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Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model
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A simple model for the thermal conductivity of polycrystals is presented by incorporating the concept of the
Kapitza resistance with an effective medium approach. By applying this model to a few thermoelectric alloys
reported in the literature, we show that it quite well describes the often observed grain size-dependent thermal
conductivity of polycrystals and also provides a simple and practical method to determine the Kapitza resis-
tance. We estimate the Kapitza resistance in real polycrystals and the effects of microstructural scales, such as
spatial variations in the grain size and grain shapes, on the thermal conductivity.@S0163-1829~98!03013-6#
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Thermal conductivity of polycrystals is of quite gener
interest due to its technological importance in many pract
applications of polycrystals, for example, Bi2Te3 /Sb2Te3 and
SiGe thermoelectric alloys,1 and SiC ceramics and recent
developed diamond films for thermal management of hi
density–high-power microelectronics.2 Generally, polycrys-
tals show lower thermal conductivity than their correspon
ing bulk single crystals because of the existence of gr
boundaries and pores in polycrystals. The effect of pore
an old problem which has been attacked by ma
researchers.3 In most cases the conductivity of polycrysta
decreases linearly with the porosity as predicted by effec
medium approaches~EMA!.4 At present, it is also quite gen
erally accepted that the thermal conductivity of polycryst
decreases with grain sizes.5–9 The model usually proposed t
understand the grain size-dependent behavior is the re
ation time approaches of boundary scattering10 based on the
Klemens-Callaway theory.11 In this model, by adding a
boundary scattering relaxation time into the total relaxat
time of various scattering processes, the lattice thermal c
ductivity of polycrystals has been calculated only nume
cally as a function of average spherical grain sizes a
choosing a number of other adjustable parameters.10 The
~diffuse! grain-boundary scattering can produce thermal
sistance at grain boundaries. A very recent molecular dyn
ics simulation of heat conduction across Si bicrystal12 has
shown the presence of the thermal boundary resistance,
the Kapitza resistance.13 Similarly to the thermal interfacia
resistance between two different phases in composites,14 the
Kapitza resistance can commonly exist in polycrystals a
its overall effect is to reduce the thermal conductivity
polycrystals. This reduction can be very pronounced for fi
grained polycrystals. To our knowledge, a complete und
standing of the effect of the Kapitza resistance on the ther
conductivity of polycrystals is still missing. On the oth
hand, there has been no report on the Kapitza resistanc
real polycrystals since there has been no appropriate me
to measure the Kapitza resistance across grain boundari
real polycrystals, whilst complicated dynamical simulatio
have so far been performed only for idealized Si bicrysta12

and simple interfaces.15
570163-1829/98/57~14!/8264~5!/$15.00
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In the present paper, by incorporating the concept of
Kapitza resistance with EMA we present a simple model
the lattice thermal conductivity of polycrystals without goin
into details of various scattering processes. We show that
Kapitza resistance-EMA model provides answers to t
problems which are being widely investigated. The fi
problem is the often observed grain size-dependent ther
conductivity of polycrystals5–9 and the effects of microstruc
tural scale. The second problem is the determination of thin
situ Kapitza resistance12,15which will be made for real poly-
crystals. Compared to the Klemens-Callaway type relaxa
time approaches10,11 which are microscopically theoretical
models, the present Kapitza resistance-EMA model is a m
macroscopic, analytical method in which microstructurall
stochastic effects, such as spatial variations in the grain
and Kapitza resistance, grain shapes and orientations, ca
readily incorporated. The Kapitza resistance may be take
a connection between themicroscopic Klemens-Callaway
type and themacroscopicEMA type theories.

Consider a real polycrystal with grains of various orie
tations. For convenience, let us consider first an isolated
lipsoidal crystallite with the thermal boundary resistance
its surface, in the polycrystal. Following Nan, Birringe
Clarke, and Gleiter,14 we can obtain the lattice thermal con
ductivitiesKii

c of the crystallite along its symmetric axesXi

( i 51,2,3) as follows:

Kii
c 5Kii

o /~11g i i L ii !, ~1!

g i i 5H ~211/p!LKii
/a1 , for p>1,

~112p!LKii
/a3 , for p<1,

~2!

where ai are radii of the crystallite along itsXi axes,
p5a3 /a1 is its aspect ratio@p.1 andp,1 are for a prolate
(a15a2,a3) and oblate (a15a2.a3) crystallite, respec-
tively#, and Lii are the depolarization factors dependent
the crystallite shape. Here we have introduced Kapi
lengthsLKii

as defined by
8264 © 1998 The American Physical Society
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LKii
5RKii

Kii
o , ~3!

whereKii
o andRKii

are, respectively, the bulk lattice therm
conductivities of the crystallite and the Kapitza resistan
along itsXi axes. Generally, 0<RKii

<` , with RKii
50 cor-

responding to a grain boundary with perfectly thermal co
tact. ForRKii

.0, temperature jumps across the boundary
We now consider the dense polycrystal~of course, the

porosity is very easily incorporated! composed of the crys
tallites with the thermal boundary resistance existing
tween crystallites of various orientations. From EMA,4 the
thermal conductivitiesKii of the polycrystal can be obtaine
as

K Kii
c 2Kii

Lii Kii
c 1~12Lii !Kii

L 50. ~4!

