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Elastic strings in solids: Thermal nucleation
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Thermal nucleation of kink-antikink pairs in an elastic string subjected to a washboard potential is analyzed
in the limit of low temperature and high damping. The pair nucleation rate is calculatedanalytically for any
value of the tilt up to close the instability threshold. Finite-size effects are quantified by computing the relevant
end-point nucleation rate under a wide class of boundary conditions. Applications to the physics of lattice
dislocations and flux lines in type-II superconducting materials are outlined.@S0163-1829~98!04513-5#
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I. INTRODUCTION

Elastic strings provide the simplest solvable model of l
ear imperfections in solid-state physics. An early, promin
application of the elastic string paradigm dates back to
heyday of dislocation theory,1–3 More recently, elastic string
models have been shown to provide a full characterizatio
flux line dynamics in type-II superconductors.4–6 In both in-
stances,transport processes are experimentally accessi
through macroscopic dissipation measurements, namely
ternal friction for a strained crystal and finite resistivity for
type-II superconductor in a magnetic field. Stationarycur-
rents may be driven by either field gradients~generalized
forces! or spatiotemporal asymmetries~ratchets7!. The role
of disorder in the aforementioned transport mechanisms
been assessed too, its relevance depending on the topo
and the phase of the stringlike objects under considerat
Pointlike defects are likely to be as important in dislocati
theory, as line or planar defects are to the dynamics of
perconducting vortex arrays.5

One mechanism has been identified as central to st
transport by subthreshold forces: in the presence of a w
bias a line imperfection can jump from a substrate poten
trough into an adjacent one bynucleating kink-antikink
pairs, which can be then pulled infinitely apart with almo
no effort. Most notably, such a mechanism isthermally as-
sisted, whence its clear-cut experimental signature.8,9 In or-
der to analyze in detail the nucleation process we focus h
on the most tractable string model, namely, the overdam
sine-Gordon~SG! string in 111 dimensions. Thermal equi
librium is attained by means of a local coupling to a Gau
ian heat bath and disorder is neglected altogether. Su
model is intended to describe the motion of a dislocation
the Peierls potential8 or a flux line in the crystal phase.4

In Sec. II we determine a piecewise analytical express
for the kink-antikink pair nucleation rate in aninfinite, clas-
sical SG string subjected to a driving force of any intensi
from zero up to close to the instability threshold. The form
las for the nucleation rate in the limits of weak10 and large
tilts11 are outlined in Secs. II A and II B, respectively. In Se
II C the latter formula is improved to account for small
570163-1829/98/57~13!/7930~7!/$15.00
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values of the driving force and is thus proven to match
former one. In Sec. III we consider the case of asemi-infinite
SG string by imposing appropriate boundary conditio
Thermal nucleation turns out to be favored at the string e
point. In Sec. III A we determine the rate for inhomogeneo
nucleation in a SG string and in Sec. III B we summarize
role of the different length scales introduced thus far. Fina
in Sec. IV we discuss the possibility of extending the pres
approach to nucleation in underdamped strings.

II. NUCLEATION IN AN INFINITE STRING

The perturbedSG equation12,13

f tt2c0
2fxx1v0

2 sin f52af t1F1z~x,t ! ~1!

provides an ideal model to study nucleation processes
variety of periodic physical systems at thermal equilibriu
The coupling of the classical SG fieldf(x,t) to the heat bath
at temperatureT is described by a viscous term2af t and a
zero-mean Gaussian noise sourcez(x,t). The damping con-
stanta and the noise intensity are related through the no
autocorrelation function

^z~x,t !z~x8,t8!&52akTd~ t2t8!d~x2x8!. ~2!

