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Moving vortex line: Electronic structure, Andreev scattering, and Magnus force
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The wave functions of quasiparticles in a vortex line, moving with velagjtyelative to the lattice when a
transport current with drift veIocitﬁT is applied, are calculated by solving the time-dependent Bogoliubov—de
Gennes equations for a highsuperconductor in contact with a reservoir of chemical poteptidrar away
from the vortex core the pair potential has the constant modMlusComparison with the wave functions of
a vortex at rest shows that vortex motion modifies the amplitudes, the radial wave numbers of the states with
energyE>A, , and the penetration lengths of states with endfgyA .. by a term=*¢, cod. HereO is the
azimuthal angle of cylinder coordinates with thedirection parallel to the vortex axis, ang =#ik,v; v
=lvr—v| andk,= Jemia?y u— kzz, with k, being the wave number of propagation in thdirection. If one
neglects terms of the order of in the spectrum of the bound states, one obtains the same eigenvalues as for
the vortex at rest. The supercurrent force on the corresponding quasiparticles, caused by Andreev scattering at
the core boundary, is calculated with thanodified wave functions. It transfers half of the Magnus force from
the moving condensate to the unpaired quasiparticles in the vortex| 8@63-182008)05113-3

[. INTRODUCTION the core to the unpaired electrons inside the core which are in
equilibrium with the lattice. Nozies and Vinen state, “It is
The motion of vortex lines in type-Il superconductors dis-essential to know, how the Magnus force is shared between
sipates energy, because the unpaired electrons in the vortéixe bulk of the core and the ‘interface’ with the superfluil.”
core are subject to frictional forces from the lattice. ThisThe bulk share turned out to be half of the Magnus fGrRe.
limits the technological applications of conventional and esdt originates from the electrostatic field in the core of radius
pecially high-temperature superconductgkTSC's). Dis-  rg:®
covery of the HTSC's has stimulated anew intensive research

in vortices and their motion, documented in recent 1 . R . 1 . . R
reviews' 3 While being disadvantageous from a technologi- Ec=———= (v =201+ v, XP=——= (v —v) X .
cal point of view, vortex motion has challenged experimental e 2mrg

and theoretical physicists with a wealth of interesting prob- )

lems. One of the oldest is the question, which force acthg ORhe second equality holds if no pinning centers inhibit the
a moving vortex line is in balance with the frictional forEe  motion of the vortex so that the drift velocity inside the core
from the lattice? Different answers have been given by th(;jnc is equal tovr. (v iS v in Ref. 6) The interface force,
theories of Bardeen and Steph@®), on the one hanfland  however, which has to provide the other half of the Magnus
Nozieres, Vinen, and WarrefNVW),”” on the other hand. force® has remained unclear in its physical nature until re-
While NVW show that this force should be the Magnus cently. In a previous Lettd? we have shown by a semiclas-
force, sical calculation that this interface force is the result of mo-
mentum transfer from the Cooper pairs in the condensate to

—F=Fumagnus=nseL(vr—v ) X @, (1) the core electrons by Andreev scattering at the core bound-
which has been confirmed recently by Berry-phasedry. Itis a special and important manifestation of a second
consideration$;® BS have instead force, called supercurrent forde,,***?involved in Andreev

. .. scattering®® This force is the fourth member of the full set of
—F=-nely Xo; (2)  forces acting on quasiparticles in an inhomogeneous,
here ng is the density of the superconducting electrons,Current-carrying superconductor with pair potentia(r)
e=—|e| is the charge of an electroh, is the length of the =|A(r)|e"*"), vector potentialA, and scalar potentiaV .

vortex line which is assumed to be parallel to thaxis,s; ~ 11eseé forces are obtained from the time-dependent
is the drift velocity of the applied transport supercurrent Bogoliubov—de Gennes equatiofisIBAGE'y (Refs. 14 and

. ) y bp ) POIT SUp . '’ 15) and the resulting generalized Ehrenfest theorem for qua-
's the velocity of the vortex line, and=e,Po, with o siparticles with electron componentr,t) and hole compo-
=h/2|e| being the flux quantum. P P : P

The basic difference between the two theories consists iFie’T‘U(F-'[)-11 Accordingly, the total force on a quasiparticle,
an “interface force,” introduced phenomenologically in the defined as
NVW theory by momentum-balance arguments and absent in
the BS theory. It is required for the complete transfer of the f= Ef d3r1//*(F t)ﬁz//(F t) (4)
Magnus force from the superconducting condensate outside dt ' e
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with

at)_(u(r*,t)) -
wir.)= ()

being a solution of the TdBdGE's, and

h. -
[i—V—eA(r,t) 0

0 5 .

ho .
i—V+eA(r,t)}
(6)

being the quasiparticle momentum operator, is the sum of th

four forces:

'F: 'Fe+ Fh+FAl+FA2' (7)
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force “obtained in a form that involves virtual transitions
between the core levels around the Fermi level” is due to the
same physical mechanisms, i.e., Andreev scattering and su-
percurrent force, which give rise to

A, (13

. R 2 3 . ho. -
fAEfA1+fA2:%|mfd ru”v I—V_ZeA

The sum ofFA over all occupied quasiparticle states yields
the total off-diagonal force on the vortex. Because of sym-

metry reasons, onIfAz has a component perpendicular to

vT—JL and may therefore be involved in the Magnus-force

'gansfer across the core boundary. Therefore, it is sufficient

to calculateFAz.

A fringe benefit of our going beyond the adiabatic limit in
solving the TdBAGE's is the discovery of a new sort of qua-
siparticle states. They may be called “angular bound states,”

It consists of the usual diagonal electromagnetic forces omecause in two angular ranges their wave functions decay

electrons €) and holes ),

- e . . L . Jd. o
— Bpni*| _ —a—A —
fe—fd ru 2m(pe><B BXpe) eatA VV|u, (8)
fum | 0Fro% | o (BB Bx By +e A+ TV
h= o™ 5 (Pn Pr)+e— v,
9
and two off-diagonal pair potential forces
far=—2Re| diru*v(V|A])e'?, (10)
. omf .- .
fA2—4% d°rvgim(u*vA). (11
HereB=V XA, and
- h|. 2e.
Uszﬁ VQD—WA (12

exponentially outside the core, and in the two complemen-
tary angular ranges they spread as undamped scattering
states.

