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Elastic strings in solids: Thermal nucleation
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Thermal nucleation of kink-antikink pairs in an elastic string subjected to a washboard potential is analyzed
in the limit of low temperature and high damping. The pair nucleation rate is calcidatdgltically for any
value of the tilt up to close the instability threshold. Finite-size effects are quantified by computing the relevant
end-point nucleation rate under a wide class of boundary conditions. Applications to the physics of lattice
dislocations and flux lines in type-1l superconducting materials are outl[is8d.63-182608)04513-5

[. INTRODUCTION values of the driving force and is thus proven to match the
former one. In Sec. lll we consider the case aemi-infinite
Elastic strings provide the simplest solvable model of lin-SG string by imposing appropriate boundary conditions.
ear imperfections in solid-state physics. An early, prominenirhermal nucleation turns out to be favored at the string end
application of the elastic string paradigm dates back to th@oint. In Sec. Il A we determine the rate for inhomogeneous
heyday of dislocation theory/;® More recently, elastic string nucleation in a SG string and in Sec. lll B we summarize the
models have been shown to provide a full characterization ofole of the different length scales introduced thus far. Finally,
flux line dynamics in type-Il superconductdr@ In both in- N Sec. IV we discuss the possibility of extending the present
stances transport processes are experimentally accessibledPproach to nucleation in underdamped strings.
through macroscopic dissipation measurements, namely, in-

ternal friction for a strained crystal and finite resistivity for a Il. NUCLEATION IN AN INFINITE STRING

type-ll superconductor in a magnetic field. Stationaty-

rents may be driven by either field gradientgeneralized The perturbedSG equatiotf*?

force9 or spatiotemporal asymmetri¢gatcheté). The role

of disorder in the aforementioned transport mechanisms has ¢’tt_C(2)¢xx+ w% sin p=—ag+F+{(x,t) (N)

been assessed too, its relevance depending on the topology

and the phase of the stringlike objects under consideratiorprovides an ideal model to study nucleation processes in a

Pointlike defects are likely to be as important in dislocationvariety of periodic physical systems at thermal equilibrium.

theory, as line or planar defects are to the dynamics of sufhe coupling of the classical SG fiett(x,t) to the heat bath

perconducting vortex arrays. at temperaturd is described by a viscous terma ¢, and a
One mechanism has been identified as central to stringero-mean Gaussian noise souf¢g,t). The damping con-

transport by subthreshold forces: in the presence of a weaktanta and the noise intensity are related through the noise

bias a line imperfection can jump from a substrate potentiahutocorrelation function

trough into an adjacent one bgucleating kink-antikink

pairs, which can be then pulled infinitely apart with almost (LD X 1)) =2akTo(t—t') S(x—x'). )

no effort. Most notably, such a mechanismtliermally as-

sisted, whence its clear-cut experimental signatdr or-  The constant forc& represents an external drive, or bias,

der to analyze in detail the nucleation process we focus hefgnich breaks thep— — ¢ symmetry of the SG equation,

on the most tractable string model, namely, the overdampeghys making the nucleation process possib@orrespond-

sine-GordonSG) string in 1+1 dimensions. Thermal equi- jngly the SG potential/[ ¢]= w?(1—cos¢) gets tilted by

librium is attained by means of a local coupling to a Gaussine ‘pias term— F¢: The resulting washboard potential re-

|andh(|e§t .b?th dar:jdtdlgorde_rb|strr]1eglect§ed a]ltog;trller. f“ch tdins a multistable structure foF| <Fz=w3. In the over-
modet IS Intended 1o describe the motion of a disiocation Indamped limite> wq, F3 coincides with the static threshold

the Peierls potenti&lor a flux line in the crystal phade. for the locked-unlocked transitiod

