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Images and nonlocal vortex pinning in thin superfluid films
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For thin films of superfluid adsorbed on a disordered substrate, we derive within a meatHfeicke
description of the condensate the equation of motion for a vortex in the presence of a random potential. The
compressible nature of the condensate leads to an effective pinning potential experienced by the vortex which
is nonlocal, with a long-range tail that smooths out the random potential coupling the condensate to the
substrate. We interpret this nonlocality in terms of images, and relate the effective potential governing the
dynamics to the pinning energy arising from the expectation value of the Hamiltonian with respect to the
vortex wave function[S0163-182808)06813-]

I. INTRODUCTION stance that the(two-dimensionadl density is modified to
“screen” the random potentidand will find an equation
Pinning of vortices in bulk helium has a long histasee,  of motion that bears some relation to the Magnus effect.
for example, Ref. Lbut the study of vortex pinning in thin In this very thin film limit, there are two regimes in con-
films is at a much earlier stage of development, to oursidering the behavior of a vortex in a random potential. First
knowledge only one experimental study having been perthere is the region, near the center of the vortex, where the
formed, Ref. 2, although there are some aspects addressedi@mgest contributions to the energy density are the kinetic
Ref. 3. In this paper we will concentrate on two-dimensionalenergy of the fluid and the change in the film density that is
pinning of idealizedin a sense defined presentbuperfluid caused by the flow. However, at large distances, the domi-
films which provides two simplifications compared to the nant contribution to the energy density is the response of the
situation in three dimensions: the ability to change the healdensity to the randonfpinning potential. Hence we must
ing length as well as the obvious contrast between poinanalyze the behavior in two regions and the manner in which
vortices and extended vortex lines. The healing length is alto match the approximate solutions in those regions. The
tered by changing the coverage of the helium film, althoughmatching is performed by following the analysis of Neu
quantifying this relationship is not easy. which was constructed to determine the motion of a many-
Ellis and LP showed that by “swirling” a gold-plated vortex system in a compressible ideal fluid from first prin-
Mylar substrate a remanent vorticity could be created, whereiples, reproducing the Kirchhoff result for widely separated
the density of pinned vortices was 50 000 ¢irso that the  vortices. There the two regions are where single-vortex ef-
separatior(45 u) was of the order of 1Dlarger than the film  fects are predominartnear the center of each vorjeand
thickness(3.2 nm). Putnamet al? have studied the topogra- where many-vortex contributions are importgon longer
phy of gold films deposited under similar conditions to thoselength scales Other expansions similar in spirit have been
used by Ellis and Li; they find that the films have a surface offor compressible vortex rindsand a number of works fol-
“rolling hills” with a characteristic length scale of 300— lowing Neu, which may be traced from Ref. 10.
3000 A. Thus the separation was considerably larger than the In the monolayer regime, there is an additional complica-
topographic features which are presumably the pinningion: the superfluid-insulator transitigqsee, for example, the
agents. In this paper we will concentrate on the pinning ofrecent publications in Ref. 11 and Ref. 12 and references
single vorticegand their dynamigswhich should be appro- therein. However, sufficiently far awaga small fraction of a
priate under these experimental conditions. However, wenonolayey from the onset of superfluidity, one may describe
will confine ourselves to the simplest case of monolayeithe helium film as being an “inert,” nonsuperfluid, initial
films. layer with a mobile, superfluid, film adsorbed on {dprhe
We wish to derive from first principles the form of the treatment in this paper will be of the latter part of the film,
pinning potential which a vortex experiences, given the powhere the random potential is the residual one which in-
tential in which the helium atoms move due to the substratecludes any interaction with the inert layer.
We will see that these two quantities are not the same. We The plan of the paper is as follows: In Sec. Il we intro-
will describe the condensate at a mean fighdurtree level  duce the framework used to describe the vortex motion. Us-
using the hydrodynamic representafi¢im terms of the two-  ing a perturbation calculation, we derive the velocity of a
dimensional density of the film and velocity potential of the vortex under the influence of an external potential, by match-
flow) and of the resulting nonlinear Scliinger equation ing the “inner” and “outer” solutions in Sec. Ill. In the next
(NLSE) which determines the condensate wave funclion. section, we establish that the dynamics are nonlocal in the
We will allow for some effects of compressibility—for in- random substrate potential and explore some of the conse-
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guences. In the following section we relate the motion to theEquations(5) and (6) are, respectively, the continuity and
gradient of the expectation value of the energy. In the finaBernoulli equations describing the condensate flow. The den-
section we discuss several issues which emerge from the resity p is measured in units af.

of the paper and conclude. In the main body of this paper, we will be interested in the
behavior of the flow field well beyond the core region, so

Il. NOTATION AND FLUID REPRESENTATION that the rapid variations in the condensate density and veloc-
OF THE NLSE ity field near the core itself are not considered. Within this

approximation we can neglect the “quantum pressure” term

We wish to study the influence of a disordered substratevz\/;/\/; in the Bernoulli equatior{6) (which we justifya
gualitatively on a superfluid film. We therefore pick a very posteriori presently and use the set of equations
simple interaction between the bosons, namely, a point inter-

action. Hence our starting point is the Hamiltonian dp
—+Vp-VS+pV2S=0 @
N 52 1 N N at
2
H .21 > Vi 2)‘; 8(ri—ry) Ai; V). (D ang
Here the coordinates and Laplacian are two dimensional, as 1 )
we assume motion quantized normal to the substrate surface, ot + E(VS) +tpt+oV=0. ®
with all atoms in the lowest state of that motiak. is the
variance of the random two-dimensional potential For this work, an important solution to these equations is that
of a vortex in two dimensions:
AZ=([V(N)]?), )
11
where the average is over the ensemble of potentials. Note S=60-t p=1- 572 9

thatV itself is dimensionless.

approximation; thus we will not include effects at the Bogo-expression fofs is the chemical potential, which cancels the
liubov approximation or beyond: for instance, any analog ofierm in the asymptotic density in the Bernoulli equation.
the roton minimum. The Hartree approximation leads to the

time-dependent

A NLSE which govemns the condensat, o\ \vics pUE TO THE SUBSTRATE POTENTIAL

In the Magnus equation for incompressible point vortices,
_ }V2¢>+|¢|2¢+av¢:i ﬁ 3) the presence of a potential coupling to the vortex will change
2 at’ its motion from being determined completely by the value of
. . ) the velocity field at the vortex centgiThe latter result, due
where we are using appropriately scaled units: Lengths argy i e|yin and Helmholtz, has been derived in the context of
measured in units of the healing length,= (7%/Anm)**?, Landau-Ginzburg theorg/ by Nél.In this section we will
o=A/n\ is the dimensionless measure of the strength of theyeriye an approximate solution for a vortex in the presence
external potential, and energy is measured in unitsof o 5 potential which couples to the helium atoms in the film.
which is the Hartree energy or chemical potentialis the  1hjs will allow us to derive in the next section the form of
average density of particle@quivalent to the condensate ihe potential which applies to theortex as against the he-
density in this Hartree cagses is normalized to the size of |j;m atoms, and hence appears in the equation of motion of
the system(}, the vortex. We apply Neufsmethod of matched asymptotic
expansions in this section.
J |62 dV=0, (4) We will perform a linear response calculation using the
Q fluid (Madelung representation of the condensate wave

hat in the ab ¢ a1 h ithi function. This is preferable to using linear response theory
so that in the absence of a potentidk= 1 everywhere within i o0y in terms of the condensate wave function and the

2. Note that the speed of sound in the condensategqqqjiyhoy excitations in the presence of the vortex. In the
(nx/m)™*, is equal to unity with the above choice of units. latter approach we would need to calculate the matrix ele-
To describe the dynamics of the condensate possessinggents of, for instance, the random potential between the
vortex structure, it is natural to use thart_rSee fluid, or  ground state and the excitations. Since the wave functions of
Madelung, represen_tatlo%by setting¢= Vp €5, EA.(3)is  the excitations around a vortex are only known asymptoti-
equivalent to the pair of equations cally, this would not be straightforward.
Before embarking on any calculation, we wish to divide
a—p+V-(pVS)=O (5)  the problem into one of “inner” and “outer” solutions. In
at the inner region, the vortex motion is dominant, in terms of
both density and velocity field, and in the outer region, the
random potential is dominant. We can estimate the boundary
s 1 1925 between these two regions to be where the perturbation in
— +2(VS)%+p+oV— Y VYP o, (6)  the density due to flow around the vortex is equal to the
ot 2 2 p perturbation to the density due to the random potential,

and
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namely, at to be a distaneg where require the solution to be matched to the outer one at dis-
tances much greater than the core radius, i.e., at dimension-
1 12 less distances>1. In the inner region we can write ©( o)

(10

S~ 0=I~0
Cc

p=po(r—=R)+op1, S=S(r—R)+oVS,
andr . is measured in units of the healing length. ) )

The inner solution can be determined by applying perturWith po given by
bation theory to Eqgs(7) and(8) in powers ofo, since the
random potential is assumed to be weak.

For the outer solution, we want to rescale the position and po=1 2R 1=6po(r). (18)
time variablesr andt to make the dominance of at large
distances manifest. We make the substitutions So 6py is the same as the change in density due to the vortex
in the absence of the random potential. The fluid equations
r—r'=gr, t—t' =g?. (11)  taken toO(o) are then

In terms of these new variables, the continuity and Bernoulli

equations of7) and(8) become(dropping primes p1=—V+r(R=VS),

) V2S,+y-Vp1+ Vpo- (VS;—R)=0. 19
a—’:+Vp~VS+pVZS=O (12) poV<S1+ v Vp1+Vpy (VS —R) (19
The eventual aim is to finR in terms ofS;; that is, we look
and for the change in flow caused by the potential, which then
55 1 determines the vortex velocity through advection. Examining
272, oz 24 )4 oV=0. Eq. (19): we can mspect the |nd|\{|d_ual terms to see which
T’ Z(VS) proV=0 (13 ones will dominate in ther—oo limit for the matching.

The continuity equation remains unchanged but the BernoulI'lzhmmatIng P1 and omitting terms of order a7 and higher,
N e . we are left with
equation is modified—we may neglect the time dependence

of S [apart from the term-t/o? which provides the chemi- V2S,= 5.V
cal potential, as mentioned below E®)]. In the outer re- ! ’
gion we expand the density and velocity potential as which can be solve®; (r) for to obtain

p=1l+opi(r), S=Sy(r—R)+oS(r). (14 _
) . Sl(r)=J G(r—=r’) v-VV(r') dr'+0O(1/F),
Note that the density does not depend on the position of the

vortex, as the terms in Eq13) which depend orR are
second order iwr; similarly we may neglect the time depen-
dence ofp as time does not enter E(.3) to first order inc.
In Eqg. (14) the zeroth-order flow field retains a vortex flow,
so that¢VS,-dr =27, despite a distortion of the flow as a
whole due to the linear addition §fS;.

Substituting the expansidi4) into Egs.(12) and(13) we
have toO(o)

whereS,=S; denotes the inner solution.

We will now match the inner and outer solutions at a
distancer ~ o~ ¢, with «>0 chosen to ensure that correc-
tions are small. First, we must consider theter solution
back in terms of theinscaledvariables. But from Eq(16) it
can be seen that there is in fact no change in its form, as
lengths only enteS; and the scaling ofy-V and the ele-
ment of integratiordr cancel. Hence we can conclude that

p1=—V, matching isperfectup toO(o). At r~o ™ ¢, neglected terms
in the equation determining the inn®y are 1f or a factor of
V2S,+VSy-Vp,=0. (15 o smaller; thus any inconsistency is negligible. We will
make a more refined consistency check presently.
Solving for S, and denoting the outer solution (%, we Note that(neglecting correctionsS; can be integrated by
find parts to give
Sf(r):f G(r—r’)y-VV(r’)dr’, (16) Sl(r):_f ‘y(r’)'VG(r—r’)V(r’) dr/, (20)

where where we assume that the “surface” integral vanistesd

1 V.y= 0)._ This alternate form foS; will be useful in the
G(r-r’):z|n|r_r’| (17) next section. - .

So far the velocity of the vortexR, has not been deter-
and we have introduced the more compact notatiormined. To do so, we Taylor expand the outer solutib6)
y=VSo(r—R) for the vortex field. It is important to note aboutr’ =R’ and check that corrections to this expansion are
that the variables here are tisealedones defined in Eq. hegligible in the matching region. This ensures that the Tay-
(11). lor expansion is consistent with the matchfighus we have

Turning to the inner solution, we revert to the unscaled
variables, and solve the original equatiof@ and (8). We S7(r')=S7(R")+(r'=R")-VS{(R")+0O(r'?).
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In the second term on the righS; appears a¥S; is  the boundary by adding the velocity field of an image vortex.
perpendicular tor’ —R’). It is plausible that when the potential causes changes in the

We now appeal to the Helmholtz theorem which stateglensity, but is not sufficient to drive the density to zero, there
that the vorticity moves with the local velocity fieldhe  will still be features in the velocity field which may be at-
“dynamical boundary condition). