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Images and nonlocal vortex pinning in thin superfluid films
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For thin films of superfluid adsorbed on a disordered substrate, we derive within a mean field~Hartree!
description of the condensate the equation of motion for a vortex in the presence of a random potential. The
compressible nature of the condensate leads to an effective pinning potential experienced by the vortex which
is nonlocal, with a long-range tail that smooths out the random potential coupling the condensate to the
substrate. We interpret this nonlocality in terms of images, and relate the effective potential governing the
dynamics to the pinning energy arising from the expectation value of the Hamiltonian with respect to the
vortex wave function.@S0163-1829~98!06813-1#
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I. INTRODUCTION

Pinning of vortices in bulk helium has a long history~see,
for example, Ref. 1! but the study of vortex pinning in thin
films is at a much earlier stage of development, to o
knowledge only one experimental study having been p
formed, Ref. 2, although there are some aspects address
Ref. 3. In this paper we will concentrate on two-dimensio
pinning of idealized~in a sense defined presently! superfluid
films which provides two simplifications compared to t
situation in three dimensions: the ability to change the he
ing length as well as the obvious contrast between p
vortices and extended vortex lines. The healing length is
tered by changing the coverage of the helium film, althou
quantifying this relationship is not easy.

Ellis and Li2 showed that by ‘‘swirling’’ a gold-plated
Mylar substrate a remanent vorticity could be created, wh
the density of pinned vortices was 50 000 cm22 so that the
separation~45 m) was of the order of 104 larger than the film
thickness~3.2 nm!. Putnamet al.4 have studied the topogra
phy of gold films deposited under similar conditions to tho
used by Ellis and Li; they find that the films have a surface
‘‘rolling hills’’ with a characteristic length scale of 300–
3000 Å. Thus the separation was considerably larger than
topographic features which are presumably the pinn
agents. In this paper we will concentrate on the pinning
single vortices~and their dynamics! which should be appro
priate under these experimental conditions. However,
will confine ourselves to the simplest case of monola
films.

We wish to derive from first principles the form of th
pinning potential which a vortex experiences, given the
tential in which the helium atoms move due to the substr
We will see that these two quantities are not the same.
will describe the condensate at a mean field~Hartree! level
using the hydrodynamic representation5 ~in terms of the two-
dimensional density of the film and velocity potential of t
flow! and of the resulting nonlinear Schro¨dinger equation
~NLSE! which determines the condensate wave functio6

We will allow for some effects of compressibility—for in
570163-1829/98/57~13!/7892~7!/$15.00
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stance that the~two-dimensional! density is modified to
‘‘screen’’ the random potential7—and will find an equation
of motion that bears some relation to the Magnus effect.

In this very thin film limit, there are two regimes in con
sidering the behavior of a vortex in a random potential. F
there is the region, near the center of the vortex, where
largest contributions to the energy density are the kine
energy of the fluid and the change in the film density tha
caused by the flow. However, at large distances, the do
nant contribution to the energy density is the response of
density to the random~pinning! potential. Hence we mus
analyze the behavior in two regions and the manner in wh
to match the approximate solutions in those regions. T
matching is performed by following the analysis of Ne8

which was constructed to determine the motion of a ma
vortex system in a compressible ideal fluid from first pri
ciples, reproducing the Kirchhoff result for widely separat
vortices. There the two regions are where single-vortex
fects are predominant~near the center of each vortex! and
where many-vortex contributions are important~on longer
length scales!. Other expansions similar in spirit have bee
for compressible vortex rings9 and a number of works fol-
lowing Neu, which may be traced from Ref. 10.

In the monolayer regime, there is an additional complic
tion: the superfluid-insulator transition~see, for example, the
recent publications in Ref. 11 and Ref. 12 and referen
therein!. However, sufficiently far away~a small fraction of a
monolayer! from the onset of superfluidity, one may descri
the helium film as being an ‘‘inert,’’ nonsuperfluid, initia
layer with a mobile, superfluid, film adsorbed on top.13 The
treatment in this paper will be of the latter part of the film
where the random potential is the residual one which
cludes any interaction with the inert layer.