Further combining Eqs.~1! and ~4! gives

K Kii
o 2~11g i i L ii !Kii

Lii Kii
o 1~12Lii !~11g i i L ii !Kii

L 50, ~5!

where ^ & denotes averaging over various crystallite siz
shapes, orientations, and the Kapitza resistances. Equ
~5! is the desired general formulation of this propos
Kapitza resistance-EMA method that incorporates vari
stochastic effects. For simplicity, we discuss two comm
isotropic cases below.

FIG. 1. ~a! 1/K vs 1/d plots @Eq. ~6!# of experimental data a
room temperature forp- andn-type Si0.8Ge0.2 alloys~Ref. 8!, where
the solid line is a best-fit line.~b! The effects of the grain sized and
variations in bothd and the Kapitza lengthLK on the normalized
thermal conductivity of the Si0.8Ge0.2 alloys. For comparison, the
experimental data are also shown.
s

-

-
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First, for common polycrystals with isotropic, equisize
spherical crystallites, the thermal conductivityK can be ob-
tained directly from Eq.~5! as

K/Ko51/~112LK /d!51/~112RKKo/d!, ~6!

whered is the grain diameter. It is important to note fro
Eq. ~6! that the normalized conductivity of such polycrysta
is a function of onlyLK /d, i.e., there is a general scaling la
K/Ko5F(LK /d). This means that all data will fall upon
supermaster curve inK/Ko vs LK /d plot, irrespective of
composition and temperature, though the thermal conduc
ity (K andKo) and the Kapitza length (LK) depend on com-
position and temperature.

Secondly, for the case of randomly oriented ellipsoid
crystallites with isotropicRK andKo, we obtain

K/Ko5@Ag212 f ~L1112L33!1g#/ f , ~7!

f 52~113L11!~11gL11!~11gL33!, ~8!

g5223L331gL11~223L11!, ~9!

g54p1/3~111/2p!LK /d, ~10!

hered52(a1
2a3)1/3 is an equivalent spherical diameter.

In order to examine the validity of this proposed mod
we compare it with the data available in the literature
lightly doped Si0.7Ge0.3 and Si0.3Ge0.7,

6 n-type heavily doped
Si0.635Ge0.365,

7 n- and p-type heavily doped Si0.8Ge0.2,
8 and

p-type (Bi2Te3)0.25(Sb2Te3)0.75 alloys.9 These alloys are
technologically important thermoelectric materials,1 where
the effect of the grain size on thermoelectric properties

FIG. 2. Comparison of Eq.~6! and experimental data for a few
SiGe alloys~Refs. 6 and 7! and (Bi2Te3)0.25(Sb2Te3)0.75 alloys~Ref.
9!.
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8266 57CE-WEN NAN AND R. BIRRINGER
a very important but not yet well-established issue.6–9,16,17

The comparsion of the calculated and experimental data
these alloys is shown in Figs. 1 and 2. Despite some sc
in these data because of different processing routes8 and in-
accurate values taken for average grain sizes,6,7,9 the com-
parison shows that our model is in good agreement w
these reported data.

From the best-fit lines of the experimental data in 1/K vs
1/d plots predicted by Eq.~6!, we can determine the value
of RK and Ko for these alloys, which are shown in Table
and Fig. 3. Of interest to note is that bothn- and p-type
Si0.8Ge0.2 have almost the same values ofKo as reported in
Ref. 8 and the sameRK . EstimatedKo values for these SiGe
alloys are in agreement with their bulk data.6–8 Much lower
Ko value and higherRK value for Bi2Te3 /Sb2Te3 alloys are
attributed to the effect of porosity.9

It is interesting to see thatRK increases by only a sma
amount with temperature from 300 to 900 K forn-type
Si0.635Ge0.365, which may be attributed to some dama
and/or disorder at grain boundaries at high temperature,
that the values ofRK at 300 K and 600 K are almost the sam
for Si0.7Ge0.3 @Fig. 3~a!#. This behavior thatRK is not very
sensitive to temperature seems to agree with the dynam
simulations and experimental data for simple interfac
which showed thatRK is almost independent of temperatu
over a wide range around room temperature.15 A very strik-
ing finding is the composition dependence ofRK for the SiGe
alloys as shown in Fig. 3~b!. Although these reported SiG
alloys6–8 experienced different processing and doping rou
the trend is clear — the composition dependence of the
timatedRK is similar to that of the thermal resistivity of th
SiGe alloys.18 Comparison of Fig. 3~b! indicates that the
polycrystals of the single elements have lowerRK ~and thus
higher thermal conductivity18! than their mixed alloys.