In Sec. Il we determine a piecewise analytical expression The unperturbed SG equation, obtained from Eg.by

for tlhgélnr-_antlklrg)l_( p?lrdrlucle:tl_o_n rafte n ar;flmte,_ (ilas-_t setting its right-hand side to zero, has been derived from the
sical string subjected to a driving force of any intensity, ..\ 2 iant Hamiltonian density

from zero up to close to the instability threshold. The formu-
las for the nucleation rate in the limits of weidland large 42 42
tilts*! are outlined in Secs. Il A and Il B, respectively. In Sec. t, 2%

g ’ H =—+ci=+V 3
II C the latter formula is improved to account for smaller sd ¢] 2 02 [¢] ®
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and bears both extendéghonon$ and localized solutions
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A. The kinetic model

(solitons. Solitons can be regarded as an appropriate linear | ot ys consider a SG string with natural boundary condi-

superposition of moving kinkg , and antikinks¢ _ with

¢+ (X,t) =4 arctarfexp{ = B[ x— X(t)]/d}) (4)

tions ¢p(x— *o0,t)=27m, m=0,=-1,=2,... [no geometri-
cal (antikinks, ny=n.] and subjected to a weak external
bias with F>0. The string will drift in theF direction by

(mod 2r), provided the separation between their centers ofiucleating kink-antikink pairs into the adjacent minimum

mass X(t)=Xy+ut is very large compared to their size
d=cy/wg (dilute gasapproximation. In this limit, the equi-
librium kink (antikink) density in a SG theory at finite tem-
perature and with natural boundary conditiorRs(x—

+o0,t)=0 (mod 2n) is®
E 1/2
ERE

kT

where Eg= [Hgd ¢ ]dx=8wqcq is the rest energy and
Mo=E,/c3 is the mass ofb.. . It follows that the dilute gas
approximation holds fongl(T)>d, i.e., at low temperature
KT<E,.

In the presence of weak perturbatiof®., kT<E, and
F<w§) thesingle(antikink is stable, but undergoes a driven
Brownian motion with the Langevin equatijér(LE)

1
n-(T)=no(T)= 5

2

2

Eo
kT

), ©)

U=—auF27F/My+ &(1), (6a

where{(t) is a zero-mean-valued Gaussian noise with auto
correlation  function (£(t)&(t'))=2a”’Dé(t—t’) and
D=kT/aM;. To derive the LE(6a) it was assumed that at
low temperatur& T<E, the variance of th¢antkink speed
is much smaller tha?, so that the relativistic boost factor
B=(1-u?/c3)~*2in Eq. (4) may be approximated to unity
(nonrelativisticapproximation. As a matter of fact, one sees
immediately from Eq(63@) that the external bias pullé.. in
opposite directions with average speed=+2nwF/aM,
and varianceé (u—ug)?)=kT/M,.

In the overdampedimit o> w, the LE (6a) can be cast in
the Smoluchowski form

X=F2mwF/aMg+ (1), (6b)

with 7(t)=&(t)/a. Moreover, the assumption of large
dampinga> w, affords two major simplificationsi) oscil-

2m(m+1) of the V[ ¢] potential. Thermal equilibrium is
achieved when, independently of the thermalization mecha-
nism, the nucleation and the annihilation rates of the
pairs coincide. Lel" denote the equilibrium nucleation rate
per unit of string length; théantkink lifetime 7 is thus
defined by

F:2n0/T. (9)

Following Ref. 10, we calculate by having recourse to the
LE formalism (6)—(8). In the overdamped limi{6b) the
mean-square displacement &f. is

(AX?(t))=u?t?+2Dt, (10)

with D=(kT/Eo)(c§/a). Moreover, we know that the colli-
sion between a kink and an antikink is always destructive,
whereas twdantikinks bounce off one another almost elas-
tically. The ¢ lifetime 7 is then determined by the condi-
tion that{AX?(7)) equals the relevant mean-square free path
No(T) 2. A simple calculation yields

[=2Dn3(T)[1+ 1+ (F/F.)?],

with F.=kTny(T)/27. The physical meaning df is dis-
cussed in Sec. Il C. Two limits are of particular interest: for
F<F.

