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First-order phase transitions by first-principles free-energy calculations: The melting of Al

Gilles A. de Wijs,* Georg Kresse,† and Michael J. Gillan
Physics Department, Keele University, Keele, Staffordshire, ST5 5BG, United Kingdom

~Received 9 September 1997!

The melting properties of aluminum are calculated from first-principles molecular-dynamics simulations
using density-functional theory in the local-density approximation. We calculate a melting temperature of 890
K at zero pressure, to be compared to the experimental value of 933 K. An elaborate discussion of the
techniques employed is presented. The solid- and liquid-state free energies are obtainedvia coupling constant
integration. The respective reference systems are the quasiharmonic crystal and the Lennard-Jones fluid. Good
quality of the Brillouin zone sampling is shown to be crucial. The strategy followed is expected to be appli-
cable to a wide range of liquid metals.@S0163-1829~98!02914-2#
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I. INTRODUCTION

Over the past two decades density-functional theo1

~DFT! has developed into a very accurate technique for fi
principles total-energy calculations. It has been extende
the description of dynamical processes on the atomic s
by Car and Parrinello,2 and first-principles molecular
dynamics calculations and structural energy minimizatio
are now routinely performed by many groups. DFT has b
very successful in the calculation of zero-temperature ph
stability, i.e., total energies, and recently various applicati
involving free-energy calculations have been reported3–6

However, its application to first-principles finite-temperatu
phase stability calculation has remained limited to the st
of Sugino and Car on the melting of silicon.3

In this paper we report on the determination of the me
ing point and other melting properties of Al, from firs
principles calculations, using the full Kohn-Sham formalis
throughout. We hope to demonstrate that DFT is capabl
giving free energies with sufficient accuracy, and propose
apply the same technique to more challenging liquid me
in the future.

The main problem in a calculation on melting is the ve
high precision with which the free energy needs to be ca
lated. This need for high accuracy transpires from sim
considerations: The entropys, Gibbs free energyG, and
temperatureT are related by2s5(]G/]T)P ~whereP de-
notes the pressure!. Therefore at melting the change wit
temperature of the difference between the solid-state
liquid-state free energies (DG) can be calculated from th
entropy of fusionsm via

sm5sliq2ssol5
]Gsol

]T
2

]Gliq

]T
5

]DG

]T
. ~1!

It follows that dG, i.e., the maximum error inDG, is con-
strained by the required accuracy of the melting tempera
dTm through:dTm'dG/sm. For Al, sm is 1.38kB ,7 so that
for a dTm,50 K adG,0.006 eV/atom is required. Such a
accuracy puts very stringent demands on the convergenc
the calculations. For liquid metals, in particular, the conv
gence with respect tok points is very demanding. Moreove
this accuracy is definitely higher than that with which DF
570163-1829/98/57~14!/8223~12!/$15.00
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approaches reality. Therefore good agreement with exp
ment can only be expected if a substantial cancellation
errors occurs, and therefore the validity of the approach
only be testeda posteriori.

Several calculations of the melting properties of liquid
have been reported in the literature.8–11The approach of Mo-
riarty, Young, and Ross is based on generalized pseud
tential theory~GPT!.8 The solid-state free energy is obtaine
in the quasiharmonic approximation and the liquid-state f
energy by fluid variational theory. Here the liquid-state fr
energy is calculated from a reference system that is tune
closely approach the free energy of the liquid system w
the effective Al pair potential constructed from GPT. Th
procedure is variational in that it yields an upper bound
the free energy of the effective pair-potential system. Pe´lis-
sier also employs a perturbational approach, but based
local model pseudopotential for the electron-ion interactio9

To calculate the free energy, he uses a variational appro
for both solid and liquid. In the solid state his calculatio
proceeds~again! via the phonon spectrum, but also includ
some corrections for anharmonicity. For the liquid state o
timized cluster theory is used. Mei and Davenport use
embedded atom approach.10 Straub et al. fit volume-
dependent pair potentials to first-principles data.11 Their
liquid-state free energy is obtainedvia molecular-dynamics
simulation by thermodynamic integration. The solid-sta
free energy is calculated either from molecular-dynam
~MD! simulation and a model fit or from quasiharmonic la
tice dynamics. They find a very good value for the melti
transition ~955 K! giving hope that an approach entire
based on DFT can accurately reproduce experimental m
ing data. Our approach is similar to various previous cal
lations in that we calculate the free energy of the solid~ini-
tially! in the quasiharmonic approximation. Howeve
contrary to all previous calculations on the melting of Al, o
corrections for anharmonicity in the solid state and o
liquid-state free energy are obtained from thermodynam
integration using first-principles molecular-dynamics simu
tion. This means that an intermediate stage involving
construction of a model interatomic potential~by either a
fitting procedure or perturbation theory! is bypassed and tha
the free energies are obtained directly from first principl
Therefore our approach is more generally applicable in p
ciple.
8223 © 1998 The American Physical Society
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This paper is organized as follows: In Sec. II the tec
niques used are described in detail. Results of the applica
to the melting of Al and a discussion of the errors can
found in Sec. III. Discussion and conclusions are presen
in Sec. IV.

II. CALCULATION METHODOLOGY

A. General strategy

We aim to calculate the temperatureTm at which alumi-
num melts under the condition of constant, ambient, exte
pressure~i.e., P50!. Therefore we need to determine whe
the Gibbs free energy of the liquid,Gliq(P50,T), drops be-
low that of the solid,Gsol(P50,T). We calculate both of
these functions separately and obtain the melting point as
temperature where they cross. This also gives informa
about other melting properties like the entropy of fusion a
the change of volume. Moreover, using this strategy,
avoid many troubles related to finite-size effects~like artifi-
cially high free-energy barriers and large hysteresis! that can
easily occur in a direct simulation of any first-order pha
transition. In particular, calculations on small systems, wh
our first-principles simulations necessarily are, are prone
suffer from such problems.

