correlations at time scales much
from the same ensemble as befde 0) acting on the ini- larger than I and length scales much larger than the ther-

tial state ai I th ! ticleca0 with mal de Broglie wavelength; our method fails when both
lal state gives zero unless there 1s a particlxal) wi these conditions are simultaneously violaté@he semiclas-
spin labelm=0, — 1, in which case it raises thma value of

X - sical expressions fo€,(0t) are thus only valid fort>e
that partlcle by 1 and muIt|pI|e.s the state by a factor@f wheree; is a short—timé cutoff-1/T. Introducing this shoFt—
(cqmlng from the usual properties of raising operators for the; o toff will give a well-defined result fB, y(wy) at the
spin-one representation of the angular momentum algebr

Th i tate is th ted 4 in ti it rice of introducing an arbitrary scalg~ 1/T; this does not
e resulting state is then propagated forward in time with, very promising as our results B wy) [Se - (wy)]

all the parti<_:les moving along Atheir clas_sical traje_ctories asyill depend sensitively upos;, except for very small fields
before. At timet, the operatorl _(x) acting on this state gych that we are in the collision dominated diffusive regime:
gives zero unless there is a particle atwith spin label . H<1/, (H<1/L,). Note that the range dfi for which
m=0, 1, in which case it lowers the spin value of that par-the results are insensitive to the cutoff differs for the trans-
ticle by 1 and again multiplies the state by a factor\@&.  verse components of the local dynamic structure factor be-
This state is then propagated backward in time and its ovelcause of the overall oscillatory factor ef " in the corre-

lap with the initial state calculatec, - . (x,t) is given by  sponding autocorrelation functiongthis factor always
this overlap averaged over the ensemble of initial conditionsgominates asyy<1). However, we can still use our ap-
Here, as before, the phase factor-eft coming from each proach to compute th8,(wy). The point is that, at very
collision does not matter as each collision has a timeshort times, the collisions between the thermally excited par-
reversed counterpart. Also, it is easy to see that in this casgles do not matter, and the spin dynamics is ballistic. This
the overlap with the initial state is zetmless L (x) lowers ~ means thaB,z(wy), for high frequenciesoy (such thatwy

the spin of precisely the particle whose spin was raised bys much larger than the mean collision ratel/L;), may be
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calculated exactly by doing a full guantum calculation for a
gas of noninteracting spin-one particf@Now, we can ex-
pand our semiclassical resytibtained by using a cutof;)
for wy>1/L; and match the leading term in this large H
expansiorwith the small H limit [for S,, (S~ =) this would
be the regimeyyH<T (H<T)] of the quantum calculation
of Ref. 29. This, then, will uniquely fix; and give us results
for the S,5(wy) that will work reasonably well even for
H~T [though strictly speaking they are valid only in the
rangeyyH<T (H<T) for S,, (S.-)].

To see explicitly how this procedure works, consider
S,{wy). It is quite easy to see that tlag,> 1/L, limit of the
semiclassical, (wy) is

wherey=~0.577 216 is Euler’s constant. Theg<T limit of
the full quantum calculation read$:

Thus we can se¢;= 1/4T to match the two logarithms. It is

AefA/T -y

2

e
(eH/T+ e H/T)ln(

mC [SLOINI

AefA/T
2

4Te 7

(eH/T+ e*H/T)In

mC [OIN]
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FIG. 16. Field dependence ofTL/ for T>120 K. The experi-
mental data of Ref. 28 is compared with the theoretical predictions
offset by a field-independent background rBewhich is the only
free parameter of the fit; the fit value & is shown under the

easy to check that the same choice works for the transversgeory column.

correlators. It is now quite straightforward to do thénte-
grals and obtain the following resultsor the local dynamic
structure factor:

2A
Sed o) = S\ ALIN(TL) + @3 (V| Lo}

+AIN(TLY) + @ (V| wp|L)}], (3.27

20A-  [2A
P\ SHIN(TL) + (Vo = HILY).

S (wy)= c
The In(TL,) terms logarithmically violate the purely classical,
reduced scaling form¥, and were fixed using the matching
procedure just outlined. The scaling functichg 5(()) were
determined in Ref. 20 to be

Let us now use all of this to make contact with the ex-
perimental results of Ref. 28. For this particular experimental
setup, the expression forTl/ simplifies and to a very good
approximation we can wri

1
T—=F1>< Six(wn); (3.29

1

here the relevant hyperfine coupling constant is krfévim
have the valuel';~(7.5x10°) Ks™! (note that we have
used units such thai=kg=1 in our computation of the
correlation functions and thus time is being measured in in-
verse Kelving. To begin with, we straightforwardly attempt
to fit the field dependent Tf with our results. We use the
valuesA=320 K andc=3.32A (we are working in units
where the lattice constaatis set to ongextracted from the
susceptibility datd’ In actual fact, we introduce an addi-

4\me 7 . I
q)l(Q):m(—) , tional, field-independenbackground raté,, that we add on
Q to our theoretical result for Tj. This serves as our fitting
(3.28 parameter; we choose it at each temperature to achieve the
LY 2 2 best agreement with the results of Ref. 28. We show the
D,(Q)=D(Q)+ ml(V4+ Q7+ 2) \/6] resulting fits forT=320, 220, and 160 K in Fig. 16. We see
40 (Va+Q2+2)M that the theoretical curves account for the field dependence
DY 1 of 1/T, extremelywell in this temperature rang@f course
_|n[1+Q Q)] 2[1+\P(Q)], the agreement foll =320 K should not be taken too seri-
2Q) ously as our theory is valid only for temperatures smaller
than the gap In particular, the data seems to clearly exhibit
where y=0.5772... is Euler's constant, and the theoretically predicted {H divergence at low fields

