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Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model
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A simple model for the thermal conductivity of polycrystals is presented by incorporating the concept of the
Kapitza resistance with an effective medium approach. By applying this model to a few thermoelectric alloys
reported in the literature, we show that it quite well describes the often observed grain size-dependent thermal
conductivity of polycrystals and also provides a simple and practical method to determine the Kapitza resis-
tance. We estimate the Kapitza resistance in real polycrystals and the effects of microstructural scales, such as
spatial variations in the grain size and grain shapes, on the thermal condu¢®d@dfy63-182@8)03013-9

Thermal conductivity of polycrystals is of quite general In the present paper, by incorporating the concept of the
interest due to its technological importance in many practicaKapitza resistance with EMA we present a simple model for
applications of polycrystals, for example ,Be;/Sh,Te;and  the lattice thermal conductivity of polycrystals without going
SiGe thermoelectric alloy%and SiC ceramics and recently into details of various scattering processes. We show that our
developed diamond films for thermal management of highKapitza resistance-EMA model provides answers to two
density—high-power microelectronisGenerally, polycrys- Problems which are being widely investigated. The first
tals show lower thermal conductivity than their correspond-Problem is the often observed grain size-dependent thermal
ing bulk single crystals because of the existence of graifonductivity of polycrystafs®and the effects of microstruc-
boundaries and pores in polycrystals. The effect of pores ig!ral scale. The second problem is the determination oirthe
an old problem which has been attacked by manysitu Kapitza resistanc¢é®which will be made for real poly-_
researcher3.In most cases the conductivity of polycrystals Crystals. Compared to the Klemens-Callaway type relaxation
decreases linearly with the porosity as predicted by effectivéime approache§* which are microscopically theoretical
medium approache&€MA).* At present, it is also quite gen- Models, the present Kapitza resistance-EMA model is a more
erally accepted that the thermal conductivity of polycrystalsmacroscopic analytical method in which microstructurally
decreases with grain siz&S’ The model usually proposed to Stochastic effects, such as spatial variations in the grain size
understand the grain size-dependent behavior is the rela@d Kapitza resistance, grain shapes and orientations, can be
ation time approaches of boundary scattefirigased on the readily mcc_)rporated. The Kapltza resistance may be taken as
Klemens-Callaway theord%: In this model, by adding a @ connection between. themicroscopic KIgmens—CaIIaway
boundary scattering relaxation time into the total relaxatiorfyP€ and themacroscopidc=MA type theories. _
time of various scattering processes, the lattice thermal con- Consider a real polycrystal with grains of various orien-
ductivity of polycrystals has been calculated only numeri-tations. For convenience, let us consider first an isolated el-
cally as a function of average spherical grain sizes afteliPsoidal crystallite with the thermal boundary resistance on
choosing a number of other adjustable paraméfefihe  its surface, in the polycrystal. Following Nan, Birringer,
(diffuse) grain-boundary scattering can produce thermal reClarke, and Gleitet? we can obtain the lattice thermal con-
sistance at grain boundaries. A very recent molecular dynanfluctivitiesK{ of the crystallite along its symmetric ax&g
ics simulation of heat conduction across Si bicry$thlas (i=1,2,3) as follows:
shown the presence of the thermal boundary resistance, i.e.,
the Kapitza resistancé.Similarly to the thermal interfacial
resistance between two different phases in compo¥ites
Kapitza resistance can commonly exist in polycrystals and
its overall effect is to reduce the thermal conductivity of
polycrystals. This reduction can be very pronounced for fine- B (2+ 1/p)LK“ la,, for p=1,
grained polycrystals. To our knowledge, a complete under- Yi= (1+2p)L lag, for p<1, )
standing of the effect of the Kapitza resistance on the thermal "
conductivity of polycrystals is still missing. On the other
hand, there has been no report on the Kapitza resistance where a; are radii of the crystallite along it; axes,
real polycrystals since there has been no appropriate methgu=az/a; is its aspect ratipp>1 andp<1 are for a prolate
to measure the Kapitza resistance across grain boundaries(a;=a,<<a;) and oblate §,=a,>a;) crystallite, respec-
real polycrystals, whilst complicated dynamical simulationstively], andL;; are the depolarization factors dependent on
have so far been performed only for idealized Si bicryétal the crystallite shape. Here we have introduced Kapitza
and simple interface’. lengthsL . as defined by

Ki=Ki/(1+ yiLi), (U]
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FIG. 1. (a) 1/K vs 1H plots [Eqg. (6)] of experimental data at
room temperature fqo- andn-type Sj ¢G&, , alloys (Ref. 8, where
the solid line is a best-fit lingb) The effects of the grain sizand
variations in bothd and the Kapitza length on the normalized
thermal conductivity of the §iGe,, alloys. For comparison, the
experimental data are also shown.

Lk, =R, K”, (3
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FIG. 2. Comparison of Eq6) and experimental data for a few
SiGe alloys(Refs. 6 and Yand (BiTe;) g 25 ShyTes)( 75 alloys (Ref.
9).