The constant forceF represents an external drive, or bia
which breaks thef→2f symmetry of the SG equation
thus making the nucleation process possible.8 Correspond-
ingly, the SG potentialV@f#5v0

2(12cosf) gets tilted by
the bias term2Ff: The resulting washboard potential re
tains a multistable structure foruFu,F3[v0

2. In the over-
damped limita@v0 , F3 coincides with the static threshol
for the locked-unlocked transition.14

The unperturbed SG equation, obtained from Eq.~1! by
setting its right-hand side to zero, has been derived from
covariant Hamiltonian density

HSG@f#5
f t

2

2
1c0

2
fx

2

2
1V@f# ~3!
7930 © 1998 The American Physical Society
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57 7931ELASTIC STRINGS IN SOLIDS: THERMAL NUCLEATION
and bears both extended~phonons! and localized solutions
~solitons!. Solitons can be regarded as an appropriate lin
superposition of moving kinksf1 and antikinksf2 with

f6~x,t !54 arctan„exp$6b@x2X~ t !#/d%… ~4!

~mod 2p!, provided the separation between their centers
mass X(t)[X01ut is very large compared to their siz
d[c0 /v0 ~dilute gasapproximation!. In this limit, the equi-
librium kink ~antikink! density in a SG theory at finite tem
perature and with natural boundary conditionsf(x→
6`,t)50 ~mod 2p! is8

n6~T!5n0~T!5
1

d S 2

p D 1/2S E0

kTD 1/2

expS 2
E0

kTD , ~5!

where E05*HSG@f6#dx58v0c0 is the rest energy and
M05E0 /c0

2 is the mass off6 . It follows that the dilute gas
approximation holds forn0

21(T)@d, i.e., at low temperature
kT!E0 .

In the presence of weak perturbations~i.e., kT!E0 and
F!v0

2! thesingle~anti!kink is stable, but undergoes a drive
Brownian motion with the Langevin equation15 ~LE!

u̇52au72pF/M01j~ t !, ~6a!

wherej(t) is a zero-mean-valued Gaussian noise with au
correlation function ^j(t)j(t8)&52a2Dd(t2t8) and
D5kT/aM0 . To derive the LE~6a! it was assumed that a
low temperaturekT!E0 the variance of the~anti!kink speed
is much smaller thanc0

2, so that the relativistic boost facto
b[(12u2/c0

2)21/2 in Eq. ~4! may be approximated to unit
~nonrelativisticapproximation!. As a matter of fact, one see
immediately from Eq.~6a! that the external bias pullsf6 in
opposite directions with average speeduF572pF/aM0
and variancê (u2uF)2&5kT/M0 .

In theoverdampedlimit a@v0 the LE ~6a! can be cast in
the Smoluchowski form

Ẋ572pF/aM01h~ t !, ~6b!

with h(t)5j(t)/a. Moreover, the assumption of larg
dampinga@v0 affords two major simplifications:~i! oscil-
lating solutions of Eq.~1!, such as breathers and phono
radiation, are damped out and therefore play no role in
nucleation process and~ii ! kink-antikink collisions are al-
ways destructive. Indeed, the condition for kinks and ant
kinks to go through each other in the presence of dampin16

F/F3>2(2a/v0)3/2, is incompatible with the stability re
quirementF,F3 .

Finally, we notice that the~uncorrelated! drift of single
kinks and antikinks determines a net string current

j 5f̄ t5~2p!2n0~T!uF , ~7!

whereas their spatial diffusion, with varianc
^DX2(t)&5^@X(t)2X0#2&, corresponds to the string diffu
sion

Df25~2p!22n0~T!^DX2~ t !&1/2. ~8!

In Eqs. ~7! and ~8! overbars denote spatial averages,
(¯)5 limL→` *2L/2

L/2 (¯)dx.
ar

f

-

e

.

A. The kinetic model

Let us consider a SG string with natural boundary con
tionsf(x→6`,t)52pm, m50,61,62, . . . @no geometri-
cal ~anti!kinks, n05n6# and subjected to a weak extern
bias with F.0. The string will drift in theF direction by
nucleating kink-antikink pairs into the adjacent minimu
2p(m11) of the V@f# potential. Thermal equilibrium is
achieved when, independently of the thermalization mec
nism, the nucleation and the annihilation rates of thef6

pairs coincide. LetG denote the equilibrium nucleation rat
per unit of string length; the~anti!kink lifetime t is thus
defined by

G52n0 /t. ~9!