The paper is organized as follows. In Sec. I, by a Galilei
transformation, the TdBAGE's in the lattice frame of refer-
ence(LFR) are changed into stationary BAGE's in the vortex
frame of reference(VFR). In Sec. Ill we study the
asymptotic behavior of the quasiparticle wave functions of
the vortex system and discuss the three types of quasiparticle
states: bound, scattering, and angular bound states. Section
IV describes how matching of the solutions outside the core
to the ones inside the core is achieved with the help of a
Fourier transformation of the angle-dependent matching con-
ditions. The complete, velocity-dependent wave functions
for the case of a moving vortex with a square-well pair po-
tential are presented. With these wave functions we calculate
the supercurrent-force contribution to the Magnus force in
Sec. V and find that it is equal to one-half of the Magnus
force, if the normal vortex core has a diameter of about one
coherence length. A summary and outlook concludes the pa-
per.

is the gauge-invariant Cooper pair velocity. The off-diagonal

force f,, is responsible for the change of quasiparticle mo- Il. GALILEI TRANSFORMATION OF THE TDBDGE’s
mentum from a value above to a value below the Fermi

We consider a lowF;, high-« type-1l superconductor. In

rf r vice versain | Andreev ring. Th - . . . o
surface(or vice versain usual Andreev scattering € sec the absence of external fields its pair potential is homoge-

ond off-diagonal forcef s,, which is present if there is a pggys, isotropic, and small compared to the Fermi energy. In
supercurrent flowing with Cooper pair velocity, is the  this superconductor vortices are induced by an applied mag-
new supercurrent force. In this paper we present a completgetic field B (parallel to thez direction which satisfiesB.;
quantum mechanical calculation of this supercurrent force by B<B_,, so that vortex-vortex interactions can be ignored,
solving the time-dependent Bogoliubov—de Gennes equaand it is sufficient to consider an isolated vortex. This vortex

tions for an isolated moving vortex line and show that thejs driven by an applied supercurrent with constant drift ve-
screening current around the vortex line and the modificatior|‘bcity JT- It moves with constant veIocit&L. Both veloci-

of the quaglpartlcle wave functlon§ by the motion of th,eties lie in thex-y plane:
vortex relative to the superconducting condensate result in-

deed in half of the Magnus force. - = >

Simanek® has calculated the force on the center of a UTTUTET UTyRy s (14
moving vortex line in the adiabatic limit with the help of the - - -
instantaneous eigenstates of the superfluid and the Bogoliu- VL= ULxB T ULyBy - (15

bov transformation of the many-body Hamiltonian. The ) ) i

wave functions in this transformation are the solutions of the _The system is described by the mean-field TdBAGE'S,
stationary Bogoliubov—de Gennes equations. The way theyith a pair potential which in the_)lattlce frame of reference
enter Smanek’s equationg5), (10), and(15) shows that his and the corresponding coordinatésandt’ is given by
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Ipt’ = gt

!

o x

FIG. 1. Frames of reference: the coordinaté&t() with the
Cartesian components'(y') and the anglé®’ correspond to the

lattice frame of referencéLFR) while the coordinatesf(t) with
the Cartesian components,y) and the anglé® correspond to the

vortex frame of referencéVFR) which moves with veIocityJL
relative to the LFR.

A(r tH)=A(r"—ov.t)). (16)

Here

AN =A(r,0)=Ay(r)e '@ (17)
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Thus, in the LFR the TdBdGE's of an isolated moving vor-
tex line are

J ~ - A -~
iﬁE\P(r’,t’)=H(r’,t’)\If(r’,t’). (21
l'Ivf(ré’,t’) is the spinor quasiparticle wave functigwith

electron componeni and hole component) in the LFR,
and the matrix Hamiltonian

A )= Har) &) (22
OBy —HE)

contains the pair potential of E¢L9) and the single-electron
Hamiltonian

-~ . 1 . =
He(r) = 5 (—iV' —eA) ¢

1 . .
=—(—IﬁV'+mvT)2—sF .

2m (23

In order to avoid the rather complicated struct(t8) of

is the pair potential of a vortex at rest; i.e., the coordinatedh® pair potential in the LFR we now switch over to the VFR

(r,t) are those of a frame of reference fixed to the vortex.
The radial partAy(r) of the pair potential vanishes at the

center of the vortex and assumes the constant valudar

from the core. The phase of the pair potential furnishes th

superfluid velocity

N oo
Vso= T 51€e (18

of the screening current.

With Egs.(16) and(17) and Fig. 1 the pair potential in the

lattice frame of reference has the form

A(r' ") =Ag[V(r'cos®' —u " )2+ (r'sin @' —v t')?]
r'sin®’ —uv t’'

(19
r'cos®’ —u,t’

xexp( —i arctan

The magnetic field of the vortex may be neglectEd®as

by means of the Galilei transformation

-

r'=r+o.t, t'=t. (24)

This transformation shifts the pair potentE(F’ ,t") back to

the pair potentiaA(F) of the vortex at rest. The wave func-
tions ‘II(F,t) in the VFR follow from the LFR wave func-
tionsW(r’,t’) by the same transformation:

V(rt)=W(r+o.t,t). (25)

Applying the Galilei transformation to the differential op-
erators,

>

well as the electric field induced by the motion of the ye transform the TdBdGE21) to the VFR:

vortex>®1° The chemical potentiak in the TdBAGE's is

that of the energy and patrticle reservoir to which the super-

conductor is coupled. We neglect all influences of entropyjz — ¥ (r t)=
production associated with vortex motion on the chemical

potential, because the number of degrees of freedom of the

reservoir is assumed to be very much larger than that of th
superconductol® Then u is the same as in the case of no

vortex motion and equal to the Fermi energy of the su-

perconductor. The vector potential in the LFR is determined 2
by considering a region far away from the vortex core. There

550 of Eq. (18) vanishes, and so do&?go in Eq. (12), and
vs=vt. With that Eq.(12) turns into

N m., =
A: - _UTEA.