Returning to the grain-size dependence ofK @Figs. 1~b!
and 2~b!#, we can see thatLK in K/Ko5F(LK /d) is an im-
portant characteristic length. Asd52LK , K decreases down
to Ko/2. Only asd@LK , K approachesKo. In contrast, as
d!LK , K reaches its so-called ‘‘minimum value.’’19 For
example,K50.1 W/m K asd510 nm for the Si0.8Ge0.2 al-
loys. If it is assumed that a largeLK value remainsun-
changedin the small grain size range, Eq.~6! predicts a
lower ‘‘minimum value’’ for K than the relaxation time
approaches.16

Further from Eq.~5! it is easy to show the effect of spatia
variations in bothd andLK . For convenience, however, sim
ply by replacingLK and 1/d in Eq. ~6! with their averaging

TABLE I. Bulk lattice thermal conductivityKo, Kapitza resis-
tanceRK , and Kapitza lengthLK , determined at room temperatur
~300 K! for a few thermoelectric alloys.

Polycrystals Ko ~W/m K! RK ~m2 K/W! LK (mm!

p-Si0.8Ge0.2 5.0 4.9831028 0.249
n-Si0.8Ge0.2 4.96 4.931028 0.243
Si0.7Ge0.3 6.56 9.531028 0.623
n-Si0.635Ge0.365 4.33 1.1531027 0.498
Si0.3Ge0.7 7.84 1.131027 0.862
p-Bi2Te3 /Sb2Te3 0.19 1.431025 2.66
or
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^LK& and^1/d&, and using a log-normal distribution functio
for both lengths, Eq.~6! can be rewritten as

K/Ko51/@11~2LK /d!exp~dLK

2 /222.5dd
2!#, ~11!

wheredd anddLK
denote their standard deviations. Equati

~11! and a numerical example in Fig. 1~b! show that the
variations ind result in increasingK/Ko and by contrast the
variations inLK cause a decrease ofK/Ko.

Let us turn now to the effect of the grain shape@Eqs.
~7!–~10!#. There are no available experimental data on
grain shape effect for comparison at this time. For illust
tion, we show a numerical example of the model for t
Si0.8Ge0.2 alloys in Fig. 4. It is interesting to see from Fig.
that K/Ko always decreases with the grain shape anisotr
in the case of large grain sizes (d.2LK) and that oblate
grains result in a more pronounced decrease ofK/Ko than
spherical and prolate grains. Asd,2LK , K/Ko increases
with the aspect ratiop. The predictions on the grain shap
effect remain to be experimentally verified.

We would finally like to address three points. First, as
have already stated, our Kapitza resistance-EMA model
macroscopicapproach which successfully accounts for t
microstructurally stochastic effects, whilst the Klemen
Callaway-type relaxation time model10,11 which has been
successful in describing microscopic scattering mechani
is a microscopicone. It could be argued that the reporte
data on the grain size-dependent thermal conductivity
also be fitted well by the Klemens-Callaway-type mod
which includes the boundary scattering relaxation tim

FIG. 3. Determined Kapitza resistanceRK for these SiGe alloys
as a function of~a! temperature and~b! composition. For compari-
son, the value ofRK at 575 K for Si bicrystal calculated by dynam
ics simulations~Ref. 12! is also shown in~b!.
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tb5ad/v (v, the average phonon velocity, anda, a constant
of order unity!. However, the correspondence between
periment and the predictions of the Klemens-Callaway-ty
model is not unique since different numerical values
those adjustable parameters in the microscopic model ca
chosen and the fits can always be obtained with a suffic
number of free parameters. On the other hand, the Klem
Callaway-type model does not yield the information abo
the Kapitza resistance at grain boundaries. It is importan
emphasize that our macroscopic model does not contain
justable parameters beyond the Kapitza lengthLK , which

FIG. 4. Predictions for the effect of the grain shape on the n
malized thermal conductivity of Si0.8Ge0.2.
.
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permits the direct determinations of thein situ Kapitza resis-
tance values in real polycrystals. Second, although th
have been a very large number of measurements on p
crystals in the literature, available data which contain var
tions in the thermal conductivity with the grain sizes a
thus can be used for comparison are rather limited. Nev
theless, several examples presented in this work have
vided good support for the present model. Third, so far th
have been no reports on the values of the Kapitza resista
in real polycrystals. The comparison between the above
timates for real alloys that we have made and the exis
calculation only on idealized Si bicrystal12 @Fig. 3~b!# shows
that the polycrystals of the single elements have low
Kapitza resistance~and thus higher thermal conductivity18!
than their mixed alloys. This comparison also indicates t
our estimates are reasonable. The accurate determinatio
the Kapitza resistance values requires accurate measured
ues for the thermal conductivities and the grain sizes, and
the other hand, neglecting porosity can give rise to overe
mate of the Kapitza resistance in polycrystals. The quant
tive correlation of the estimated Kapitza resistance for r
polycrystals with the microscopic phonon reflection at t
grain boundaries remains to be explored.

In conclusion, the comparison of the calculated and
perimental data for thermoelectric alloys available in the
erature has demonstrated that the grain size-dependent
mal conductivity of polycrystals is quite well described b
the Kapitza resistance-EMA model. The present model
counts for the Kapitza resistance, grain size, grain shape,
orientation as well as their spatial variations, which provid
a guideline for tailoring the thermal conductivity of poly
crystals such as thermoelectric ceramics. Furthermore,
simple formula of this model presents a very simple a
practical method to determine thein situ Kapitza resistance
in real polycrystals.
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