(11

I'y=4Dn3(T) (12)
(zero-biaslimit) and forF>F,
I'1=2ueng(T) (13)

(weak-biadlimit).

We make now a few important remarks.

(i) In view of Eq.(5), I'g andI'; are Arrhenius rates with
activation energies By and &, respectively. Whilel';

lating solutions of Eq(1), such as breathers and phononspoints to an underlying two-body nucleation mechanisge
radiation, are damped out and therefore play no role in th&ec. |1 B), 'y hints at a gas kinetics. In the absence of ex-

nucleation process angi) kink-antikink collisions are al-
ways destructive Indeed, the condition for kinks and anti-
kinks to go through each other in the presence of damping,
FIF3=2(2al wo)®? is incompatible with the stability re-
quirementF <Fj.

Finally, we notice that théuncorrelatedl drift of single
kinks and antikinks determines a net string current

j=¢i=(2m)2ng(T)ug, (7)
whereas their spatial diffusion, with  variance
(AXZ(t))=([X(t)—Xo]?), corresponds to the string diffu-
sion

A@?=(2m)%2no(T)(AX?(1)) M2, ®)

In Egs. (7) and (8) overbars denote spatial averages, i.e.

L/2
—L/2

C)=limy . [Y2(-)dx.

ternal bias thep— — ¢ symmetry of the SG theory may be
broken locally only: The presence of at least daatikink
spectator is required to make the decay of a subcritical
nucleus possible.

(i) Buttiker and Christet"*criticized the zero-bias limit
of Eq. (12) and in particular the predictedE3 activation
energy, on the basis of phenomenological arguments. Al-
though indirect numerical evidenesupports our viewpoint,

a thorough simulation work on thermal pair nucleation
would be highly desirable to assess the validity of the kinetic
model.

(iii) The drift current corresponding 16, can be easily
computed: Since the nucleated kink-antikink partners travel a
relative distanceﬂgl(T) under the action of the bids, the
resulting net current ig=(27)I";/ny, whence results Eq.
(7). More notably, in the weak-bias limit the string current
turns out to be proportional to the driving forée as ex-
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pected in linear-response theory. Analogously, on making

use of expressiofil2) for Iy, one recovers the string diffu- a
sion law (8). This proves the internal consistency of the ki- 5\ 1 1 2 3 1 b5 R/
netic model.

B. The two-body model

Let us address now the question how a kink-antikink pair
may be nucleated starting from a vacuum configuration, e.g.,
¢(x,t)=0. Thermal fluctuations are expected to trigger the
process by activating a critical nucleti® the size of which
is known to increase with decreasifg see Eq(18) below. O Ty,

Provided the critical nucleus size is smalll enough to ignore ¢ = — <— = 7
many-body effects on the lengh scag (1) (see Sec. S S,

I A), we can describe the nucleation process asabody 0 x —

mechanism. The ensuing nucleation model can be treated as

an escape process in a multidimensional system with one FIG. 1. (@) Critical nucleus potentia¥/\(R) for arbitrary values
neutral equilibrium(or zerg mode?! of aMg. The straight line represents the bias potential

Thermal fluctuations may activate, with finite probability, —~27FR/aMg. For the kink-antikink potential we plotted the
a nucleusgy(x,X) of length 2X that encroaches upon the function AE\(R)—2E, with R=2X and AEy(R) given in Eq.
adjacentV[ ¢] minimum 27. For X>d, ¢y(x,X) is well (15). (b) Sketch of a critical nucleus. The attractive kink-antikink

described by the linear superposition of a kink and an anti{orees(inward arrows and the bias pulling forceslouble arrows
kink centered at- X, respectively are marked for the readers convenience; the vertical arrow points in

the direction of the string drift.