The plan of the paper is as follows: In Sec. II we intr
duce the framework used to describe the vortex motion.
ing a perturbation calculation, we derive the velocity of
vortex under the influence of an external potential, by mat
ing the ‘‘inner’’ and ‘‘outer’’ solutions in Sec. III. In the next
section, we establish that the dynamics are nonlocal in
random substrate potential and explore some of the co
7892 © 1998 The American Physical Society
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57 7893IMAGES AND NONLOCAL VORTEX PINNING IN THIN . . .
quences. In the following section we relate the motion to
gradient of the expectation value of the energy. In the fi
section we discuss several issues which emerge from the
of the paper and conclude.

II. NOTATION AND FLUID REPRESENTATION
OF THE NLSE

We wish to study the influence of a disordered substr
qualitatively on a superfluid film. We therefore pick a ve
simple interaction between the bosons, namely, a point in
action. Hence our starting point is the Hamiltonian

H5(
i 51

N

2
\2

2m
¹ i

21
1

2
l(

iÞ j

N

d~r i2r j !1D(
i 51

N

V~r i !. ~1!

Here the coordinates and Laplacian are two dimensiona
we assume motion quantized normal to the substrate sur
with all atoms in the lowest state of that motion.D is the
variance of the random two-dimensional potentialV:

D25^@V~r !#2&, ~2!

where the average is over the ensemble of potentials. N
that V itself is dimensionless.

We will treat the above Hamiltonian within the Hartre
approximation; thus we will not include effects at the Bog
liubov approximation or beyond: for instance, any analog
the roton minimum. The Hartree approximation leads to
time-dependent NLSE which governs the condens
motion:5,6

2
1

2
¹2f1ufu2f1sVf5 i

]f

]t
, ~3!

where we are using appropriately scaled units: Lengths
measured in units of the healing length,l h5(\2/lnm)1/2,
s5D/nl is the dimensionless measure of the strength of
external potential, and energy is measured in units ofnl,
which is the Hartree energy or chemical potential.n is the
average density of particles~equivalent to the condensa
density in this Hartree case!. f is normalized to the size o
the system,V,

E
V

ufu2 dV5V, ~4!

so that in the absence of a potential,f51 everywhere within
V. Note that the speed of sound in the condens
(nl/m)1/2, is equal to unity with the above choice of units

To describe the dynamics of the condensate possess
vortex structure, it is natural to use the~Hartree! fluid, or
Madelung, representation;5 by settingf5Ar eiS, Eq. ~3! is
equivalent to the pair of equations

]r

]t
1¹•~r¹S!50 ~5!

and

]S

]t
1

1

2
~¹S!21r1sV2

1

2

¹2Ar

Ar
50. ~6!
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Equations~5! and ~6! are, respectively, the continuity an
Bernoulli equations describing the condensate flow. The d
sity r is measured in units ofn.

In the main body of this paper, we will be interested in t
behavior of the flow field well beyond the core region,
that the rapid variations in the condensate density and ve
ity field near the core itself are not considered. Within th
approximation we can neglect the ‘‘quantum pressure’’ te
¹2Ar/Ar in the Bernoulli equation~6! ~which we justifya
posteriori presently! and use the set of equations

]r

]t
1¹r•¹S1r¹2S50 ~7!

and

]S

]t
1

1

2
~¹S!21r1sV50. ~8!

For this work, an important solution to these equations is t
of a vortex in two dimensions:

S5u2t r512
1

2

1

r 2 , ~9!

where u is the polar angle. Note that the term2t in the
expression forS is the chemical potential, which cancels th
term in the asymptotic density in the Bernoulli equation.