Following Ref. 10, we calculatet by having recourse to the
LE formalism ~6!–~8!. In the overdamped limit~6b! the
mean-square displacement off6 is

^DX2~ t !&5uF
2 t212Dt, ~10!

with D5(kT/E0)(c0
2/a). Moreover, we know that the colli-

sion between a kink and an antikink is always destructi
whereas two~anti!kinks bounce off one another almost ela
tically. The f6 lifetime t is then determined by the cond
tion that^DX2(t)& equals the relevant mean-square free p
n0(T)22. A simple calculation yields

G52Dn0
3~T!@11A11~F/Fc!

2#, ~11!

with Fc5kTn0(T)/2p. The physical meaning ofFc is dis-
cussed in Sec. II C. Two limits are of particular interest: f
F!Fc

G054Dn0
3~T! ~12!

~zero-biaslimit ! and forF@Fc

G152uFn0
2~T! ~13!

~weak-biaslimit !.
We make now a few important remarks.
~i! In view of Eq.~5!, G0 andG1 are Arrhenius rates with

activation energies 3E0 and 2E0 , respectively. WhileG1
points to an underlying two-body nucleation mechanism~see
Sec. II B!, G0 hints at a gas kinetics. In the absence of e
ternal bias thef→2f symmetry of the SG theory may b
broken locally only: The presence of at least one~anti!kink
spectator is required to make the decay of a subcrit
nucleus possible.

~ii ! Büttiker and Christen17,18criticized the zero-bias limit
of Eq. ~12! and in particular the predicted 3E0 activation
energy, on the basis of phenomenological arguments.
though indirect numerical evidence19 supports our viewpoint,
a thorough simulation work on thermal pair nucleati
would be highly desirable to assess the validity of the kine
model.

~iii ! The drift current corresponding toG1 can be easily
computed: Since the nucleated kink-antikink partners trav
relative distancen0

21(T) under the action of the biasF, the
resulting net current isj 5(2p)G1 /n0 , whence results Eq
~7!. More notably, in the weak-bias limit the string curre
turns out to be proportional to the driving forceF, as ex-
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7932 57F. MARCHESONI, C. CATTUTO, AND G. COSTANTINI
pected in linear-response theory. Analogously, on mak
use of expression~12! for G0 , one recovers the string diffu
sion law ~8!. This proves the internal consistency of the k
netic model.

B. The two-body model

Let us address now the question how a kink-antikink p
may be nucleated starting from a vacuum configuration, e
f(x,t)50. Thermal fluctuations are expected to trigger t
process by activating a critical nucleus,8,20 the size of which
is known to increase with decreasingF; see Eq.~18! below.
Provided the critical nucleus size is small enough to ign
many-body effects on the length scalen0

21(T) ~see Sec.
II A !, we can describe the nucleation process as atwo-body
mechanism. The ensuing nucleation model can be treate
an escape process in a multidimensional system with
neutral equilibrium~or zero! mode.21

Thermal fluctuations may activate, with finite probabilit
a nucleusfN(x,X) of length 2X that encroaches upon th
adjacentV@f# minimum 2p. For X@d, fN(x,X) is well
described by the linear superposition of a kink and an a
kink centered at7X, respectively,

fN~x,X!5f1~x1X,0!1f2~x2X,0!

54 arctan@sinh~X/d!/cosh~x/d!#, ~14!

wheref6(x,t) is defined in Eq.~4! with b51. @fN(x,X)
has been centered at the origin for convenience.# The energy
of the nucleusDEN is a function of its size 2X, namely,

DEN5E HSG@fN~x,X!#dx

52E0F12
1

cosh~2X/d!11 S 11
2X/d

sinh~2X/d! D G .
~15!