DN(XX)= 1 (X+X,00+ ¢_(x=X,0)
_ 27F 4E, _Rid
=4 arctafisinh X/d)/coshix/d)], (14 VN(R)=— oM RR— M. e Ve (17)

where ¢ (x,t) is defined in Eq.(4) with B=1.[én(X,X)  HereMgz=M /2 and 7x(t) is the same as(t), but for the

has been centered at the origin for convenieltee energy  sypstitution ofD with Dg=kT/@Mg in its autocorrelation

of the nucleusAEy, is a function of its size X, namely, function. The size of the critical nucleus is set by the condi-
tion thatV{(R)|,=0, whence we obtain

AEN= f Hsd én(X,X)Jdx

Ru(F)=—d In| = = 18
2E[1 1 L, 2d ” N(F)=—din| 76 2 (18
= 0 —_ - .
cosh(2x/d)+1 sinh(2X/d) and the negative eigenvalue
(15
F
The components of a large nucleus experience two contrast- A=V} (Ry)=— T —. (19

ing forces(Fig. 1): an attractive one with potential function 2 a

+4E, exp(—2X/d) [see Eq(15)], due to the vicinity of the

nucleating partner, and a repulsive one with effective poten
tial £27FX, due to the external bias, which pulls the
nucleus partnerg.. apart. Thecritical nucleus configuration Nz
on(X,Ry/2) is attained for a distancBy(F) betweend.. 2=_°_N
such that the two competing forces balance each other. The 27l Z,

critical nucleus ¢y(x,Ry/2) is thus the field saddle-point

configuration in the escape process associated with thgere the activatiO,n energyEy, is giyenlby E91(15) for
nucleation. 2X=Ry; Z, andZ;, denote the(effective’) partition func-

In the SG theor}? ¢ (x,Ry/2) admits of one unstable tions of a SG str_ing W_ith Iengtmﬁoc in its vacuum and
mode only, with negative eigenvalﬂeg‘ and one neutrally saddle-point configuration, respectively. The entropy factor

stable translation mode with null eigenval(ibe so-called Zn/Zo can be factorized as

Goldstone mode In the overdamped limit the decay of the )
critical nucleus is fully described by the reduded nucleu$ N
coordinateR=2X (Fig. 1). On adding the kink-antikink in- z_0
teraction term to the LE6b) for ¢.., we obtain

The two-body nucleation rate in Gaussian approximation
reads

e*AEN /kT' (20)

=L[47kTMg]*2

27kT (ZN) o1

(al\oh¥* 1 Zo/
where the contributions from the Goldstone mode, the un-

R= —VL(R)+ 7g(1), (16) stable mode, and the phonon modes are clearly identifiable.
On neglecting corrections of the second ordeFim?3 to the

where forR>0 phonon spectrum, the factor Z(/Zy),, reduces to
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4(»0/(27rkT)2 12 On making use of Eqg18), (19), and(21)

we finally obtain for the nucleation rat@0) the well-known
resulf-2%-10

N\ 1/2 1/2
=-70 M 2Eo o~ AEN/KT 22)
27 md \27a kT )

The validity of this formula is restricted taT<Fd<E,.
The upper bound corresponds to the nonrelativistic approxi-
mation F<w3 and guarantees large critical nucleus sizes
Rn(F)>d and activation energieAEy close to E,. The
lower bound is required for the Gaussian approxima(zf)

at the saddle point o¥(R) to hold true.