V(Q)=(Q\1+0%4—022)2 Note that the above ex- which is a characteristic of diffusive spin dynamics. In Figs.
pression for®,((2) clearly shows the expected crossover17 and 18, we compare the theoretical predictions with the
from the large frequency ballistic behaviob,({) experimental data af= 120, 100, 90, 80, 70, and 60 K. At
—»)=In(1/Q), to the small frequency diffusive form these lower temperatures this divergence seems to get cut off
D,(Q—0)=7/(2/Q). below some threshold field and the quality of the fit deterio-
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FIG. 17. Field dependence of Ty for a few temperatures FIG. 19._ FieIc_:I dependence ofTY/ fit tp the phenomenological
T<120 K. The experimental data of Ref. 28 is compared with thef0m described in the text. The experimental data of Ref. 28 at
theoretical predictions offset by a field-independent background =120, 100, and 90 K is compared to our phenomenological form

rateR,, which is the only free parameter of the fit; the fit valugRgf ~ that incorporates a spin-dissipation ragein addition to a field
is shown under the theory column. independent background raRy,. The values ofR,,y are listed

under the theory column.

rates rapidly. This indicates the presence of some spin- . _— )
dissipation mechanism which becomes significant at thesgffects of these terms in the Hamiltonian on the field and
e : temperature dependence ofr{/

lower temperatures and rounds off the diffusive/a@/diver- W | h logically introd
ence in the local dynamic structure factor. Both interchain ¢ can only at_tem_pt o p enomenologically Intro uce

gou lina and sinale-ion anisotroby of the int.rachain couplingMe SPin dissipation in our theoretical results for the spin

piing 9 ) Py ot the intrac/ PINYorrelators. Following Ref. 28, we do this by simply intro-
are expected to contribute to the spin dissipation rate. How-

ever, we do not have any real theory that can work out the

Data Theory
12- « 80K — 1.1Hz, 34K
79 x 70K — 0.37Hz,4.4K
Data Theory o 60K — 0.09Hz, 55K
104 +« 80K — 1Hz 64 *
x 70K — 0.3Hz
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\3_

2 X
k]
1 M
0 T T T T T 1
0 : : : . ‘ . 0 2 4 6 . 8 10 12
0 2 4 6 8 10 12 H (Kelvin)
H (Kelvin)

FIG. 20. Field dependence ofTl/ fit to the phenomenological
FIG. 18. Field dependence ofTl/ for the lowest temperatures form described in the text. The experimental data of Ref. 28 at
for which data is available. The experimental data of Ref. 28 isT=80, 70, and 60 K is compared to our phenomenological form
compared with the theoretical predictions offset by a field-that incorporates a spin-dissipation ragein addition to a field-
independent background reg which is the only free parameter of independent background rak,. The values ofR,,y are listed
the fit; the fit value ofR,, is shown under the theory column. under the theory column.
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S FIG. 22. Temperature dependence of the backgroundRgte
FIG. 21. Temperature dependence of the spin-dissipationyrate getermined by fitting our phenomenological form fof 1/to the

determined by fitting our phenomenological form foil 1/to the experimental data of Ref. 28. We plot Ry against 1T to check
experimental data of Ref. 28. for activated behavior and indeed find an approximate linear rela-
tion, the best fit for the slope being 468 K.

ducing an exponential cutoff to the long-time tail of the au-
tocorrelation  function; thus we write C/,,(0}) IV. HIGH- T REGION (T>A) OF THE CONTINUUM &

=e "Cyx(0}). It is straightforward, though somewhat te- MODEL

dious to work out the corresponding local dynamic structure \we consider here the possibility that it may be possible to
factor by doing the Fourier transform and we will spare thefind gapped spin chains which satisfy<J, whereJ is a
reader the details. This now gives us a phenomenologicaipical exchange constant. In this case, it becomes possible
result for 1T, with an additional tunable parametgr We  to access a higher temperature regime where a continuum
choose this spin-dissipation rate at each temperature ftikeld theory description is possible in the regitheg T<J. In
achieve the best fit with the data. The resulting curves argarticular, we expect that the continuurmmodel to apply in
shown in Figs. 19 and 20 for a few representative temperasuch a regimé® It is our hope that such a universal high-
ture values. We see that it is possible to fit the data moderegime can be experimentally accessed $¥2 spin
ately well; discrepancies are however clearly visible and it ischains®? Moreover, the study of such a highregime is of

not clear how much significance to attach to the sharp inimportance as matching its results with fhee A theory can,
crease iny as the temperature is lowered. The quality of ourin principle, help us estimate the values Dfto which the

fit seems at first sight to be much worse than the correspondow-T results can be applied.

ing fit to a purely classical diffusive form employed in Ref. An important property of this regintis that equal-time

28. However, it is important to note that the phenomenologi{wo-point correlator ofn,, C(x,0) [Eq. (3.3] decays at

cal model of Ref. 28 used the diffusion constant as an addil2rgex with a correlation length

tional fitting parameter; we do not have any such freedom.