III. DYNAMICS DUE TO THE SUBSTRATE POTENTIAL

In the Magnus equation for incompressible point vortic
the presence of a potential coupling to the vortex will chan
its motion from being determined completely by the value
the velocity field at the vortex center.~The latter result, due
to Kelvin and Helmholtz, has been derived in the context
Landau-Ginzburg theory by Neu.8! In this section we will
derive an approximate solution for a vortex in the prese
of a potential which couples to the helium atoms in the fil
This will allow us to derive in the next section the form o
the potential which applies to thevortex, as against the he
lium atoms, and hence appears in the equation of motion
the vortex. We apply Neu’s8 method of matched asymptoti
expansions in this section.

We will perform a linear response calculation using t
fluid ~Madelung! representation of the condensate wa
function. This is preferable to using linear response the
directly—in terms of the condensate wave function and
Bogoliubov excitations in the presence of the vortex. In t
latter approach we would need to calculate the matrix e
ments of, for instance, the random potential between
ground state and the excitations. Since the wave function
the excitations around a vortex are only known asympt
cally, this would not be straightforward.

Before embarking on any calculation, we wish to divid
the problem into one of ‘‘inner’’ and ‘‘outer’’ solutions. In
the inner region, the vortex motion is dominant, in terms
both density and velocity field, and in the outer region, t
random potential is dominant. We can estimate the bound
between these two regions to be where the perturbatio
the density due to flow around the vortex is equal to
perturbation to the density due to the random potent
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namely, at to be a distancer c where

1

r c
2 ;s⇒r c;s21/2 ~10!

and r c is measured in units of the healing length.
The inner solution can be determined by applying pert

bation theory to Eqs.~7! and ~8! in powers ofs, since the
random potential is assumed to be weak.

For the outer solution, we want to rescale the position a
time variablesr and t to make the dominance ofs at large
distances manifest. We make the substitutions

r→r 85sr , t→t85s2t. ~11!

In terms of these new variables, the continuity and Berno
equations of~7! and ~8! become~dropping primes!:

]r

]t
1¹r•¹S1r¹2S50 ~12!

and

s2
]S

]t
1s2

1

2
~¹S!21r1sV50. ~13!

The continuity equation remains unchanged but the Berno
equation is modified—we may neglect the time depende
of S @apart from the term2t/s2 which provides the chemi
cal potential, as mentioned below Eq.~9!#. In the outer re-
gion we expand the density and velocity potential as

r511sr1~r !, S5S0~r2R!1sS1~r !. ~14!

Note that the density does not depend on the position of
vortex, as the terms in Eq.~13! which depend onR are
second order ins; similarly we may neglect the time depen
dence ofr as time does not enter Eq.~13! to first order ins.
In Eq. ~14! the zeroth-order flow field retains a vortex flow
so thatr¹S0•dr52p, despite a distortion of the flow as
whole due to the linear addition of¹S1.

Substituting the expansion~14! into Eqs.~12! and~13! we
have toO(s)

r152V,

¹2S11¹S0•¹r150. ~15!

Solving for S1 and denoting the outer solution byS1
. , we

find

S1
.~r !5E G~r2r 8!g•¹V~r 8!dr 8, ~16!

where

G~r2r 8!5
1

2p
lnur2r 8u ~17!

and we have introduced the more compact notat
g[¹S0(r2R) for the vortex field. It is important to note
that the variables here are thescaledones defined in Eq
~11!.

Turning to the inner solution, we revert to the unsca
variables, and solve the original equations~7! and ~8!. We
-

d

li

lli
e

e

n

d

require the solution to be matched to the outer one at
tances much greater than the core radius, i.e., at dimens
less distancesr @1. In the inner region we can write toO(s)

r5r0~r2R!1sr1 , S5S0~r2R!1s¹S1 ,

with r0 given by

r0512
1

2ur2Ru2
512dr0~r !. ~18!