C. The crossover regime

Let us now compare the nucleation ratgsfor the weak- A T R R
bias limit andI", for the two-body model. For intermediate 1 " ° " ° i
bias values, sakT<Fd<E,, the two determinations of the
nucleation rates should coincide, at least in principle. In-

stead, as pointed out in Ref. 10, the ratio FIG. 2. Comparison of the different nucleation rates predicted in
Sec. Il. Curve 1, the corrected two-body rat6-)T",(F) [see Eqg.
r, [Fd (26)]; curve 2,T'(F) of Eq. (12); curve 3,T",(F) of Eq. (22). For

F_z =2 KT (23 the sake of simplicity all rates have been divided by the Arrhenius

factor exp&AEN/k'D that is, vr=I" exp(A\/KT). The parameter

(where AEy has been approximated tdEg) reveals a dis- values are:o wo 1 andE,/kT=3. For the readers’ convenience,

crepancy that seems difficult to reconcile. We noted in Sedthe interpolation of curves 1 and 2 is denoted by two solid lines.

Il A that the ratel’; is consistent with the prescriptions of

linear-response theory; this led us to figure that the discreph® denominator is correctly estimated by approximating

ancy in Eq.(23) should be caused by the assumptions intro-Vy(R) to —(27F/aMg)R, whence we obtain

duced to derivel’,. Eventually, we concluded that the

Gaussian approximation implied by Langer’s form(24) is /Fd

inadequate to describe the decay process of the critical k(F)=2m kT

nucleus represented by the LE6) for the nucleus coordi-

nateR. The discrepancy of Eq23) is thus explained in close agree-
The approach of Sec. Il B allows a simple estimate of thement with numerical evidencé. Thanks to the correcting

non-Gaussian corrections 16,. Without entering the intri-  factor (26), on decreasing the two-body ratd’, goes con-

cacies of Langer’s formalisit,we remind the reader that the tinuously over into the weak-bias limit ratg, ; furthermore,

prefactor in Eq.(20) is inverseproportional to the Gaussian I'; and the zero-bias rat€, are analytically connected

(27)

integraf? through Eq. (11). The relevant crossoveF values are
=kTng 7 fromI'y up tol'; andF,= rom I';
F.=kTny(T)/27 f r r dF,.=kT/d f r
* N 2| g 5 up toI', (see Fig. 2 Their physical interpretation is straight-
ﬂcex 2DRR R. (24) forward. ForF=F_ the thermal energkT coincides with

the mechanical energy needed to pull a sin@at)kink
Such an integral approximates the probability flow at thethrough a distance of the order of its mean free pgth(T).
saddle point ofV\(R). In the present case, however, the Thys, for values of smaller tharF, the notion of critical
analytical form of the potentidV/(R) is given explicitly in  nucleus becomes untenable. This is why the zero-biad gate
Eq. (17), so that instead the approximate fac@) we  cannot be reproduced through the two-body model of Sec.

could have used the exact factor Il B, no matter how accurately we handle it. For=F, the
_ thermal energkT equals the mechanical work made by the
fx exp( VN(R)) 4R 25 external force to move agantikink through a distance of the
0 Dgr ' order of its sized. The linearization of the decay dynamics

_ around the saddle poilR=Ry applies forF>F, .
with V(R) = Vn(R) — Vn(Ry) . Accordingly, the nucleation

) The effects due to the finite length of the string may

ratel", of Eq. (22) is underestimated by the factor lIl. NUCLEATION IN A EINITE STRING
become important. For instance, certain imperfections have
the ability to reduce considerably the activation energy of the

2
k(F)= f exp( ZDRR>dR/J p(
(26) e : ; . )
critical nucleus by introducing an additionginning poten-

The reader can easily verify that(F)—1 for Fd>kT, tial. Such a mechanism is particularly effective in the
whereas for smalleF values the leading contribution from dislocation-induced internal friction at low temperatéte,
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a we show the pinned critical nucleuby and the vacuum
2 solutions® . ; for A\—0 andA —os.
3% An end-point nucleation process, say, frog=0 to
% ¢=21, corresponds to a transition fror®_;(x;\) to
s ®, ,(x;\) via the saddle-point configuratio® (x,Rn/2).
X — The activation energy of such a process is obtained by sub-
5 b tracting the vacuum energy of the symmetric solutidns,
- from the energy of the critical nucleuby, that is,
AEp(N)=AEN(Rn) —Eo. (30
X —> In the limit of small biasF<wS the activation energy
AEL(N) is independent ok and tends td,.
FIG. 3. Sketch of®_; (curves }, @, (curves 2, and @y The negative eigenvalu€)) of the pinned critical nucleus
(curves 3 for a semi-infinite SG string witltj=w3=1 and(@  can be calculated following the LE approach of Sec. Il B.
N—0+ and(b) A\ —. Note that we imposed,(\)>0. Here the attractive force between the nucleus components