In any first-principles calculation one is confronted wi
the problem of calculating the free energy of a system hav
two very different sets of degrees of freedom: the ionic p
sitions and the electronic wave functions. The ionic positio
are described sufficiently accurately by classical mecha
whereas the electrons require a quantum-mechanical t
ment. The usual way out of this problem isvia the adiabatic
approximation, which generally still holds at finite temper
ture: The electrons respond very fast~i.e., instantaneously! to
the atomic motion. So their free energy does not depend
the ionic velocities and it can be calculated with as inp
their temperatureT and theN atomic positions~R! only. In
density-functional theory this calculation is done by minim
zation of the Mermin functional~Sec. II A 1!. The resulting
electronic free energyF̃(R,T) acts as the classical potentia
energy functionU(R,T) for the atomic degrees of freedom
Using well-established simulation techniques, this potent
energy function~into which T enters as a parameter! can
then be used to calculate the Helmholtz (F) and Gibbs (G)
free energies from the atomic dynamics only~Sec. II A 2!.
By virtue of the decoupling between atomic and electro
motion these equal the respective free energies of the c
plete system, i.e., forF the following holds:

F~V,T!52kBT lnF 1

L3NN! EV
exp@2bF̃~R,T!#dRG ,

~2!

whereb51/(kBT), L is the thermal de Broglie wavelengt
andV denotes the volume. Note that the terminology is
herently confusing: In Eq.~2! the electronic free energyF̃
and the~Helmholtz! free energy of the complete systemF
are two very distinct functions.12
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1. Interatomic interaction via DFT: The Mermin functional

At finite temperatureT the electronic free energyF̃(R,T)
is obtained by minimizing the Mermin functional13 in the
Kohn-Sham formalism,

M̃ @$fn%,$ f n%,R,T#5(
n

@ f n^fnuTsufn&2kBT S̃~ f n!#

1EH@r#1Exc@r#1E d3rVion~r !r~r !

1gEwald~R!, ~3!

with respect to the orbitals$fn% and the partial occupancie
$ f n% under the constraints of orbital orthonormality an
charge conservation.14 ~To simplify the notation we have
dropped thek-point index.! Ts is the kinetic-energy operator
EH the Hartree energy,Exc the exchange-correlation energ
functional,gEwald the Madelung energy of the ions, andVion

the ionic potential. The electronic entropyS̃( f ) and charge
densityr~r ! are given by

S̃~ f !52@ f ln f 1~12 f !ln~12 f !#,

r~r !5(
n

f nufn~r !u2, ~4!

respectively. Note that the Mermin formulation implies
Fermi distribution for the$ f n% according to the eigenvalue
of the $fn% in the associated Euler equation. It needs to
kept in mind that the resulting Fermi-surface smearing@mea-
sured bykBT in Eq. ~3!# serves a twofold purpose. At firs
there is its physical significance in describing the electro
sub-system at finiteT. Secondly, as an additional advantag
it smoothes the discontinuous jump at the Fermi surfa
This results in a faster convergence ofF̃ with respect to the
density of thek-point mesh.14

Several approximations need to be made to calculate
Mermin functional. The most important one is the calcu
tion of the exchange-correlation functional in the loca
density approximation. Moreover, since it is not known f
finite T, it is approximated by the zero-T functional of Cep-
erley and Alder15 in the parameterization by Perdew an
Zunger.16

Another approximation is the pseudopotential approxim
tion: Only the valence electrons are explicitly treated and
interaction between valence electrons and the atomic co
replaced by a smooth potential that accurately mimics
scattering at the ‘‘frozen’’ core electrons and nucleus. W
use an ultrasoft pseudopotential17,18 with nonlinear
core-corrections19 applied. Details are reported in Sec. II D

Since the functionF̃ acts as the potential for the ioni
motion, the interatomic forces are calculated by its differe
tiation with respect to the atomic positions and are con
niently obtained from the Hellmann-Feynman theorem.20–22

Using these forces, molecular-dynamics simulations can
performed by direct minimization of the Mermin function
at each time step. This is the approach we have followed
allows to use a larger time step then conventional C
Parrinello-type dynamics, but at each time step several e
tronic minimization steps are required to obtain the el
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57 8225FIRST-ORDER PHASE TRANSITIONS BY FIRST- . . .
tronic ground state with sufficient accuracy. Overall w
expect that this approach is equally efficient as a stand
Car-Parrinello-type dynamics~see Sec. II D for details!.

2. Thermodynamic integration

Given the interatomic potentialU(R,T) @i.e., F̃(R,T)# we
need to calculate the Gibbs free energyG(P,T). For both
the liquid and the solid, we achieve this by first calculati
the Helmholtz free energy,F(V,T), from which we obtainG
by

G~P,T!5F~V,T!1PV, P52S ]F

]VD
N,T

. ~5!

At ‘‘ambient’’ pressurePV50. However, we still need to
calculateP(V,T) to find the zero-pressure volume.

It is well known thatF cannot be calculated from a MD
simulation directly, since it cannot be expressed as an
semble average.23 However, well-documented techniques d
exist to calculate the free energy of a system relative to
of another system~see, e.g., Ref. 23 for a thorough ove
view!. Thus it is possible to calculate the free energy o
system by relating it to the known free energy of a sim
reference system, e.g., the ideal gas or the Lennard-J
~LJ! fluid.24 In MD simulations this is conveniently done b
thermodynamic integration using Kirkwood’s coupling co
stant method. A range of hybrid systems is introduced
which the potential-energy functionU switches from the ref-
erence system~l50, U5U I! to the system for which one
wants to calculateF ~l51, U5U II!:

U~l!5~12l!U I1lU II . ~6!

The difference between the free energies of systems I an
is obtained by integration over the range of hybrid system

F~l51!2F~l50!5E
0

1

dl K ]U~l!

]l L
l

, ~7!

where the brackets denote the ensemble average for a sy
with potential-energy functionU(l). For eachl a separate
MD run needs to be performed. It is important to choos
reference system that behaves like the system of interes
that the integral is well approximated by only a few~ideally
one! MD runs. We use this technique to calculate the fr
energy of the liquid~using the Lennard-Jones fluid as a re
erence!, and the anharmonic corrections to the solid-st
free energy~using the quasiharmonic crystal as reference!. In
principle, it is also possible to obtain the integral of Eq.~7!
from one MD run, wherel switches adiabatically~i.e., very
slowly! from 0 to 1 during the simulation.25 However, we
prefer to carry out MD runs for fixedl since it allows for a
systematic improvement of the integral, without having
redo part of the calculation: If the integral is calculated w
an extended Newton-Cotes formula~like Simpson’s rule!,
higher accuracy can be achieved by just adding values o
integrand at intermediate points obtained from new simu
tions.
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B. Free energy of the solid phase

1. Quasiharmonic approximation for the crystal free energy

In the quasiharmonic approximation the Helmholtz fr
energy is determined by the harmonic lattice vibrations, i
the phonons, at a volumeV:26

F~V,T!5U0~V,T!1
1

VBZ

3(
i
E

BZ
S \vq,i

2
1kBT ln@12e2\vq,i /kBT# Ddq.

~8!

The $vq,i(V,T)% are the phonon angular frequencies at wa
vectorq and polarization directioni for volumeV ~see Ref.
27!. VBZ denotes the volume of the Brillouin zone. The fir
term,U0(V,T), is the potential energy~i.e., F̃! of the perfect
crystal at volumeV. Both the$vq,i% and U0 implicitly de-
pend on temperaturevia the temperature dependence of t
Mermin functional. The second term in Eq.~8! arises from
the zero-point vibrational motion, and the third from th
thermally-induced occupancy of the various phonon mod

Note that Eq.~8! assumes a quantum statistics for t
phonons, whereas our calculation of the liquid-state free
ergy is fully classical. In the high-temperature limit, Eq.~8!
can be expanded into26

F~V,T!5U0~V,T!2
kBT

VBZ

3(
i
E

BZ
S lnF kBT

\vq,i
G2

1

24F\vq,i

kBT G2

1¯ Ddq.

