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First-order phase transitions by first-principles free-energy calculations: The melting of Al
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The melting properties of aluminum are calculated from first-principles molecular-dynamics simulations
using density-functional theory in the local-density approximation. We calculate a melting temperature of 890
K at zero pressure, to be compared to the experimental value of 933 K. An elaborate discussion of the
techniques employed is presented. The solid- and liquid-state free energies are obtagweghling constant
integration. The respective reference systems are the quasiharmonic crystal and the Lennard-Jones fluid. Good
quality of the Brillouin zone sampling is shown to be crucial. The strategy followed is expected to be appli-
cable to a wide range of liquid metal[$S0163-18208)02914-3

[. INTRODUCTION approaches reality. Therefore good agreement with experi-
ment can only be expected if a substantial cancellation of
Over the past two decades density-functional thkoryerrors occurs, and therefore the validity of the approach can
(DFT) has developed into a very accurate technique for firstonly be tested posteriori
principles total-energy calculations. It has been extended to Several calculations of the melting properties of liquid Al
the description of dynamical processes on the atomic scaleave been reported in the literatdré! The approach of Mo-
by Car and Parrinelld, and first-principles molecular- riarty, Young, and Ross is based on generalized pseudopo-
dynamics calculations and structural energy minimizationdential theory(GPT).® The solid-state free energy is obtained
are now routinely performed by many groups. DFT has beef the quasiharmonic approximation and the liquid-state free
very successful in the calculation of zero-temperature phas@nergy by fluid variational theory. Here the liquid-state free

stability, i.e., total energies, and recently various application§neray is calculated from a reference system that is tuned to
involving free-energy calculations have been repoftéd. closely approach the free energy of the liquid system with

However, its application to first-principles finite-temperaturetN€ €ffective Al pair potential constructed from GPT. This

phase stability calculation has remained limited to the studyp"°CedUre is variational in that it yields an upper bound to
of Sugino and Car on the melting of silican. he free energy of the effective pair-potential systenlisPe

In this paber we report on the determination of the melt_sier also employs a perturbational approach, but based on a
: IS pap port - . local model pseudopotential for the electron-ion interaction.
ing point and other melting properties of Al, from first-

0 T . . >~ To calculate the free energy, he uses a variational approach
principles calculations, using the full Kohn-Sham formalism¢q, poih solid and liquid. In the solid state his calculation

throughout. We hope to demonstrate that DFT is capable gfqceedgagain via the phonon spectrum, but also includes
giving free energies with sufficient accuracy, and propose t@ome corrections for anharmonicity. For the liquid state op-
apply the same technique to more challenging liquid metalgmized cluster theory is used. Mei and Davenport use an
in the future. embedded atom approath. Straub etal. fit volume-
The main problem in a calculation on melting is the very dependent pair potentials to first-principles ddtaTheir
high precision with which the free energy needs to be calcutiquid-state free energy is obtaineda molecular-dynamics
lated. This need for high accuracy transpires from simpleimulation by thermodynamic integration. The solid-state
considerations: The entropy, Gibbs free energyG, and  free energy is calculated either from molecular-dynamics
temperaturel are related by-s=(dG/dT)p (WhereP de-  (MD) simulation and a model fit or from quasiharmonic lat-
notes the pressureTherefore at melting the change with tice dynamics. They find a very good value for the melting
temperature of the difference between the solid-state anglansition (955 K) giving hope that an approach entirely
liquid-state free energiesA@G) can be calculated from the based on DFT can accurately reproduce experimental melt-
entropy of fusions,, via ing data. Our approach is similar to various previous calcu-
lations in that we calculate the free energy of the sl
tially) in the quasiharmonic approximation. However,

9Gso 0Gjq  OAG

Sm= Siq ™ Ssol= aT aT aT -’ @ contrary to all previous calculations on the melting of Al, our
. ) . ] corrections for anharmonicity in the solid state and our
It follows that 6G, i.e., the maximum error iAG, is con-  |iquid-state free energy are obtained from thermodynamic

strained by the required accuracy of the melting temperaturgytegration using first-principles molecular-dynamics simula-
6T through: 6T~ 6G/s,. For Al, s, is 1.38kg,’ so that  tion. This means that an intermediate stage involving the
for a 6T,<50 K a 6G<0.006 eV/atom is required. Such an construction of a model interatomic potentidly either a
accuracy puts very stringent demands on the convergence ffting procedure or perturbation thegng bypassed and that
the calculations. For liquid metals, in particular, the conver-the free energies are obtained directly from first principles.
gence with respect th points is very demanding. Moreover, Therefore our approach is more generally applicable in prin-
this accuracy is definitely higher than that with which DFT ciple.
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This paper is organized as follows: In Sec. Il the tech- 1. Interatomic interaction via DFT: The Mermin functional

nigues used are described in detail. Results of the application - . ~
to the melting of Al and a discussion of the errors can be At finite temperaturd the electronic free enerdy(R, T)

found in Sec. L. Di . p Ui 1ols Obtained by minimizing the Mermin functiortalin the
ound in Sec. IIl. Discussion and conclusions are presentegf . ‘apo o tor e’

in Sec. V.
ML{gnt {Tah R TI=2 [Fo b0l Td 6n) ~keTS(Fr)]
Il. CALCULATION METHODOLOGY
A. General strategy +EMp]+ Exc[p]+f d3rvion(r)p(r)
We aim to calculate the temperatufg, at which alumi-
num melts under the condition of constant, ambient, external * Yewad R), ©)

pressuri.e., P=0). Therefore we need to determine where wijth respect to the orbitals,} and the partial occupancies
the Gibbs free energy of the liqui;,(P=0,T), drops be-  [f} under the constraints of orbital orthonormality and
low that of the solid,G¢,(P=0,T). We calculate both of charge conservatio. (To simplify the notation we have
these functions separately and obtain the melting point as thgropped thék-point index) T, is the kinetic-energy operator,
temperature where they cross. This also gives informatiofeH the Hartree energyE*® the exchange-correlation energy
about other melting properties like the entropy of fusion ancfunctional, yg,.q the Madelung energy of the ions, aé"

the _change of volume. Moreov_er_, us_ing this strategy, Wepe jonic potential. The electronic entro@(f ) and charge
avoid many troubles related to finite-size effefike artifi- densityp(r) are given by

cially high free-energy barriers and large hystenetiat can
easily occur in a direct simulation of any first-order phase B(f )=—[f In f+(1—f)In(1—f)]
transition. In particular, calculations on small systems, which '
our first-principles simulations necessarily are, are prone to
suffer from such problems. p(r)=2>, foldn(n)|?, (4)
In any first-principles calculation one is confronted with n
the problem of calculating the free energy of a system havingespectively. Note that the Mermin formulation implies a
two very different sets of degrees of freedom: the ionic Po-germ; distribution for the(f,} according to the eigenvalues

sitions and the electronic wave functions. The ionic positiong the {¢,} in the associated Euler equation. It needs to be
are described sufficiently accurately by classical mechanic§ept in m?nd that the resulting Fermi-surface smeafinga-

whereas the electrons require a quantum-mechanical treaf;, g bykgT in Eq. (3)] serves a twofold purpose. At first,
ment. The usual way out of this problemvi the adiabatic there is its physical significance in describing the electronic

approximation, which generally stiI.I hoIlds at finite tempera-sub_System at finitd. Secondly, as an additional advantage,
ture: The electrons respond very fése., instantaneouslfo — j gmoothes the discontinuous jump at the Fermi surface.