Moreover, both the diffusion constant and the constant back- c

ground rate extracted from the fit in Ref. 28 take on unphysi- &~ f'”(T/A)- (4.)

cal values below about 100 #.This is because, at these

lower temperatures, we are in thallistic regime of spin  \ye will shortly determine the exact values of the prefactor
transport for a significant portion of the axis and the con-  gnd the argument of the logarithm in Eg.1). At distances
tribution from the “free-boson logarithms™ cannot be ne- of order or shorter than this correlation length we may
glected. As the crossover to the ballistic regime is alreadyrudely expect that a weak-coupling, spin-wave picture will
incorporated in our form, the present results for the backhold, and excitations will have energy of order or smaller
ground rate do not suffer from any such obvious problemshancé™?, which is logarithmically smaller than the thermal
[the diffusion constant of course is just given by E323 in  energyT; in other words

our approach In Figs. 21 and 22, we plot the corresponding
values of the spin-dissipation rajeand the background rate 1
Ry, as a function of temperature. The spin-dissipation rate is c¢ ~ ;< ]
seen to increase rapidly as the temperature is decreased. On T In(T/A)
the other hand, we see that the temperature dependemge of

may be fit approximately by an activated form with activa- So the occupation number of these spin-wave modes will
tion gap close to &/2. then be

4.2
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! T >1 4.3 T f d"k 1
ec.ffl/-r_l Cg_l . . o (27T)1—E C2k2+0)§

The last occupation number is precisely that appearing in a . d'~ <k T 1
classical description of thermally excited spin waves, which B (2m)1 ¢ wnto AP+ w2
suggests that a classicalave description should yield an
appropriate picture of the dynamics of this highregion. dow 1 d® <p
However, notice that classical thermal effects are only loga- - f e o 2.2 +C1*ef —
rithmically preferred, and any predictions of a classical dy- K+ T (27)
namical theory will only be correct to leading logarithms. 1 1/T\ qt- ek

We begin our analysis by first focusing on tbgual-time X — = _<_ f thi
correlations in this region. We shall use a method originally c?p?+T2 clc (2m)te 2°
introduced by Luschett The main idea of Luscher is to
develop an effective action for only treero Matsubara fre- 11 N I'(€/2) 9
quency(w,=0) components of, after integrating out all K2 2Jk2+1| (4m)i-<?| '

the w,# 0 modesthe w,=0 modes are related to the equal-
time correlations via the fluctuations- dissipation theorem andVe are only interested in the polesérand the accompany-
the Kramers-Kronig relatiori$. This is expected to yield the ing constants, and to this accuracy the first integral on the
following partition function for ar-independent fielsh,(x):  right-hand side can be evaluated directlyeatO, while the
I function yields a pole. Now combining Eqgt.6), (4.7),
and(4.9) into Eq. (4.5 we find that the poles ia cancel(as
Z:f @na(x)é(ni—l)ex;{ gf (dn (X)) ) they mus}, and

N—1)&T 1 N-2
(4.9 ( Zc)g — ( )_( 5 )In(cM/T\/.f—“f), (4.9
We have now generalized to a fieig with N components, gR :
and will quote many of our results for geneNdj the physi- ~ where the constant” is
cal case is of coursél=3. The coupling constant in Eq. “—=Ame "=7.055507 95 . . . (4.10

(4.4) is written in a form such thaf is the exact correlation
length: this follows from the easily computable exact corre-with y Euler's constant. Now we use the conventional rela-
lations ofZ by interpreting it as the quantum mechanics of ationship betweenu and the renormalization-group invariant
single quantum rotor. The value gfcan be computed in a Ags (Refs. 53 and 51

perturbation theory irg on the quantum modegl2.1): the

w,#0 modes can be integrated out using a now standard (N —2) TUN=2)
approacﬁ5 AMS M\/— gR(:u*)
(N-1)ET ¢ 2N 2 folkT2 1 Xexp(_z—“ (4.19)
Tz 9“2 L (N=2)6r(1)

(4.5  to eliminate the scale. from Eq. (4.9. As expected, the

couplingggr(w) drops out of the resulting expression, and we
The integral on the right-hand side is not ultraviolet conver-get
gent. We evaluate it using the renormalization procedure dis-

cussed by Brezin and Zinn-JusfihWe introduce a momen- c(N-2) T
tum scalep at which coupling constants are defined, and &= Ta(N—1) cAs (N 2) InIr' —
generalize Eq(2.1) to a model ind spatial dimensions. We MS Aws
now define the renormalized dimensionless coupling (Inln(T/cAM—s))
N——— (4.12
€ In(T/cAws
OR(1) = 1248, 4.6 (TeAws)

Finally, we can express this in terms of thie=0 gapA by
using the relationship betweénys andA obtained using the
Bethe ansatz solution of the modef*

wheree=1—d, and the renormalization constant is de-
termined in dimensional regularization to°be

(N=2) gr(u)
2,=1-— T 4.7

€

We now need to express E@.5) in terms ofgg, and evalu-
ate the integral on the right-hand side d&=1— € dimen-
sions. Let us display a few steps of the latter evaluation:

A (8/6)1/(N—2)
cAys TA+1(N—-2))
The results4.12,4.13 lead to theN=3 result for¢ quoted
earlier in Eq.(1.7).

Having obtained the classical moddl.4) for the equal-
time correlations, and the precise value of the couprig

(4.13
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Eq. (4.12, we now turn to an examination of unequal time (n2)=(n3)=1/N. The first frequency summation is precisely
correlations in the high- region T>A. We employ an ap- the same as that evaluated earlier§on Eq. (4.5), while the
proach related to that used in the study of the quantum second is explicitly finite ird=1 and can directly be evalu-

model ind=2 in Ref. 55 in dow-T region; unlike Eq(4.4),  ated; in this manner we obtain our final result far:
the equal-time correlations id=2 were described by a

theory that was not ultraviolet finite, and this will lead to 2[(N-1)TE (N-2)

significant differences in the analysis and physical properties xu(T)= N > T3

here. To obtain classical equations of motions we clearly 2¢c me (4.17)
need to extend the classical Hamiltonian in E§4) by in- '
cluding a kinetic energy term, expressed in terms of a ca- (N=-2) ST

nonical conjugate momentum tg,. The obvious approach “"Nwe Asse .