~9!

The first term in the sum on the right-hand side is the cl
sical contribution. For consistency with the liquid-state c
culations, we discard the higher terms in the expansion,
the quantum corrections. At;1000 K these are typically
;1 meV/atom for Al.

As input for Eq.~9! we need the phonon density of stat
~PDOS! and U0(V,T). The latter is easily calculated in
primitive fcc cell with a very highk-point density. Since
these are small calculations,V and T dependence can b
fully accounted for. The PDOS is obtained by interpolati
of the phonon frequencies calculated with the method of R
28. Here one uses a supercell approach with typically sev
tens of atoms. One~or more, if needed! atom is slightly
displaced and the resulting forces on all the atoms are ca
lated. From these the interatomic force constants matrixDV ,
and via its diagonalization the dynamical matrix, are o
tained. This approach is only exact for those phonons hav
wave vectors commensurate with the periodically repea
supercell. Phonon frequencies at otherq points can also be
calculated, assuming that the extra force constants nee
are 0. This approximation can be tested by carrying out c
culations for various sizes of the system.

The procedure is repeated at various volumes, and
results are fitted to a polynomial. From this fit and Eq.~5! the
Gibbs free energy is obtained. In principle, the whole volu
‘‘scan’’ should be repeated for the range of temperatures
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8226 57de WIJS, KRESSE, AND GILLAN
interest, since the$vq,i% depend on temperature. For Al th
temperature dependence is negligible: we checked that i
duces a change inG of merely ;0.15 meV/atom for a
100-K temperature change. Therefore our calculations of
$vq,i% were carried out for a fixed Fermi smearing, corr
sponding to a temperature of 800 K.

2. Corrections for anharmonicity

In order to obtain the full free energy of the crystal
correction that reflects the anharmonicity of the lattice vib
tions needs to be added to the quasiharmonic results obta
in the previous subsection. This is done by a thermodyna
coupling constant integration.U II is the complete interatomic
potential-energy function calculated from first principles, a
the reference potential-energy functionU I is the fully classi-
cal quasiharmonic potential energy function for the 3N23
phonon modes in theN atoms supercell:

U I5U0~V!1
1

2 (
R,R8

u~R!DV~R2R8!u~R8!. ~10!

Theu~R! are the atomic displacements from the equilibriu
positionsR and DV(R2R8) is the atomic force constant
matrix. For Al we use a 32-atom supercell, i.e.,N532.

An issue that needs care is the temperature control du
the MD runs. Since the system is close to~or completely!
harmonic, the modes will not strongly couple and equilib
tion between the modes will be very slow. For this reason
standard Nose´ thermostat technique29 cannot be used, unles
each ‘‘normal mode’’ receives its own dedicated thermos
Moreover, the standard Nose´ scheme has trouble in genera
ing a canonical sampling for a harmonic oscillator and wo
need to be replaced by a chain of Nose´-Hoover
thermostats.30 ~See Ref. 4 for a thorough discussion.! An-
other way out of these problems that we have adopted i
use a thermostat of Andersen type:31 Each atomic velocity
component is redrawn randomly from a Gaussian distri
tion after a specified, average number of steps.

The approach outlined so far results in the correction
the Helmholtz free energy for one (V,T) point. To obtain it
as a function of volume, we fit a polynomial to the results
the correction scheme carried out at various volumes. For
temperature dependence of the correction we assumeT2

scaling. In fact, the scaling of the corrections with tempe
ture is not evidenta priori. In general a combination o
T2,T22 terms and even a temperature-independent contr
tion is expected in the high-temperature limit.26 Therefore
the temperature scaling needs to be checked by additi
calculations at a few other temperatures.

Alternatively one could have adopted the strategy f
lowed in Ref. 32 where a series of molecular-dynamics sim
lations at several temperatures are carried out and the c
ficients of an analytic representation of the anharmo
contribution toF are obtained from a fit to, e.g., the intern
energy after its harmonic part (3kBTN/2) has been sub
tracted out. This approach is probably more useful if the f
energy needs to be accurately known over a large temp
ture interval, but here we are interested in the the free ene
only around the melting point. Therefore we expect the
proach we have used to be more efficient in terms of co
puter requirements.
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3. Contributions due to vacancies

At any nonzero temperature, a crystal always conta
thermally generated lattice defects. These defects will giv
contribution to the free energy, which is not accounted for
the discussion so far. We give here a brief discussion of
defect contribution; our conclusion will be that it can b
neglected.

In aluminum and most other metals, the dominant latt
defect in thermal equilibrium is the vacancy.33,34 For a crys-
tal containingNlatt lattice sites and a concentrationc of va-
cancies~number of vacancies per lattice site!, the vacancy
contributionGv to the Gibbs free energy of the crystal is

Gv5Nlatt@cgv1kBT„c ln c1~12c!ln~12c!…#. ~11!

Here gv is the free energy of a single vacancy, i.e., t
change of free energy of the whole system when an atom
removed from a specified perfect-lattice site and used to
ate a new lattice site, the whole process being performe
constant pressure and temperature; the final term in Eq.~11!
is the configurational free energy of the vacancies. In f
thermal equilibrium, the concentrationc is determined by the
condition thatGv be a minimum, which gives

c51/@exp~gv /kBT!11#. ~12!

The equilibrium value ofGv is thus

Gv5NlattkBT ln~12c!. ~13!

In practice,c!1, so that the vacancy contribution to the fre
energy per atom is accurately approximated by

Gv /Nlatt.2kBTc. ~14!

To estimate this free energy, we need to knowc, or
equivalentlygv , at the melting point. There have been se
eral attempts to determinec experimentally, e.g., by accurat
measurement of the lattice parameter and the density of
crystal.33 Such measurements indicate that in Al just belo
the melting pointc.1023. Using this value forc, we esti-
mate a vacancy contribution to the free energy per atom
0.1 meV. From the relationdTm5dG/sm mentioned in the
Introduction, this very small free-energy contribution cou
changeTm by at most a few K, and we therefore ignore it

C. Free energy of the liquid phase

In the liquid state we need another strategy to determ
the free energies. Using Eq.~5!, as for the crystalline phase
we need to calculateF as a function of bothV andT. This
could be done by carrying out, for every point on a (V,T)
grid, a coupling constant integration from a system w
known free energy to the full first-principles system. This
not exactly our approach.

We carry out two coupling constant integrations~Sec.
II C 1!, at two different reference volumes (V0,a ,V0,b) and
one reference temperature (T0), that are chosen to be clos
to the experimental melting point. As a reference system
use the Lennard-Jones fluid. From this we obtain the He
holtz free energy at the chosen thermodynamic state po
From additional MD runs~at the same two state points! we
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57 8227FIRST-ORDER PHASE TRANSITIONS BY FIRST- . . .
also obtain the internal energyE and pressureP. In prin-
ciple, by thermodynamic integration alongV andT, using

S ]F

]VD
N,T

52P and S ]F/T

]1/T D
V,N

5E, ~15!

it is possible to calculateF(V,T) ~and thereforeG! in the
vicinity of the chosen points. However, we find it more co
venient to take a further intermediate step and fit the dat
a simple model~Sec. II C 2!. F, P, and G at nearby state
points are obtained from the model.

1. Lennard-Jones reference system

For the two coupling constant integrations our referen
system is the Lennard-Jones~LJ! liquid, which features the
following pairwise additive interaction:

f~r !54eF S s

r D 12

2S s

r D 6G , ~16!

wheree ands are parameters.
Johnsonet al. have carried out elaborate MD calculatio

on this system and have given an accurate tabulation
analytic fit for the Helmholtz free energy as a function of t
reduced temperature (T* 5kBT/e) and density
@r* 5(N/V)s3#.24 This gives us the liberty to choose a
optimal e and s. We tune them so that the LJg(r ) closely
fits the first principlesg(r ). In doing so care has to be take
not to move the LJ system into the nonliquid region of
phase diagram. This is necessary to avoid the risk of
hybrid system undergoing a phase transition away from
liquid state during an MD run. In general, the LJ system c
be made to fit the first-principles system very accurately~see
Fig. 1 and Table I for details of the fits!. Therefore, only very
few runs are expected to be needed for the thermodyna
integration. Test calculations showed that the integral of
~7! is already well approximated with the value of the int
grand for the one run atl50.5 only ~see Sec. III A 1 for
details!.

We comment that although the Lennard-Jones fluid p
vides a good reference system for liquid Al, it may not be
best reference system for other liquid metals. For exam

FIG. 1. LJg(r ) ~full curve!, first-principlesg(r ) from G point
calculation~short dash!, and first-principlesg(r ) calculated with 4
k points~long dash!. Averages pertain to 1.6 and 1.2 ps runs for t
G and the 4k-point calculations, respectively.V518.31 Å3/atom,
T5900 K.
to
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for thed-bonded metals it has been argued that a potentia
r 220 type should be more appropriate.35,36 Even for liquid
Al, LJ is not a unique choice, and ar 212 potential might
work equally well.35,36

A possible source of error might be related to the sm
system size. In our simulations the periodically repeated
percell contains 64 atoms, whereas Johnsonet al. have per-
formed MD calculations on a system of 864 atoms. Ho
ever, if interactions between atoms of different period
images are included, the use of such a small system ca
only a negligible error. Still a cutoff radiusr cut needs to be
imposed on the LJ interactions, and we took it to ber cut58s
~in all our calculations!. We account for the neglect of inter
actions beyond that distance with the standard correction
mulas @that assumeg(r )51 for r .r cut# that are given by,
e.g., Johnsonet al. @their Eq. ~3!# and in Ref. 37. This ap-
proach is very satisfactory: Our test at the~V518.31 Å3,
T5900 K! thermodynamic state point shows that we c
reproduce the potential energy of the fit by Johnsonet al. to
within 1 meV/atom with 64 atoms only. We remark that th
inclusion of the LJ interaction between images is entir
consistent with the first-principles treatment of interatom
interactions for which the cutoff distance is practically in
nite. Moreover, the good agreement we obtain shows
with 64 atoms and periodic boundary conditions applied
thermodynamic limit can already be closely approached.

2. Calculating the free energy at other thermodynamic state
points

Calculation ofF for a few thermodynamic state points
not enough: If we want to use Eq.~15! and/or the fit to the
simple model to calculateF in their close vicinity, we need
to carry out extra simulations~for l51! at those points to
obtain the internal energyE and pressureP. The internal
energy is obtained straightforwardly as a sum of a kine
and a potential energy related part:

E5K (
i

M

2
vi–vi1U~R,T!L , ~17!

whereM is the atomic mass andvi the velocity of particlei .
The brackets denote the thermal average. The pressu
calculated during the MD simulation by means of

P5Pid~V,T!2 K dU

dVL , ~18!

where the kinetic contribution,Pid , is the ideal gas pressure
The contribution due to the potential~i.e., arising fromF̃! is

TABLE I. Details of the Lennard-Jones reference systems u
for the coupling-constant integrations. The Lennard-Jones par
eterss ande are defined in Eq.~16!.

T ~K! V (Å 3/atom) s ~Å! e (1022 eV)

900 17.370 2.600 4.000
900 18.310 2.600 3.800
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obtained via the Hellmann-Feynman theorem. A compli
tion arises due to the incompleteness of the basis set~see
Sec. II D!.

KnowingF, E, andP at our two reference state points w
do not directly proceed by thermodynamic integration of E
~15!. Instead, inspired by Ref. 11, we introduce a general
physically transparent simple model~all quantities are per
atom!:

F523kBT ln@T/h~V!#1E0~V!1O@~T2T0!2#, ~19!

S52S ]F

]TD
N,V

53kB„ln@T/h~V!#11…1O~T2T0!,

~20!

E5F1TS53kBT1E0~V!1O~T2T0!. ~21!

This model constitutes one of various possible, general w
to expandF around the reference temperatureT0 ~See Ref.
38!. It should be borne in mind that the model parameters~h,
E0!, as well as the errors, are volume dependent.

The essential idea behind the model, reflected by
23kBln(T) contribution toF, is to account for the tempera
ture dependence of the ‘‘harmonic’’ contribution to the fr
energy exactly.~This results in a zero-order approximatio
of the specific heatcV by its harmonic value 3kB .! This
gives good hope that the errors are negligible in the (V,T)
range of interest.

From now on we neglect theO(T2T0) andO@(T2T0)2#
contributions in Eqs.~19!, ~20!, and~21! and use the result
ing approximate model to obtainF(V,T) in the vicinity of
the two reference points. The strategy is as follows.~a! The
model parameters are determined from fits at the refere
points. Next the model is used to calculateF and P as a
function of T for the two volumesV0,a and V0,b . ~b! For
each temperature, the zero-pressure volume is obtained
a linear interpolation forP between the two volumes.~c!
For all temperatures of interest,F at the zero-pressure vo
ume@i.e.,G(P50)# is calculated by thermodynamic integr
tion of P(V) @i.e., the first part of Eq.~15!# starting at one of
the reference volumes.