the atomic motion. So their free energy does not depend on, . . ~ .
the ionic velocities and it can be calculated with as input[PhIS results in a faster convergencefoiwith respect to the

. H 4
their temperaturd and theN atomic positiongR) only. In derésny oflthek—p0|_nt TeShl' diob de t lculate th
density-functional theory this calculation is done by minimi- everal approximations need o be made 1o caiculate the

zation of the Mermin functionaiSec. Il A 1. The resulting Mermin functional. The most important one is the calcula-

| . ~ . - tion of the exchange-correlation functional in the local-
electronic free energl (R, T) acts as the classical potential- density approximation. Moreover, since it is not known for

energy functiond(R,T) for the atomic degrees of freedom. gnite T it is approximated by the zerb-functional of Cep-
Using well-established simulation techniques, this potentlal-e”ey and Aldel® in the parameterization by Perdew and
energy function(into which T enters as a parametetan Zunger'®
then be used to calculate the Helmholiz) (and Gibbs () Another approximation is the pseudopotential approxima-
free energies from the atomic dynamics oit8ec. 1A 2. tjon: Only the valence electrons are explicitly treated and the
By virtue of the decoupling between atomic and electroniGeraction between valence electrons and the atomic core is
motion these equal the respective free energies of the comapjaced by a smooth potential that accurately mimics the
plete system, i.e., foF the following holds: scattering at the “frozen” core electrons and nucleus. We
use an ultrasoft pseudopotentid® with nonlinear
core-correction’s applied. Details are reported in Sec. I D.

% f exf — BF(R,T)]dR]|, Since the functiori? acts as the potential for the ionic
ANy motion, the interatomic forces are calculated by its differen-
(2)  tiation with respect to the atomic positions and are conve-
niently obtained from the Hellmann-Feynman theor8nt?
. . Using these forces, molecular-dynamics simulations can be
where 8=1/(kgT), A is the thermal de Broglie wavelength o tormed by direct minimization of the Mermin functional
andV denotes the volume. Note that the terminology is in-5¢ e4ch time step. This is the approach we have followed. It
herently confusing: In Eq(2) the electronic free energy  allows to use a larger time step then conventional Car-
and the(Helmholtz free energy of the complete systdfn  Parrinello-type dynamics, but at each time step several elec-
are two very distinct function¥ tronic minimization steps are required to obtain the elec-

F(V,T)=—kgT In
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tronic ground state with sufficient accuracy. Overall we B. Free energy of the solid phase
expect that this approach is equally efficient as a standard

. . 1. ih i imation for th
Car-Parrinello-type dynamidsee Sec. |1 D for details Quasiharmonic approximation for the crystal free energy

In the quasiharmonic approximation the Helmholtz free
2. Thermodynamic integration energy is determined by the harmonic lattice vibrations, i.e.,
_ the phonons, at a volumé: 2°
Given the interatomic potentiél (R,T) [i.e.,F(R,T)] we
need to calculate the Gibbs free ene@yP,T). For both
the liquid and the solid, we achieve this by first calculating FV.T)=Uo(V,T)+ Q_BZ
the Helmholtz free energ¥(V, T), from which we obtairG

by Xz

i BZ
JF
G(P,T)=F(V,T)+PV, P:—(W) NG (8)
N, T The{wqi(V,T)} are the phonon angular frequencies at wave
. . ) vectorg and polarization direction for volumeV (see Ref.
Atl almtblgr(]{/ 'IE))retSSfl:Ir?:IF':r\l/:O' However, WeISt'” need to  27) (g, denotes the volume of the Brillouin zone. The first
calculateP(V,T) to find the zero-pressure volume. . : L=
) term,Uq(V,T), is the potential energg.e., F) of the perfect
It is well known thatF cannot be calculated from a MD crystal at volumeV. Both the{w;} and Uy implicitly de-

simulation directly, since it cannot be expressed as an er}iend on temperaturgia the temperature dependence of the
semble averag® However, well-documented techniques do Mermin functional. The second term in E€) arises from

exist to calculate the free energy of a system relative to thaﬁ1e zero-point vibrational motion, and the third from the

\?ife\?vr)]oElt]ri:ssi}{Sit:nﬁsg;,blee %o Ez;alfclui\?t)ef?rr]ea f:zgrzlrj\g? ngfr'athermally-induced occupancy of the various phonon modes.
: P 9y Note that Eq.(8) assumes a quantum statistics for the

fgfsgfemncgysresl?et';g 2 to t':]hee kigg\gln f;ieo?ntiregng;r?arségzlr? honons, whereas our calculation of the liquid-state free en-
= oa y T 9 . ) .g . ?gy is fully classical. In the high-temperature limit, £8)

(LJ) fluid.*" In MD simulations this is conveniently done by a1 pe expanded intd

thermodynamic integration using Kirkwood'’s coupling con-

stant method. A range of hybrid systems is introduced in kgT

which the potential-energy functidd switches from the ref- FIV.T)=Uo(V,T) = 5—

erence systenih =0, U=U,) to the system for which one Bz

wants to calculat& A\=1,U=U,):

ﬁwq'i
2

+kgT In[1—e "ai’keT] | dq.

kT 2

ﬁwq’i

1
24

ﬁwq‘i
kgT

XZ (In +---)dq.
I BZ
©)

The difference between the free energies of systems | and fihe first term in the sum on the right-hand side is the clas-
is obtained by integration over the range of hybrid systemssical contribution. For consistency with the liquid-state cal-
culations, we discard the higher terms in the expansion, i.e.,

1 JUN) the quantum corrections. At-1000 K these are typically
F()\=1)—F()\=O)=J d)\< > , (7)  —~1meV/atom for Al.
0 2NN As input for Eq.(9) we need the phonon density of states