. (20)

V=V, (26)
o a p) P
oot Uuax Ul (27
(H2<F>+H1<F> A(r) ) .
. 0, - o | P(r,t).
A*(r) —He(r)+Ha(r)
(28

Rlere Hg and H, are, appropriate to the symmetry of our
problem, written in cylinder coordinates,(,z),

o B # 19 1 # &P
et 0D= " oml o T or T2 e oz
1 2
- SF_EmUT (29

and
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_ _ 1 9 have been introduced. From now on we assume, without loss
Hi(r,0,2)=—if| (—v,sin ® +vycosO) - - of generality,v,=0 and therefore =v,.
Since the Hamiltonian in Eq28) does not depend explic-

) d itly on time t and thez coordinate, the ansatz
+(v4C0s® + v sin @)&—r , (30
u(r,®)\ )
where the definitions ‘I’(f,t)=(v(r,®) e Elhglkzz (32)
JEJT—JL, UE|J|, (319 leads to the stationary Bogoliubov—de Gennes equations for
the electron and hole components,®) andv(r,®) of the
Ux=UTx—Vix, Uy=UTy—Uly (31b  radial and angular wave functions:
|
(u(r,))_ HY(r,0)+H,(r,0) A(r,0) (u(r,@)) @3
v(r,®)) A*(r,0) —HY(r,®)+H(r,®) ) \v(r,0))
|
Here the pair potential is given by E(L7), and Then, in Sec. IV, the influence afy, is taken into account
W2l 2 19 1 82 by functions which are independent ofand multiply the
(r 0)=- (_+ R — _) —-g,, (39 J-dependent asymptotic wave functions. Each such product
2migrz 1 dar r2 592 represents a solution of the BAGE'’s outside the vortex core.
Appropriate matching to the solutions inside the core will
1, ﬁ2k§ finally provide the energy eigenvalues and wave functions of
gp=er— o Mur——5 ", (39 the bound states needed for the calculation of the supercur-
rent force.
. 19 d
Hi(r,®)=—ifiv| =sin® - —-+cos® —-.  (36) lll. ASYMPTOTIC WAVE FUNCTIONS

2 ) . A. Nonlinear differential equations and proper solutions
Apart from the small termgmu$, which can be disre-

garded,Hg(r,G)) is the same as for a vortex at rest. The
effects of the applied supercurrent as well as of the motion o
the vortex are contained in the tetr (r,®). Note that this
term depends only on the relative velocity=vr—uv, be-
tween vortex and superconducting condensate, exactly as the

The electron and hole componentyr,®) andv”(r,0)
pf the asymptotic wave functions are solutions of the
asymptotic BAGE’s which result from E¢33) for r — o

r—ow

(He+H1—E)UA(r,0)+A.e "%uA(r,0) —= 0,

Magnus force, Eq(1l), does. For a vortex at rest and not (37)

immersed in an applied supercurrent the tétp{r,®) van- o A o A e

ishes as well as the Magnus force. The same is true for a (—Het+H1—E)v"(r,0)+A.eu’(r,0) —— 0(
39

vortex drifting along with the condensate (=v+).
If the vortex is immersed in an applied supercurrent but,heare A,.=Ay(r—). In Egs. (37) and (38 only those

does not drift along with it §, #v7), Hy(r,®) must be terms are kept which do not vanish for-c.

taken into account. In this case, the wave functions will not |nspired by the asymptotic solutions of the BAGE'’s for a

be the same as those of the vortex at rest. Moreover, the tergortex at rest/ '8 we start with the ansatz

H.(r,®) breaks the symmetry of the problem: The wave

functions can no longer be separated into radial and angular uh (r,0)=e"0eku(O)r (39)

functions. This drastically complicates the problem of solv- ’

ing the BAGE's. Fortunately, the solutions in the asymptotic

limit r— open up a way which will lead us in a sufficiently

good approximation to the full solutions to be used in Eq.

) ‘Heren is an integer and» will be explained later. The func-
(11.)' The two steps on this way, taken in Secs. Il and IV, ACionsu? A(r,0) andv” n(r,0) differ from the solutions for a
guided by the following considerations. i’ ¢

The dynamic, symmetry-breaking quantities which genervortex at rest in so far, as they include the angular-dependent
functionsc,(®) andk,(®) in places, where the latter ones

ate the supercurrent force are the superfluid velowggyof have constants. Finding the functioog(®) andk,(®) is

the screening current, E@18), and the vortex velocity ~ equivalent to finding the asymptotic wave functions

relative to the condensate, E@1). In the asymptotic limit Uﬁ,n(r@) andv’j'n(r,(ﬂ). We are looking for those solutions

v becomes vanishingly small so thatdominates in the which in the limitv—0 turn into the known asymptotic so-

asymptotic wave functions. These are calculated in Sec. llllutions of the vortex at rest.

Vi n(r,0)=c,(0)e " DOk (O, (40)
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Inserting the ansatz of Eq939 and (40) into the

asymptotic BAGE'37) and(38) we find after some algebra

the coupled nonlinear differential equations fgf(®) and
c,(0),

o=%{k§(@)+[k;(®)12}—sp—ﬁv[kL((@)sin®
—k,(®)cos®]—E+A..c,(0), (41)
ﬁZ
0=— 5 —{Kk}(®)+[Kk}(©)]*} +&,~fiv[k}(©)sin ©
—k,(0)cos®]—-E+A.c,(0), (42)

where the slash denotes differentiation with resped to

14

k’(@)zkv((@). (43
In order to decouple the system of differential equati@ts
and(42) we rewrite Eq.(41),
ﬁ2
A.c,(0)= = 7= {k)(©)+[k}(©)]?} +e,
+hv[k,(®)sin ®—k,(©)cos®]+E,
(44

multiply Eq. (42) by A..c,(0®), and insert Eq(44):

ﬁZ 2
0= ﬁ{k§(®)+[k;(®)]2}—sp —{E+fv[k,(©)sin ®

—k,(0)cos®]}2+ A2 . (45)

We have to solve Eq45) for k,(®), and then inserk,(®)
into Eq. (44) in order to obtairc,(®).
Before doing so, let us see hoky(®) andc,(0®) are

related to the corresponding quantities in the asymptotic
wave functions of the vortex at rest. This will help us to

select the physically appropriate solutions. In this aas®,
and Eq.(45) reduces to

hZ
S k(@) + [k (0) P} —e, == JE?-AL.  (49)

There are two types of solutions.
In the first placek,(®) might bek,, independent 0®.
Then Eq.(46) is easily solved fok,, resulting in

N

wherev e (1,2,3,4) counts the four solutions due to the four

possible combinations of the and — signs. From Eq(44)
with v =0 and Eq.(47) one finds

—E_\/Ez 1 48
CV_A_OO+ P—. ( )
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Inserting thesek,, andc,, into Egs.(39) and (40) yields the
four well-known”*® asymptotic solutions for the vortex at
rest.