The components of a large nucleus experience two cont
ing forces~Fig. 1!: an attractive one with potential functio
64E0 exp(22X/d) @see Eq.~15!#, due to the vicinity of the
nucleating partner, and a repulsive one with effective pot
tial 62pFX, due to the external bias, which pulls th
nucleus partnersf6 apart. Thecritical nucleus configuration
fN(x,RN/2) is attained for a distanceRN(F) betweenf6

such that the two competing forces balance each other.
critical nucleusfN(x,RN/2) is thus the field saddle-poin
configuration in the escape process associated with
nucleation.

In the SG theory12 fN(x,RN/2) admits of one unstable
mode only, with negative eigenvaluel0

N and one neutrally
stable translation mode with null eigenvalue~the so-called
Goldstone mode!. In the overdamped limit the decay of th
critical nucleus is fully described by the reduced~or nucleus!
coordinateR52X ~Fig. 1!. On adding the kink-antikink in-
teraction term to the LE~6b! for f6 , we obtain

Ṙ52VN8 ~R!1hR~ t !, ~16!

where forR@0
g

ir
.,

e

e

as
e

i-

st-

-

he

he

VN~R!52
2pF

aMR
R2

4E0

aMR
e2R/d. ~17!

HereMR5M0/2 andhR(t) is the same ash(t), but for the
substitution ofD with DR5kT/aMR in its autocorrelation
function. The size of the critical nucleus is set by the con
tion thatVN8 (R)uRN

50, whence we obtain

RN~F !52d lnS p

16

F

v0
2D ~18!

and the negative eigenvalue

l0
N5VN9 ~RN!52

p

2

F

a
. ~19!

The two-body nucleation rate in Gaussian approximatio21

reads

G25
ul0

Nu
2pL

ZN8

Z0
e2DEN /kT. ~20!

Here the activation energyDEN is given by Eq.~15! for
2X5RN ; Z0 andZN8 denote the~effective21! partition func-
tions of a SG string with lengthL→` in its vacuum and
saddle-point configuration, respectively. The entropy fac
ZN8 /Z0 can be factorized as

ZN8

Z0
5L@4pkTM0#1/2

2pkT

~aul0
Nu!1/2 S ZN

Z0
D

ph

, ~21!

where the contributions from the Goldstone mode, the
stable mode, and the phonon modes are clearly identifia
On neglecting corrections of the second order inF/v0

2 to the
phonon spectrum, the factor (ZN /Z0)ph reduces to

FIG. 1. ~a! Critical nucleus potentialVN(R) for arbitrary values
of aMR . The straight line represents the bias potent
22pFR/aMR . For the kink-antikink potential we plotted th
function DEN(R)22E0 with R52X and DEN(R) given in Eq.
~15!. ~b! Sketch of a critical nucleus. The attractive kink-antikin
forces~inward arrows! and the bias pulling forces~double arrows!
are marked for the readers convenience; the vertical arrow poin
the direction of the string drift.
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57 7933ELASTIC STRINGS IN SOLIDS: THERMAL NUCLEATION
4v0
2/(2pkT)2.12 On making use of Eqs.~18!, ~19!, and~21!

we finally obtain for the nucleation rate~20! the well-known
result8,20,10

G25
2v0

pd S ul0
Nu

2pa D 1/2S 2E0

kT D 1/2

e2DEN /kT. ~22!

The validity of this formula is restricted tokT!Fd!E0 .
The upper bound corresponds to the nonrelativistic appr
mation F!v0

2 and guarantees large critical nucleus siz
RN(F)@d and activation energiesDEN close to 2E0 . The
lower bound is required for the Gaussian approximation~20!
at the saddle point ofVN(R) to hold true.

C. The crossover regime

Let us now compare the nucleation ratesG1 for the weak-
bias limit andG2 for the two-body model. For intermediat
bias values, say,kT!Fd!E0 , the two determinations of the
nucleation rates should coincide, at least in principle.
stead, as pointed out in Ref. 10, the ratio

G1

G2
52pAFd

kT
~23!