(PDOS and Uy(V,T). The latter is easily calculated in a
where the brackets denote the ensemble average for a syst@mimitive fcc cell with a very highk-point density. Since
with potential-energy functiotJ (\). For each\ a separate these are small calculation¥, and T dependence can be
MD run needs to be performed. It is important to choose dully accounted for. The PDOS is obtained by interpolation
reference system that behaves like the system of interest, @ the phonon frequencies calculated with the method of Ref.
that the integral is well approximated by only a fé¢ideally ~ 28. Here one uses a supercell approach with typically several
one MD runs. We use this technique to calculate the freetens of atoms. Onéor more, if neededatom is slightly
energy of the liquidusing the Lennard-Jones fluid as a ref- displaced and the resulting forces on all the atoms are calcu-
erencg, and the anharmonic corrections to the solid-statdated. From these the interatomic force constants matyix
free energyusing the quasiharmonic crystal as refergnbe  and via its diagonalization the dynamical matrix, are ob-
principle, it is also possible to obtain the integral of Ef.  tained. This approach is only exact for those phonons having
from one MD run, where\ switches adiabaticallyi.e., very  wave vectors commensurate with the periodically repeated
slowly) from 0 to 1 during the simulatiof?. However, we supercell. Phonon frequencies at otlgepoints can also be
prefer to carry out MD runs for fixed since it allows for a calculated, assuming that the extra force constants needed
systematic improvement of the integral, without having toare 0. This approximation can be tested by carrying out cal-
redo part of the calculation: If the integral is calculated with culations for various sizes of the system.
an extended Newton-Cotes formulbke Simpson’s rulg The procedure is repeated at various volumes, and the
higher accuracy can be achieved by just adding values of theesults are fitted to a polynomial. From this fit and E5).the
integrand at intermediate points obtained from new simulaGibbs free energy is obtained. In principle, the whole volume
tions. “scan” should be repeated for the range of temperatures of
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interest, since théw,;} depend on temperature. For Al this 3. Contributions due to vacancies

temperature dependence is negllglble we checked that it in- At any nonzero tempera’[ure’ a Crysta| a|WayS contains
duces a change i of merely ~0.15 meV/atom for a thermally generated lattice defects. These defects will give a
100-K temperature change. Therefore our calculations of thgontribution to the free energy, which is not accounted for in
{wq,i} were carried out for a fixed Fermi smearing, corre-the discussion so far. We give here a brief discussion of this

sponding to a temperature of 800 K. defect contribution; our conclusion will be that it can be
. o neglected.
2. Corrections for anharmonicity In aluminum and most other metals, the dominant lattice

In order to obtain the full free energy of the crystal a defect in thermal equilibrium is the vacanty?* For a crys-
correction that reflects the anharmonicity of the lattice vibratal containingN,,, lattice sites and a concentratienof va-
tions needs to be added to the quasiharmonic results obtainé@ncies(number of vacancies per lattice itehe vacancy
in the previous subsection. This is done by a thermodynami€ontributionG, to the Gibbs free energy of the crystal is
coupling constant integratiokl, is the complete interatomic
potential-energy function calculated from first principles, and Gy=Njufcg,+kgT(c In c+(1-c)in(1—-c))]. (11
the reference potential-energy function is the fully classi-
cal quasiharmonic potential energy function for thie-33
phonon modes in thil atoms supercell:

Here g, is the free energy of a single vacancy, i.e., the
change of free energy of the whole system when an atom is
removed from a specified perfect-lattice site and used to cre-

1 ate a new lattice site, the whole process being performed at

U=Uy(V)+ > Z u(R)Dy(R—R)uU(R’). (10 constant pressure and temperature; the final term in(Hg.
R.R is the configurational free energy of the vacancies. In full
The u(R) are the atomic displacements from the equilibriumthermal equilibrium, the concentratiaris determined by the
positionsR and Dy(R—R’) is the atomic force constants condition thatG, be a minimum, which gives
matrix. For Al we use a 32-atom supercell, i85+ 32.
An issue that needs care is the temperature control during c=1/[exp(gy/ksT)+1]. (12)

the MD runs. Since the system is close(tw completely
harmonic, the modes will not strongly couple and equilibra-
tion between the modes will be very slow. For this reason the _
standard Noséhermostat technig@&cannot be used, unless Gy=NiakgT In(1~c). (13
each “normal mode” receives its own dedicated thermostat|n practice,c<1, so that the vacancy contribution to the free
Moreover, the standard Noseheme has trouble in generat- energy per atom is accurately approximated by
ing a canonical sampling for a harmonic oscillator and would
need to be replaced by a chain of Ndseover Gy/Np= —kgTC. (14)
thermostats® (See Ref. 4 for a thorough discussip#n-
other way out of these problems that we have adopted is to To estimate this free energy, we need to know or

use a thermostat of Andersen tyfleEach atomic velocity equivalentlyg,, at the melting point. There have been sev-
component is redrawn randomly from a Gaussian distribuera| attempts to determireexperimentally, e.g., by accurate
tion after a specified, average number of steps. measurement of the lattice parameter and the density of the
The approach outlined so far results in the correction te:rystal>® Such measurements indicate that in Al just below
the Helmholtz free energy for Oné/(T) pOint. To obtain it the me|t|ng pointc: 10_3_ Using this value forc, we esti-
as a function of volume, we fit a polynomial to the results of mate a vacancy contribution to the free energy per atom of
the correction scheme carried out at various volumes. For thg 1 meV. From the relatiodT ,= 6G/s,, mentioned in the
temperature dependence of the correction we assuffie a |ntroduction, this very small free-energy contribution could

scaling. In fact, the scaling of the corrections with temperathangeT,,, by at most a few K, and we therefore ignore it.
ture is not evidenta priori. In general a combination of

T2, T2 terms and even a temperature-independent contribu-
tion is expected in the high-temperature liffitTherefore
the temperature scaling needs to be checked by additional In the liquid state we need another strategy to determine
calculations at a few other temperatures. the free energies. Using E¢p), as for the crystalline phase,
Alternatively one could have adopted the strategy fol-we need to calculate as a function of bothV andT. This
lowed in Ref. 32 where a series of molecular-dynamics simueould be done by carrying out, for every point on\4 1)
lations at several temperatures are carried out and the coejfid, a coupling constant integration from a system with
ficients of an analytic representation of the anharmoniknown free energy to the full first-principles system. This is
contribution toF are obtained from a fit to, e.g., the internal not exactly our approach.
energy after its harmonic part K3TN/2) has been sub- We carry out two coupling constant integratiofSec.
tracted out. This approach is probably more useful if the fredl C 1), at two different reference volume®/{,,V,,) and
energy needs to be accurately known over a large temperane reference temperaturé€y, that are chosen to be close
ture interval, but here we are interested in the the free energp the experimental melting point. As a reference system we
only around the melting point. Therefore we expect the apuse the Lennard-Jones fluid. From this we obtain the Helm-
proach we have used to be more efficient in terms of comholtz free energy at the chosen thermodynamic state points.
puter requirements. From additional MD rungat the same two state poihtwe

The equilibrium value ofG, is thus

C. Free energy of the liquid phase
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3.0 TABLE I. Details of the Lennard-Jones reference systems used
for the coupling-constant integrations. The Lennard-Jones param-
eterso and e are defined in Eq(16).

