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Moving vortex line: Electronic structure, Andreev scattering, and Magnus force

S. Hofmann* and R. Kümmel
Institut für Theoretische Physik der Universita¨t Würzburg, Am Hubland, D-97074 Wu¨rzburg, Germany

~Received 12 June 1997!

The wave functions of quasiparticles in a vortex line, moving with velocityvW L relative to the lattice when a

transport current with drift velocityvW T is applied, are calculated by solving the time-dependent Bogoliubov–de
Gennes equations for a high-k superconductor in contact with a reservoir of chemical potentialm. Far away
from the vortex core the pair potential has the constant modulusD` . Comparison with the wave functions of
a vortex at rest shows that vortex motion modifies the amplitudes, the radial wave numbers of the states with
energyE.D` , and the penetration lengths of states with energyE,D` by a term6«vcosQ. HereQ is the
azimuthal angle of cylinder coordinates with thez direction parallel to the vortex axis, and«v5\krv; v
5uvW T2vW Lu andkr5A(2m/\2)m2kz

2, with kz being the wave number of propagation in thez direction. If one
neglects terms of the order of«v

2 in the spectrum of the bound states, one obtains the same eigenvalues as for
the vortex at rest. The supercurrent force on the corresponding quasiparticles, caused by Andreev scattering at
the core boundary, is calculated with thev-modified wave functions. It transfers half of the Magnus force from
the moving condensate to the unpaired quasiparticles in the vortex core.@S0163-1829~98!05113-3#
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I. INTRODUCTION

The motion of vortex lines in type-II superconductors d
sipates energy, because the unpaired electrons in the v
core are subject to frictional forces from the lattice. Th
limits the technological applications of conventional and
pecially high-temperature superconductors~HTSC’s!. Dis-
covery of the HTSC’s has stimulated anew intensive resea
in vortices and their motion, documented in rece
reviews.1–3 While being disadvantageous from a technolo
cal point of view, vortex motion has challenged experimen
and theoretical physicists with a wealth of interesting pro
lems. One of the oldest is the question, which force acting
a moving vortex line is in balance with the frictional forceFW
from the lattice? Different answers have been given by
theories of Bardeen and Stephen~BS!, on the one hand,4 and
Nozières, Vinen, and Warren~NVW!,5,6 on the other hand
While NVW show that this force should be the Magn
force,

2FW 5FW Magnus5nseL~vW T2vW L!3FW , ~1!

which has been confirmed recently by Berry-pha
considerations,7–9 BS have instead

2FW 52nseLvW L3FW ; ~2!

here ns is the density of the superconducting electro
e52ueu is the charge of an electron,L is the length of the
vortex line which is assumed to be parallel to thez axis,vW T

is the drift velocity of the applied transport supercurrent,vW L

is the velocity of the vortex line, andFW 5eW zF0, with F0
5h/2ueu being the flux quantum.

The basic difference between the two theories consist
an ‘‘interface force,’’ introduced phenomenologically in th
NVW theory by momentum-balance arguments and absen
the BS theory. It is required for the complete transfer of
Magnus force from the superconducting condensate out
570163-1829/98/57~13!/7904~12!/$15.00
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the core to the unpaired electrons inside the core which ar
equilibrium with the lattice. Nozie`res and Vinen state, ‘‘It is
essential to know, how the Magnus force is shared betw
the bulk of the core and the ‘interface’ with the superfluid.5

The bulk share turned out to be half of the Magnus force5,6

It originates from the electrostatic field in the core of radi
r c :6

EW c5
1

2pr c
2 ~vW L22vW T1vW nc!3FW 5

1

2pr c
2 ~vW L2vW T!3FW .

~3!

The second equality holds if no pinning centers inhibit t
motion of the vortex so that the drift velocity inside the co

vW nc is equal tovW T . (vW T is vW s1 in Ref. 6.! The interface force,
however, which has to provide the other half of the Magn
force,6 has remained unclear in its physical nature until
cently. In a previous Letter10 we have shown by a semiclas
sical calculation that this interface force is the result of m
mentum transfer from the Cooper pairs in the condensat
the core electrons by Andreev scattering at the core bou
ary. It is a special and important manifestation of a seco
force, called supercurrent forcefWD2,11,12 involved in Andreev
scattering.13 This force is the fourth member of the full set o
forces acting on quasiparticles in an inhomogeneo
current-carrying superconductor with pair potentialD(rW)
5uD(rW)ueiw(rW), vector potentialAW , and scalar potentialV.
These forces are obtained from the time-depend
Bogoliubov–de Gennes equations~TdBdGE’s! ~Refs. 14 and
15! and the resulting generalized Ehrenfest theorem for q
siparticles with electron componentu(rW,t) and hole compo-
nentv(rW,t).11 Accordingly, the total force on a quasiparticl
defined as

fW[
d

dtE d3rc†~rW,t !pŴ c~rW,t !, ~4!
7904 © 1998 The American Physical Society
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57 7905MOVING VORTEX LINE: ELECTRONIC STRUCTURE, . . .
with

c~rW,t !5S u~rW,t !

v~rW,t !
D ~5!

being a solution of the TdBdGE’s, and

pŴ [S pW e 0

0 pW h
D [S F\i ¹W 2eAW ~rW,t !G 0

0 F\i ¹W 1eAW ~rW,t !G D
~6!

being the quasiparticle momentum operator, is the sum of
four forces:

fW5 fWe1 fWh1 fWD11 fWD2 . ~7!

It consists of the usual diagonal electromagnetic forces
electrons (e) and holes (h),

fWe5E d3ru* F e

2m
~pW e3BW 2BW 3pW e!2e

]

]t
AW 2¹W VGu, ~8!

fWh5E d3rv* F e

2m
~pW h3BW 2BW 3pW h!1e

]

]t
AW 1¹W VGv,

~9!

and two off-diagonal pair potential forces

fWD1522ReE d3ru* v~¹W uDu!eiw, ~10!

fWD254
m

\ E d3rvW sIm~u* vD!. ~11!

HereBW 5¹W 3AW , and

vW s5
\

2mF¹W w2
2e

\
AW G ~12!

is the gauge-invariant Cooper pair velocity. The off-diago
force fWD1 is responsible for the change of quasiparticle m
mentum from a value above to a value below the Fe
surface~or vice versa! in usual Andreev scattering. The se
ond off-diagonal forcefWD2, which is present if there is a
supercurrent flowing with Cooper pair velocityvW s , is the
new supercurrent force. In this paper we present a comp
quantum mechanical calculation of this supercurrent force
solving the time-dependent Bogoliubov–de Gennes eq
tions for an isolated moving vortex line and show that t
screening current around the vortex line and the modifica
of the quasiparticle wave functions by the motion of t
vortex relative to the superconducting condensate resul
deed in half of the Magnus force.

Šimánek16 has calculated the force on the center of
moving vortex line in the adiabatic limit with the help of th
instantaneous eigenstates of the superfluid and the Bog
bov transformation of the many-body Hamiltonian. T
wave functions in this transformation are the solutions of
stationary Bogoliubov–de Gennes equations. The way t
enter Šimánek’s equations~5!, ~10!, and~15! shows that his
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force ‘‘obtained in a form that involves virtual transition
between the core levels around the Fermi level’’ is due to
same physical mechanisms, i.e., Andreev scattering and
percurrent force, which give rise to

fWD[ fWD11 fWD25
2

\
ImE d3ru* vS \

i
¹W 22eAW DD. ~13!

The sum offWD over all occupied quasiparticle states yiel
the total off-diagonal force on the vortex. Because of sy
metry reasons, onlyfWD2 has a component perpendicular

vW T2vW L and may therefore be involved in the Magnus-for
transfer across the core boundary. Therefore, it is suffic
to calculatefWD2.

A fringe benefit of our going beyond the adiabatic limit
solving the TdBdGE’s is the discovery of a new sort of qu
siparticle states. They may be called ‘‘angular bound state
because in two angular ranges their wave functions de
exponentially outside the core, and in the two complem
tary angular ranges they spread as undamped scatte
states.

The paper is organized as follows. In Sec. II, by a Gali
transformation, the TdBdGE’s in the lattice frame of refe
ence~LFR! are changed into stationary BdGE’s in the vort
frame of reference~VFR!. In Sec. III we study the
asymptotic behavior of the quasiparticle wave functions
the vortex system and discuss the three types of quasipar
states: bound, scattering, and angular bound states. Se
IV describes how matching of the solutions outside the c
to the ones inside the core is achieved with the help o
Fourier transformation of the angle-dependent matching c
ditions. The complete, velocity-dependent wave functio
for the case of a moving vortex with a square-well pair p
tential are presented. With these wave functions we calcu
the supercurrent-force contribution to the Magnus force
Sec. V and find that it is equal to one-half of the Magn
force, if the normal vortex core has a diameter of about o
coherence length. A summary and outlook concludes the
per.

II. GALILEI TRANSFORMATION OF THE TDBDGE’s

We consider a low-Tc , high-k type-II superconductor. In
the absence of external fields its pair potential is homo
neous, isotropic, and small compared to the Fermi energy
this superconductor vortices are induced by an applied m
netic fieldB ~parallel to thez direction! which satisfiesBc1
,B!Bc2, so that vortex-vortex interactions can be ignore
and it is sufficient to consider an isolated vortex. This vort
is driven by an applied supercurrent with constant drift v
locity vW T . It moves with constant velocityvW L . Both veloci-
ties lie in thex-y plane:

vW T5vTxeW x1vTyeW y , ~14!

vW L5vLxeW x1vLyeW y . ~15!

The system is described by the mean-field TdBdGE’s,14,15

with a pair potential which in the lattice frame of referen
and the corresponding coordinatesr 8W and t8 is given by
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7906 57S. HOFMANN AND R. KÜMMEL
D̃~rW8,t8!5D~rW82vW Lt8!. ~16!

Here

D~rW !5D~r ,Q!5D0~r !e2 iQ ~17!

is the pair potential of a vortex at rest; i.e., the coordina
(rW,t) are those of a frame of reference fixed to the vort
The radial partD0(r ) of the pair potential vanishes at th
center of the vortex and assumes the constant valueD` far
from the core. The phase of the pair potential furnishes
superfluid velocity

vW s052
\

2mr
eWQ ~18!

of the screening current.
With Eqs.~16! and~17! and Fig. 1 the pair potential in th

lattice frame of reference has the form

D̃(rW8,t8)5D0@A~r 8cosQ82vLxt8!21~r 8sin Q82vLyt8!2#

3expS 2 i arctan
r 8sinQ82vLyt8

r 8cosQ82vLxt8
D . ~19!

The magnetic field of the vortex may be neglected5,17,18as
well as the electric field induced by the motion of th
vortex.5,6,19 The chemical potentialm in the TdBdGE’s is
that of the energy and particle reservoir to which the sup
conductor is coupled. We neglect all influences of entro
production associated with vortex motion on the chemi
potential, because the number of degrees of freedom of
reservoir is assumed to be very much larger than that of
superconductor.15 Then m is the same as in the case of n
vortex motion and equal to the Fermi energy«F of the su-
perconductor. The vector potential in the LFR is determin
by considering a region far away from the vortex core. Th

vW s0 of Eq. ~18! vanishes, and so does¹W w in Eq. ~12!, and

vW s5vW T . With that Eq.~12! turns into

AW 52
m

e
vW T[ÃW . ~20!

FIG. 1. Frames of reference: the coordinates (rW8,t8) with the
Cartesian components (x8,y8) and the angleQ8 correspond to the

lattice frame of reference~LFR! while the coordinates (rW,t) with
the Cartesian components (x,y) and the angleQ correspond to the

vortex frame of reference~VFR! which moves with velocityvW L

relative to the LFR.
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Thus, in the LFR the TdBdGE’s of an isolated moving vo
tex line are

i\
]

]t8
C̃~rW8,t8!5 Ĥ̃~rW8,t8!C̃~rW8,t8!. ~21!

C̃(rW8,t8) is the spinor quasiparticle wave function~with
electron componentũ and hole componentṽ ) in the LFR,
and the matrix Hamiltonian

Ĥ̃(rW8,t8)5S H̃e~rW8! D̃~rW8,t8!

D̃* ~rW8,t8! 2H̃e* ~rW8!
D , ~22!

contains the pair potential of Eq.~19! and the single-electron
Hamiltonian

H̃e~rW8!5
1

2m
~2 i\¹W 82eÃW !22«F

5
1

2m
~2 i\¹W 81mvW T!22«F . ~23!

In order to avoid the rather complicated structure~19! of
the pair potential in the LFR we now switch over to the VF
by means of the Galilei transformation

rW85rW1vW Lt, t85t. ~24!

This transformation shifts the pair potentialD̃(rW8,t8) back to
the pair potentialD(rW) of the vortex at rest. The wave func
tions C(rW,t) in the VFR follow from the LFR wave func-

tions C̃(rW8,t8) by the same transformation:

C~rW,t ![C̃~rW1vW Lt,t !. ~25!

Applying the Galilei transformation to the differential op
erators,

¹W 85¹W , ~26!

]

]t8
5

]

]t
2vLx

]

]x
2vLy

]

]y
, ~27!

we transform the TdBdGE~21! to the VFR:

i\
]

]t
C~rW,t !5S He

0~rW !1H1~rW ! D~rW !

D* ~rW ! 2He
0~rW !1H1~rW !

D C~rW,t !.

~28!