Sodr0 is the same as the change in density due to the vo
in the absence of the random potential. The fluid equati
taken toO(s) are then

r152V1g•~Ṙ2¹S1!,

r0¹2S11g•¹r11¹r0•~¹S12Ṙ!50. ~19!

The eventual aim is to findṘ in terms ofS1; that is, we look
for the change in flow caused by the potential, which th
determines the vortex velocity through advection. Examin
Eq. ~19!, we can inspect the individual terms to see whi
ones will dominate in ther→` limit for the matching.
Eliminating r1 and omitting terms of order 1/r 3 and higher,
we are left with

¹2S15g•¹V,

which can be solvedS1
,(r ) for to obtain

S1
,~r !5E G~r2r 8! g•¹V~r 8! dr 81O~1/r !,

whereS15S1
, denotes the inner solution.

We will now match the inner and outer solutions at
distancer;s2a, with a.0 chosen to ensure that corre
tions are small. First, we must consider theouter solution
back in terms of theunscaledvariables. But from Eq.~16! it
can be seen that there is in fact no change in its form
lengths only enterS1

. and the scaling ofg•¹ and the ele-
ment of integrationdr cancel. Hence we can conclude th
matching isperfectup toO(s). At r;s2a, neglected terms
in the equation determining the innerS1 are 1/r or a factor of
sa smaller; thus any inconsistency is negligible. We w
make a more refined consistency check presently.

Note that~neglecting corrections! S1 can be integrated by
parts to give

S1~r !52E g~r 8!•¹G~r2r 8!V~r 8! dr 8, ~20!

where we assume that the ‘‘surface’’ integral vanishes~and
¹•g50). This alternate form forS1 will be useful in the
next section.

So far the velocity of the vortex,Ṙ, has not been deter
mined. To do so, we Taylor expand the outer solution~16!
aboutr 85R8 and check that corrections to this expansion
negligible in the matching region. This ensures that the T
lor expansion is consistent with the matching.8 Thus we have

S.~r 8!5S.~R8!1~r 82R8!•¹S1
.~R8!1O~r 82!.
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57 7895IMAGES AND NONLOCAL VORTEX PINNING IN THIN . . .
In the second term on the right,¹S1
. appears as¹S0

. is
perpendicular to (r 82R8).

We now appeal to the Helmholtz theorem which sta
that the vorticity moves with the local velocity field~the
‘‘dynamical boundary condition’’!. Using Eq.~16! this gives
the result forṘ as

Ṙ5E ¹RG~R2r ! g•¹V~r ! dr , ~21!

where¹R[]/]R.
To check for consistency, we examine the size

(r 82R8)•Ṙ5s(r2R)•Ṙ compared with the corrections 1/r
ands2r 2 @i.e., theO(r 82) in the Taylor expansion#. We re-
quire sr @1/r and s2r 2 for r;s2a. The first condition
gives s (12a)@sa⇒a.1/2, while the second one give
s (12a)@s (222a)⇒a,1. Hence for both sets of correction
to be negligible, we need

1/s1/2,r ,1/s.

Since this region does exist, the expansion is consistent

IV. INTERPRETATION OF VORTEX MOTION
IN TERMS OF IMAGES

We have now deduced the form forṘ which governs the
vortex motion in an external potential, and in this secti
consider some of the consequences and the interpretatio
Eq. ~21!. First, note thatṘ is clearly related to the potentia
in a nonlocalmanner. Using Eq.~20!, the expression forṘ in
Eq. ~21! can be rewritten as

Ṙ52¹RE g~r !•¹G~R2r !V~r ! dr . ~22!

We can further manipulate this by using the ident
u•¹V5( ẑ3¹V)• r̂ whereẑ is perpendicular to the plane o
motion, so that Eq.~22! becomes

Ṙ52 ẑ3E ~m•¹R!¹RG~R2r !V~r ! dr ,

with m[(R2r )/uR2r u2.
This implies

ẑ3Ṙ5¹RVeff ,

where

Veff~R!5
1

2pE V~r !

uR2r u2
dr . ~23!