201 T (K) Vv (A3/atom) o (A) € (1072 eV)

5 900 17.370 2.600 4.000

10l 900 18.310 2.600 3.800
for thed-bonded metals it has been argued that a potential of

0.0, 25 35 25 50 r 2% type should be more appropriate®® Even for liquid

. . . . . - - - 712 . .
r (A) Al, LJ is not a unique choice, and & < potential might
- . work equally well>36
FIG. 1. LJg(r) (full curve), first-principlesg(r) from I' point A possible source of error might be related to the small

calculation(short dash and first-principlegy(r) calculated with 4 system size. In our simulations the periodically repeated su-
k points(long dash. Averages pertain to 1.6 and 1.2 ps runs for the percell contains 64 atoms, whereas Johnsbal. have per-

I and the 4k-point calculations, respectively=18.31 A%atom,  f5rmed MD calculations on a system of 864 atoms. How-
T=900 K. ever, if interactions between atoms of different periodic
images are included, the use of such a small system causes
only a negligible error. Still a cutoff radius.; needs to be
imposed on the LJ interactions, and we took it targg=8c

(in all our calculations We account for the neglect of inter-

— = =E, (15)  actions beyond that distance with the standard correction for-
N/t VN mulas[that assumey(r)=1 for r>r,] that are given by,

it is possible to calculaté&(V,T) (and thereforeG) in the €. Johnsoret al. [thelr Eq.(3)] and in Ref. 37. This ?p-
vicinity of the chosen points. However, we find it more con- Proach is very satisfactory: Our test at thé=18.31 R,
venient to take a further intermediate step and fit the data t§ = 900 K) thermodynamic state point shows that we can
a simple modelSec. IIC 2. F, P, andG at nearby state reproduce the potential energy of the fit by Johnebal. to

also obtain the internal enerdy and pressurd®. In prin-
ciple, by thermodynamic integration alodyand T, using

JF JFIT
( ) =—P and

LT

points are obtained from the model. within 1 meV/atom with 64 atoms only. We remark that the
inclusion of the LJ interaction between images is entirely
1. Lennard-Jones reference system consistent with the first-principles treatment of interatomic

) ) . interactions for which the cutoff distance is practically infi-
For the two coupling constant integrations our referencgyite  Moreover, the good agreement we obtain shows that
system is the Lennard-Jonds) liquid, which features the  ith 64 atoms and periodic boundary conditions applied the
following pairwise additive interaction: thermodynamic limit can already be closely approached.

o 12 o 6
r r
wheree and o are parameters. Calculation ofF for a few thermodynamic state points is
Johnsoret al. have carried out elaborate MD calculations not enough: If we want to use E(L5) and/or the fit to the

on this system and have given an accurate tabulation angimple model to calculatE in their close vicinity, we need
analytic fit for the Helmholtz free energy as a function of theto carry out extra simulationfor A=1) at those points to
reduced temperature T{=kgT/e) and  density obtain the internal energ and pressuré®. The internal
[p*=(N/V)a®].** This gives us the liberty to choose an energy is obtained straightforwardly as a sum of a kinetic

optimal e and 0. We tune them so that the IgIr) closely  and a potential energy related part:
fits the first principleg(r). In doing so care has to be taken

P(r)=4e

, (16) 2. Calculating the free energy at other thermodynamic state
points

not to move the LJ system into the nonliquid region of its M
phase diagram. This is necessary to avoid the risk of the E—<E —Vi-Vi+U(R,T)>, 17
hybrid system undergoing a phase transition away from the T2

liquid state during an MD run. In general, the LJ system can

be made to fit the first-principles system very accuratee ~ whereM is the atomic mass ang the velocity of particld.

Fig. 1 and Table | for details of the fjtsTherefore, only very The brackets denote the thermal average. The pressure is
few runs are expected to be needed for the thermodynamigalculated during the MD simulation by means of

integration. Test calculations showed that the integral of Eq.

(7) is already well approximated with the value of the inte- du
grand for the one run ax=0.5 only (see Sec. Ill A1 for P=Pid(V,T)—<—>, (18
details. av

We comment that although the Lennard-Jones fluid pro- o o . ]
vides a good reference system for liquid Al, it may not be thewhere the kinetic contributiorR4, is the ideal gas pressure.
best reference system for other liquid metals. For exampleThe contribution due to the potenti@le., arising fromF) is
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obtained via the Hellmann-Feynman theorem. A complica-

tion arises due to the incompleteness of the basig st
Sec. Il D).
Knowing F, E, andP at our two reference state points we

do not directly proceed by thermodynamic integration of Eq.g_, (eV)
(15). Instead, inspired by Ref. 11, we introduce a general and

physically transparent simple mod@ll quantities are per

atom:
F=—3kgT IN[T/7(V)]+Eo(V)+O[(T—Ty)?], (19

- ( i) =3kg(In[T/p(V)]+ 1)+ O(T—-T,),
aT NV
(20

E=F+TS=3kgT+Eo(V)+O(T—Ty). 21)
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TABLE Il. Total energy differences between different crystal
structures of Al at their equilibrium volumes. The energies were
calculated with different plane-wave cutoff energieg;.

130 170
Ehep— Erec (€V/atom 0.0305 0.0296
Epce— Efec (€V/atom 0.0957 0.0935
E— Ejcc (€V/atom 0.3719 0.3801
P P°F dIn 7(V) 03
aT), 9TV B dv (23

which follows directly from Eq.22). The need to calculate
d In(n)/d V explains whyF andE have to be calculated for
two volumes at least. Now botkh andP are known as func-

This model constitutes one of various possible, general waydons of temperaturénearT,) for the two reference volumes.

to expandF around the reference temperatdrg (See Ref.
38). It should be borne in mind that the model parameters
Ey), as well as the errors, are volume dependent.

In step(b) we find the zero-pressure volurfes a function
of T) by assuming a linear volume dependence for the pres-
sure.

The essential idea behind the model, reflected by the At Step(c) integration of the first expression of E€LS)

—3kgIn(T) contribution toF, is to account for the tempera-

will result in F at the zero-pressure volume, i.e.,

ture dependence of the “harmonic” contribution to the free G(T,P=0).

energy exactly(This results in a zero-order approximation
of the specific heat, by its harmonic value B;.) This
gives good hope that the errors are negligible in tWeT{
range of interest.

From now on we neglect th@(T—T,) andO[(T—Ty)?]
contributions in Eqs(19), (20), and(21) and use the result-
ing approximate model to obtaiR(V,T) in the vicinity of
the two reference points. The strategy is as follow&) The

model parameters are determined from fits at the reference

points. Next the model is used to calculdteand P as a
function of T for the two volumesV,, andVy,,. (b) For

each temperature, the zero-pressure volume is obtained frO{ppeﬂ,lS-

a linear interpolation foP between the two volumes.(c)
For all temperatures of interedt, at the zero-pressure vol-
umeli.e.,G(P=0)] is calculated by thermodynamic integra-
tion of P(V) [i.e., the first part of Eq(15)] starting at one of
the reference volumes.