~whereDEN has been approximated to 2E0! reveals a dis-
crepancy that seems difficult to reconcile. We noted in S
II A that the rateG1 is consistent with the prescriptions o
linear-response theory; this led us to figure that the disc
ancy in Eq.~23! should be caused by the assumptions int
duced to deriveG2 . Eventually, we concluded that th
Gaussian approximation implied by Langer’s formula~20! is
inadequate to describe the decay process of the cri
nucleus represented by the LE~16! for the nucleus coordi-
nateR.

The approach of Sec. II B allows a simple estimate of
non-Gaussian corrections toG2 . Without entering the intri-
cacies of Langer’s formalism,21 we remind the reader that th
prefactor in Eq.~20! is inverseproportional to the Gaussia
integral22

E
2`

`

expS 2
ul0

Nu
2DR

R2DdR. ~24!

Such an integral approximates the probability flow at
saddle point ofVN(R). In the present case, however, th
analytical form of the potentialVN(R) is given explicitly in
Eq. ~17!, so that instead the approximate factor~24! we
could have used the exact factor

E
0

`

expS V̄N~R!

DR
D dR, ~25!

with V̄N(R)5VN(R)2VN(RN). Accordingly, the nucleation
rateG2 of Eq. ~22! is underestimated by the factor

k~F !5E
2`

`

expS 2
ul0

Nu
2DR

R2DdRY E
0

`

expS V̄N~R!

DR
D dR.

~26!

The reader can easily verify thatk(F)→1 for Fd@kT,
whereas for smallerF values the leading contribution from
i-
s

-

c.

p-
-

al

e

e

the denominator is correctly estimated by approximat
V̄N(R) to 2(2pF/aMR)R, whence we obtain

k~F !52pAFd

kT
. ~27!

The discrepancy of Eq.~23! is thus explained in close agree
ment with numerical evidence.19 Thanks to the correcting
factor ~26!, on decreasingF the two-body rateG2 goes con-
tinuously over into the weak-bias limit rateG1 ; furthermore,
G1 and the zero-bias rateG0 are analytically connected
through Eq. ~11!. The relevant crossoverF values are
Fc5kTn0(T)/2p from G0 up to G1 andFk5kT/d from G1
up toG2 ~see Fig. 2!. Their physical interpretation is straigh
forward. ForF5Fc the thermal energykT coincides with
the mechanical energy needed to pull a single~anti!kink
through a distance of the order of its mean free pathn0

21(T).
Thus, for values ofF smaller thanFc the notion of critical
nucleus becomes untenable. This is why the zero-bias ratG0
cannot be reproduced through the two-body model of S
II B, no matter how accurately we handle it. ForF5Fk the
thermal energykT equals the mechanical work made by t
external force to move an~anti!kink through a distance of the
order of its sized. The linearization of the decay dynamic
around the saddle pointR5RN applies forF@Fk .

III. NUCLEATION IN A FINITE STRING

The effects due to the finite lengthL of the string may
become important. For instance, certain imperfections h
the ability to reduce considerably the activation energy of
critical nucleus by introducing an additionalpinning poten-
tial. Such a mechanism is particularly effective in th
dislocation-induced internal friction at low temperature23

FIG. 2. Comparison of the different nucleation rates predicted
Sec. II. Curve 1, the corrected two-body ratek(F)G2(F) @see Eq.
~26!#; curve 2,G(F) of Eq. ~11!; curve 3,G2(F) of Eq. ~22!. For
the sake of simplicity all rates have been divided by the Arrhen
factor exp(2DEN /kT), that is, nG[G exp(DN /kT). The parameter
values arec0

25v0
251 andE0 /kT53. For the readers’ convenience

the interpolation of curves 1 and 2 is denoted by two solid line
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where the pinning action is exerted by pointlike defects. A
other example is provided by the flux lines that thre
through type-II superconducting films: Their length is nec
sarily limited by the thickness of the sample. The line e
points, when not acting as tight pinning points, may ease
nucleation process depending on the choice of the boun
conditions. Heterogeneousnucleation processes may thu
contribute appreciably24 as either a bulk or a surface effec

A. End-point effects

For simplicity we assume that a long SG string is co
strained at the originx50 with boundary conditions~BC’s!

lfx1sin f50. ~28!