This reproduces the form of the Magnus equation but with
effective potentialVeff which is nonlocal in the substrate po
tential with a 1/uR2r u2 kernel.

The most natural interpretation of this result is in terms
images. To indicate the relevance of images, note that if
potential were sufficiently large, then the density of the fi
would become zero. For simplicity assume that the bound
of the film is a straight line. In that case in a standard man
we may take into account the boundary condition that
velocity field perpendicular to the film boundary is zero
s

f

of

n

f
e

ry
er
e

the boundary by adding the velocity field of an image vorte
It is plausible that when the potential causes changes in
density, but is not sufficient to drive the density to zero, th
will still be features in the velocity field which may be a
tributed to images. Their presence ensures that the flow fi
obeys the continuity equation with terms involving¹r. We
will now indicate, in terms of a simple example, how E
~23! is interpretable in such a manner.

We now give an example of vortex motion for the case
a repulsived function potential centered atra :

V~r !5d~r2ra!. ~24!

The Green’s function~17! satisfies the identity

¹¹G~r !52
1

pr 2$cos2u~ êxêx2êyêy!1sin2u~ êxêy1êyêx!%.

~25!

Using Eqs.~24! and~25!, the vortex velocity@from Eq.~22!#
is given by

Ṙ5
ua

uR2rau3
, ~26!

whereua is perpendicular tora2R.
To interpret this result, let us compare an image appro

to the motion of a vortex in the presence of an impenetra
circular region centered atra . Then the magnitude of the
velocity experienced by the vortex due to the image is
O(1/d3) whered is the distance between the vortex and
image@this is because the magnitude of the velocity field d
to the vortex itself at the circle iso(1/d) and hence the
dipole moment required to cancel out the normal compon
is of this magnitude; hence the velocity field back at t
vortex will be O(1/d31/d2)#. This has the same functiona
form as Eq.~26!, leading to the interpretation in terms of
dipole image at thed function potential, but with a strength
which is not unity but proportional to the strength of th
potential. This has some analogy with the difference betw
images in electrostatics in the case of metals and dielect
The direction of the motion of the vortex is also consiste
In the image picture the vortex would be advected around
circle, in agreement with the angular unit vector in Eq.~26!.
It is easy to check that a line ofd functions produces motion
parallel to the line~of magnitude 1/d), in analogy with the
motion of a vortex in the presence of a wall.

We note parenthetically that the response of the cond
sate to ad function perturbation without a vortex is of
much simpler form: ad function change of the condensat
This is because the response of the condensate to a pert
tion relaxes on a scale of the healing length; the fluid
scription only represents behavior on scales larger than
healing length, and hence the perturbation is of ad function
form within the fluid approximation. However, as we ha
seen, there is an interesting and nontrivial response on le
scales in excess of the healing length in the presence
vortex.

Having established that the vortex obeys a Magnus eq
tion of motion and hence moves parallel to the equipotent
of the effective potentialVeff , we may immediately draw
some additional conclusions using the work of Trugman a
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Doniach.14 A consequence of Eq.~23! is that the vortex tra-
jectories must be closed, withVeff instead ofV as the under-
lying ~local! potential. In other words, the vortex trave
along the equipotential lines of the former. The exception
this is at the saddle points of the effective potential where
vortex may ‘‘percolate,’’ allowing in principle an extende
orbit across the system.~One can think of ‘‘hills’’ and ‘‘val-
leys’’ representing the potential, and the percolation thre
old corresponding to ‘‘lakes’’ which fill up the valleys, t
connect.! However, the speed of the vortex goes to zero~due
to the vanishing of the gradient of the potential! at the saddle
points, so that the vortex transport is in fact pathologic
These points have immediate parallels with the guiding c
ter motion of charged particles in the quantum H
effect,15–17where the existence of percolating paths is rela
to the mobility edge believed to occur in the middle of
Landau subband. Obviously the application of these idea
vortices would only be appropriate when the vortex dens
was extremely low.