is to take the quantum equations of motion, and to simply

treat the variables asnumber classical degrees of freedom.\we have omitted the form of the subleading logarithms,
In particular, we treat the rotor-angular momentlimas a  which are the same as those in B4.12. This result was
classical variable, and augment the classical Hamiltonian byuoted earlier in Eq(1.8).
the kinetic energy of rotational motion. The moment of iner- We have now assembled all the information necessary to
tia of the rotor is related to the response of the system to gescribe the effective classical dynamics in the redisnA.
magnetic fieldH, and we therefore need to study the behav-The classical partition function is given by the following
ior of x, in the T>A regime. phase-space functional integral, which generalizes(&Ed)

We will determiney,, by strategy similar to that employed (and we will now specialize the remainder of the discussion
above in the computation &f first integrate out the nonzero to the special casi=3):
frequency modes, and then perform the average over the zero

frequency fluctuations. We choose nwhich rotates,, in H
the 1-2 plane, and define Z= f DN (X)ZL {(X) (N2 —1)S(L,n,)exp — T“ ,
N—-1
No(X,7) = V1= 720, NG00 + 2, 7a(X,7)€aa(X), 1 .\’ 1,
&= T, :—f dx| T S+ —L23], 4.1
(4.19 €2 ¢ dx Yoo ° (4.19

where n,(x), e,,(X) are a set ofN mutually orthogonal
vectors in spacetime, ang,(x,7) represent the finite fre-
quency degrees of freedom which must be integrated ou
We expand the partition function to quadratic orderHn
drop all terms proportional to the spatial gradientsgx)

or e,,(x) (these can be shown to be logarithmically sub-
dominant to the terms keptand find that theH-dependent
terms in the free-energy density are

where L, is the classical angular momentum density, and

«» N, are classical commuting variables. The second term
h .7, was absent in Eq(4.4), and represents the kinetic
energy of the classical rotors: integrating &yt we obtain
Eq. (4.4). By evaluating the linear response to a field under
which

2 T T g~ f dxH,L,, (4.19
- a (n2+n3) 1—2‘;, (2 +% (€a1€p1+ €a2€n2) we find
. _? 4.2
X(mamp) = @%d (€a1€h2— €a2€h1) (€c1€42— €c2€01) Xum A @20

with N=3 (we have given, without proof, the expression for
_ (4.15 generalN); the factor of 2/3 comes from the constraint
L,-n,=0.Using Eq.4.17), we then have the value gf,, .

We can finally specify the manner in which time-
dependent correlations have to be computed in this effective
classical model. The classical equations of motion are the
Hamilton-Jacobi equations of the Hamiltonias,, with
Poisson brackets which are the continuum classical limit of
the quantum commutation relations :

X f dxdr{m,9,m,(0,0); 70 my(X, 7))

Evaluating the expectation values of thefields, and using
orthonormality of the vectors,, e,,, expression(4.15
simplifies to

2

2cg

dkl)

2 2
ni+n3)| 1-c(N—2)gT =
(n 2>( (N-29T2, | 50 At o

{Lo(X),Lg(X)}pB= €apyl ,(X) S(x—X'),

r2cg1-n2-npyT S [ 2K K=o (4.16

cg(l-nf—n 55| . , ,

g( ! 2) wp#0 2w (C2k2+ a)ﬁ)z {La(x)vnﬁ(x )}PB: Ea/_?yny(x)g(x_x )1 (421)
Finally to obtain the susceptibility,, we have to evaluate {Na(x),ng(x")}pg=0.

the expectation value of the zero-frequency fialgd under
the partition function (4.4). This simply yields The equations of motion are
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ﬂ:(i) eussLon, z_=J DN (KDL (R S(N2— 1) 8(L - N expl — o).
ot
Aus (4.22
1 dn, 2 —,
i, n, ,7/§=§f ox| ] Lz, (4.26
—(T&) eupnp—2. X
raa A ™

while the equations of motion become
The classical correlation functions are obtained by averaging

these deterministic equations over an ensemble of initial con- an, —
ditions specified by Eq4.18. Note also that simple dimen- (9_t—: €apylpNy,
sional analysis of the differential equatio@s22 shows that 4.27
disturbances travel with a characteristic velo@{y) given _
by L, . a*n,
gt e
(T =[T&T) xu ()] (4.23

Notice that coupling constants and parameters have been

Notice from Egs(4.12) and(4.17) that to leading logarithms ~Sc@led away, and Eqg4.26 and (4.27) constitute a unique
c(T)~c, but the second term in the first equation of Eq.Problem that must be solved exactly. Theand A depen-
(4.17) already shows that exact equality does not hold. dences of all quantities arise only through the rescalings de-

We complete the relationship of the quantum to the clasfined in Eq.(4.29 and the result{4.12) and (4.17, and
sical model, by noting that there is also an additional wave{4-20 for £ andy,, given earlier. A complete description of
function renormalization of the,, field*>5® which appears the correlators now requires exact solution of H¢s26 and
when the nonzero frequency modes are integrated out. ouf-27. Th? equal-time correlations are of course known from
final result for the correlato€ in Eq. (3.3 then takes the Eq. (4.26:

form
T
A

The subscript represents the classical average specified b)é thouah th i f moti fitut int bl