First, for common polycrystals with isotropic, equisized
spherical crystallites, the thermal conductivi€ycan be ob-
tained directly from Eq(5) as

KIKO=1/(1+2L,c/d)=1A1+2ReKd),  (6)

whereK§ andRy, are, respectively, the bulk lattice thermal whered is the grain diameter. It is important to note from
conductivities of the crystallite and the Kapitza resistance<€qg. (6) that the normalized conductivity of such polycrystals

along itsX; axes. Generally,@RK =<oo , with RK =0 cor-

is a function of onlyL« /d, i.e., there is a general scaling law

responding to a grain boundary with perfectly thermal conK/K°=F(Ly/d). This means that all data will fall upon a

tact. ForRy, >0, temperature jumps across the boundary.

We now conS|der the dense polycrystaf course, the
porosity is very easily incorporated¢omposed of the crys-

tallites with the thermal boundary resistance existing be

tween crystallites of various orientations. From EXAhe
thermal conductivitiek;; of the polycrystal can be obtaine

as
K — Kii
=0. (4)
<LiiKici+(1_Lii)Kii>
Further combining Eqg1) and(4) gives
°— 1 LK
< (1+ wiLin Ky >_O, )
Lii K0+(l Lii) (1+ iiLi) K

supermaster curve ilK/K® vs Ly /d plot, irrespective of
composition and temperature, though the thermal conductiv-
ity (K andK®) and the Kapitza lengthL(c) depend on com-

position and temperature.

Secondly, for the case of randomly oriented ellipsoidal

g crystallites with isotropidR¢ and K°, we obtain

K/K°=[g?+2f(Ly;+2L39) +gl/f, (7)
f=2(1+3L1)(1+yL1)(1+ yLgg), ®
g=2—3La3t+ yL11(2—-3L1y), 9
y=4p¥¥(1+1/2p)Ly /d, (10

hered=2(a%a3)? is an equivalent spherical diameter.
In order to examine the validity of this proposed model,

where( ) denotes averaging over various crystallite sizeswe compare it with the data avallable in the literature for
shapes, orientations, and the Kapitza resistances. Equatitightly doped S¢7GQ)3and Si.Gey ° n-type heavily doped
(5) is the desired general formulation of this proposedSiy3<G& 365’ N- and p-type heavily doped $iGe, »° and
Kapitza resistance-EMA method that incorporates varioup-type (BiTes)q,4ShTes)o-s alloys® These alloys are
stochastic effects. For simplicity, we discuss two commortechnologically important thermoelectric materials/here

isotropic cases below.

the effect of the grain size on thermoelectric properties is
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TABLE I. Bulk lattice thermal conductivityk®, Kapitza resis-

CE-WEN NAN AND R. BIRRINGER

tanceRy , and Kapitza length. , determined at room temperature (a) 1
(300 K) for a few thermoelectric alloys. //
< 107 i/*/*

Polycrystals KO (W/mK) Rg (M?KW) Ly (um) g 109 W v
p-Sio_gGQ)_z 5.0 4.98<10°8 0.249 NE °® . Sio.3Geo_7
N-Sip 6Gey 2 4.96 4.9¢10°8 0.243 ~ —— Sig 580 56
Sip Gey 3 6.56 9.5¢1078 0.623 x v SigGeys
N-Sip 6355 365 4.33 1.15¢10°7 0.498 o Si.Ge

. 7 0.8°0.2
Siy 4Gey 7 7.84 1.1x10 0.862 108, . R : : .
p-Bi,Te;/Sh,Te; 0.19 141075 2.66 300 400 500 600 700 800 900

Temperature (K)
a very important but not yet well-established isSte!®t’ (b) .
The comparsion of the calculated and experimental data for 107 A /
these alloys is shown in Figs. 1 and 2. Despite some scatter  ~ ,/.
in these data because of different processing réuted in- g ,,’
accurate values taken for average grain stZesthe com- %
parison shows that our model is in good agreement with =10% /
these reported data. <« 1/ —v— 300K
From the best-fit lines of the experimental data iK 1/5 4 600K

1/d plots predicted by Eq(6), we can determine the values 9." * 575K
of Ry andK?° for these alloys, which are shown in Table | 1070 02 o4 o6 o3
and Fig. 3. Of interest to note is that both and p-type ’ x in Si1_xGe'x '

Sip §G& » have almost the same valuesk? as reported in
Ref. 8 and the samigy . EstimatedK® values for these SiGe
alloys are in agreement with their bulk d&t&.Much lower
K° value and higheRy value for Bi,Te;/Sh,Te; alloys are
attributed to the effect of porosify.

It is interesting to see th&y increases by only a small
amount with temperature from 300 to 900 K fortype

Sip.e3Ga 365 Which may be attributed to some damagefor both lengths, Eq(6) can be rewritten as

and/or disorder at grain boundaries at high temperature, but
that the values dRy at 300 K and 600 K are almost the same
for Siy/Gey 3 [Fig. 3@]. This behavior thaRy is not very

K/K°=1[1+ 2Lk /d)exp( &} /2—2.553)],

FIG. 3. Determined Kapitza resistanBg for these SiGe alloys
as a function ofa) temperature an¢h) composition. For compari-
son, the value oRy at 575 K for Si bicrystal calculated by dynam-
ics simulationgRef. 12 is also shown inb).