The procedure outlined above implicitly assumes a q
dratic expansion ofE0(V) with respect toV and a linear
expansion of ln@h(V)# with respect toV. This means that five
parameters need to be determined, whereas we have
pieces of information available~F, E, and P for the two
volumes atT5T0!. Therefore we are allowed to do on
check on consistency of the model as will become clea
the end of following discussion of steps~a!–~c!.

In step ~a! we use the second part of Eq.~15! in the
context of the approximate model, giving

S ]F

]TD
V

5
F2E

T
52S523kB„ln@T/h~V!#11…. ~22!

Substituting our values ofF and E at the reference point
givesh for both reference volumes. As a next stepE0 can be
obtained from substitution ofh and the reference point va
ues into Eq.~19! so thatF is known as a function ofT for
both reference volumes. The pressure as a function of t
perature can be obtained by integration of
-

.
d

ys

e

ce
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S ]P

]T D
V

52
]2F

]T]V
523kB

d ln h~V!

d V
, ~23!

which follows directly from Eq.~22!. The need to calculate
d ln(h)/d V explains whyF andE have to be calculated fo
two volumes at least. Now bothF andP are known as func-
tions of temperature~nearT0! for the two reference volumes

In step~b! we find the zero-pressure volume~as a function
of T! by assuming a linear volume dependence for the p
sure.

At step ~c! integration of the first expression of Eq.~15!
will result in F at the zero-pressure volume, i.e
G(T,P50).

Note that since we carried out calculations at two ref
ence volumes, we can integrate to the zero-pressure vol
in two ways. This provides a good check for consistency a
validity of the quadratic form ofE0(V). Moreover, we
checked the validity of the neglect of theO@(T2T0)2# term
in Eq. ~19! with test calculations using a restrictedk-point
sampling~at G only, see Sec. III A 1 for more details!.

D. Technical details

The orbitals and charge density are expanded in pl
waves. An ultrasoft pseudopotential~US-PP! of Vanderbilt
type17,18 is used to represent the interaction between vale
electrons and the frozen core.@In Eqs. ~3! and ~4! the extra
terms arising from the use of a US-PP have been left out
simplicity.# The plane-wave kinetic-energy cutoff needs
be chosen sufficiently large, i.e., the total-energy differen
between various~close-packed! phases should be reasonab
well converged. Table II shows results of test calculations
the total energies of the fcc, hcp, bcc, and sc crystals
follows that the fcc-hcp difference is already well describ
with a cutoff of 130 eV. With this cutoff the bcc-hcp energ
difference is also converged to within 2 meV. For hcp-sc
discrepancies are larger. But this is of little relevance, si
the sc structure is very dissimilar to the close packed str
tures of both the solid and the liquid. In view of these te
results, we carried out all calculations with a cutoff of 13
eV. In addition the real-space projection scheme of Ref.
was used to efficiently handle the nonlocal part of t
electron-ion interaction.

A point of major concern is the convergence of the M
simulations with respect tok-point sampling, for both the
liquid and the solid. In order to obtain total energies with
accuracy in the meV/atom range, thek-point mesh needs to
be sufficiently dense. In fact, for Al we would like to use
43434 Monkhorst-Pack40 mesh in the BZs of our 32- and
64-atom supercells. However, since the point-group sym
try of our cubic supercell is broken by disorder, this wou

TABLE II. Total energy differences between different cryst
structures of Al at their equilibrium volumes. The energies we
calculated with different plane-wave cutoff energiesEcut .

Ecut ~eV! 130 170

Ehcp2Efcc ~eV/atom! 0.0305 0.0296
Ebcc2Efcc ~eV/atom! 0.0957 0.0935
Esc2Efcc ~eV/atom! 0.3719 0.3801
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in principle, result in the need to calculate the wave functio
at all 32 k points of equal weight in the BZ. This woul
render the MD calculation computationally too demandin
Therefore we run our calculations with only the four spec
points in the irreducible wedge of the cubic BZ, i.e., as if f
point-group symmetry still applied. The size of the error
curred by this additional approximation is discussed in S
III. The k points and their weights are listed in Table III.

Although there is no strict formal justification for the a
proximation of sampling the wave functions only at the sp
cial points, there is a good reason to expect that it will wo
It is well known that for simple metals the dominant part
the electronic Hamiltonian is the kinetic energy. This resu
in a shell-like structure of the electronic density of sta
with peaks around\2/(2me)(G1k)2, whereG represents a
reciprocal lattice vector andk denotes a vector of the
Monkhorst-Pack mesh in the BZ. The kinetic energy is m
sensitive to thek-point sampling. However, since (G1k)2

remains invariant under point-group operations, even if
symmetry is broken, the energy is expected to be well
proximated with the special points only.

In principle, it is possible to obtain an estimate of t
error in F caused by using only the special points~denoted
by ‘‘spec’’! from

F full2Fspec52kBT ln^e2b~ F̃ full2F̃spec!&, ~24!

where the brackets denote averaging over the special p
ensemble, and ‘‘full’’ stands for a sampling throughout t
full BZ. It is well known that this approach is problemati
The exponent significantly amplifies the contributions due
those rare events whereF̃ full2F̃spec is large. In view of this
difficulty, one might hope that the errors in the liquid an
solid state would cancel, so that there is no need to calcu
them. However, at different sides of the phase boundary
ferent parts of phase space are visited and therefore su
cancellation is not guaranteed to occur~even if the liquid and
solid systems are of comparable size!.

In Eq. ~18! the pressure is calculated as the derivative
the potential energy (F̃) with respect to volume for a fixed
basis set. However, our calculations~for several volumes!
have been carried out at a constant kinetic-energy cutof
130 eV, resulting in a volume-dependent basis set. Th
fore, in order to achieve overall consistency, a correction
accounts for the change of the basis set with volume need
be applied.41 This is easily done, since the ‘‘constant cutoff
pressure differs from the ‘‘constant basis set’’ pressure b
configuration and nearlyvolume-independent shift of 5–6
kbar.

TABLE III. k points ~in units of the reciprocal lattice vectors!
and their weights used for the liquid-state simulations and the
culation of anharmonic effects in the crystal.

k points Weight

~0.125, 0.125, 0.125! 0.125
~0.375, 0.125, 0.125! 0.375
~0.375, 0.375, 0.125! 0.375
~0.375, 0.375, 0.375! 0.125
s
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The equations of motion were integrated with the Ver
algorithm, using a time step of 3 fs. For the liquid-state sim
lations the temperature was controlled with a No´
thermostat.29 For the solid-state simulations an Anders
thermostat was used.31

Calculations were carried out using the Viennaab initio
simulation package~VASP!.42–44 Details on the minimiza-
tion techniques employed can be found in Ref. 44. In o
liquid-state MD’s convergence ofF̃ to 1.531026 eV/atom
was typically reached in four iterations. In the crystallin
state MD’s 5–6 iterations were needed to attain the speci
tolerance of 1.531026 eV/atom. A slightly worse conver-
gence is to be expected since the random noise introduce
the Andersen thermostat partly frustrates the constructio
a good initial guess for the charge density and wave fu
tions extrapolated from previous MD steps.