Egs. (4.18 and (4.22. The constant7Z is the T=0 quasi- ven though the equations of motion constitute an integrable
. . . . ~  system with an infinite number of nonlocal conservation

particle residue which appeared in Eg.5). The constanty laws 557t is not known how to analytically compute corre-

is an unknown universal number which cannot be obtaineghtions averaged over the initial conditions of a thermal en-

by the present methods. It could, in principle, be obtained e ta _
from the Bethe-ansatz solution. There is no similar renormal-semble’ or whether the correlatdlr (X, t)L5(0,0))c has a

o - . diffusive form at long times and distances. If diffusion did
ization of the correlator of the magnetization dens@y, in L . ; X

S : ; exist in the continuum equatiorid.28, the present analysis
Eq. (3.14, which is precisely equal to the two-point cor- yo¢ o\ s to completely s ecify thelependence of the
relator ofL, under Eqs(4.18 and(4.22. P Y SP P

It is now possible to perform a simple rescaling and t0d|ffu3|on constant; by a simple dimensional analysis of Eq.

show that the classical dynamics problem above is free 0?4'25)’ we get

any dimensionless couplings, and is a unique, parameter-free N 3
theory. This will allow us to completely specify tiedepen- Y TH&(T)]
dence of observables up to unknown numerical constants. ’ [XUL(T)]]-/Z,
Let us perform the following rescalings on Ed4.18 and

(4.22: where.7 is an unknown universal number, and thelepen-
dences of and y,, are in Egs(4.12 and(4.17), (4.20.

In this context, it is interesting to note that recent
measurements of the field dependence of Tlf in the com-
pound (VO),P,0- at temperature§>A seem to provide
— é&xw clear evidence for spin diffusion. However, the bulk of the

E— (4.29 data is at temperatures comparable to the microscopic ex-
change constants of the system and it is not clear if the fore-
going description based on the universal high-temperature

(TX properties of the continuum field theory is applicable in the
T ul
&

_ _ 2
<La(X_,O) Lﬁ(010)>c_:§ 50([35(% )

(N=1)/(N-2)
(na(X,H)Ng(X,1))c. (4.28

caﬂ(x,t)z./z%[m

(4.24 <na(x_,0)n5(0,0)>c—:%5a e

(4.29

S

temperature regime studied experimentally. It is interesting
that the experimental results appear to suggestDhatcé,
which is consistent with Eq4.29 if y,~Té&/c? [as is the
Then the partition functiori4.18 is transformed to case with our result§l.7) and(1.8) to leading logarithmp
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V. CONCLUSIONS APPENDIX A: LOCAL CONSERVATION LAWS

. . . AND SPIN DIFFUSION
The main results of the paper are already summarized in

Sec. |, and here we will note some unresolved issues and The computation of the spin diffusivity in Sec. Ill B was
directions for future work. All experimental realizations of carried out using the exact solution a simple classical model
gapped antiferromagnets have additional complication®f point particles in one dimension. This model is exactly
which have not been included in the model systems studiegolvablé” and possesses an infinite number of local conser-
here. Most important among these are the spin anisotropi@tion laws, as we will show explicitly below. The existence

away from perfect Heisenberg symmetry and the interchaiff SPin diffusion then appears to run counter to the conven-
tional wisdom that the time evolution of a integrable system

couplings which make the system only quasi-one-; ) ) ) avie.
is not “chaotic” enough to be compatible with diffusion. In

dimensional. ; _ .
Consider first the consequence of anisotropy. The threeQart'CUIar’ one might expect that any nonzero spin current
produced in the system will not ultimately decay to zero

fold degenerate quasiparticle spectrum will now be IIftec{'because the numerous conservation laws prevent it. In this

and three resulting particles will have dn‘fgrent energy gapsappendix we will show that this expectation does not hold
and masses. Further, these parameters will depend in a co

. . Wt the particular model being studied, and that an important
plicated way upon the external field. Nevertheless, we eXpeCtparticle-hoIe”-like symmetry allows complete decay of

that the simple structure of the’ matrix in Eq.(1.2 will be 50y spin current. A closely related particle-hole symmetry

retained, as it only depends upon simple dimensional propyisg played an important role in the appearance of a finite

erties of slowly moving particles with a quadratic dispersion.conductivity in our recent quantum transport analysis in two

Correlations of the particle density can probably be comgimension2?

puted along the semiclassical lines of this paper: one has to The classical model of Secs. Ill A and Il B consisted of

deal with a classical gas of particles of different masses angarticlesk=1 ...N with spinsm, chosen randomly from

average densities. The latter problem is considerably more,0—1. At timet=0 the particles had uncorrelated random

complex than the equal mass case, and there is probably m@sitionsx,(0), andsubsequently they occupied “trajecto-

alternative to numerical simulations. Correlations of the spirries” X, (t)=x,(0)+ vt wherev, are uncorrelated random

operators appear more problematical—these will invariablerelocities chosen from a Boltzmann distribution. The posi-

change the labels of the particles when they act, and therdion x,(t) of particle k was however a rather complicated

fore lead to differences in the labels in the forward and backfunction of time, and was chosen from the set of trajectories,

ward trajectories. Combined with the complication that the{Xy(t)}, such that for alk, x,(t)<x(t) for everyk<I.

masses of the different particles are different, and so their Itis useful at this point to note two discrete symmetries of

trajectories will have different velocities, we are faced with the above classical statistical problem. The first is the time-

what appears to be a very complex problem with quantunﬁeversal S_ymmetr)T under which both spins and velocities

and classical effects intertwined. change sign:
Interchain couplings will eventually require us to consider

dynamics in two or three dimensions. If temperatures are low

enough that the interchain motion is coherent, then we hav@he second is the “particle-hole” symmetB; under which

to consider the” matrix for scattering in higher dimensions. only the spins reverse direction:

In this case the low-momentum behavior is quite different: in

fact the T matrix vanishes at low momenta fa=2. We Plug—vi, Me——mg. (A2)

would then expect all scattering to be dominated by elastiernege symmetries will be crucial in our discussion below.
scattering of impurities which would control the behavior of | ot s now explicitly identify the local conserved quanti-
the spin-diffusion constant and the quasiparticle broadeningijes of this classical dynamics. All of the velocities are
On the other hand, systems with only incoherent hoppingiearly constants of the motion. However, we would like to
between chains will probably be dominated by the inelastiGyork with locally conserved quantities which can be written
scattering along the one-dimensional chains, and display bes the spatial integrals over local observables, and which are
havior qualitatively similar to that discussed in this paper. invariant under permutation of the particle labels; so we de-
fine

T:Uk—>_l)k, mMg— — M. (Al)
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325 study the functiorA; in Appendix C, but here we will be
satisfied by a numerical simulation. Again, as in E&D) it
is useful to note the signature dfunder the discrete sym-

metries:
225 T
(A7)
J -1 |1
J(t)
125 As will become clear shortly, one of the central points of this

appendix is that the signatures in E&.7) differ from all of
those of the conserved quantities in E45). The current
J(t) is the sum ofN random numbers of each sign, and so is
expected to be of ordef/N for a typical initial condition
25 chosen from the ensemble defined above. We showdéhe
\/\,,['J\J\M terministictime evolution ofJ(t) for one such initial condi-
tion for a system of 400 particles in Fig. 23: notice that it is
rather noisy looking and repeatedly changes its sign. Also,
among the constants of the motion above, we expgeastith
0o 2 4 6 8 n odd andM; to be of order\N (providedn is not too
t large, andV, with n even andM, to be of orderN for a
typical initial condition; notice that it is only the conserved
FIG. 23. Deterministic time evolution of the spin currelt) quantities of order\/N that can distinguish left movers from
[defined in Eq.(A6)] for two systems of 400 particles on a circle right movers, or spin up from down.
with the same initial conditions; the value &ft) changes in dis- Let us now create a macroscopic spin curi@horderN)
crete steps at each collision between a pair of particles. For one g this system. We do this by hitting the system with a mag-
systems, there is an impulse in velocities given by &®) ata  petic field gradient impulse at a tinte=t,, and subsequently
time to=2. This produces a macroscopically significa(t), which  getting the field to zero. As a result of the impulse, the ve-
however decays away in a few collision times. The only remnant of,.ities of the particles with spin up are assumed to increase

the impulse is a “heating” of the. systgm, reflected ip the Iargerby v, while those of spin down are assumed to decrease by
amplitude of the order/N fluctuations inJ(t) for the impacted vg. Formally, this can be written as

system.

N v— U+t Mue where | is unique solution of A, (tg)=1.
A8

Mp= 2> mp (A4) (A9
k=1 Immediately after the impulsd(t) will have a macroscopic

with p=1,2, as additional locally conserved quantitjés,  value

is the spatial integral op,(x,t) in Eq. (3.15), and a similar 5

result holds ofM,]. We can now easily work out the signa- It = SNoet (N A9

ture of theV, and M, under the discrete symmetries noted (to) 30Tt (). (A9)

earlier, and tabulate the results: o . :
The subsequent deterministic time evolutionJéf) is also

P T shown in Fig. 23: it decays in a few collision times to a value
of order/N and then appears to chaotically oscillate in time.
Vy,,nodd| 1| -1 . L . .
The basic point is now easy to see. Becauges as likely to
Vp,neven 1 1 be +1 or —1, the impulse on any given particle is equally
(A5) X o X .
M, N — likely to be +vq or —v,. Hence theV,,, with n odd, remain
W 1 1 of order VN even after the impulse. This is simply a mani-
2 festation of the fact that the signatureslainderP andT are
different from those of th&/,. A nonzerod is therefore not
correlated with an induced value of a conserved quantity
which could prevent the decay dfto nonmacroscopic val-

The central quantity in spin transport is the total spin cur-
rent J(t), which is not a constant of the motion. It is also
given by an integral over a local quantity as

ues.
N
dx(t)
J(t)=f dx kZl my it (X—X(1)) APPENDIX B: NUMERICAL COMPUTATION OF THE
- FOURIER TRANSFORM OF THE CORRELATION
N FUNCTION C
:jgl m;v i Aj(t), (AB) In this appendix we outline the numerical method em-

ployed in calculatingS(q, ) starting from the numerically
where A, is defined to be equal to 1 if particleis on  determined semiclassicél(x,t) and the procedure used to
trajectoryk at timet and O otherwise; we will analytically directly determine the scaling functia(z) [see Eq(3.12].
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As the numerical determination &&(X,T) is the most ticles of massm distributed uniformly along a one-
time consuming part of the entire procedure, we calculited dimensional segment of length with periodic boundary
. . L - conditions(we will eventually take the thermodynamic limit

only at a predetermined grid of points in tRe- t plane. We

hoseT val f 0 to 7.0 at int Is of 0.2 F hLeoo with N/L fixed to be equal to the densip). At time
choset vaiues irom © 1o 7.0 at intervals of ©.2. For €ach_ g gacn particle is assigned a velocity from the classical

such value oft, we chose about 20 points so as to sanfple thermal ensemble defined by the usual Maxwell-Boltzmann
as well as possible in the region in whigt>5x107%; this  distribution functiong(v) = (m/27T)Y2%e~ ™27, The subse-
choice was made to reflect the fact that our absolute error iguent evolution of the system is purely deterministic; the