(L) and(1/d), and using a log-normal distribution function

(11)

sensitive to temperature seems to agree with the dynamic#iheredy and s, denote their standard deviations. Equation
simulations and experimental data for simple interfaces(11) and a numerical example in Fig(d show that the
which showed thaRy is almost independent of temperature variations ind result in increasind</K° and by contrast the

over a wide range around room temperattiré. very strik-
ing finding is the composition dependenceRpf for the SiGe

variations inLx cause a decrease KfK°.
Let us turn now to the effect of the grain shajiggs.

alloys as shown in Fig. (). Although these reported SiGe (7)—(10)]. There are no available experimental data on the
alloy€~8 experienced different processing and doping routesgrain shape effect for comparison at this time. For illustra-
the trend is clear — the composition dependence of the esion, we show a numerical example of the model for the
timatedRy is similar to that of the thermal resistivity of the Si, ¢Ge, , alloys in Fig. 4. It is interesting to see from Fig. 4

SiGe alloys'® Comparison of Fig. ®) indicates that the
polycrystals of the single elements have lovi®gr (and thus

higher thermal conductivity) than their mixed alloys.

Returning to the grain-size dependenceKofFigs. 1(b)
and 2b)], we can see thdtk in K/K°=F(Lk/d) is an im-
portant characteristic length. As=2Ly, K decreases down
to K°/2. Only asd>Ly, K approachex®. In contrast, as
d<L, K reaches its so-called “minimum value® For
example,K=0.1 W/m K asd=10 nm for the §jGe,, al-
loys. If it is assumed that a largex value remainsun-
changedin the small grain size range, E6) predicts a
lower “minimum value” for K than the relaxation time

approache&®

Further from Eq(5) it is easy to show the effect of spatial
variations in botld andLy . For convenience, however, sim-
ply by replacingLy and 14 in Eqg. (6) with their averaging

that K/K° always decreases with the grain shape anisotropy
in the case of large grain sizesi¥2Ly) and that oblate
grains result in a more pronounced decreas&b£° than
spherical and prolate grains. Ab<2Ly, K/K° increases
with the aspect ratip. The predictions on the grain shape
effect remain to be experimentally verified.

We would finally like to address three points. First, as we
have already stated, our Kapitza resistance-EMA model is a
macroscopicapproach which successfully accounts for the
microstructurally stochastic effects, whilst the Klemens-
Callaway-type relaxation time mod&f! which has been
successful in describing microscopic scattering mechanisms
is a microscopicone. It could be argued that the reported
data on the grain size-dependent thermal conductivity can
also be fitted well by the Klemens-Callaway-type model
which includes the boundary scattering relaxation time
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permits the direct determinations of thresitu Kapitza resis-
tance values in real polycrystals. Second, although there
have been a very large number of measurements on poly-
crystals in the literature, available data which contain varia-
tions in the thermal conductivity with the grain sizes and
thus can be used for comparison are rather limited. Never-
theless, several examples presented in this work have pro-
vided good support for the present model. Third, so far there
have been no reports on the values of the Kapitza resistance
in real polycrystals. The comparison between the above es-
timates for real alloys that we have made and the existing
calculation only on idealized Si bicrysta[Fig. 3(b)] shows

that the polycrystals of the single elements have lower
Kapitza resistancéand thus higher thermal conductivify

than their mixed alloys. This comparison also indicates that
our estimates are reasonable. The accurate determination of
the Kapitza resistance values requires accurate measured val-
ues for the thermal conductivities and the grain sizes, and, on
the other hand, neglecting porosity can give rise to overesti-
mate of the Kapitza resistance in polycrystals. The quantita-
tive correlation of the estimated Kapitza resistance for real
polycrystals with the microscopic phonon reflection at the
grain boundaries remains to be explored.

In conclusion, the comparison of the calculated and ex-
perimental data for thermoelectric alloys available in the lit-
erature has demonstrated that the grain size-dependent ther-
mal conductivity of polycrystals is quite well described by

FIG. 4. Predictions for the effect of the grain shape on the northe Kapitza resistance-EMA model. The present model ac-

malized thermal conductivity of §iGe, .

7= ad/v (v, the average phonon velocity, aada constant

of order unity. However, the correspondence between ex
periment and the predictions of the Klemens-Callaway-typ
model is not unique since different numerical values for
those adjustable parameters in the microscopic model can b
chosen and the fits can always be obtained with a sufficienl

e

counts for the Kapitza resistance, grain size, grain shape, and
orientation as well as their spatial variations, which provides
a guideline for tailoring the thermal conductivity of poly-

crystals such as thermoelectric ceramics. Furthermore, the
simple formula of this model presents a very simple and
e(actical method to determine the situ Kapitza resistance
real polycrystals.
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