Note that this equation is symmetric under the transform
tion l→2l andx→2x. Natural BC’s are assumed atx5L
with L arbitrarily large. The limitsl→6` andl→0 imple-
ment von Neumann’s~free-end! and Dirichlet’s ~fixed-end!
BC’s, respectively. The Hamiltonian density

H@f#5HSG@f#1fx sin f/l ~29!

incorporates the BC~28! into the SG theory. Accordingly
the string energy is modified by an additional end-point te
2cosf/lux50.

In the presence of a weak external bias the two-bo
model of Sec. II B must be modified to account for the lo
of translational invariance. Let us consider for simplicity
jump forward of the string, i.e.,f→f12p. In the vicinity
of x50, the shape and the position of a critical nucleus
affected by the constraint of Eq.~28! and so are the vacuum
field configurations. The BC~28! amounts to fixing the
position Xb(l) of the center of mass of the SG critic
nucleus FN(x,RN/2)5f1(x1RN/22Xb,0)1f2(x2RN/2
2Xb,0). For simplicity we restrict ourselves to the solutio
with Xb(l).0. The vacuum configurations can be regroup
into two classesF61(x;l): They are all represented by sui
ably truncated kink-antikink functions, namely, byf6(x,0)
of Eq. ~4! with x.0 and appropriate center of massX0(l),
and related through the symmetry identityF11(x)
1F21(x)52pn, with n50,61,62, . . . . Moreover, it can
be easily proven that such vacuum solutions overlap with
f6 components of a pinned critical nucleusFN . In Fig. 3

FIG. 3. Sketch ofF21 ~curves 1!, F11 ~curves 2!, and FN

~curves 3! for a semi-infinite SG string withc0
25v0

251 and ~a!
l→01 and ~b! l→`. Note that we imposedXb(l).0.
-

-
d
e
ry

-

-

y
s

e

d

e

we show the pinned critical nucleusFN and the vacuum
solutionsF61 for l→0 andl→`.

An end-point nucleation process, say, fromf50 to
f52p, corresponds to a transition fromF21(x;l) to
F11(x;l) via the saddle-point configurationFN(x,RN/2).
The activation energy of such a process is obtained by s
tracting the vacuum energy of the symmetric solutionsF61
from the energy of the critical nucleusFN , that is,

DEb~l!5DEN~RN!2E0 . ~30!

In the limit of small bias F!v0
2 the activation energy

DEb(l) is independent ofl and tends toE0 .
The negative eigenvaluel0

N of the pinned critical nucleus
can be calculated following the LE approach of Sec. II
Here the attractive force between the nucleus compon
f6 is given by the variation ofDEb(l) with respect to the
coordinate off2 ~beingf1 pinned atx50!. It follows im-
mediately thatl0

N is one-half of the negative eigenvalue
the homogeneous case~19!, l0

N52pF/4a.
In order to apply Langer’s formula~20! to the present

case we have to modify further the phonon spectrum acc
ing to the new BC. As the critical nucleus centered atXb(l)
is not invariant under translation, the Goldstone mode c
tribution to the entropy factor~21! drops out. Moreover, due
to the constraint~28!, the phonon modes ‘‘dress’’F21
and the nucleus componentf1 in the same manner
so that the total entropy factor ZN /Z0 reads
@2pkT/(aul0

Nu)1/2#(2v0/2pkT). The end-point nucleation
rate, integrated over the entire string length, follows imm
diately from Eq.~20!, that is,

r 25
v0

2

2aL S F

pv0
2D 1/2

e2E0 /kT. ~31!

Here the factor 1/L reminds us of the dishomogeneous natu
of the nucleation process that occurs at the pinning po
x50. The total rate for any assigned distribution of pinne
can be calculated immediately from Eq.~31!.

The rater 2 in Eq. ~32! has been computed in the Gaussi
approximationFd@kT. In order to extend its validity to the
weak-bias rangeFc!F!kT/d, we must multiplyr 2 by the
correcting factork(F) of Eq. ~27!. A few simple algebraic
passages yield

r 15uFn0~T!/L. ~32!

This result is remarkable indeed. On comparing the ratesr 1
andG1 ~or r 2 andG2! we conclude that heterogeneous nuc
ation dominates over homogeneous nucleation
2L<n0

21(T), independently of the bias intensity regim
Moreover, the kinetic model of Sec. II A provides a sugge
tive interpretation of our result forr 1 : If the annihilation
process takes place at the pinner, the~anti!kink lifetime is
determined by the equation^DX2(t)&54L2; the solution for
FL@kT readst51/uF and the relevant rater 152n0 /t co-
incides with Eq.~32!.

B. Nucleation length scales

We conclude this section by summarizing the role of t
three length scales that characterize the nucleation proce
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a finite SG string with BC~28! ~possibly at both end points!:
its length L, the critical nucleus sizeRN(F), and thef6

mean free pathn0
21(T). The temperatureT and the intensity

of the external biasF define three different regimes.
~i! RN(F),n0

21(T),L. The nucleation process occu
through the two-body mechanism of Secs. II B and III
Homogeneous~or bulk! and heterogeneous~or end-point!
nucleation coexist, the relative importance being determi
by the ratio ofG2 to r 2 . For n0

21(T)!L the string accom-
modates an equilibrium gas of thermal kinks and antikin
boundary effects become negligible.

~ii ! n0
21(T),RN(F),L. Many-body effects due to the

presence of an equilibrium~dilute! gas of kinks and antikinks
control the nucleation process, as described by the kin
model of Sec. II A. For vanishingly smallF valuesRN(F)
grows larger thanL and the zero bias rateG0 is eventually
attained.

~iii ! L,n0
21(T),RN(F). This limit has not been addresse

explicitly in the present section. However, the reader w
sure recognize that this corresponds to the short-junc
limit of Ref. 13: The string segment behaves like arigid rod.
The standard Kramers theory for the diffusion of a Brown
particle in a washboard potential with barriersv0

2L provides
a good description of the process forRN(F)@L.

IV. FINAL REMARKS

We conclude by hinting at a few affordable extensions
our theory of nucleation in one-dimensional strings. First
all, we notice that both the kinetic and the two-body mod
can be implemented for two more soliton-bearing strings
wide use in physics, namely, thef4 and the double-quadrati
strings.12 A detailed analysis of the relevant nucleation pr
o

er
.

d

;

tic

l
n

f
f
l
f

-

cess requires the knowledge of the kink~antikink! shape and
the phonon spectrum in their presence; constraints in
kink ~antikink! statistics must be introduced to account f
the lack of transport currents. Analytical expressions for
nucleation rates in the overdamped limit may be easily
tained following the procedure of Secs. II and III.

As mentioned in Sec. I, there is noa priori reason why
the nucleation process should be restricted to the o
damped limit. Indeed, important applications of the S
string model to dislocations3,2 and long Josephson
junctions13 seem to work in the opposite limita!v0 . The
nucleation rate in a SG string with zero biasF50 and van-
ishingly small dampinga→0 has been calculated in th
framework of the kinetic model in Ref. 25 and then appli
successfully to the theory of the Bordoni peak.9 In the same
damping limit, however, the stability of abiasedSG string
against depinning becomes a delicate matter: A sudden t
sition from the locked to the running mode, and vice ver
takes place any timeF crosses a certain threshold value pr
portional toa.14 This shrinks the bias range where therm
nucleation may be appreciable to an arbitrarily small nei
borhood ofF50 ~described by the kinetic model!. Further-
more, at even lowera values quantum tunneling effects b
come increasingly important26 and eventually dominate ove
the thermal nucleation mechanism investigated in the pre
work.27
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17M. Büttiker and T. Christen, Phys. Rev. Lett.75, 1895~1995!.
18P. Hänggi and F. Marchesoni, Phys. Rev. Lett.77, 787~1996!; M.
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