R was estimated to be about<BL0" . This then defined our particles travel without any change in their velocities until

grid. At eachT, we fit R as a function ofX to the form they collide with another particle. Every collision is elastic
and the particles merely exchange their velocities as a result
- a1a2+a3’i+a4’5{ 2+f’)‘(’ 3 Of the CO||iSi0n.
In(R)=— To begin our analysis, let us label the particles from left to

v 2
axtasx+X right with an indexi running from 0 toN—1. Thus the

where f=4/3 anda,;= —In(R(0,7)). The rationale behind particles are i_niti_ally at pc_;s_itionsxi(O_) such thf’ﬂ
our choice of the V;Iue of(is(as f)C))||0WS' Wherks> T, the  1(0)=X(0) fori=j. Actually, it is convenient to identify

. . . . i+N with i because of the periodic boundary conditions em-
complicated correlations between the spin labels of a give b y

. : . ) ) rﬁloyed which identify the ends=0 andx=L of the inter-
classical trajectory at d|ffe‘r‘ent times do not matter &t val. Note that this labeling of the particles is left invariant by
well approximated by our “mean-field” theorfsee Appen-

: : . AL the dynamics. We also lab#éiajectories (which follow the
d'X~ D). ;I'he mea_n-ﬂeld theory "_1 this I'm't_ gives straight line defined b¥;(t) =x;(0)+v;t on the space-time
In(R)~—4%/3 and this is what determines our choicefof  giagram representing the evolution of the systemith an
The error in the fit was estimated to bf‘ roughly the same aggexi, again with the convention that(0)<x;(0) fori<]
the error in the original computation &; thus we did not (herev; is the initial velocity of theith particle. Let x;(t)
lose anything by doing the fit. Having tabulated the fitting denote thepositionof theith particle at timet. We wish to
parameters for each value ofon the grid, we evaluated the calculate the correlatorB(x,t) = (5(x—Xy(t))5(x,(0)))
spatial Fourier transform numerically. The resulting functionwhere summation over the repeated indeis implied and
of T is expected to be smooth as long&s=(w—e(k))L,  the angular brackets refer to averaging over the ensemble of
is not too large. More precisely, we do not expect any oscilinitial conditions specified earlier.
lations on the scale of our grid spacing T as long as Let us now consider the quantitf(t), introduced in
0.255<2mw. As we are interested only ino~1, we can Appendix A, which is defined to be equal to 1 if parti¢lés
safely interpolate the resulting function T In practice we ~©N trajectoryk at timet and O otherwise. Another useful
use a cubic spline to do the interpolation. Lastly, we dotthe quantity is the numben, of (signed crossings suffered by
integral numerically to obtai®(q,»). The accuracy of both the kth trajectory up to timd. Every time this tra_uectc_)r)_/ IS
numerical integrations is quite high and so we expect that th it from th? Ieft,nk. decreases by 1 and every time it is hit
dominant error in our calculation comes from the interpola-' °™ the rightn, increases by 1. Clearlyi(t)=1 for

tion; this is conservatively estimated to be a few percent ai:kﬂ.‘k(t) and zero.o.therwise. We may probe the dynam—
the most for the largest values 6. ics a bit more by defining another quantity(h,k,t) which

Let us now briefly indicate the procedure used in obtain-£9uals 1 if trajectonh has crossed trajectoly preciselyn

ing the Fourier transform dR(0,T) needed for the calcula times up to timet and zero otherwise. Here too, we are
. . . ' . " talking of signedcrossings; if trajectonh crosses from the
tion of the scaling functiond(z). The available data for g 9 9 ) n

left this is a negative crossing and if it crosses from the right

R(0,t) is fit extremelywell by the following form: it is a positive crossing. Clearly, has the interpretation of a
=3 p_r(_)bability when averaggd over any ensemb_le of initial con-
In(R) = — at+at “+bt d|t|or!s. Let us also define the corresponding “generating
1+¢cT4+dT 2’ function” as

oo

where the choicer=4/3\/x is again motivated by “mean- .
field” considerations. It is now a simple matter to do the s(u;h,k,t)an_ rn(h.k,t)e™. (C1)
Fourier integral to a very high accuracy using this fit and we
estimate the errors involved to be less than 0.5% at the most. The reason for introducing,, and s(u) is that A(t),
which is clearly a central quantity of interest, may be very
APPENDIX C: CALCULATION OF TAGGED PARTICLE conveniently expressed in terms s(fu) as
CORRELATIONS IN THE CLASSICAL MODEL

N—-1

R o 2]
In this appendix, we shall attempt to give a self-contained  Aj(t)= NE e @nMNG-WITT g W;m,k,t);
account of the method devised by Jegddor the calcula- 1=0 m=0 co
tion of the tagged particle correlations in the classical model (C2)
introduced in Ref. 47. We will try to adhere to the notation here we are using the convention tiséi;k,k,t)=1. This is
and conventions of Ref. 47 as far as possible. quite easy to check from the definitions sfu) and Aj.