V. PINNING ENERGY

So far the discussion has been in terms of the equation
motion. In this section we show that we may calculate
pinning energy and moreover that the force which occurs
the equation of motion of the vortex is the gradient of th
potential.

The expectation value of the energy is

E5
1

2
r~¹S!21

1

2
r21sVr.

Now, substituting in the expansions for the density and
locity potential toO(s), there are four terms which depen
on the vortex position contributing to this energy@here
dr0(r ) is defined in Eq.~18!#:

S5E dr Fdr0V1r1dr01r1

1

2
g21g•¹S1G , ~27!

where we have taken the vortex core to be situated at
origin.

We can interpret the separate terms on the right-hand
~RHS! of this equation as follows. The first term is just th
pinning potential energy associated with the decreased
sity as the core is approached. The second term is the in
action of this decrease in the density with the distortion
the condensate due to the substrate potential. The third
comes from the change in the kinetic energy due to the s
strate effect on the density. The final term comes from
change in the kinetic energy due to the distortion of the fl
field due to the substrate~i.e., the consequence of the vorte
flowing around ‘‘obstacles’’ in the substrate!. Now the first
and second terms cancel asr152V. Thus we are left with
the final two terms

S5E dr F2V
1

2
g21g•¹S1G . ~28!

The ~inverse! power law nature ofdr0 means that the pin
ning is nonlocal as to be expected from the discussion
Sec. IV. We may now rewrite the second term using
two-dimensional divergence theorem
o
e

-

l.
-

l
d

to
y

of
e
in
t

-

e

de

n-
er-
f
rm
b-
e

e

E dr g•¹S15E ¹•~gS1!2E dr ¹•gS15E dS•gS1

2E dr ¹•gS15E dS•gS120, ~29!

as¹•g50.
The surface integral in Eq.~29! will be zero as the veloc-

ity field parallel to the boundary will vanish due to addition
images~which we do not discuss explicitly!. The final result
is thus

E52E 1

2
g2V dr ,

i.e., the interaction of the depletion due to the centrifug
forces interacting with the substrate potential.

It should be stressed that the core regionr ,1 will con-
tribute to the pinning energy a term of comparable mag
tude to the long-range part which we are explicitly discu
ing; however, the latter yields only a short-range correla
potential as against the long-range correlations which
above has. It is readily checked that minus the gradien
this potential is indeed the term on the RHS of the equat
of motion of the vortex and hence is consistent with o
considerations of the equation of motion.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have only discussed the motion o
single vortex in the presence of a random potential. Let
now briefly discuss the relevance of this to the more reali
case where there are many vortices present in the sys
The vortices may be the remanent vorticity which is pinn
by the random potential, or it may be that the substrate
rotating and hence there is some vorticity with a net sign

We concentrate on the case where the disorder is str
compared to the interaction of the vortices at the aver
separation. Of course in the case of a rotating substrate
logarithmic nature of the interaction between the vortic
will ensure that the density does not fluctuate too mu
however, the local order in the vortices is determined by
higher Fourier components of the random potential, and
shear modulus of the vortex lattice which will decrease w
density.

Because of the long-range interactions, we must cons
the possibility of an analog of a Coulomb gap which occu
for electronic excitations in a highly disordered system.18–20

The ‘‘gap’’ refers to the density of states for adding an ex
vortex to the system. In the case of vortices with a logari
mic interaction, the density of states,n(e), as the energye
tends to zero, behaves asn(e);e3. However, the situation
with excitations where a vortex is moved within the syste
is more complicated as one is creating a dipole and the d
sity of these excitations does not tend to zero at zero ene
The above results all assume that the particles~vortices in
our case! reside on a lattice; however, if the potential
smooth, then as well as excitations where the vortex
moved between local minima in the overall potential~due to
the combination of the underlying potential and the effect
the other vortices! there are excitations where it remains
the minimum which it started in. It is those excitations wi
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which we have been concerned in this paper.
These excitations would~at least in principle! contribute

to the damping of a torsion balance. This may be s
readily by considering a vortex in an approximately h
monic potential well@Veff(r ).(1/2)Kr 2# experiencing a su-
perflow with amplitudeA and frequencyV in the direction
x̂. The equation of motion for the vortex with positionr and
unit circulation is then

~ ṙ2AcosVt x̂!3 ẑ52Kr .