III. APPLICATION TO THE MELTING OF Al

In the following we apply the methods described in t
previous section to the calculation of the melting transiti
of aluminum. First~Sec. III A! we discuss the errors for bot
the liquid and solid state separately. Then results for
melting properties are presented~Sec. III B!.

A. Error estimation

1. Liquid state

The errors can be subdivided into two distinct class
First, there are those that arise from inaccuracies in the tr
ment of the electronic structure part of the calculation. S
ond, there are those that originate from the various appr
mations needed to calculate the thermodynamic poten
from the interatomic interactions.

The main error from the first class is that due to the
ducedk-point sampling~See Sec. II D!. Before starting our
first-principles MD simulations we carried out a test on a
of configurations obtained from an MD using a Al pair p
tential from second-order perturbation theory. For these c
figurations we calculated the electronic free energyF̃ for
variousk-point meshes. We took the 43434 Monkhorst-
Pack mesh as a reference~i.e., 32k points in the BZ!. We
found that, forG-point sampling only,F̃ was underestimated
by ;0.02 eV/atom. With a 23232 Monkhorst-Pack mesh
it was overestimated by the same amount. When using o
those fourk points of the 43434 mesh that are in the
irreducible wedge of the cubic BZ~assuming full cubic sym-
metry, see Table III!, the maximum error was reduced t
;2 meV/atom and the average error was a m
;0.4 meV/atom. This motivated us to use these four spe
points in the first-principles simulations. However, sin
these tests were carried out on configurations obtained f
a sampling of phase space using only a pair potential, the
results do not provide more than an indication. Therefore,
carried out convergence tests during first-principles M
simulation also, and the results are listed in Table IV. It c
be seen that differences as large as 2.5 meV occur w
using the full 43434 mesh instead of our 4 special point
Differences with respect to calculations using a denserk-
point mesh (63636), but using also only those points th

l-



.
b
r

e

d

rd
r t

tio

a

ru

V
ca

e
sys-

the
e
iq-
f
d a

-
ro-
les
lt
ers
/

e

the

at

at
m
be
s

la
-
ded

ly

l-

or-
nt

.

b-
p-
tely

of
lues
f-

he
ur

lo
n

e

n
se

e
-
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are in the irreducible wedge of the cubic BZ, are smaller
The errors of the second class can themselves be su

vided into errors of two kinds. First, there are the erro
caused by our limitedstatistical sampling, that propagat
into the calculation ofG. Second, there are thesystematic
errors caused by the approximations made to fit the mo
and do the thermodynamic integrations. These two kinds
errors are discussed in the rest of this section.

Discussion of the statistical errors is most straightforwa
The free energies, internal energies and pressures, fo
reference states (T0 ,V0,a) and (T0 ,V0,b), along with their
estimated errors are summarized in Table V. The produc
runs were too short~ranging from 1.5 to 1.9 ps! to allow for
a thorough statistical analysis that could give a good estim
of the standard deviations of the mean values.37 Instead we
give estimates based on comparisons of variable length
ning averages.

A remark is in order on how the free energies in Table
were calculated. The coupling constant integrations were

TABLE IV. Convergence tests ofF̃ with respect to thek-point
mesh for several configurations sampled at 0.225-ps intervals a
the trajectory of the liquid-state first-principles MD ru

V517.37 Å3, T5900 K. F̃ is in meV/atom and measured relativ

to the F̃ from the first-principles MD run~i.e., ‘‘43434, IRR’’!.
The Monkhorst-Pack mesh is indicated and IRR indicates that o
the irreducible part of the high-symmetry cubic zone has been u

IRR
43434 43434

IRR
63636

0 0.0 1.8
0 20.4 20.3
0 1.8 0.4
0. 1.5 1.1
0 0.0 1.1
0 2.3 0.2
0 1.3 1.5
0 2.5 0.3
0 21.7 0.5
0 1.5 0.0
0 20.1 0.8
0 1.9 0.6
0 20.4 20.6
0 20.6 1.0
0 20.7 0.6
0 20.2 0.4

Averages: 0.5 0.6

TABLE V. Calculated thermodynamic data for the liquid at th
reference points~T5T0 , V5$V0,a ,V0,b%! and their estimated sta
tistical errors~in parenthesis! for the liquid state.

T ~K! 900 900
V (Å 3/atom) 17.370 18.310
F ~eV/atom! 24.4524 ~0.001! 24.4608 ~0.001!
E ~eV/atom! 23.841 ~0.002! 23.818 ~0.002!
P ~kbar! 25 ~2! 0 ~2!
di-
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ried out using only one ensemble (l50.5) to approximate
the integral of Eq.~7!. As can be seen from, e.g., Fig. 1 th
LJ system can be tuned to approach the first-principles
tem very closely~See Table I for details!. Nevertheless, it is
not guaranteed that the integral is well approximated by
halfway point only.~Moreover, some difference had to b
allowed for in order to keep the LJ system out of the nonl
uid region of its phase diagram.! We assessed the validity o
this approximation with a test calculation where we use
sampling of the wave functions atG only ~instead of sam-
pling at the four special points!. Since this reduces the com
putational demand by nearly a factor 8, this test is not p
hibitively expensive and we can run three ensemb
(l5$0,0.5,1%) instead of just one. It is found that the resu
of a Simpson integration using all three ensembles diff
from the result obtained withl50.5 by less than 1 meV
atom.

Having obtainedF, E, andP at the reference points, w
next need to carry out step~a! of Sec. II C 2. However, be-
fore doing so, we first need to assess the validity of
neglect of theO@(T2T0)2# term in Eq.~19!. We again use
the computationally convenient test system with sampling
G only. ForV518.31 Å we calculateh andE0 from F and
E at T5900 K. Next we use Eq.~19!, discarding the correc-
tion term, to calculate the Helmholtz free energy
T5750 K and compare it to the value obtained directly fro
coupling constant integration. Agreement is found to
much better than the;1 meV/atom error bar. This show
that the temperature dependence ofF is well described ne-
glecting theO@(T2T0)2# term. Using Eq.~22! it easily fol-
lows how the errors grow while integration alongT pro-
ceeds:

s„F~T!…5s~F0!1
T2T0

T0
„s~F0!1s~E0!…, ~25!

where thes’s are the standard deviations. This formu
shows that the distance ofT from T0 needs to be consider
able before serious deterioration of the error occurs, provi
that s(E0) is not significantly larger thans(F0).