The model is defined as follows: We begin withpar-  Moreover, it is possible to write down a fairly explicit ex-
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pression fors(u;h,k,t). This takes a slightly different form It is now convenient to defineR[u,x+vt—X]
depending on whethér is greater or less than If h>k, we =% _dv,g(vy)Ju,wyp]. Using this we can rewrite our ex-
have pression for the correlation function as
s(u;h,k,t) = u,wy], (C3 p
. B(x,t)= > f duog(vo) 5(Xo(t) —X)
while if h<k, we have u

s(u;h,k,t)=e U u,wy]. (C4)

S u,wy;,] used above is defined as

1 (L N—-1
X Efodth(u,xo(t)—xh))

: N—1 (L ®
SLu,wyp]=€", (CH +Tf dxkf dvg(v ) R(U, X(1))
0 — o0
wherew,,=x,(0)—xp(0)+ (vk—vp)t, andn is the integer Neo
that satisfies rf—1)L<w,,<nL. Using this definition, we 1t N
can write the following compact expression f8g,(t) in XX =) o dxpR(U, Xi(1) = Xp) ’
terms of S: c9)
2’7T| — —<N-1
. 2ilj IN wherek#h, k,h#0,u=2=l/N andX,=%Z;". To proceed
A= z e H Winl- (€O fither we need to work out R[u,X(t)] and

(1/L)f0dth[u Xi(t)—x,]. This is quite straightforward to

With all this machinery in place, it is a relatively straight- do in the limit of largeL and we only give the final results
forward matter to calculate the correlation function we needpe|ow:

We begin by explicitly writing out the ensemble averages

involved: 1 "
RIUX(D)]=5Ec(y)+| 1= SEd(y) |e",
N—1
(C10
800 =5 | 1% [ 00| [T aten) | sttt ), L L
— — — _(1_pa"iu
where we have used the definitions where
L XN—1 Xo iu
_ 2T et =1 1
{dX}=J dXN?lJ dXN*Z “ s j Xm — s U - 7y2_
J 0 0 0 TIUX(B]= V7t et — 7 VEW |,
and
% % % E.y)= ifoodze*ZZ (C1y
f [dv]zf duN,lf don_o . f dv, ¢ Jaly ’
with x,(0)=x,, and it is understood thaiy(0) is set equal fm X (t)
to 0 when evaluating the right-hand side of EG7). Now 2T ¢

we can transform from particle positions to trajectories by
writing Now, in the thermodynamic limit specified earlier we can
write

8Xo(t) =X)= 2 Agd(Xi(t) =X). 1 , N-v
K 1+ E(l—e"”)T[u,Xk(t)])

Using this and writing?q, in terms ofS u,w,;] allows us to _
express our correlation function as =explp(1—e ") Tlu,X(1)]),

N valid for any finite numbew. Using this and Eq(C10 in the
B(x,t)= _J [dx]j [dv] expression(C9) for the correlation function and doing the
LN remaining integrals over positions and velocities gives us

N—1 N 1 N-1 27T| 2rdu .
x| 11 g E: 1l 's } B(x,t>=pfo 77| PRFW) Fa(w) +eV (W)
X (X () —X). (C8) +e U2 (w))explp(1—e ") T[u,x])
Here we have also used the fact that the integrand in this 1 ['m ) .
representation is explicitly symmetric in the spatial integra- + Y ﬁe“” exp(p(1—e ") T[u,x])|,

tion variables to change the spatial integration to
JIdx]=[hdxn_ 1S 5dXn_2 . . . [5dXq. (C12
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here we have replaced the sum oueby the corresponding approximation, it is now a fairly straightforward matter to
integral in the thermodynamic limit and used the definitionsobtain a closed form expression fB(x,t) in analogy with
fi(W)=E (W)/2, fo(w)=1—f;(w) and w=(m/2T)¥%/t.  the corresponding discussion in Ref. 21. The actual calcula-
To do theu integral, we note thal may be expressed as tion proceeds as follows: Lat be the probability that any
GeV—A, whereA and G are functions purely ok andt.  given solid line in Fig. 9 intersects the dotted line. If we
This allows us to use the standard Bessel function identity,ignore the correlations between thg(t) at different times,
then the probability that this line carries a spin label equal to

1 2w ) ) ) . i . - :
L due Mexp(p(1—e U)(GEU—A)) the spin label of the dotted line is 1/3. So given that the line

27 Jo intersects the dotted line, this intersection contributes a factor
G2 of —1 to R(x,t) with probability 1/3 and a factor of 0 with
_=2 —p(A+G) = probability 2/3 (if the line does not intersect at all, we of
(A € In(2pVAG), (C13 course get a factor of 1). Within our mean-field thedryis

just a product of such factors, one from each solid line. This
givesR(x,t)=(1—q—q/3)N, whereN is the total number of
thermally excited particles in the system. Now, using
g=(|x—vt|)/L (Ref. 21 (where the angular brackets denote
averaging over the Maxwell-Boltzmann distribution function
for v andL is the length of the systenand taking the ther-

In this appendix, we briefly outline our approximate modynamic limit, we obtairR(x,t)=exp(—4p(|x—vt|)/3).
“mean-field” theory for the relaxation functioR(x,t). we ~ We can now do our usual rescalings and write down the
begin by noting that the classical model defined in Sec. Il Amain result of our mean-field theory:
has been solved exactly in Ref. 21 for the special case in - _
which there is only one possible value for the spin laiel R(X,T)=exp —4(|X—-7T()/13), (DY)

All of the difficulties we encounter in attempting to general- .
ize this solution to the case of interest here stem from the faez'y.here the :ingular brackets rlcz)w denote averaging .over the
that there are complicated correlations betweenrhét) — distribution”” (v) = (1/m)e ™ andX andT are defined
(defined in Sec. Il A at different times. as in Sec. A In particular, note that this implies

Our mean-field approximation consists of simply ignoringAR'(O,”t')=e‘4“|’3\’?; this turns out to be reasonably accurate
these correlation effectdience our choice of terminology to for some purposefsee the discussion on the approximate
describe our approximatignHaving made this uncontrolled form of the scaling functionb(z) in Sec. Il A].

to finally arrive at the results quoted in E.21 of Sec.
[l B upon using the appropriate values fprand m.
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