The effect of the superflow is to give a response in terms
the motion of the vortex which is resonant ifV5v05K
~that is, if the period of the superflow is the same as
frequency of the vortex moving around the well!. For in-
stance, thex component of the vortex position is

x5acosv0t1bsinv0t1
AV

V22v0
2sinVt.

So those vortices which have associated natural frequen
which are the same as that of the torsion balance will
excited significantly. Of course this frequency is rather lo
on a microscopic scale and so it may be insignificant
practice.

The extent to which the excitations are single vortex
their nature is hard to estimate in general. However, one m
start from the assumption of only a single vortex being
cited and then examine whether the amplitude spread
other vortices. The single-vortex excitation has a charac
istic frequency involved in precessing around an equipot
tial of Veff . Whether this may then excite neighboring vor
ces depends on whether the natural frequencies of
neighboring vortices are sufficiently similar for a ‘‘resonan
process. If the random potential has a sufficiently large v
ance, as is assumed here, this is very unlikely, and so m
excitations will only involve one vortex. Hence the results
this paper will be relevant.

We have not considered here the effect of the vorti
having a nonzero inertial mass. The effect of this may

*Current address: Exotic Derivatives Group, Tokyo-Mitsubishi
ternational, 6 Broadgate, London EC2M 2AA United Kingdom
Electronic address: HanL@t-mi.com

†Electronic address: jmfg@th.ph.bham.ac.uk
1R. J. Donnelly,Quantised Vortices in Helium II~Cambridge Uni-

versity, Cambridge, England, 1991!.
2F. M. Ellis and L. Li, Phys. Rev. Lett.71, 1577~1993!.
3P. W. Adams and W. I. Glaberson, Phys. Rev. Lett.57, 82

~1986!; Phys. Rev. B35, 4633~1987!.
4A. Putnam, B. L. Blackford, M. H. Jericho, and M. O. Watanab

Surf. Sci.217, 276 ~1989!.
5E. P. Gross, inPhysics of Many-particle Systems: Methods a

Problems, edited by E. Meeron~Gordon and Breach, New York
1966!, Vol. 1.

6P. Nozières and D. Pines,The Theory of Quantum Fluid
~Addison-Wesley, Redwood City, CA, 1990!, Vol. II.

7D. K. K. Lee and J. M. F. Gunn, J. Phys.: Condens. Matter2,
7753 ~1990!.

8J. C. Neu, Physica D43, 385 ~1990!.
9P. H. Roberts and J. Grant, J. Phys. A4, 55 ~1971!.
n
-

f

e

ies
e

n

y
-
to
r-

n-

he

i-
st

f

s
e

deduced by analogy with the case of a charged particle
magnetic field—which is very similar upon the addition
an inertial mass term. As well as the ‘‘guiding center’’ m
tion of the vortex along the equipotentials, there is now so
~fast! ‘‘cyclotron motion’’ ~a discussion of this effect in clas
sical hydrodynamics is given by Lamb21!. However, the
value of the inertial mass~and hence the magnitude of th
cyclotron motion! has been a controversial issue. The su
gestion of Baym and Chandler22 was that it was associate
with the virtual mass due to the backflow around a cylind
of radius approximately the coherence length. Howev
more recently Duan23 has argued that the mass is larger by
factor of 20–30 due to the finite compressibility of helium
In terms of the analog of the ‘‘cyclotron radius,
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densate density. Moreover, the effective potential was eq
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