Note that since we carried out calculations at two refer-
ence volumes, we can integrate to the zero-pressure volume
in two ways. This provides a good check for consistency and
validity of the quadratic form ofEy(V). Moreover, we
checked the validity of the neglect of ti&{ (T— T,)?] term
in Eq. (19) with test calculations using a restricté&dpoint
sampling(atI" only, see Sec. Ill A1 for more detajls

D. Technical details

The orbitals and charge density are expanded in plane
waves. An ultrasoft pseudopotentidJS-PP of Vanderbilt
is used to represent the interaction between valence
electrons and the frozen corfén Egs.(3) and (4) the extra
terms arising from the use of a US-PP have been left out for
simplicity.] The plane-wave kinetic-energy cutoff needs to
be chosen sufficiently large, i.e., the total-energy difference
between variougclose-packedphases should be reasonably

The procedure outlined above implicitly assumes a quaye|| converged. Table |1 shows results of test calculations on

dratic expansion oEy(V) with respect toV and a linear
expansion of Ifyp(V)] with respect tdv. This means that five

the total energies of the fcc, hcp, bec, and sc crystals. It
follows that the fcc-hcp difference is already well described

parameters need to be determined, whereas we have Sjsth a cutoff of 130 eV. With this cutoff the bce-hep energy

pieces of information availablé=, E, and P for the two
volumes atT=T,). Therefore we are allowed to do one

difference is also converged to within 2 meV. For hcp-sc the
discrepancies are larger. But this is of little relevance, since

check on consistency of the model as will become clear aghe sc structure is very dissimilar to the close packed struc-

the end of following discussion of stega)—(c).
In step (@) we use the second part of E(L5) in the
context of the approximate model, giving

JF

aT
Substituting our values of and E at the reference points
gives y for both reference volumes. As a next si&pcan be

obtained from substitution ofy and the reference point val-
ues into Eq.(19) so thatF is known as a function of for

_F-E

v T

—S=—3kg(N[T/p(V)]+1). (22

tures of both the solid and the liquid. In view of these test
results, we carried out all calculations with a cutoff of 130

eV. In addition the real-space projection scheme of Ref. 39
was used to efficiently handle the nonlocal part of the
electron-ion interaction.

A point of major concern is the convergence of the MD
simulations with respect t&-point sampling, for both the
liquid and the solid. In order to obtain total energies with an
accuracy in the meV/atom range, tkgoint mesh needs to
be sufficiently dense. In fact, for Al we would like to use a
4x 4x 4 Monkhorst-Pact mesh in the BZs of our 32- and

both reference volumes. The pressure as a function of ten64-atom supercells. However, since the point-group symme-

perature can be obtained by integration of

try of our cubic supercell is broken by disorder, this would,
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TABLE lll. k points(in units of the reciprocal lattice vectors The equations of motion were integrated with the Verlet
and their weights used for the liquid-state simulations and the calalgorithm, using a time step of 3 fs. For the liquid-state simu-

culation of anharmonic effects in the crystal. lations the temperature was controlled with a Nose
: . thermostat® For the solid-state simulations an Andersen
k points Weight thermostat was used.
(0.125, 0.125, 0.125 0.125 _ Calc_ulations were carrie4ozl_(2k1t usir_1g the Viermjfn?ni@io
(0.375, 0.125, 0.125 0375 simulation packagéVASP). Details on the minimiza-
(0.375, 0.375, 0.125 0375 t}on' techniques employed can tf found in Ref. 44. In our
(0.375, 0.375, 0.375 0.125 liquid-state MD’s convergence df to 1.5<10 © eV/atom

was typically reached in four iterations. In the crystalline
state MD’s 5-6 iterations were needed to attain the specified

in principle, result in the need to calculate the wave functiondolerance of 1.510°° eV/atom. A slightly worse conver-

at all 32k points of equal weight in the BZ. This would 9ence is to be expected since the random noise mtroduped by
render the MD calculation computationally too demanding.the And_er_s_en thermostat partly frustrates_the construction of
Therefore we run our calculations with only the four special® 90od initial guess for the charge density and wave func-

points in the irreducible wedge of the cubic BZ, i.e., as if full tions extrapolated from previous MD steps.

point-group symmetry still applied. The size of the error in-

curred by thi_s additionallappr.oximation. is dis_cussed in Sec. Ill. APPLICATION TO THE MELTING OF Al

[ll. The k points and their weights are listed in Table IIl.

Although there is no strict formal justification for the ap-  In the following we apply the methods described in the
proximation of sampling the wave functions only at the spe{revious section to the calculation of the melting transition
cial points, there is a good reason to expect that it will work.of aluminum. FirstSec. Ill A) we discuss the errors for both
It is well known that for simple metals the dominant part of the liquid and solid state separately. Then results for the
the electronic Hamiltonian is the kinetic energy. This resultsmelting properties are presentésec. Il B).
in a shell-like structure of the electronic density of states
with peaks around ?/(2m,)(G+k)?, whereG represents a
reciprocal lattice vector andk denotes a vector of the
Monkhorst-Pack mesh in the BZ. The kinetic energy is most 1. Liquid state

. . . . 2
sensitive to thek-point sampling. However, sinceS(tk) The errors can be subdivided into two distinct classes.

remains invariant under point-group operations, even if th‘?:irst, there are those that arise from inaccuracies in the treat-
symmetry Is proken, the energy 1s expected to be well 4Pment of the electronic structure part of the calculation. Sec-
proxma_ted_ W'th. the spec!al points on_ly. . ond, there are those that originate from the various approxi-
In prmmple, It s posgble to obtain an estllmate of the mations needed to calculate the thermodynamic potentials
error in F caused by using only the special poifitenoted from the interatomic interactions.
by “spec”) from The main error from the first class is that due to the re-
L ducedk-point sampling(See Sec. Il [D. Before starting our
Frui— Fspec= — KgT In(e™ AFrun~Fsped) (24) first-principles MD simulations we carried out a test on a set
of configurations obtained from an MD using a Al pair po-
where the brackets denote averaging over the special pointgntial from second-order perturbation theory. For these con-
ensemble, and “full” stands for a sampling throughout thefigurations we calculated the electronic free eneFgyor
full BZ. It is well known that this approach is problematic: variousk-point meshes. We took thex#4 x4 Monkhorst-
The exponent significantly amplifies the contributions due toPack mesh as a referengee., 32k points in the BZ. We

those rare events whefg, — Fspecis large. In view of this  found that, forl-point sampling onlyF was underestimated
difficulty, one might hope that the errors in the liquid and by ~0.02 eV/atom. With a X 2Xx 2 Monkhorst-Pack mesh
solid state would cancel, so that there is no need to calculai¢ was overestimated by the same amount. When using only
them. However, at different sides of the phase boundary difthose fourk points of the 4<4x4 mesh that are in the
ferent parts of phase space are visited and therefore suchirgeducible wedge of the cubic B@ssuming full cubic sym-
cancellation is not guaranteed to oc¢ewen if the liquid and  metry, see Table I)| the maximum error was reduced to
solid systems are of comparable gize ~2meV/atom and the average error was a mere
In Eq. (18) the pressure is calculated as the derivative of~ 0.4 meV/atom. This motivated us to use these four special
the potential energyR) with respect to volume for a fixed points in the first-principles simulations. However, since
basis set. However, our calculatioffer several volumes these tests were carried out on configurations obtained from
have been carried out at a constant kinetic-energy cutoff o sampling of phase space using only a pair potential, the test
130 eV, resulting in a volume-dependent basis set. Thereresults do not provide more than an indication. Therefore, we
fore, in order to achieve overall consistency, a correction thatarried out convergence tests during first-principles MD
accounts for the change of the basis set with volume needs tamulation also, and the results are listed in Table IV. It can
be applied"! This is easily done, since the “constant cutoff” be seen that differences as large as 2.5 meV occur when
pressure differs from the “constant basis set” pressure by aising the full 4<4x 4 mesh instead of our 4 special points.
configuration and nearlyolumeindependent shift of 5—-6 Differences with respect to calculations using a derser
kbar. point mesh (6<6X6), but using also only those points that

A. Error estimation
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TABLE IV. Convergence tests df with respect to thé&-point  ried out using only one ensembl@ £0.5) to approximate
mesh for several configurations sampled at 0.225-ps intervals aloriine integral of Eq(7). As can be seen from, e.g., Fig. 1 the
the trajectory of the liquid-state first-principles MD run LJ system can be tuned to approach the first-principles sys-
V=17.37 A3, T=900 K. F is in meV/atom and measured relative tem very closely(See Table | for detai)s Nevertheless, it is
to theF from the first-principles MD rur(i.e., “4x4x4, IRR”).  not guaranteed that the integral is well approximated by the
The Monkhorst-Pack mesh is indicated and IRR indicates that onij)@lfway point only.(Moreover, some difference had to be
the irreducible part of the high-symmetry cubic zone has been used@llowed for in order to keep the LJ system out of the nonlig-
uid region of its phase diagraj\We assessed the validity of

IRR IRR this approximation with a test calculation where we used a
4X4X4 4x4x4 6X6X6 sampling of the wave functions &t only (instead of sam-
pling at the four special poinksSince this reduces the com-

0 0.0 18 putational demand by nearly a factor 8, this test is not pro-

0 —04 —03 hibitively expensive and we can run three ensembles

0 18 0.4 (A={0,0.5,3) instead of just one. It is found that the result

0. 1.5 11 of a Simpson integration using all three ensembles differs

0 0.0 11 from the result obtained with =0.5 by less than 1 meV/

0 2.3 0.2 atom.

0 13 15 Having obtained~, E, andP at the reference points, we

0 25 03 next need to carry out stef@) of Sec. Il C 2. However, be-

0 -17 0.5 fore doing so, we first need to assess the validity of the

0 1.5 0.0 neglect of theO[(T—T,)?] term in Eq.(19). We again use

0 -0.1 0.8 the computationally convenient test system with sampling at

0 1.9 0.6 I" only. Forv=18.31 A we calculate; andE, from F and

0 -0.4 -0.6 E at T=900 K. Next we use Eq19), discarding the correc-

0 -0.6 1.0 tion term, to calculate the Helmholtz free energy at

0 -0.7 0.6 T=750 K and compare it to the value obtained directly from

0 -0.2 0.4 coupling constant integration. Agreement is found to be

much better than the-1 meV/atom error bar. This shows

Averages: 0.5 0.6 that the temperature dependencefFofs well described ne-

glecting theO[ (T—T,)?] term. Using Eq(22) it easily fol-
lows how the errors grow while integration alofg pro-
are in the irreducible wedge of the cubic BZ, are smaller. ceeds:
The errors of the second class can themselves be subdi-
vided into errors of two kinds. First, there are the errors T-To
caused by our limitedstatistical sampling, that propagate o(F(T)=0(Fo)+ —F—(0(Fo)+0o(Ep), (29
into the calculation ofG. Second, there are thgystematic 0
errors caused by the approximations made to fit the modelhere theo's are the standard deviations. This formula
and do the thermodynamic integrations. These two kinds o§hows that the distance af from T, needs to be consider-
errors are discussed in the rest of this section. able before serious deterioration of the error occurs, provided
Discussion of the statistical errors is most straightforwardihat o(E,)) is not significantly larger thaer(Fo).
The free energies, internal energies and pressures, for the To complete the first stag@) we also integrate Eq23)

reference statesTg,Voa) and (To,Vop), along with their  ajongT to obtainP(T) at both reference volumes. Generally
estimated errors are summarized in Table V. The productiognis results in an error irP of ~1 kbar for a change of

runs were too shoifranging from 1.5 to 1.9 pdo allow for  _ 190 K.

a thorough statistical analysis that could give a good estimate |, the next stagéb) we calculate the zero-pressure vol-

of the standard deviations of the mean valtfefistead we  ume from a linear interpolation & betweenV, , andVg .

give estimates based on comparisons of variable length rutHere, as well as in the following, we need to apply the cor-

ning averages. rection toP so as to make it consistent with our constant
A remark is in order on how the free energies in Table Vcutoff calculationsSee Sec. Il D)

were calculated. The coupling constant integrations were car- At the last stagéc) we integrate the first equation of Eq.

(15) alongV from the reference voluménote that here we

TABLE V. Calculated thermodynamic data for the liquid at the have two possibilitiesto the zero-pressure volume and ob-

reference point§T=T,, V={V,.,Vo,}) and their estimated sta- tain F=G(P=0) at this volume. Of course several assump-

tistical errors(in parenthesisfor the liquid state. tions enter into this procedure that do not seem immediately
justified a priori, such as the linear dependence Pfon

T (K) 900 900 volume. However, fortunately a check on the correctness of

V (A3atom) 17.370 18.310 these assumptions exists in the comparison of the two values

F (eV/atom —4.4524 (0.00) —4.4608 (0.00) obtained from integration starting from the two different ref-

E (eV/atom —3.841 (0.002 —3.818(0.002 erence point§> Here we find that the values obtained by the

P (kbap 25(2) 0(2 two routes differ by about 1 meV/atom, showing that our

assumptions were indeed justified.
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2. Solid state TABLE VI. Convergence tests df —Fpa (i.e., the difference

Following the methodology described in Sec. 1B the betweerF calculated entirely from the Mermin functional afgl
PDOS and the equilibrium enerdy,(V,T) are calculated at as obtained from in the quaS|harmon|c_apprommatumthe force
a set of vqumes\(’/A3/atom={14 82,16.30,17.78,19.96 constants matrixwith respect to thé&-point mesh for several con-
From this the Helmholtz free ene.r ,i .bt g d o E figurations along the.=0.5 and\=1.0 (i.e., fully first-principles

eryis obtained USing £4. 1. ories aT = 1000 K, v=17.57 &. F is in meV/atom. BotfF
(9). For every temperature of interest, the volume depen- . _ ) =
dence is fitted by a polynomial and the Gibbs free energy, ir?nd,wa the interatomic force constants matrkx,, have been cal-

: . . . . . culated using the santepoint mesh. The Monkhorst-Pack mesh is
the quasiharmonic approximation, is obtained through Eq|'ndicated and IRR denotes that only the irreducible part of the high-

(5). i

We already noted that the error caused by ignoring thpsymmetry cubic zone has been used.
temperature dependence of the PDOS is neglig{8lec. IRR IRR
Il B 1). Moreover, such an error does not occur fhy since AX4X4 4X4X 4 6X6X%X6
its temperature dependence is fully accounted for.

The neglect of part of the force constants matrix caused A=0.5
by the finite size of the supercell also gives rise to an error in 6.0 a1 56

the PDOS. To have a check on the size of this error we

carried out calculations for 32- and 108-atom supercells, ii'g igg i;é
with Monkhorst-Pack meshes oP®6 X6 and 4x4 X4, re- 13'4 10'1 11'3
spectively. This gives the sarkepoint density for both cells. ' . '
The effect onG was found to be very small: For the larger 14.3 13.9 138
supercellG is approximately 0.5 meV/atom lowein the  Averages: 145 12.2 13.0
800-1000 K temperature rangeTherefore this error can
also be considered negligible. We expect that the results are A=10
converged with respect to thepoint sampling, since in test 3.0 5.9 4.2
calculations ¥=17.78 A%) use of the 44X 4 instead of 6.3 5.7 6.2
the 6xX 6 6 mesh for the 32-atom cell results in a change of —6:8 _3.'5 _4_'2
F of 1 meV/atom only. 56 9.0 10.0
The corrections for anharmonicity are applied using the 2'2 4'3 6.3
coupling constant integration technique. For one temperature B 12'2 _8 '5 _7 7
(T=850 K) the corrected Helmholtz free energy is calcu- 2'3 5'3 4;1
lated at three volumes. It is extrapolated to other voluxiags ' ' :
a fit to a polynomial. The temperature dependence is ob- —03 —0.1 —05
tained assuming @2 scaling. This is checked by one calcu- 3? j; ;;

lation of the anharmonic correction &t 1000 K, and found
to be correct within the statistical error bar. However, scalingayerages: 1.6 26 31
linear with T would also fit within the accuracy. Since our
calculated melting temperature is found to be 89Qd€e
below, i.e., very close to 850 K, the exact nature of the, _ 4 5 ang\ = 1.0 trajectories at 1000 K. It can be seen that
scaling is irrelevant because it induces a negligible error. Th‘f’ne error is of the order of 3 meV/atom.

anharmonic corrections # obtained in this way are added

to the harmonic part oF andG is obtained from Eq(5) as ;¢ converged using the halfway MI.e., A\=0.5) only.

usual. _ , Therefore integrations were done using Simpson’s rule from
In contrast to the harmonic free energy, which was Notpe runs withh ={0,0.5,3.

obtained from simulation but which was directly calculated,
the coupling constant integration is subject to statistical ery
rors. These are reasonably well under control andD
~1 meV/atom(runs were of 1.5-2.7 ps duration and each
atomic velocity component was randomly drawn from a
Gaussian distribution on average every 0.06 paie to the
computational demand of the simulations, more important B. Results
systematic errors cannot be avoided. In particular, we run

with a s_upercelg;ontalnl?g 32 atomls ow' and Wﬁ areaigrce%rgies near the melting transition at zero pressure. Error bars
to restrict our BZ sampling severely. \We use the same .0 nting for the estimatestatistical errors are included.

point mesh as in our liquid-state MD’s, i.e., the four special-l-hiS does not include the error made due to the limied
points of the 44X 4 Monkhorst-Pack mesh in the BZ of point sampling.

the cubic supercellTable Ill). Table VI shows how well the ™ 1o cajcylated melting properties are compared with ex-
total electronic free-energy correctigne., F—Fy4 where  perimental data in Table Vilagain only thestatisticalerrors
Fua is calculated directly from the interatomic force con- are includedl In general, agreement with experiment is
stants matrixDy) is converged with this mesh compared to good. The melting transition is found to occur at
other k-point meshes, for a few configurations along ourT=890+20 K, compared with the experimental value of

Coupling constant integration was found not to be very

The corrections for anharmonicity are not negligible.
hey significantly destabilize the solid, in that they raGe
y an amount of the order of 10 meV resulting in a reduction
of the melting temperature frony 970 K to 890 K.

Figure 2 shows the liquid- and solid-state Gibbs free en-
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o dP s, 26
-4.40 dT, AV’
which relatesdP/dT,, to known quantities. Alternatively,
the whole procedure of Sec. Il can be repeated for arbitrary
s external pressures by just changing the valuP af Eq. (5).
—445 Of course, this is only possible as long as we remain close to
our reference state points. The existence of these two routes
provides a check on the internal consistency of our fitting
approach.
450 b— L
800.0 850.0 900.0 950.0
T IV. DISCUSSION & CONCLUSIONS

FIG. 2. Calculated Gibbs free energies for the solid and liquid | this paper we have demonstrated that the melting prop-
state at zero pressure. The width of the lines represents the statistirties of a metallic element can be calculated with satisfac-
cal error. tory accuracy entirely from first principles. In contrast to

previous calculations on the melting of metals, the thermo-

933 K. The entropy of fusios,, is calculated from the slopes dynamic quantities that we have calculated for solid and lig-
of the curves in Fig. 2 using Eql). AE, the change in uid Al refer to fully first-principles representations of the

internal energy at melting, than simply follows from system, i.e., neither to models fitted to first-principles calcu-
AE=T-s . The volume chaﬁge at meltingV, is trivially lations nor to effective interactions based on a perturbation
m~m* WV

obtained as the difference between the zero-pressure quuﬁi)(pans}'.?tn' This d}s a crijmgl trpethlodolog:jcal d|sr2nct|c_)n, be-
and crystalline phase voluméat the calculated melting tem- cause Titting and/or perturbational procedures rayprin-

peraturg. Unfortunately, the error bar on the volume discon—Ciple) introduce completely uncontrol!able errors. Such er-
tinuity at melting is rather large. This is mainly due to un- rors are not expected to occur for a simplebonded metal

certainties in the anharmonic corrections in the solid state. at ambient pressure, like, €9, the Al system studied f.h_é}e'
The change of the melting temperature with external presljowever, we expect that in cases where a perturbational ap-

sure can be obtained in two ways. From the Clapeyron equap-gl)ac?h breaks (1owr|1 aln?/ or i'ifpproxma'ﬂons rgmam dﬁblat-
tion one easily obtains able, the present calculational framework can be very help-

ful. With the present study on a “test case” like liquid Al we
hope to have demonstrated its feasibility, and pointed out
TABLE VII. Comparison between experimental and calculatedyhere possible “bottlenecks” are to be expected.