To complete the first stage~a! we also integrate Eq.~23!
alongT to obtainP(T) at both reference volumes. General
this results in an error inP of ;1 kbar for a change of
;100 K.

In the next stage~b! we calculate the zero-pressure vo
ume from a linear interpolation ofP betweenV0,a andV0,b .
Here, as well as in the following, we need to apply the c
rection to P so as to make it consistent with our consta
cutoff calculations~See Sec. II D!.

At the last stage~c! we integrate the first equation of Eq
~15! along V from the reference volume~note that here we
have two possibilities! to the zero-pressure volume and o
tain F5G(P50) at this volume. Of course several assum
tions enter into this procedure that do not seem immedia
justified a priori, such as the linear dependence ofP on
volume. However, fortunately a check on the correctness
these assumptions exists in the comparison of the two va
obtained from integration starting from the two different re
erence points.45 Here we find that the values obtained by t
two routes differ by about 1 meV/atom, showing that o
assumptions were indeed justified.
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2. Solid state

Following the methodology described in Sec. II B th
PDOS and the equilibrium energyU0(V,T) are calculated a
a set of volumes (V/Å 3/atom5$14.82,16.30,17.78,19.26%).
From this the Helmholtz free energyF is obtained using Eq
~9!. For every temperature of interest, the volume dep
dence is fitted by a polynomial and the Gibbs free energy
the quasiharmonic approximation, is obtained through
~5!.

We already noted that the error caused by ignoring
temperature dependence of the PDOS is negligible~Sec.
II B 1!. Moreover, such an error does not occur forU0 since
its temperature dependence is fully accounted for.

The neglect of part of the force constants matrix cau
by the finite size of the supercell also gives rise to an erro
the PDOS. To have a check on the size of this error
carried out calculations for 32- and 108-atom superce
with Monkhorst-Pack meshes of 63636 and 43434, re-
spectively. This gives the samek-point density for both cells.
The effect onG was found to be very small: For the larg
supercellG is approximately 0.5 meV/atom lower~in the
800–1000 K temperature range!. Therefore this error can
also be considered negligible. We expect that the results
converged with respect to thek-point sampling, since in tes
calculations (V517.78 Å3) use of the 43434 instead of
the 63636 mesh for the 32-atom cell results in a change
F of 1 meV/atom only.

The corrections for anharmonicity are applied using
coupling constant integration technique. For one tempera
(T5850 K) the corrected Helmholtz free energy is calc
lated at three volumes. It is extrapolated to other volumesvia
a fit to a polynomial. The temperature dependence is
tained assuming aT2 scaling. This is checked by one calc
lation of the anharmonic correction atT51000 K, and found
to be correct within the statistical error bar. However, scal
linear with T would also fit within the accuracy. Since ou
calculated melting temperature is found to be 890 K~see
below!, i.e., very close to 850 K, the exact nature of t
scaling is irrelevant because it induces a negligible error.
anharmonic corrections toF obtained in this way are adde
to the harmonic part ofF andG is obtained from Eq.~5! as
usual.

In contrast to the harmonic free energy, which was
obtained from simulation but which was directly calculate
the coupling constant integration is subject to statistical
rors. These are reasonably well under control a
;1 meV/atom~runs were of 1.5–2.7 ps duration and ea
atomic velocity component was randomly drawn from
Gaussian distribution on average every 0.06 ps!. Due to the
computational demand of the simulations, more import
systematic errors cannot be avoided. In particular, we
with a supercell containing 32 atoms only, and we are for
to restrict our BZ sampling severely. We use the samek-
point mesh as in our liquid-state MD’s, i.e., the four spec
points of the 43434 Monkhorst-Pack mesh in the BZ o
the cubic supercell~Table III!. Table VI shows how well the
total electronic free-energy correction~i.e., F̃2F̃HA where
F̃HA is calculated directly from the interatomic force co
stants matrixDV! is converged with this mesh compared
other k-point meshes, for a few configurations along o
-
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l50.5 andl51.0 trajectories at 1000 K. It can be seen th
the error is of the order of 3 meV/atom.

Coupling constant integration was found not to be ve
well converged using the halfway MD~i.e., l50.5! only.
Therefore integrations were done using Simpson’s rule fr
the runs withl5$0,0.5,1%.

The corrections for anharmonicity are not negligib
They significantly destabilize the solid, in that they raiseG
by an amount of the order of 10 meV resulting in a reduct
of the melting temperature from;970 K to 890 K.

B. Results

Figure 2 shows the liquid- and solid-state Gibbs free
ergies near the melting transition at zero pressure. Error
accounting for the estimatedstatistical errors are included.
This does not include the error made due to the limitedk-
point sampling.

The calculated melting properties are compared with
perimental data in Table VII~again only thestatisticalerrors
are included!. In general, agreement with experiment
good. The melting transition is found to occur
T5890620 K, compared with the experimental value

TABLE VI. Convergence tests ofF̃2F̃HA ~i.e., the difference

betweenF̃ calculated entirely from the Mermin functional andF̃HA

as obtained from in the quasiharmonic approximationvia the force
constants matrix! with respect to thek-point mesh for several con
figurations along thel50.5 andl51.0 ~i.e., fully first-principles!

trajectories atT51000 K,V517.57 Å3. F̃ is in meV/atom. BothF̃

and,via the interatomic force constants matrix,F̃HA have been cal-
culated using the samek-point mesh. The Monkhorst-Pack mesh
indicated and IRR denotes that only the irreducible part of the hi
symmetry cubic zone has been used.

IRR
43434 43434

IRR
63636

l50.5

6.0 4.1 5.6
23.9 20.8 21.2
14.9 12.0 13.0
13.4 10.1 11.3
14.3 13.9 13.8

Averages: 14.5 12.2 13.0

l51.0

3.0 5.9 4.2
6.3 5.7 6.2

26.8 23.5 24.2
5.6 9.0 10.0
2.2 4.3 6.3

212.2 28.5 27.7
2.3 5.3 4.1

20.3 20.1 20.5
8.3 3.7 7.2
7.1 4.2 5.3

Averages: 1.6 2.6 3.1
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933 K. The entropy of fusionsm is calculated from the slope
of the curves in Fig. 2 using Eq.~1!. DE, the change in
internal energy at melting, than simply follows from
DE5Tmsm. The volume change at melting,DV, is trivially
obtained as the difference between the zero-pressure li
and crystalline phase volumes~at the calculated melting tem
perature!. Unfortunately, the error bar on the volume disco
tinuity at melting is rather large. This is mainly due to u
certainties in the anharmonic corrections in the solid stat

The change of the melting temperature with external pr
sure can be obtained in two ways. From the Clapeyron eq
tion one easily obtains

FIG. 2. Calculated Gibbs free energies for the solid and liq
state at zero pressure. The width of the lines represents the sta
cal error.