Here He
0 and H1 are, appropriate to the symmetry of ou

problem, written in cylinder coordinates (r ,Q,z),

He
0~r ,Q,z!52

\2

2mS ]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]Q2
1

]2

]z2D
2S «F2

1

2
mvT

2D ~29!

and
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H1~r ,Q,z!52 i\F ~2vxsin Q1vycosQ!
1

r

]

]Q

1~vxcosQ1vysin Q!
]

]r G , ~30!

where the definitions

vW [vW T2vW L , v[uvW u, ~31a!

vx[vTx2vLx , vy[vTy2vLy ~31b!
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have been introduced. From now on we assume, without
of generality,vy50 and thereforev5vx .

Since the Hamiltonian in Eq.~28! does not depend explic
itly on time t and thez coordinate, the ansatz

C~rW,t !5S u~r ,Q!

v~r ,Q! De2 iEt/\eikzz ~32!

leads to the stationary Bogoliubov–de Gennes equations
the electron and hole componentsu(r ,Q) andv(r ,Q) of the
radial and angular wave functions:
ES u~r ,Q!

v~r ,Q! D5S He
0~r ,Q!1H1~r ,Q! D~r ,Q!

D* ~r ,Q! 2He
0~r ,Q!1H1~r ,Q!

D S u~r ,Q!

v~r ,Q! D . ~33!
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Here the pair potential is given by Eq.~17!, and

He
0~r ,Q!52

\2

2mS ]2

]r 2
1

1

r

]

]r
1

1

r 2

]2

]Q2D 2«r , ~34!

«r[«F2
1

2
mvT

22
\2kz

2

2m
, ~35!

H1~r ,Q!52 i\vF2sinQ
1

r

]

]Q
1cosQ

]

]r G . ~36!

Apart from the small term1
2 mvT

2 , which can be disre-
garded,He

0(r ,Q) is the same as for a vortex at rest. T
effects of the applied supercurrent as well as of the motion
the vortex are contained in the termH1(r ,Q). Note that this
term depends only on the relative velocityvW 5vW T2vW L be-
tween vortex and superconducting condensate, exactly a
Magnus force, Eq.~1!, does. For a vortex at rest and n
immersed in an applied supercurrent the termH1(r ,Q) van-
ishes as well as the Magnus force. The same is true f
vortex drifting along with the condensate (vW L5vW T).

If the vortex is immersed in an applied supercurrent
does not drift along with it (vW LÞvW T), H1(r ,Q) must be
taken into account. In this case, the wave functions will
be the same as those of the vortex at rest. Moreover, the
H1(r ,Q) breaks the symmetry of the problem: The wa
functions can no longer be separated into radial and ang
functions. This drastically complicates the problem of so
ing the BdGE’s. Fortunately, the solutions in the asympto
limit r→` open up a way which will lead us in a sufficient
good approximation to the full solutions to be used in E
~11!. The two steps on this way, taken in Secs. III and IV, a
guided by the following considerations.

The dynamic, symmetry-breaking quantities which gen
ate the supercurrent force are the superfluid velocityvW s0 of
the screening current, Eq.~18!, and the vortex velocityvW
relative to the condensate, Eq.~31!. In the asymptotic limit

vW s0 becomes vanishingly small so thatvW dominates in the
asymptotic wave functions. These are calculated in Sec.
f
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II.

Then, in Sec. IV, the influence ofvW s0 is taken into account
by functions which are independent ofvW and multiply the

vW -dependent asymptotic wave functions. Each such prod
represents a solution of the BdGE’s outside the vortex co
Appropriate matching to the solutions inside the core w
finally provide the energy eigenvalues and wave functions
the bound states needed for the calculation of the super
rent force.

III. ASYMPTOTIC WAVE FUNCTIONS

A. Nonlinear differential equations and proper solutions

The electron and hole componentsuA(r ,Q) andvA(r ,Q)
of the asymptotic wave functions are solutions of t
asymptotic BdGE’s which result from Eq.~33! for r→`:

~He
01H12E!uA~r ,Q!1D`e2 iQvA~r ,Q! ——→r→`

0,
~37!

~2He
01H12E!vA~r ,Q!1D`eiQuA~r ,Q! ——→r→`

0,
~38!

where D`[D0(r→`). In Eqs. ~37! and ~38! only those
terms are kept which do not vanish forr→`.

Inspired by the asymptotic solutions of the BdGE’s for
vortex at rest,17,18 we start with the ansatz

un,n
A ~r ,Q!5einQeikn~Q!r , ~39!

vn,n
A ~r ,Q!5cn~Q!ei ~n11!Qeikn~Q!r . ~40!

Heren is an integer andn will be explained later. The func-
tionsun,n

A (r ,Q) andvn,n
A (r ,Q) differ from the solutions for a

vortex at rest in so far, as they include the angular-depend
functionscn(Q) andkn(Q) in places, where the latter one
have constants. Finding the functionscn(Q) and kn(Q) is
equivalent to finding the asymptotic wave functio
un,n

A (r ,Q) andvn,n
A (r ,Q). We are looking for those solution

which in the limit v→0 turn into the known asymptotic so
lutions of the vortex at rest.
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7908 57S. HOFMANN AND R. KÜMMEL
Inserting the ansatz of Eqs.~39! and ~40! into the
asymptotic BdGE’s~37! and~38! we find after some algebr
the coupled nonlinear differential equations forkn(Q) and
cn(Q),

05
\2

2m
$kn

2~Q!1@kn8~Q!#2%2«r2\v@kn8~Q!sin Q

2kn~Q!cosQ#2E1D`cn~Q!, ~41!

052
\2

2m
$kn

2~Q!1@kn8~Q!#2%1«r2\v@kn8~Q!sin Q

2kn~Q!cosQ#2E1D`cn
21~Q!, ~42!

where the slash denotes differentiation with respect toQ:

kn8~Q![
d

dQ
kn~Q!. ~43!

In order to decouple the system of differential equations~41!
and ~42! we rewrite Eq.~41!,

D`cn~Q!52
\2

2m
$kn

2~Q!1@kn8~Q!#2%1«r

1\v@kn8~Q!sin Q2kn~Q!cosQ#1E,

~44!

multiply Eq. ~42! by D`cn(Q), and insert Eq.~44!:

05F \2

2m
$kn

2~Q!1@kn8~Q!#2%2«rG2

2$E1\v@kn8~Q!sin Q

2kn~Q!cosQ#%21D`
2 . ~45!

We have to solve Eq.~45! for kn(Q), and then insertkn(Q)
into Eq. ~44! in order to obtaincn(Q).

Before doing so, let us see howkn(Q) and cn(Q) are
related to the corresponding quantities in the asympt
wave functions of the vortex at rest. This will help us
select the physically appropriate solutions. In this casev50,
and Eq.~45! reduces to

\2

2m
$kn

2~Q!1@kn8~Q!#2%2«r56AE22D`
2 . ~46!

There are two types of solutions.
In the first place,kn(Q) might bekn , independent ofQ.