¢~ is given by the variation oAE(\) with respect to the
where the pinning action is exerted by pointlike defects. An—coordinate of¢_ (being ¢, pinned atx=0). It follows im-
other example is provided by the flux lines that threadmediately that\Y is one-half of the negative eigenvalue in
through type-Il superconducting films: Their length is necesype homogeneous cagk9), \)= — mF/4a.
sarily limited by the thickness of the sample. The line end |, 5rder to apply Lan:qerqs formul&20) to the present
points, when not acting as tight pinning points, may ease thg,qe \ve have to modify further the phonon spectrum accord-
nuclge}t|on process depending on.the choice of the boundalmg to the new BC. As the critical nucleus centeredath)
conditions. Heterogeneousiucleation processes may thus js"hot invariant under translation, the Goldstone mode con-

contribute appreciabfy} as either a bulk or a surface effect. tribution to the entropy facta21) drops out. Moreover, due
to the constraint(28), the phonon modes “dress'® _;
A. End-point effects and the nucleus componenp, in the same manner,

For simplicity we assume that a long SG string is con-SC that the total entropy factorZy/Z, reads

strained at the origix="0 with boundary conditiong8C's)  [27KT/(a[xg])*?|(2we/277kT). The end-point nucleation
rate, integrated over the entire string length, follows imme-

N b, +sin ¢p=0. (28) diately from Eq.(20), that is,
, . _ 2 /
Note that this equation is symmetric under the transforma- o= wo [ F lze_EO/kT 31)
tion A— —\ andx— —x. Natural BC’s are assumed L 27 2aL Wwoz '

with L arbitrarily large. The limits\ — = and\ —0 imple- ) i
ment von Neumann'éfree-end and Dirichlet's (fixed-end ~ Here the factor 1/ reminds us of the dishomogeneous nature

BC’s, respectively. The Hamiltonian density of the nucleation process that occurs at the pinning point
x=0. The total rate for any assigned distribution of pinners
H[ ¢]1=Hsd ¢]+ &b, sin G\ (290 can be calculated immediately from E&1).
X

The rater, in Eq.(32) has been computed in the Gaussian

incorporates the BQZS) into the SG theory_ According|y’ approximatioer> kT. In order to extend its Valldlty to the

the string energy is modified by an additional end-point termveak-bias rangé& . <F<kT/d, we must multiplyr, by the

— COSP/\|x=o. correcting factor«(F) of Eq. (27). A few simple algebraic
In the presence of a weak external bias the two-bodypassages yield

model of Sec. Il B must be modified to account for the loss

of translational invariance. Let us consider for simplicity a r{=ugng(T)/L. (32

jump forward of the string, i.e¢— ¢+2m. In the vicinity g resylt is remarkable indeed. On comparing the rages

of x=0, the shape and_ the position of a critical nucleus r&ndr, (orr, andT',) we conclude that heterogeneous nucle-
affected by the constraint of E@8) and so are the vacuum oiion ™ dominates  over homogeneous nucleation  for