In the second place, there are solutions of the type
k,(0)=k,cos@—0,), where thek, are those of Eq(47)
and the®, are arbitrary. Inserting these solutions into Egs.
(39 and (40) delivers functions containing plane waves
propagating in thex andy directions:

UA(r, @) = einOgikur c030-00) _ gindgilkxky) (49

Uﬁ(r,@)) — Cvei(n+1)®eik,,r cog®—-0g)

:Cvei(n+1)(~)ei(kxx+kyy), (50)

wherek,=k,cos0,, k,=k,sin®,, andc, is given again by
Eq. (48). These asymptotic solutions are not the cylindrical
plane waves required for a vortex at rest. Thus, they are
dismissed. The corresponding solutions of Etp) with v
#0 will be dismissed, too.

Equation(45) for k,(0®) is rewritten as

ﬁz 2 ’ 2
0=5—{KZ(0)+[k}(0) 1%} ~&,

+ g {E+Au[K,(O)sin ©—k,(0)cosO]}2—AZ,
(51

whereq; e (—1,+1) denotes the two sheets of the square
root. In order to solve this nonlinear differential equation we
introduce the substitution

£,(0)=VIE+%v[K,(©)sin©—k,(©)cosO]2—AZ.
(52

The functione ,(®) has no immediate physical meaning, but
for the vortex at rest it becomes

£,(0) =% JE?-AZ, (53)

which is just the term giving the dependence of the radial
wave numbek,, Eq. (47), on the quasiparticle enerdy.
Subsequently we will expreds, andk], by £,(®). This
will lead us to an algebraic equation fof(®) which can be
solved approximately.
Inserting Eq.(52) into (51) results in

hZ
0= 5—{KA(O)+[K/(O) P} —2,+015,(0). (59

In order to eliminatek,(®) we multiply Eq. (54 by
(2m/#2)sir?®,

0=k2(®)sir’® + [k (®)]?sir*®
2
—(kﬁ—qlﬁ—r:sy((ﬂ))sinz@, (55

define k,=+2me /%, and insertk’(0®)sin®, as obtained
from Eq. (52),



Ve2(@)+AZ—E

hv

whereq,e(—1,+1), and arrive at the quadratic equation
for k,(@):

K(©)sin® =22

+k,(O)cos®, (56)

U2Ves(®)+AZ—E

_ L2
0=k%(©)+2k,(0) -

cos

Uo\e5(®)+AZ—E
+

2 5 2m )
- kp—qlﬁsv((a) Sirfo.

fhv
(57
The eight solutions of Eq57) are
0.\Ves(®)+AZ—E
k,(0)=— o cos O
) 2m
+0s kp_%ﬁsy(@)
£2(0)+A2—E 2|12
—<q2 i ﬁ)v sin®, (59

whereqs; e (—1,+1), like q; andqg,, denotes the sheets of
the square root.

Finally, we eliminatek,(®) andk.(®) from Eq.(51) by
inserting Eq.(58) and its derivative. This results in the equa-
tion

@) ae(0)
d0 | iv\e2(0)+AZ

vala ™, s,,<®>[q2¢s%<®>+AZ—E]>
B T T )22 (0) + A2

X

| ]

for £,(0®). This equation is simpler than E1). Its solu-

tions determinek,(®) according to Eq(58). Furthermore,
by inserting Eqs(54) and(56) into Eq. (44) we can express
c,(®) by £,(0):

5 2m
kalﬁsy()

-1/2

2 2
e9(O)+AL—E
q2 v( ) sin ®

fhv

(59

U16,(0) +0o\e5(0) +AZ

c.(0)= -

(60)
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Equation (59) can be satisfied in two ways: first, by
£,(0®)= const so that

de,(0) _
de

(61)

This gives solutionsi’(r,®) andv’(r,®) which forv—0
become functions of the kind given in Eq49) and (50).1°

As we already discussed, these are not the appropriate solu-
tions for the vortex at rest and therefore are to be dismissed.
Consequently, here we dismiss the solutions witl{®)
=const as well. Second, E(R9) is satisfied if the expression

in the exterior square brackets vanishes. Thus, writing the
two terms in this expression on one common denominator,
one obtains

0=0¢,(0)0s{e2—2e,0:2,(0)

—[ae5(0)+AZ—E]* 2cos O
+{016,(0)[0x\eX(®) +A2—E]

+smq2\/s§(®)+AZ}sin®. (62)
Here we have introduced the definitions
em=mo? (63
and
g,=hkyv. (64

e, IS the kinetic energy of an electron pair moving with
velocity v. The energye, can formally be interpreted as a
Doppler term which shifts the energy of a quasiparticle mov-
ing with momentuntik, parallel to the superconducting con-
densate drifting with velocity .2

By squaring out the roots E@62) could be transformed
into an algebraic equation of eighth degree which might eas-
ily be solved numerically. This would be a convenient
method of solving exactly the system of coupled nonlinear
differential equation$41) and (42). However, we are inter-
ested in analytical approximations fly(®). These are ob-
tained by the following reasoning.

The energieg,, ande, are connected by the relation

2

€y

Sm—z—sp. (65)
With the exception of a negligible number of quasiparticles
traveling nearly parallel to the vortex axis, is of the order

of the Fermi energy. Thus it follows from E5) thate , is
much smaller thar, or A, and we can expand the right-

Therefore, the problem of solving the asymptotic BAGE'shand sidegrhs) of Eq. (62) with respect te:,,. Equation(58),

(37) and(38) has now been reduced to solving E§9).

20)+A2—E
kv(®):_Q2 €,(0)

written in terms ofe,, ande,,,

{e2—2e018,(0)—[02\e2(0)+AZ—E]?}22

cos® +
fiv RE

sin O, (66)

fhv
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can be expanded in terms of, as well. Carefully executing As is well known, in the case of a vortex at rest one has
these expansions and comparing with the results for the vobound states for |[E|<A, and scattering states for
tex at rest, we find that—in order to getkg(®) different  |E|=A, .1"® This is because the wave numbérsin Eq.
from k,, of Eq. (47) and thus have an effect &f,(r,0), i.e., (47) are complex for bound states and real for scattering
vortex motion, on wave propagation—we have to expand ustates. In the case of a moving vortex the functi&p@d)

to first order ing,,. In ¢,(®), on the other hand, one may depend not only upoic and A, but also ong,. Further-
neglecte ,, altogether and yet get a dependencepnAfter  more, they are functions of the angular coordinéXeand

a straightforward but rather lengthy calculation, presentedhus not quantum numbers. According to E67) there are
elsewheré? we find four solutions fok,(®): scattering states with re&l,(®) for all ® only if |E|=A.,
+e¢, . Likewise, thek, (®) will be complex for all® only if
|E|<A.—e,. Then the wave functions witw=1 and v

=2 vanish forr— and are those of bound quasiparticles;
the wave functions withv=3 andv=4 are to be dismissed,
because they diverge for—oo.

k
k,(0)= akp—aﬁi\/(E— ag,c0s0)2—A2, (67
p

wherek,/2e ,= e, /hive,, andc,(O) becomes

E_ 0 E_ 0)2 12 Wave functions with energie\,.—¢,<|E|<A.+¢,
c,(0)= @&,CosH | (E— ae,C050) 1 cannot be classified as belonging to bound or scattering
’ A A2 states. For energies in this range it depends on the angular

(68 coordinate® whetherk,(®) is real or complex. For com-
o ] ] plexk,(®) the wave functions withr=3 andv=4 increase
The coefficientsa=*1 and 8=*1 will be associated exponentially withr and have to be dismissed as in the case
with the indexv in the way given in Table I. of the bound quasiparticles, whereas the wave functions with
Inserting Eqs(67) and(68) into Eqs.(39) and(40) yields =1 andv=2 decrease exponentially. Let us look into the
the four asymptotic wave functions of the quasiparticles in gatter ones in some more detail f&>0 ande,<A.
superconductor with a moving vortex line. As fer-0, the First, we consider the wave functions with=1. From

k,(0©) andc,(®) approach the expressioi47) and (48),  Eq. (67) it follows, thatk,(®) will be real for
and the wave functions for the moving vortex smoothly

change over to the wave functions for the vortex at rest. E-A,

The deviation of the functiotk,(®), Eq. (67), from the cosO=<— (69)
wave numberk,, Eq. (47), as well as the deviation of o ’
c,(©), Eq.(68), fromc,, Eq.(48), is caused by, . If one  With the definition
wants to neglect the, term and thereby replace the wave E_A
functions for the moving vortex by those for the vortex at 0,= arccos——, (70)
rest, one has to demand thaf be small compared to the €y

lowest-energy eigenvalues of the bound quasiparticles in §here 0<®,< , it follows from Eq.(69) thatk,(®) is real
vortex at rest. These are of the ord®f/sr,!” so thate,  in the interval

<A2/eg is required. Replacing, in Eq. (64) by its maxi-
mum valuekg and usingé~#2kg/(rmA..) for the coher- 0e[0,,27-0,] (77)
ence lengthé, the last equation can be rewritten @S,
=(A./hKkg)(1Kkgé), where typicallykg &~ 10%. This corre-
sponds to Bnanek’s condition for the validity of the adia- 0e]-0,,0,. (72
batic approximatior:®

Subsequently, we will not make the adiabatic approxima
tion but rather assume thatis only about an order of mag-
nitude smaller tham\ , /A kg .

and complex in the interval

Consequently, the wave functions behave like those of scat-
tering states in the interval71l) and like those of bound
states in the interval72).

Second, we make the same considerations for the wave

functions withv=2 and find thak,(®) is real for
B. Angular bound states

Vortex motion creates a new type of quasiparticle states oSO = — E-A. (73)
which are hybrides between bound and scattering states. This - g,
can be seen from the energy and angle dependence of the ¢
k,(®) of Eg. (67) in the asymptotic solution€39) and (40). I.e., for
TABLE |. Labeling of the different combinations af and 8 ©el®,~mm=06,], (74)
values in Eqs(67) and(68), and thereafter, by the index and complex for
v a B Oe]lm—0,,7+0,. (75)
1 +1 -1 Therefore, the wave functions with=2 behave like those
2 -1 +1 of scattering states in the intervéf4) and like those of
3 +1 +1 bound states in the intervér5).
4 -1 -1 The real part ok, (®) is always approximately given by

ak,. Thus, the wave functions with=1 have positive ra-
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dial momentum and describe electrons moving away from om\ Y? A K

and holes moving towards the vortex center in the angular ke:(—z) e +E,+ —~Kk + — Ent —

range defined by Eq.71), while the wave functions with h 2

=2, having negative radial momentum, describe electrons (78)

moving towards and holes moving away from the vortex 1/2

center in the angular range defined by E&). ko= 2m Em Ko (E _ 8_m>
In the angular range defined by EJ2) the wave func- h n '

tions with v=1 are exponentially damped. The same is true (79

for the wave functions withv=2 in the angular range de-

fined by Eq.(75). Therefore, we call these states tentatively J2m h2ke

“angular bound states.” In these two angular ranges the cur- K,= 7 VN oy (80)

rent contributions from the outgoing and the incoming waves

do not cancel. Their sum yields a net current flow in theare exact solutions of the BAGE(83) with Ay(r)=0 and

—x direction, opposite to the flow of the condensate. ThisE=E; hereJ,({) is the Bessel function of the first kind

guasiparticle countercurrent, stimulated by the condensatend ordem.

flow, corresponds to the quasiparticle countercurrent in The quasiparticle wave functions outside the vortex core,

superconducting-normal-superconductin@NS junctions  r>r., which solve the BAGE'$33) with the pair potential,

which is responsible for the oscillations of the JosephsorEq. (17) have been calculated in Ref. 19. We do not repro-

current?? duce the rather lengthy calculations here, but indicate only
The width of the energy intervdlA,,—¢,,A.+¢,], for  the principal steps and approximations. We restrict the analy-

which there is only a limited range of directions in which a sis to bound states withE;|<A.—¢, andn<k,r, and to

guasiparticle can move freely, ig2. Asv—0 this interval low velocities, so that,/mA<1.

vanishes and there are no angular bound states in a vortex at For the solutions im>r., we make the ansatz

rest. For finite vortex velocities >v. the angular bound

states may be neglectedsif <A.. . In the following we will U (1, @) =f, o(r,®)u} ,(r,0), (81
assume that this condition holds so that there are essentially s A
only bound and scattering states. Of these only the bound Von(r®)=0,,(r,0)v),,(r,0), (82

states are important for Cooper pair destruction and creatiojhere the deviations of the wave functions from the
in Andreev scattering and the resulting supercurrent force. asymptotic wave functions of Eq&9) and(40) are given by
the functionsf, ,(r,®) andg, ,(r,®) and are due to the
IV. VORTEX CORE AND ITS VICINITY screening current around the vortex core. _
. _ .. Since the deviations from the asymptotic wave functions
We use the model of Nozies, Vinen, and Wa_ffeﬁ’; in are small(in the sense that they vary slowly in space, as one
which the vortex has a normal core of radiyswith a su-  knows from the vortex at re), one may neglect the small
perfluid of uniform density outside the core. Thus, in the pairin f, (r,®) andg, ,(r,®). As a consequence these func-

potential of Eq(17), Ag(r)=A.. forr>r.andAy(r)=0 for  tions become independent & and are found to be
r<r., with re=¢. In Ref. 18 it has been shown that the

bound states calculated with this model do not deviate sig- f,0(r@)=F, (=&, (r)e"n®), (83
nificantly from those obtained with a spatial variation of the i
pair potential one finds from the Ginzburg-Landau equations. g,n(r,0)= éy W) =&, n(r)eCwn(", (84)

Furthermore, in Ref. 28and for the example of supercon-

ducting multilayers it has been shown that, and how, one With

may replace self-consistent pair potentials by equivalent o,

square-well pair potentials of appropriate heights and widths. £ (r)=i ex L) (85)
By this method one could determide, andr with the help »n Jr 2K,r )’

of a self-consistent pair potential, if one were interested in,

e.g., very accurate energy spectra. For our purpose, however, i A.(n+ 3. . A

it is sufficient to consider the two quantities as free param- c, e Eq.(qr), (86
eters and see if for physically reasonable values of these
parameters the supercurrent force may be equal to one-half

Pl =" 8k r ™ 24,

of the Magnus force. As it will turn out in Sec. V, only the Jint3) i Aunt ), TE. (o
ratior./£ (i.e., the product .A..) matters and is reasonable, vnl(1)= K,r 8K, r 2¢, ¢, e Ea(ar),
indeed. (87)
Inside the normal core, far<r., the wave functions
where
N — a—i(g,/2e )k r cos® 4in®O
u,(r,@)=e '®/2p)% e J,(Kker), 76 - . E
n(r.©) nlker) (79 cV=ex;{(—1)”| arcco%), (88)
Uy(r,):ei(s,,/Zsp)kpr cos(%)ein(%‘]n(khr)! (77)

Lk
q=8—va§,—Eﬁ, (89)
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(90)

k
—(—=1)%k,+1i 2—;\/A§—EE,

.- |

In r the quasiparticle wave functiond'(r,®), vN(r,0)
of the bound states far<r, must smoothly join the wave
functionsuS(r,0), vS(r,®) for r>r, which have the cor-

ocefalt

Tdt. (91

rect asymptotic properties discussed in the preceding sectio

In view of the angle-dependent matching conditions

uN(re,®)=us(r.,0), (92)
oN(re.0)=0v%r,,0), (93)
o uN(r, @)‘ ~ —us(r,®)‘r (94)
J
EUN(I',@)‘ =—0%r,0) (95
the superpositions
u(r,@)=0(rc—r) 2 AUn(r,®)+0(r—re)
2
x})l 2 D, a3 (r,0), (96)
v(r,®)=0(re—r) 2 Bup(r,0)+6(r—r)
><E 2 D, nvon(r,0) 97

v=1n=-—x

are formed, and the coefficienrds, andB,,, which appear in
the uM(r,®) andv™(r,®), and theD;, and D,,, which
appear in thauS(r,®), v5(r,®), have to be determined in
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This is the same eigenvalue equation as that for a vortex
at rest. Forr~¢ and not too smalk, solutions withE,
<A, exist only forN=0. Thus, the energy eigenvalues of
the bound states depend on the angular momentum quantum
numbern and the wave numbd, of propagation parallel to
the direction of the magnetic fieldFor the sake of brevity
we designate the eigenvaIuEg,kZ just by E,.)

The vortex velocityv does not influence the energy ei-
genvalues within our approximation, because in the Fourier-
gansformed matching conditions only the argumentd the

‘essel functions

‘]n—n’(g)%JO(g)gn,n’ (99

depend uporv. Expansion of these Bessel functions with
respect tov provides only quadratic or higher-order contri-
butions ofv to the eigenvalue equation. These have to be
neglected within our linear approximation.

Because of Eq(99), only the coefficientA,,, B,,, and
D, which belong to a givem andE,, are nonzero in Egs.

(96) and (97). Thus, the eigenfunctions of the bound states
with energyE, are

n(r,9®)

(1.0) (100

) 7|Ent/ﬁeikzz,

V(1 t)= (
with

Un(r,©)=0(rc—r)AUR(r,0)+O(r—ro)[ Dy usy(r,0)

+DoaU3,(r,0)], (102
and
va(r,®)=0(r.—

F)Bns1vns1(r,0)+O(r—r)

X[Dlvnvl‘n(r,)—f— D2,nU2,n(ri®)]- (102

For the absolute squares of the coefficents we find within
our approximations

such a way that the matching conditions are satisfied and the

wave functions are normalized.
After a Fourier transformation with respect © the

matching conditions turn into a system of four equations, in

which products of the coefficients,, B,,, andD, ,, with the
Fourier transforms of the(, ), andv, ), atr. are summed
over alln from —« to +o. Each of these products contains
a Bessel functiond,_,({). Since ¢ is of the order of
e, ITA<L,
Jo({) 6n v Thus, only one term is significant in each of the &
sums ovem, and one can write down explicitly the energy-
eigenvalue equation of the bound statesretk,r.. If one
neglects terms of second and higher ordep jrthis eigen-
value equation becomes

AZ-

cE Ex

+ = +N71'—

E, p
arccoi— =

X (99

1)\ - -
n-+ 5) el"eE (qgre).

these Bessel functions may be replaced by

|An|2:|Bn+1|2:|Dl,n|2277kpeircl)\oa (103
|DZn|2:|Dln|2 (104
where from normalization follows
|Dl,n|2:(877rc|-e7rcn\o+Do)ila (105)
with
o rC
D =8Lf dON,(O ex;{— ) 106
0=BL | dONy(O)ex ——5| (106
nd
7%k
o= RE(AZ—ED) (107)

The velocity- and angle-dependent quasiparticle decay
length\,(®) is defined in Eq(113).

With the help of these functions we will show in the next
section that the supercurrent force on the quasiparticles lo-
calized in the vortex core by Andreev scattering transfers
half of the Magnus force from the Cooper pair condensate to
the unpaired core electrons.



57 MOVING VORTEX LINE: ELECTRONIC STRUCTURE, ... 7913

V. SUPERCURRENT FORCE AND MAGNUS FORCE and the pair potential A(r,®)=0 for r<r. and

— -i0 i ;
We insert the wave functions of Eq401) and(102 into ~ A(r,®)=A.e™'® for r=r into Eq. (11) we find
Eqg. (11). This yields the supercurrent force on a bound qua-

siparticle in the state characterized by the quantum numbers ; (k n)_ﬁvké_kfe‘bol- Dy |2
n and k, for angular momentum around and momentum ~42\%z0 m in
along thez axis; the radial quantum numbét is 0. The e e
superfluid velocityvs=v(r) is the sum % fzwd@(;@fmﬂ(e e et ’
0 e r )\2(6)) )\1(@))
vs(r)=vgo(r)+v (108 (116

of the screening current velocity of E(L8) and the relative \yhere we neglected the integrals over the rapidly oscillating

yeloﬁc@y of Eq.(31). Sincev <A, /(fkg), the relative veloc- . products[uin(r,G))]*vgn(r,@) and[ugn(r,@)]*vfn(r,@)

ity v is small compared to the screening current velocityand made use of the relation

l;so(f) in the vicinity of the core and will be neglected in —

- . . . . 2

vs(r). The pair potentiah=A(r,0) is given by Eq.(17). i JoVke—ky

As in Sec. IV we adopt the local model for the considered A-imlc,(©)]=(=1) 2m A, (0), (117

high-« superconductor: The pair potential depression near _

the vortex center is replaced by a normal core of radius Which follows from Eq.(68) with Eq. (113 for |E,|<A

~¢, e, A(r<r.,0)=0, while outside of this core the —¢&,-

modulus of the pair potential is replaced by the valug. In order to evaluate further Eq116 we make a crude

We stay within the approximations introduced in Sec. Iv. approximation: We replace” " in the integral by its maxi-
According to Eq.(11) contributions to the supercurrent mum valuer ~. Thus, all the following expressions for the

force FAZ come from the regions of finit\, i.e., r>r..  supercurrent force would have to be multiplied by a numeri-

Since the supercurrent force acts only on quasiparticle§@l factor smaller than 1 in order to get quantities which

which create or destroy Cooper pairs in AndreevWwould correspond to the exact integral. This way we can

scattering®*? the u and v functions in Eq.(11) are the Carry out the integration ovar and obtain an approximate

exponentially decaying wave functions of the bound statesanalytical expression foFAz. In order to perform the inte-

given by Eqgs(101) and(102) for r>r. ~ gration over® we write the angular unit vecta in terms

i Within our approximations we may replacg theA functlonsof Cartesian unit vecto: —éxsin®+éycos®. Using fur-

fun(r) andg,,n(r) by £,n(r) [the small functions=, 1(r)  thermore the relation ,(®) =X ,(7—®), which follows di-

andG, n(r) are only important for the derivation of the ei- rectly from Eq.(113), and observing that both,(®) depend

genvalue equatiof®8)], and write the wave functions of the on the angular coordina® only via cos®, we find

bound states in the superconducting region outside the core

as . 4h \/kzF - kZZeCDOL

FAZ(k21n):ey |D1’n|2
Uf,n(r@): glyn(r)einG)eikpre—r/Z)\l((*))’ (109 Tmr,
. . m _ r.C
US(1,0) = Epp(n)eMPe ke 122 (110 <, d0cose ex"( e 119
Va1, @) =& 4(r)cy(0)e! T DOelkrg=r2(0) The supercurrent force on a quasiparticle has only a compo-

(111 nent in they direction, i.e., perpendicular to the relative ve-

. o locity v=v7—v, , just like the Magnus force of Eq1).
Voa(1,0)=E5(r)Cy(@)e (VO g™ 1/22(0), Numerical integration of Eqi118) yields in the supercur-
(112 rent force as a function d&E=E, . This is shown in Fig. 2

where thec,(®) are given by Eq(68) and thex () are  for k,=0 (solid line).

quasiparticle decay lengths derived from E8j), The supercurrent force depends nearly linearly on the
quasiparticle energy fofE|<A.—e, and vanishes fofE|
A (0)=[2Imk,(©)] ! >A,—e¢,. Note that, in Fig. 2¢,=0.1A,, which is rather
2 large. For smaller values af, the supercurrent force may
_hTK, 2 v 212 well be approximated by a linear function i& for |E|
T 2m Re[A%~[Eq+(~1)",c0s0 ] "% <A, and by zero fotE|>A.,, as shown by the dashed line
in Fig. 2.