Then Eq.~46! is easily solved forkn , resulting in

kn56A2m

\2
~«r6AE22D`

2 !, ~47!

wherenP(1,2,3,4) counts the four solutions due to the fo
possible combinations of the1 and2 signs. From Eq.~44!
with v50 and Eq.~47! one finds

cn5
E

D`
7AE2

D`
2

21. ~48!
ic

r

Inserting thesekn andcn into Eqs.~39! and ~40! yields the
four well-known17,18 asymptotic solutions for the vortex a
rest.

In the second place, there are solutions of the ty
kn(Q)5kncos(Q2Q0), where thekn are those of Eq.~47!
and theQ0 are arbitrary. Inserting these solutions into Eq
~39! and ~40! delivers functions containing plane wave
propagating in thex andy directions:

un
A~r ,Q!5einQeiknr cos~Q2Q0!5einQei ~kxx1kyy!, ~49!

vn
A~r ,Q!5cnei ~n11!Qeiknr cos~Q2Q0!

5cnei ~n11!Qei ~kxx1kyy!, ~50!

wherekx5kncosQ0, ky5knsinQ0, andcn is given again by
Eq. ~48!. These asymptotic solutions are not the cylindric
plane waves required for a vortex at rest. Thus, they
dismissed. The corresponding solutions of Eq.~45! with v
Þ0 will be dismissed, too.

Equation~45! for kn(Q) is rewritten as

05
\2

2m
$kn

2~Q!1@kn8~Q!#2%2«r

1q1A$E1\v@kn8~Q!sin Q2kn~Q!cosQ#%22D`
2 ,

~51!

where q1P(21,11) denotes the two sheets of the squa
root. In order to solve this nonlinear differential equation w
introduce the substitution

«n~Q![A$E1\v@kn8~Q!sin Q2kn~Q!cosQ#%22D`
2 .
~52!

The function«n(Q) has no immediate physical meaning, b
for the vortex at rest it becomes

«n~Q! ——→v→0 AE22D`
2 , ~53!

which is just the term giving the dependence of the rad
wave numberkn , Eq. ~47!, on the quasiparticle energyE.

Subsequently we will expresskn and kn8 by «n(Q). This
will lead us to an algebraic equation for«n(Q) which can be
solved approximately.

Inserting Eq.~52! into ~51! results in

05
\2

2m
$kn

2~Q!1@kn8~Q!#2%2«r1q1«n~Q!. ~54!

In order to eliminatekn8(Q) we multiply Eq. ~54! by
(2m/\2)sin2Q,

05kn
2~Q!sin2Q1@kn8~Q!#2sin2Q

2S kr
22q1

2m

\2
«n~Q!D sin2Q, ~55!

define kr[A2m«r/\, and insertkn8(Q)sinQ, as obtained
from Eq. ~52!,
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57 7909MOVING VORTEX LINE: ELECTRONIC STRUCTURE, . . .
kn8~Q!sinQ5
q2A«n

2~Q!1D`
2 2E

\v
1kn~Q!cosQ, ~56!

where q2P(21,11), and arrive at the quadratic equatio
for kn(Q):

05kn
2~Q!12kn~Q!

q2A«n
2~Q!1D`

2 2E

\v
cosQ

1S q2A«n
2~Q!1D`

2 2E

\v D 2

2S kr
22q1

2m

\2
«n~Q!D sin2Q.

~57!

The eight solutions of Eq.~57! are

kn~Q!52
q2A«n

2~Q!1D`
2 2E

\v
cosQ

1q3Fkr
22q1

2m

\2
«n~Q!

2S q2A«n
2~Q!1D`

2 2E

\v D 2G 1/2

sin Q, ~58!

whereq3P(21,11), like q1 and q2, denotes the sheets o
the square root.

Finally, we eliminatekn(Q) andkn8(Q) from Eq. ~51! by
inserting Eq.~58! and its derivative. This results in the equ
tion

05
d«n~Q!

dQ F q2«n~Q!

\vA«n
2~Q!1D`

2
cosQ

1q3S q1

m

\2
1q2

«n~Q!@q2A«n
2~Q!1D`

2 2E#

~\v !2A«n
2~Q!1D`

2 D
3Fkr

22q1

2m

\2
«n~Q!

2S q2A«n
2~Q!1D`

2 2E

\v D 2G21/2

sin QG ~59!

for «n(Q). This equation is simpler than Eq.~51!. Its solu-
tions determinekn(Q) according to Eq.~58!. Furthermore,
by inserting Eqs.~54! and~56! into Eq. ~44! we can express
cn(Q) by «n(Q):

cn~Q!5
q1«n~Q!1q2A«n

2~Q!1D`
2

D`
. ~60!

Therefore, the problem of solving the asymptotic BdGE
~37! and ~38! has now been reduced to solving Eq.~59!.
Equation ~59! can be satisfied in two ways: first, b
«n(Q)5 const so that

d«n~Q!

dQ
50. ~61!

This gives solutionsun
A(r ,Q) andvn

A(r ,Q) which for v→0
become functions of the kind given in Eqs.~49! and ~50!.19

As we already discussed, these are not the appropriate s
tions for the vortex at rest and therefore are to be dismiss
Consequently, here we dismiss the solutions with«n(Q)
5const as well. Second, Eq.~59! is satisfied if the expression
in the exterior square brackets vanishes. Thus, writing
two terms in this expression on one common denomina
one obtains

05q1«n~Q!q3$«v
222«mq1«n~Q!

2@q2A«n
2~Q!1D`

2 2E#2%1/2cosQ

1$q1«n~Q!@q2A«n
2~Q!1D`

2 2E#

1«mq2A«n
2~Q!1D`

2 %sinQ. ~62!

Here we have introduced the definitions

«m[mv2 ~63!

and

«v[\krv. ~64!

«m is the kinetic energy of an electron pair moving wi
velocity v. The energy«v can formally be interpreted as
Doppler term which shifts the energy of a quasiparticle mo
ing with momentum\kr parallel to the superconducting con
densate drifting with velocityv.20

By squaring out the roots Eq.~62! could be transformed
into an algebraic equation of eighth degree which might e
ily be solved numerically. This would be a convenie
method of solving exactly the system of coupled nonline
differential equations~41! and ~42!. However, we are inter-
ested in analytical approximations forkn(Q). These are ob-
tained by the following reasoning.

The energies«m and«v are connected by the relation

«m5
«v

2

2«r
. ~65!

With the exception of a negligible number of quasipartic
traveling nearly parallel to the vortex axis,«r is of the order
of the Fermi energy. Thus it follows from Eq.~65! that«m is
much smaller than«v or D` , and we can expand the righ
hand side~rhs! of Eq. ~62! with respect to«m . Equation~58!,
written in terms of«m and«v ,
kn~Q!52
q2A«n

2~Q!1D`
2 2E

\v
cosQ1q3

$«v
222«mq1«n~Q!2@q2A«n

2~Q!1D`
2 2E#2%1/2

\v
sin Q, ~66!
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can be expanded in terms of«m as well. Carefully executing
these expansions and comparing with the results for the
tex at rest, we find that—in order to get akn(Q) different
from kn of Eq. ~47! and thus have an effect ofH1(r ,Q), i.e.,
vortex motion, on wave propagation—we have to expand
to first order in«m . In cn(Q), on the other hand, one ma
neglect«m altogether and yet get a dependence on«v . After
a straightforward but rather lengthy calculation, presen
elsewhere,19 we find four solutions forkn(Q):

kn~Q!5akr2ab
kr

2«r
A~E2a«vcosQ!22D`

2 , ~67!

wherekr/2«r5«m /\v«v , andcn(Q) becomes

cn~Q!5
E2a«vcosQ

D`
1bS ~E2a«vcosQ!2

D`
2

21D 1/2

.

~68!

The coefficientsa561 and b561 will be associated
with the indexn in the way given in Table I.

Inserting Eqs.~67! and~68! into Eqs.~39! and~40! yields
the four asymptotic wave functions of the quasiparticles i
superconductor with a moving vortex line. As forv→0, the
kn(Q) and cn(Q) approach the expressions~47! and ~48!,
and the wave functions for the moving vortex smooth
change over to the wave functions for the vortex at rest.

The deviation of the functionkn(Q), Eq. ~67!, from the
wave numberkn , Eq. ~47!, as well as the deviation o
cn(Q), Eq. ~68!, from cn , Eq. ~48!, is caused by«v . If one
wants to neglect the«v term and thereby replace the wav
functions for the moving vortex by those for the vortex
rest, one has to demand that«v be small compared to th
lowest-energy eigenvalues of the bound quasiparticles
vortex at rest. These are of the orderD`

2 /«F ,17 so that«v
,D`

2 /«F is required. Replacingkr in Eq. ~64! by its maxi-
mum valuekF and usingj'\2kF /(pmD`) for the coher-
ence lengthj, the last equation can be rewritten asv,vc
[(D` /\kF)(1/kFj), where typicallykFj'103. This corre-
sponds to Sˇ imánek’s condition for the validity of the adia
batic approximation.21,16

Subsequently, we will not make the adiabatic approxim
tion but rather assume thatv is only about an order of mag
nitude smaller thanD` /\kF .

B. Angular bound states

Vortex motion creates a new type of quasiparticle sta
which are hybrides between bound and scattering states.
can be seen from the energy and angle dependence o
kn(Q) of Eq. ~67! in the asymptotic solutions~39! and~40!.

TABLE I. Labeling of the different combinations ofa and b
values in Eqs.~67! and ~68!, and thereafter, by the indexn.

n a b

1 11 21
2 21 11
3 11 11
4 21 21
r-

p

d

a

t

a

-

s
his
the

As is well known, in the case of a vortex at rest one h
bound states for uEu,D` and scattering states fo
uEu>D` .17,18 This is because the wave numberskn in Eq.
~47! are complex for bound states and real for scatter
states. In the case of a moving vortex the functionskn(Q)
depend not only uponE and D` but also on«v . Further-
more, they are functions of the angular coordinateQ and
thus not quantum numbers. According to Eq.~67! there are
scattering states with realkn(Q) for all Q only if uEu>D`

1«v . Likewise, thekn(Q) will be complex for allQ only if
uEu,D`2«v . Then the wave functions withn51 and n
52 vanish forr→` and are those of bound quasiparticle
the wave functions withn53 andn54 are to be dismissed
because they diverge forr→`.

Wave functions with energiesD`2«v<uEu,D`1«v
cannot be classified as belonging to bound or scatte
states. For energies in this range it depends on the ang
coordinateQ whetherkn(Q) is real or complex. For com-
plex kn(Q) the wave functions withn53 andn54 increase
exponentially withr and have to be dismissed as in the ca
of the bound quasiparticles, whereas the wave functions w
n51 andn52 decrease exponentially. Let us look into th
latter ones in some more detail forE.0 and«v,D.

First, we consider the wave functions withn51. From
Eq. ~67! it follows, thatk1(Q) will be real for

cosQ<
E2D`

«v
. ~69!

With the definition

Qv[ arccos
E2D`

«v
, ~70!

where 0<Qv<p, it follows from Eq.~69! thatk1(Q) is real
in the interval

QP@Qv ,2p2Qv# ~71!

and complex in the interval

QP] 2Qv ,Qv@ . ~72!

Consequently, the wave functions behave like those of s
tering states in the interval~71! and like those of bound
states in the interval~72!.

Second, we make the same considerations for the w
functions withn52 and find thatk2(Q) is real for

cosQ>2
E2D`

«v
, ~73!

i.e., for

QP@Qv2p,p2Qv#, ~74!

and complex for

QP]p2Qv ,p1Qv@ . ~75!

Therefore, the wave functions withn52 behave like those
of scattering states in the interval~74! and like those of
bound states in the interval~75!.

The real part ofkn(Q) is always approximately given by
akr . Thus, the wave functions withn51 have positive ra-
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dial momentum and describe electrons moving away fr
and holes moving towards the vortex center in the ang
range defined by Eq.~71!, while the wave functions withn
52, having negative radial momentum, describe electr
moving towards and holes moving away from the vort
center in the angular range defined by Eq.~74!.

In the angular range defined by Eq.~72! the wave func-
tions with n51 are exponentially damped. The same is tr
for the wave functions withn52 in the angular range de
fined by Eq.~75!. Therefore, we call these states tentative
‘‘angular bound states.’’ In these two angular ranges the c
rent contributions from the outgoing and the incoming wav
do not cancel. Their sum yields a net current flow in t
2x direction, opposite to the flow of the condensate. T
quasiparticle countercurrent, stimulated by the conden
flow, corresponds to the quasiparticle countercurrent
superconducting-normal-superconducting~SNS! junctions
which is responsible for the oscillations of the Joseph
current.22

The width of the energy interval@D`2«v ,D`1«v#, for
which there is only a limited range of directions in which
quasiparticle can move freely, is 2«v . As v→0 this interval
vanishes and there are no angular bound states in a vort
rest. For finite vortex velocitiesv.vc the angular bound
states may be neglected if«v!D` . In the following we will
assume that this condition holds so that there are essen
only bound and scattering states. Of these only the bo
states are important for Cooper pair destruction and crea
in Andreev scattering and the resulting supercurrent forc

IV. VORTEX CORE AND ITS VICINITY

We use the model of Nozie`res, Vinen, and Warren,5,6 in
which the vortex has a normal core of radiusr c with a su-
perfluid of uniform density outside the core. Thus, in the p
potential of Eq.~17!, D0(r )5D` for r .r c andD0(r )50 for
r ,r c , with r c'j. In Ref. 18 it has been shown that th
bound states calculated with this model do not deviate
nificantly from those obtained with a spatial variation of t
pair potential one finds from the Ginzburg-Landau equatio
Furthermore, in Ref. 23~and for the example of supercon
ducting multilayers! it has been shown that, and how, o
may replace self-consistent pair potentials by equiva
square-well pair potentials of appropriate heights and wid
By this method one could determineD` andr c with the help
of a self-consistent pair potential, if one were interested
e.g., very accurate energy spectra. For our purpose, how
it is sufficient to consider the two quantities as free para
eters and see if for physically reasonable values of th
parameters the supercurrent force may be equal to one
of the Magnus force. As it will turn out in Sec. V, only th
ratio r c /j ~i.e., the productr cD`) matters and is reasonabl
indeed.

Inside the normal core, forr ,r c , the wave functions

un
N~r ,Q!5e2 i ~«v/2«r!krr cosQeinQJn~ker !, ~76!

vn
N~r ,Q!5ei ~«v/2«r!krr cosQeinQJn~khr !, ~77!

with
ar
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t
s.

,
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ke5S 2m

\2 D 1/2

A«r1En1
«m

2
'kr1

kr

2«r
S En1

«m

2 D ,

~78!

kh5S 2m

\2 D 1/2

A«r2En1
«m

2
'kr2

kr

2«r
S En2

«m

2 D ,

~79!

kr[
A2m

\
A«F2

\2kz
2

2m
, ~80!

are exact solutions of the BdGE’s~33! with D0(r )50 and
E[En ; hereJn(z) is the Bessel function of the first kind
and ordern.

The quasiparticle wave functions outside the vortex co
r .r c , which solve the BdGE’s~33! with the pair potential,
Eq. ~17! have been calculated in Ref. 19. We do not rep
duce the rather lengthy calculations here, but indicate o
the principal steps and approximations. We restrict the an
sis to bound states withuEnu,D`2«v andn!krr c , and to
low velocities, so that«v /pD!1.

For the solutions inr .r c , we make the ansatz

un,n
S ~r ,Q!5 f n,n~r ,Q!un,n

A ~r ,Q!, ~81!

vn,n
S ~r ,Q!5gn,n~r ,Q!vn,n

A ~r ,Q!, ~82!

where the deviations of the wave functions from t
asymptotic wave functions of Eqs.~39! and~40! are given by
the functionsf n,n(r ,Q) and gn,n(r ,Q) and are due to the
screening current around the vortex core.

Since the deviations from the asymptotic wave functio
are small~in the sense that they vary slowly in space, as o
knows from the vortex at rest18!, one may neglect the smallv
in f n,n(r ,Q) and gn,n(r ,Q). As a consequence these fun
tions become independent ofQ and are found to be

f n,n~r ,Q!5 f̂ n,n~r !5jn,n~r !eF̂n,n~r !, ~83!

gn,n~r ,Q!5ĝn,n~r !5jn,n~r !eĜn,n~r !, ~84!

with

jn,n~r !5
1

Ar
expS in2

2Knr D , ~85!

F̂n,n~r !52
i

8Knr
2

D`~n1 1
2 !

2«r
ĉneq̂rE1~ q̂r !, ~86!

Ĝn,n~r !5
i ~n1 1

2 !

Knr
2

i

8Knr
2

D`~n1 1
2 !

2«r
ĉn

21eq̂rE1~ q̂r !,

~87!

where

ĉn5expS ~21!ni arccos
En

D`
D , ~88!

q̂5
kr

«r
AD`

2 2En
2, ~89!
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Kn52~21!nkr1 i
kr

2«r
AD`

2 2En
2, ~90!

E1~ q̂r !5E
r

`e2q̂t

t
dt. ~91!

In r c the quasiparticle wave functionsuN(r ,Q), vN(r ,Q)
of the bound states forr ,r c must smoothly join the wave
functionsuS(r ,Q), vS(r ,Q) for r .r c which have the cor-
rect asymptotic properties discussed in the preceding sec
In view of the angle-dependent matching conditions

uN~r c ,Q!5uS~r c ,Q!, ~92!

vN~r c ,Q!5vS~r c ,Q!, ~93!

]

]r
uN~r ,Q!U

r 5r c

5
]

]r
uS~r ,Q!U

r 5r c

, ~94!

]

]r
vN~r ,Q!U

r 5r c

5
]

]r
vS~r ,Q!U

r 5r c

, ~95!

the superpositions

u~r ,Q!5Q~r c2r ! (
n52`

`

Anun
N~r ,Q!1Q~r 2r c!

3 (
n51

2

(
n52`

`

Dn,nun,n
S ~r ,Q!, ~96!

v~r ,Q!5Q~r c2r ! (
n52`

`

Bnvn
N~r ,Q!1Q~r 2r c!

3 (
n51

2

(
n52`

`

Dn,nvn,n
S ~r ,Q! ~97!

are formed, and the coefficientsAn andBn , which appear in
the uN(r ,Q) and vN(r ,Q), and theD1,n and D2,n , which
appear in theuS(r ,Q), vS(r ,Q), have to be determined in
such a way that the matching conditions are satisfied and
wave functions are normalized.

After a Fourier transformation with respect toQ the
matching conditions turn into a system of four equations
which products of the coefficientsAn , Bn , andDn,n with the
Fourier transforms of theu(n,)n andv (n,)n at r c are summed
over alln from 2` to 1`. Each of these products contain
a Bessel functionJn2n8(z). Since z is of the order of
«v /pD!1, these Bessel functions may be replaced
J0(z)dn,n8. Thus, only one term is significant in each of th
sums overn, and one can write down explicitly the energ
eigenvalue equation of the bound states forn!krr c . If one
neglects terms of second and higher order inv, this eigen-
value equation becomes

arccos
En

D`
5

krr cEn

«r
1

p

2
1Np2

AD`
2 2En

2

«r

3S n1
1

2Deq̂r cE1~ q̂r c!. ~98!
n.

he

n

y

This is the same eigenvalue equation as that for a vo
at rest. Forr c'j and not too smallkr solutions withEn
,D` exist only for N50. Thus, the energy eigenvalues
the bound states depend on the angular momentum qua
numbern and the wave numberkz of propagation parallel to
the direction of the magnetic field.~For the sake of brevity
we designate the eigenvaluesEn,kz

just by En .)

The vortex velocityv does not influence the energy e
genvalues within our approximation, because in the Four
transformed matching conditions only the argumentsz of the
Bessel functions

Jn2n8~z!'J0~z!dn,n8 ~99!

depend uponv. Expansion of these Bessel functions wi
respect tov provides only quadratic or higher-order contr
butions of v to the eigenvalue equation. These have to
neglected within our linear approximation.

Because of Eq.~99!, only the coefficientsAn , Bn , and
Dn,n which belong to a givenn andEn are nonzero in Eqs
~96! and ~97!. Thus, the eigenfunctions of the bound sta
with energyEn are

Cn~rW,t !5S un~r ,Q!

vn~r ,Q! De2 iEnt/\eikzz, ~100!

with

un~r ,Q!5Q~r c2r !Anun
N~r ,Q!1Q~r 2r c!@D1,nu1,n

S ~r ,Q!

1D2,nu2,n
S ~r ,Q!#, ~101!

and

vn~r ,Q!5Q~r c2r !Bn11vn11
N ~r ,Q!1Q~r 2r c!

3@D1,nv1,n
S ~r ,Q!1D2,nv2,n

S ~r ,Q!#. ~102!

For the absolute squares of the coefficents we find wit
our approximations

uAnu25uBn11u25uD1,nu22pkre2r c /l0, ~103!

uD2,nu25uD1,nu2, ~104!

where from normalization follows

uD1,nu25~8pr cLe2r c /l01D0!21, ~105!

with

D058LE
0

p

dQl2~Q!expS 2
r c

l2~Q! D ~106!

and

l05
\2kr

2m
Re~D`

2 2En
2!21/2. ~107!

The velocity- and angle-dependent quasiparticle de
lengthl2(Q) is defined in Eq.~113!.

With the help of these functions we will show in the ne
section that the supercurrent force on the quasiparticles
calized in the vortex core by Andreev scattering transf
half of the Magnus force from the Cooper pair condensate
the unpaired core electrons.
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V. SUPERCURRENT FORCE AND MAGNUS FORCE

We insert the wave functions of Eqs.~101! and~102! into
Eq. ~11!. This yields the supercurrent force on a bound q
siparticle in the state characterized by the quantum num
n and kz for angular momentum around and momentu
along thez axis; the radial quantum numberN is 0. The
superfluid velocityvW s5vW s(r ) is the sum

vW s~r !5vW s0~r !1vW ~108!

of the screening current velocity of Eq.~18! and the relative
velocity of Eq.~31!. Sincev!D` /(\kF), the relative veloc-
ity vW is small compared to the screening current veloc

vW s0(j) in the vicinity of the core and will be neglected i

vW s(r ). The pair potentialD5D(r ,Q) is given by Eq.~17!.
As in Sec. IV we adopt the local model for the consider
high-k superconductor: The pair potential depression n
the vortex center is replaced by a normal core of radiusr c
'j, i.e., D(r ,r c ,Q)[0, while outside of this core the
modulus of the pair potential is replaced by the valueD` .
We stay within the approximations introduced in Sec. IV

According to Eq.~11! contributions to the supercurren
force fWD2 come from the regions of finiteD, i.e., r .r c .
Since the supercurrent force acts only on quasiparti
which create or destroy Cooper pairs in Andre
scattering,10–12 the u and v functions in Eq.~11! are the
exponentially decaying wave functions of the bound sta
given by Eqs.~101! and ~102! for r .r c .

Within our approximations we may replace the functio
f̂ n,n(r ) and ĝn,n(r ) by jn,n(r ) @the small functionsF̂n,n(r )
and Ĝn,n(r ) are only important for the derivation of the e
genvalue equation~98!#, and write the wave functions of th
bound states in the superconducting region outside the
as

u1,n
S ~r ,Q!5j1,n~r !einQeikrre2r /2l1~Q!, ~109!

u2,n
S ~r ,Q!5j2,n~r !einQe2 ikrre2r /2l2~Q!, ~110!

v1,n
S ~r ,Q!5j1,n~r !c1~Q!ei ~n11!Qeikrre2r /2l1~Q!,

~111!

v2,n
S ~r ,Q!5j2,n~r !c2~Q!ei ~n11!Qe2 ikrre2r /2l2~Q!,

~112!

where thecn(Q) are given by Eq.~68! and theln(Q) are
quasiparticle decay lengths derived from Eq.~67!,

ln~Q!5@2 Imkn~Q!#21

5
\2kr

2m
Re$D`

2 2@En1~21!n«vcosQ#2%21/2.

~113!

Inserting the superfluid velocity~18!, the wave functions

un
S~r ,Q!5D1,nu1,n

S ~r ,Q!1D2,nu2,n
S ~r ,Q!, ~114!

vn
S~r ,Q!5D1,nv1,n

S ~r ,Q!1D2,nv2,n
S ~r ,Q!, ~115!
-
rs

y

d
r

s

s,

re

and the pair potential D(r ,Q)[0 for r ,r c and
D(r ,Q)5D`e2 iQ for r>r c into Eq. ~11! we find

fWD2~kz ,n!5
\AkF

22kz
2eF0L

pm
uD1,nu2

3E
0

2p

dQeWQE
r c

`dr

r S e2r /l2~Q!

l2~Q!
2

e2r /l1~Q!

l1~Q! D ,

~116!

where we neglected the integrals over the rapidly oscillat
products@u1,n

S (r ,Q)#* v2,n
S (r ,Q) and@u2,n

S (r ,Q)#* v1,n
S (r ,Q)

and made use of the relation

D`Im@cn~Q!#5~21!n
\2AkF

22kz
2

2m
ln

21~Q!, ~117!

which follows from Eq. ~68! with Eq. ~113! for uEnu<D
2«v .

In order to evaluate further Eq.~116! we make a crude
approximation: We replacer 21 in the integral by its maxi-
mum valuer c

21 . Thus, all the following expressions for th
supercurrent force would have to be multiplied by a nume
cal factor smaller than 1 in order to get quantities whi
would correspond to the exact integral. This way we c
carry out the integration overr and obtain an approximat
analytical expression forfWD2. In order to perform the inte-
gration overQ we write the angular unit vectoreWQ in terms
of Cartesian unit vectorseWQ52eW xsinQ1eWycosQ. Using fur-
thermore the relationl1(Q)5l2(p2Q), which follows di-
rectly from Eq.~113!, and observing that bothln(Q) depend
on the angular coordinateQ only via cosQ, we find

fWD2~kz ,n!5eW y

4\AkF
22kz

2eF0L

pmrc
uD1,nu2

3E
0

p

dQ cosQ expS 2
r c

l2~Q! D . ~118!

The supercurrent force on a quasiparticle has only a com
nent in they direction, i.e., perpendicular to the relative v
locity vW 5vW T2vW L , just like the Magnus force of Eq.~1!.

Numerical integration of Eq.~118! yields in the supercur-
rent force as a function ofE[En,kz

. This is shown in Fig. 2

for kz50 ~solid line!.
The supercurrent force depends nearly linearly on

quasiparticle energy foruEu,D`2«v and vanishes foruEu
.D`2«v . Note that, in Fig. 2,«v50.1D` , which is rather
large. For smaller values of«v the supercurrent force ma
well be approximated by a linear function inE for uEu
,D` and by zero foruEu.D` , as shown by the dashed lin
in Fig. 2.

Analytically a linearized expression for the supercurre
force can be obtained by a first-order Taylor expans
aroundEn50. With the definition

kz[kFcosv, ~119!

this yields
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fWD2~v,n!5eW y

evF0kF

2pD`

Ensinv

@r c1l̂0~v!#
, ~120!

where

l̂0~v!5
\2kFsinv

2mD`
. ~121!

In deriving Eq.~120! we have kept only terms linear inv.
The total forceFW D2 acting on the core because of Andre

scattering is the sum of all supercurrent forces acting on
bound quasiparticles. In the sum offWD2, approximated by Eq
~120!, over all occupied quasiparticle states

FW D252(
kz

(
n

fWD2~v,n! f 0~En!, ~122!

the spin degeneracy is taken into account by a factor of 2
f 0(En) is the Fermi distribution function. For the sake
simplicity we limit the calculation toT50 K so that only the
quasiparticle states with negative energy—which make
the ground state of the normal core—are occupied:f 0(En)
51 for En,0 and f 0(En)50 for En.0.

The sum overkz is transformed in an integral overv:

(
kz

→
L

2pE2kF

kF
dkz5

LkF

2p E
0

p

dv sinv. ~123!

For fixedv the energetic separation between two ene
eigenvalues differing inn by 1 is very small.18 Therefore, we
can transform the sum overn in an integral overEn[E:

(
n
→E

2D`

0

dES ]E

]n D
v

21

; ~124!

the lower integration limit has been approximated b
2D` , in the spirit of the linear approximation of Fig. 2 an
Eq. ~120!. Thus the total supercurrent force is

FW D25
LkF

p E
0

p

dv sin vE
2D`

0

dES ]E

]n D
v

21

fWD2~v,E!.

~125!

FIG. 2. The magnitudeeW y• fWD2 of the supercurrent forcefWD2 on
quasiparticles in a moving vortex line as a function of the quasip
ticle energyE, in arbitrary units. Here quasiparticles with wav
numberkz50 parallel to the vortex axis are considered. Solid lin

fWD2 from numerical integration of Eq.~118!; dashed line,fWD2 lin-
earized according to Eq.~120!.
e

nd

p

y

The term (]E/]n)v
21 can be obtained from the eigenvalu

equation~98!. Approximating in itexE1(x)'1/x turns it into

arccos
E

D`
2

kFr cE sinv

«r
5

p

2
1Np2

n1 1
2

krr c
, ~126!

with N50 for not too smallv. From Eq.~126! one finds

S ]E

]n D
v

21

5
kFr csinv

AD`
2 2E2

1
2mrc

2

\2
. ~127!

We insert Eqs.~120! and ~127! into Eq. ~125!, assume that
the spectrum and the density of all bound states can be
proximately described by Eqs.~126! and~127!, and carry out
the integration overE:

FW D25eW y

evF0LkF
2

2p2D`

E
0

p

dv
sin2v

r c1l̂0~v!

3F2D`kFr csinv2
D`

2 mrc
2

\2 G . ~128!

With l̂0(v) according to Eq.~121!, the coherence lengthj
5\2kF /(pmD`), and the electron densityns5kF

3/(3p2),
Eq. ~128! results in

FW D25
1

2
FW MagnusI S r c

j D , ~129!

with FW Magnusgiven by Eq.~1! and

I S r c

j D5
3r c

pj E0

p

dv sin2v
r c /j1p sinv

r c /j1~p/2!sinv
. ~130!

The functionI (r c /j) is plotted in Fig. 3. It assumes th
value 1 forr c'0.4j. Considering the approximations mad
on the way to Eq.~129! this is reasonable. Without the ap
proximation of replacing 1/r by 1/r c in the integral~116!,

FW D25
1

2
FW Magnus, ~131!

would result for a somewhat larger value ofr c .

VI. SUMMARY AND OUTLOOK

The motion of a vortex line relative to an applied supe
current causes an angular asymmetry in the wave funct
of the unpaired quasiparticles bound in the vortex core: O
side the core, in a given direction characterized by the a

r-

,

FIG. 3. The functionI (r c /j) as defined by Eq.~130!.
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muthal angleQ, the damping of the wave functions which,
the core boundary, match to radially outgoing electron—a
radially ingoing hole—wave functions is different from th
damping of the wave functions which match to radially ou
going hole—and radially ingoing electron—wave function
The different penetration lengthsl1(Q) and l2(Q) in Eq.
~116! are responsible for the supercurrent force and the
sulting half of the Magnus force. This angle-dependent d
ferent damping of outgoing and ingoing waves correspo
to the semiclassically computed10 different rates of Cooper
pair formation and destruction— and the associated differ
momentum transfers from the circulating condensate to
core electrons—in electron→hole and hole→electron scat-
tering processes at the core boundary. The detailed quan
mechanical calculations presented in this paper confirm
earlier semiclassical considerations: The sum of all super
rent forces, which originate from Cooper pair momentu
transfers to the core electrons by Andreev scattering, is e
to one-half of the Magnus force. It explains microscopica
the ‘‘interface force’’ in the Nozie`res-Vinen-Warren theory
of vortex motion.5,6

Recently Stone24 showed by a quasiclassical geometr
optics model that in a moving vortex spectral flow
thwarted by an analog of Bloch oscillations originating fro
the discrete nature of the core state spectrum. This is a
sequence of the fact that due to the supercurrent force
Andreev reflection fails to be perfectly retroreflective a
causes the core bound states to precess in a sense oppo
that of the superflow. Therefore, momentum transferred
the vortex core can only escape via relaxation processes.
have implicitly taken into account such processes by ass
ing a constant drift velocityvW of the core quasiparticles rela
t
nd
e
t-
s.

re-
if-
ds

ent
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tum
our
ur-
m
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the
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tive to the condensate. That means that all momentum g
from the supercurrent force and the electrostatic field in
core are assumed to be dissipated right away to the latt
@This is also the condition for the validity of Eq.~1!.# This
way the nonequilibrium effects relevant in our context ha
been incorporated. The constant drift velocity causes
asymmetry in the wave functions, discussed above, wh

gives rise toFW D2.
Since we have worked with the mean-field TdBdGE

our analysis is, strictly speaking, only valid for convention
type-II superconductors. In order to extend it to the strong
correlated high-temperature superconductors one must
the time-dependent density-functional Bogoliubov–
Gennes equations~TdDFBdGE’s!.25 The integral equations
defining their vector and pair potentials in terms of exchan
correlation functionals of the gauge-invariant current dens
W and the anomalous densityD IP ~which measures off-
diagonal long-range order! are difficult to solve, if one takes
into account all electromagnetic fields. If, however, one n
glects the corresponding scalar and vector potentials—as
does when calculating the electronic structure of vortices
conventional superconductors—things become simp
Then, atT50 K the TdDFBdGE’s are essentially given b
Eqs.~21!–~23! with a pair potential which is the sum of th
mean-field pair potential and the~negative! variational de-
rivative of the exchange-correlation functionalQxc@W,D IP#
with respect toD IP* .15,26Thus, the calculation of an appropri
ate exchange-correlation functional is crucial for the analy
of the influence of Andreev scattering on vortex motion
high-temperature superconductors. This is a task for furt
research.
-
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