melting related properties of Al. All calculated propertigzluding It is because we are concerned with general methods that
estimated statistical errgrare obtained for the calculated melting \ye have placed such a strong emphasis on technicalities, and
temperature at zero pressure. Listed are the melting temperatuﬁ?articularly on the precision of the calculations. We have
(T”;).’ thzgntrgpylof fUISIszm, thebChznlgf'T” 'ntemr?' er':ergy “p?” pointed out that the precision required of the calculated free
melting (S'mp.y related tos, by AE= mSm), the change ot anergies is governed by the entropy of fusion, and for Al this
volume upon melting\V, and the derivative of the melting,, with implies that the free energies of the solid and liquid must
respect to pressure. both be calculated to a precision of a few meV/atom in order
to obtain meaningful melting properties. Here, we must dis-

Experiment Calculation . . . .
tinguish sharply between two completely different questions.
T (K) 933.47 890+ 20 The first is the accuracy of DF{or rather LDA) itself, i.e.,
Sm (Kg) 1.38 1.36+0.04 its ability to reproduce melting properties given that it is
AE (mRy) 8.18 7.7+0.2 implemented with no imprecision whatever. The second is
AV (A3) 1.24 1.26+0.2 the technical precision with which DFT has been imple-
AV (R3) 0.9¢ 1.26+0.2 mented in the context of fully first-principles calculations.
dT,,/dP (KIGP3 658 67+ 12 Although we have not been primarily concerned with the
dT,,/dP (KIGP3 65° 628 inherent accuracy of DFT, we do expect it to be very good

for Al.1! This is not because DFT gives the total energy of Al
8CRC Handbook of Chemistry and PhysiZgth ed., edited by D. to an accuracy of a few meV/atofit clearly doesn’}, but

R. Lide (CRC, Boca Raton, 1994 because solid and liquid Al are both nearly-free-electron
°Ref. 7. metals, so that there should be an extremely effective can-
°From the Clapeyron equation, usindE=8.16 mRy and cellation of DFT errors between the two phases. This is why
dT,,/dP=65 (K/GPa) at 933 K. our good agreement with experiment can be taken as con-
ds. P. Kazachkov, N. M. Kochegura, and E. A. Markovskiy, Russ.firming the technical quality of the methods we have used.
Metall. 1/1979 65 (1979. However, we stress again that our main concern has not been
€J. F. Cannon, J. Phys. Chem. Ref. Dat&81 (1974. with the accuracy of DFT, but with the technical precision of
From the Clapeyron equation, using calculatel andAV at 890  the calculations within DFT.

K The question of precision is crucial because the whole

YDirectly calculated, i.e., from the change of the melting tempera-approach depends dndependentalculations of the solid
ture with pressure. and liquid free energies, and many of the technical errors
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cannot be expected to cancel between the two. This is whidlowever, one should not draw hasty conclusions. It is very
we must achieve a precision of a few meV/atom for each fredikely that the inherent accuracy of the LDA is worse for the

energy separately. There are many kinds of technical errorgnelting of Si than for that of Al, since Si is a semiconductor

and we have made a determined effort to reduce them afin one side of the transition and a metal on the other,
below the required tolerance. We can broadly divide the erwhereas Al is a metal on both sides. This means that elec-
rors into statistical and nonstatistical. We have shown thalfonic screening, and the nature of the exchange-correlation
the statistical errors, associated with the limited sampling oft0lé will change when Si melts, and this change may not be

phase space in the MD simulations, can be reduced beloWe!l described by LDA. For Al, the cancellation of LDA
the tolerance with fairly short runs of only a few ps. The errors should be better. On the other hand, the problems of

main kinds of nonstatistical errors a(@ errors of thermo- tec_hmc_al precision look worse for A.l' b(_acause its entropy of
dynamic interpolation and extrapolation, such as the use Of:fSIOI’] IS Ie;s than.half of the valuelln 8i.38ks rather than
the model of Sec. Il C 2 to obtain the liquid free energy at Kg), and its melting 'Femperature is only half the {883
volumes and temperatures other than those explicitly calc ather than 1685 K This means that th.e tolerance ne_eded to
lated; (ii) errors in thermodynamic integration arising from get a given percentage precision’T, is about four times
the use of only a few values;(iii) errors due to finite sys- smaller in .Al' The f‘.”‘Ct that we have needed to “9‘*'@0'?“
tem sizes;(iv) errors due to incompleteness of the plane-mes,h that is elgh't times ‘.’e”S‘?r than that used by Sugino and
wave basis; andv) k-point sampling errors. We have pro- Car IS NO doubt linked with th's_' .
vided detailed evidence to show that the err@js(iv) can Building on the success of this worl_<, we are now studying
be brought under control. We have also done extensive tes{Ee problems .Of do'f‘g S|m|Iar .calculatlons on more challeng-
that suggest that for Al th&-point errors have also been "9 Systems, including transition metals.
reduced to the required size for both solid and liquid. Nev-
ertheless, we are not completely satisfied, because we have
had to economize by sampling only over the irreducible zone The work of G.A.d.W. is supported by NERC Grant No.
(of the high-symmetry fcc céllat certain points in the cal- GST/02/1454 and that of G.K. by EPSRC Grant No.
culations. The evidence we presented indicates that this IGR/L08946. We thank the High Performance Computing
satisfactory for a nearly-free-electron metal like Al. But this Initiative for allocations of time on the Cray T3D at Edin-
means that we are losing generality, and we believe there isurgh Parallel Computer Center, these allocations being pro-
a need for further work on thk-point problem. vided through the Minerals Consortium and the U.K. Car-
We conclude by commenting on the pioneering first-Parrinello Consortium. We also acknowledge an allocation
principles work of Sugino and Car on the melting ofSMe  of time on the Cray J90 at the Atlas Laboratory. Discussions
note that our agreement with experiment is somewhat bettegith Professor G. D. Price, Dr. L. Vedllo, Dr. J. Furth-
than theirs, since our calculatel, differs from the true mililer, Professor D. Frenkel, and Professor P. A. Madden
value by less than 5%, whereas theirs was off b20%. are gratefully acknowledged.
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