ﬁeld. _con)?gt;\ratiofnsh The qusf) amoun';s :}O lxci;ng Fhe | 2L$n51(T), independently of the bias intensity regime.
position Xp(A) of the center of mass of the critica Moreover, the kinetic model of Sec. Il A provides a sugges-

nucleus (x,Ry/2)= . (x+RN2=Xp,0)+ - (X=Rn/2 0 interpretation of our result for,: If the annihilation
—Xy,0). For simplicity we restrict ourselves to the solutions rocess takes place at the pinner, thatikink lifetime is
with X,(\)>0. The vacuum configurations can be regrouDeoBetermined by the equatiquz(r)>’=4L2' the solution for
into two classe .. 1(x;\): They are all represented by suit- FL>KT readsr= 1/uc and the relevant ré\te —2n,/7 co-
ably truncated kink-antikink functions, namely, B (X,0) i cides with Eq.(32).F 1

of Eq. (4) with x>0 and appropriate center of maxg(\),
and related through the symmetry identit$p,;(X)
+®_,(x)=27n, with n=0,=1,+2,.... Moreover, it can
be easily proven that such vacuum solutions overlap with the We conclude this section by summarizing the role of the
¢- components of a pinned critical nucle@s;. In Fig. 3  three length scales that characterize the nucleation process in

B. Nucleation length scales



57 ELASTIC STRINGS IN SOLIDS: THERMAL NUCLEATION 7935

a finite SG string with BG28) (possibly at both end points  cess requires the knowledge of the kig@tikink) shape and
its length L, the critical nucleus siz&y(F), and thed¢- the phonon spectrum in their presence; constraints in the
mean free patlm(jl(T). The temperatur@ and the intensity ~ Kink (antikink) statistics must be introduced to account for
of the external biag define three different regimes. the lack of transport currents. Analytical expressions for the
(i) Ry(F)<nyX(T),L. The nucleation process occurs nucleation rates in the overdamped limit may be easily ob-
through the two-body mechanism of Secs. Il B and Iil A. tained following the procedure of Secs. Il and Ill.
Homogeneousor bulk) and heterogeneour end-point As mentioned in Sec. |, there is rpriori reason why
nucleation coexist, the relative importance being determined!® nucleation process should be restricted to the over-

by the ratio ofl', to r,. Forng(T)<L the string accom- amped limit. Indeed, important applications of the SG

modates an equilibrium gas of thermal kinks and antikinks:c’tring model to dislocatios and long Josephson

boundary effects become negligible junctions® seem to work in the opposite limi#<w,. The
(i) no (TY<Ry(F),L. Many bod-y effects due to the nucleation rate in a SG string with zero bigs-0 and van-
0 NIRRT :

A, : o ishingly small dampinga—0 has been calculated in the
presence of an equilibriutiailute) gas of kinks and antikinks .fgamework of the kinetic model in Ref. 25 and then applied

fﬁg (;reoll Otp Z encuﬁlf ztl?:r; rp\r/c;cn?:hsi, n als 2?;&'?;%21F;h?FI)(metlsuccessfully to the theory of the Bordoni péalk the same
rows larger t.harl_.and the zerogb)i/as ratg, is even':uall damping limit, however, the stability of biasedSG string

gttained 9 0 y against depinning becomes a delicate matter: A sudden tran-
N L sition from the locked to the running mode, and vice versa,
(”.' ). L<_n0 (T).Rn(F). Th|§ limit has not been addresse(_j takes place any timE crosses a certain threshold value pro-

explicitly in Fhe presen_t section. However, the read_er W.'" ortional toa.'* This shrinks the bias range where thermal

ls_ur.(ta ;elgolgnl'?_lfgat ;[h's correspc;nbdsh to th?k§h%rt-]l,:jnctlo ucleation may be appreciable to an arbitrarily small neigh-

Imit o Ret. 13: The string segment benaves IKBga 1od. — p 064 ofF =0 (described by the kinetic modelFurther-

The standard Kramers theory for the diffusion of a Brownian 0" ot even lower values quantum tunneling effects be-

particle in a washboard potential with barries§l provides ;oo increasingly importafftand eventually dominate over

a good description of the process g (F)>L. the thermal nucleation mechanism investigated in the present

work 2’
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