TABLE VII. Comparison between experimental and calculat
melting related properties of Al. All calculated properties~including
estimated statistical errors! are obtained for the calculated meltin
temperature at zero pressure. Listed are the melting temper
(Tm), the entropy of fusionsm , the change in internal energy upo
melting DE ~simply related tosm by DE5Tmsm!, the change of
volume upon meltingDV, and the derivative of the meltingTm with
respect to pressure.

Experiment Calculation

Tm ~K! 933.47a 890620
sm (kB) 1.38b 1.3660.04
DE ~mRy! 8.16b 7.760.2
DV (Å 3) 1.24c 1.2660.2
DV (Å 3) 0.96d 1.2660.2
dTm /dP ~K/GPa! 65e 67612f

dTm /dP ~K/GPa! 65e 62g

aCRC Handbook of Chemistry and Physics, 74th ed., edited by D.
R. Lide ~CRC, Boca Raton, 1994!.

bRef. 7.
cFrom the Clapeyron equation, usingDE58.16 mRy and
dTm /dP565 (K/GPa) at 933 K.

dS. P. Kazachkov, N. M. Kochegura, and E. A. Markovskiy, Ru
Metall. 1/1979, 65 ~1979!.

eJ. F. Cannon, J. Phys. Chem. Ref. Data3, 781 ~1974!.
fFrom the Clapeyron equation, using calculatedDE andDV at 890
K.

gDirectly calculated, i.e., from the change of the melting tempe
ture with pressure.
id

-

s-
a-

dP

dTm
5

sm

DV
, ~26!

which relatesdP/dTm to known quantities. Alternatively
the whole procedure of Sec. II can be repeated for arbitr
external pressures by just changing the value ofP in Eq. ~5!.
Of course, this is only possible as long as we remain clos
our reference state points. The existence of these two ro
provides a check on the internal consistency of our fitt
approach.

IV. DISCUSSION & CONCLUSIONS

In this paper we have demonstrated that the melting pr
erties of a metallic element can be calculated with satisf
tory accuracy entirely from first principles. In contrast
previous calculations on the melting of metals, the therm
dynamic quantities that we have calculated for solid and
uid Al refer to fully first-principles representations of th
system, i.e., neither to models fitted to first-principles cal
lations nor to effective interactions based on a perturba
expansion. This is a crucial methodological distinction, b
cause fitting and/or perturbational procedures may~in prin-
ciple! introduce completely uncontrollable errors. Such
rors are not expected to occur for a simplesp bonded metal
at ambient pressure, like, e.g., the Al system studied here8–11

However, we expect that in cases where a perturbational
proach breaks down and/or approximations remain de
able, the present calculational framework can be very he
ful. With the present study on a ‘‘test case’’ like liquid Al w
hope to have demonstrated its feasibility, and pointed
where possible ‘‘bottlenecks’’ are to be expected.

It is because we are concerned with general methods
we have placed such a strong emphasis on technicalities,
particularly on the precision of the calculations. We ha
pointed out that the precision required of the calculated f
energies is governed by the entropy of fusion, and for Al t
implies that the free energies of the solid and liquid m
both be calculated to a precision of a few meV/atom in or
to obtain meaningful melting properties. Here, we must d
tinguish sharply between two completely different questio
The first is the accuracy of DFT~or rather LDA! itself, i.e.,
its ability to reproduce melting properties given that it
implemented with no imprecision whatever. The second
the technical precision with which DFT has been imp
mented in the context of fully first-principles calculation
Although we have not been primarily concerned with t
inherent accuracy of DFT, we do expect it to be very go
for Al.11 This is not because DFT gives the total energy of
to an accuracy of a few meV/atom~it clearly doesn’t!, but
because solid and liquid Al are both nearly-free-electr
metals, so that there should be an extremely effective c
cellation of DFT errors between the two phases. This is w
our good agreement with experiment can be taken as c
firming the technical quality of the methods we have us
However, we stress again that our main concern has not b
with the accuracy of DFT, but with the technical precision
the calculations within DFT.

The question of precision is crucial because the wh
approach depends onindependentcalculations of the solid
and liquid free energies, and many of the technical err
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cannot be expected to cancel between the two. This is
we must achieve a precision of a few meV/atom for each
energy separately. There are many kinds of technical er
and we have made a determined effort to reduce them
below the required tolerance. We can broadly divide the
rors into statistical and nonstatistical. We have shown
the statistical errors, associated with the limited sampling
phase space in the MD simulations, can be reduced be
the tolerance with fairly short runs of only a few ps. T
main kinds of nonstatistical errors are~i! errors of thermo-
dynamic interpolation and extrapolation, such as the us
the model of Sec. II C 2 to obtain the liquid free energy
volumes and temperatures other than those explicitly ca
lated; ~ii ! errors in thermodynamic integration arising fro
the use of only a fewl values;~iii ! errors due to finite sys
tem sizes;~iv! errors due to incompleteness of the plan
wave basis; and~v! k-point sampling errors. We have pro
vided detailed evidence to show that the errors~i!–~iv! can
be brought under control. We have also done extensive
that suggest that for Al thek-point errors have also bee
reduced to the required size for both solid and liquid. N
ertheless, we are not completely satisfied, because we
had to economize by sampling only over the irreducible z
~of the high-symmetry fcc cell! at certain points in the cal
culations. The evidence we presented indicates that th
satisfactory for a nearly-free-electron metal like Al. But th
means that we are losing generality, and we believe the
a need for further work on thek-point problem.

We conclude by commenting on the pioneering fir
principles work of Sugino and Car on the melting of Si.3 We
note that our agreement with experiment is somewhat b
than theirs, since our calculatedTm differs from the true
value by less than 5%, whereas theirs was off by;20%.
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However, one should not draw hasty conclusions. It is ve
likely that the inherent accuracy of the LDA is worse for th
melting of Si than for that of Al, since Si is a semiconduct
on one side of the transition and a metal on the oth
whereas Al is a metal on both sides. This means that e
tronic screening, and the nature of the exchange-correla
hole will change when Si melts, and this change may not
well described by LDA. For Al, the cancellation of LDA
errors should be better. On the other hand, the problem
technical precision look worse for Al, because its entropy
fusion is less than half of the value in Si~1.38kB rather than
3 kB!, and its melting temperature is only half the size~933
rather than 1685 K!. This means that the tolerance needed
get a given percentage precision inTm is about four times
smaller in Al. The fact that we have needed to use ak-point
mesh that is eight times denser than that used by Sugino
Car is no doubt linked with this.

Building on the success of this work, we are now studyi
the problems of doing similar calculations on more challen
ing systems, including transition metals.
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