(113 Analytically a linearized expression for the supercurrent

force can be obtained by a first-order Taylor expansion

Inserting the superfluid velocityl8), the wave functions - A
g P ) aroundE,,=0. With the definition

s s s
r,)=D r,0)+D r,0), 11
un( ) l,nul,n( ) 2,nu2,n( ) ( 4) kZEkFCOSw, (119)

vp(r0)=D1w3,(r,0)+D,w5,(r.0), (115  this yields
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FIG. 3. The function (r./¢) as defined by Eq(130).
FIG. 2. The magnitude, -, of the supercurrent forcg,, on
quasiparticles in a moving vortex line as a function of the quasipar- The term 6E/¢9n);1 can be obtained from the eigenvalue
ticle energyE, in arbitrary units. Here quasiparticles with wave equation(98). Approximating in ite*E;(x)~ 1/x turns it into
numberk,=0 parallel to the vortex axis are considered. Solid line,
f,, from numerical integration of Eq118); dashed linef ,, lin- E kerEsino = n+ 3
earized according to E§120). arccog————_—— =5 *Nm—1—, (126
] p p' C

evd K E sinw with N=0 for not too smallw. From Eq.(126) one finds
> O"F n

fas(w,n)=¢e _ , (120
A2 Y 2mAL [+ Ro(w)] (07E)1_ Ker Sinw . 2mr? 123
where an/ [AZ-E2 42
5 2K-sinw We insert Egqs(120) and (127) into Eq. (125, assume that
)‘\O(w):F—_ (121  the spectrum and the density of all bound states can be ap-
2mA., proximately described by Eq126) and(127), and carry out
In deriving Eq.(120) we have kept only terms linear in the integration oveE:
The total forceF ,, acting on the core because of Andreev R R eUCDOLkﬁ ” sirfe
scattering is the sum of all supercurrent forces acting on the Faz=6y > J ) =
bound quasiparticles. In the sumﬁfz, approximated by Eg. 2mA, J0 FotNo(w)
(120), over all occupied quasiparticle states 2,2
X| —AgKgrSinw— O;Lz ) (128

Fao=22 2 fas(@.n)fo(Ey), (122 )
ke N With Ay(w) according to Eq(121), the coherence length

the spin degeneracy is taken into account by a factor of 2 and ke /(7mA..), and the electron densitys= k/(37),

fo(E,) is the Fermi distribution function. For the sake of EQ. (128 results in

simplicity we limit the calculation td@ =0 K so that only the 1 "

guasiparticle states with negative energy—which make up ﬁA2=§ﬁMagnuJ(_C)u (129

the ground state of the normal core—are occupiedE,) 3

=1 for E,<0 andfy(E,)=0 for E,>0.

The sum ovek, is transformed in an integral over: with Fyagnusgiven by Ed.(1) and

(rc)_SrC ™ 2 ro./é+ msinw
! & _77_§J0 dosi Cr JEF (m2)sine (130

The functionl (r./&) is plotted in Fig. 3. It assumes the

For fixed w the energetic separation between two energywalue 1 forr ,~0.4¢. Considering the approximations made

eigenvalues differing im by 1 is very smalf® Therefore, we  on the way to Eq(129 this is reasonable. Without the ap-
can transform the sum overin an integral ovelE,=E: proximation of replacing t/by 1k in the integral(116),

0
> HJ dE
n —A,

the lower integration limit has been approximated by
—A,,, in the spirit of the linear approximation of Fig. 2 and

P dk—LkFJWd i 123
> —5- e =2 |, o Sinw. (123

JE\ "1 . 1.
an ; (124 Faz= EF Magnus (131

would result for a somewhat larger value rqf.

Eq. (120. Thus the total supercurrent force is VI. SUMMARY AND OUTLOOK
Lke (o 0 JE\ -1 The motion of a vortex line relative to an applied super-
ﬁAZ:_Ff do sin “’f dE(—) FAZ(U) E). current causes an angular asymmetry in the wave functions
7 Jo -A, anj of the unpaired quasiparticles bound in the vortex core: Out-

(125 side the core, in a given direction characterized by the azi-
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muthal angled, the damping of the wave functions which, at tive to the condensate. That means that all momentum gains
the core boundary, match to radially outgoing electron—androm the supercurrent force and the electrostatic field in the
radially ingoing hole—wave functions is different from the core are assumed to be dissipated right away to the lattice.
damping of the wave functions which match to radially out-[This is also the condition for the validity of Eql).] This
going hole—and radially ingoing electron—wave functions.way the nonequilibrium effects relevant in our context have
The different penetration lengths;(®) andA,(©) in Eq.  peen incorporated. The constant drift velocity causes the
(116) are responsible for the supercurrent force and the reasymmetry in the wave functions, discussed above, which
sulting half (_)f the MagnL_Js force._ Thi_s angle-dependent dif'gives rise tdEAZ-

ferent damping of outgoing and ingoing waves correspond Since we have worked with the mean-field TABAGE's,

to the semiclassically comput€ddifferent rates of Cooper . . . . .
pair formation and destruction— and the associated differer4’ analysis Is, strictly speaking, only valid for conventional
pe-ll superconductors. In order to extend it to the strongly

momentum transfers from the circulating condensate to th )
core electrons—in electrenhole and hole-electron scat- correlated high-temperature superconductors one must use
tering processes at the core boundary. The detailed quantufje  fime-dependent densﬂy—égncﬂoqal Bogoliubov—de
mechanical calculations presented in this paper confirm ouP€nnes equationsTdDFBAGE'S.™ The integral equations
earlier semiclassical considerations: The sum of all supercu@€fining their vector and pair potentials in terms of exchange
rent forces, which originate from Cooper pair momentum‘jo”"-"at'on functionals of the gauge-invariant current density
transfers to the core electrons by Andreev scattering, is equal and the anomalous densitk,, (which measures off-
to one-half of the Magnus force. It explains microscopicallydiagonal long-range ordeare difficult to solve, if one takes
the “interface force” in the Noziees-Vinen-Warren theory into account all electromagnetic fields. If, however, one ne-
of vortex motion>® glects the corresponding scalar and vector potentials—as one
Recently Stor@ showed by a quasiclassical geometric does when calculating the electronic structure of vortices in
optics model that in a moving vortex spectral flow is conventional superconductors—things become simpler.
thwarted by an analog of Bloch oscillations originating from Then, atT=0 K the TADFBdGE's are essentially given by
the discrete nature of the core state spectrum. This is a cofgs.(21)—(23) with a pair potential which is the sum of the

sequence of the fact that due to the supercurrent force th@ean-field pair potential and th@egative variational de-
Andreev reflection fails to be perfectly retroreflective andrivative of the exchange-correlation function@l[,A p]
causes the core bound states to precess in a sense oppositevtth respect ta\},.*>%° Thus, the calculation of an appropri-
that of the superflow. Therefore, momentum transferred tqite exchange-correlation functional is crucial for the analysis
the vortex core can only escape via relaxation processes. Wst the influence of Andreev scattering on vortex motion in
have implicitly taken into account such processes by assunigh-temperature superconductors. This is a task for further

ing a constant drift veIocity? of the core quasiparticles rela-

research.
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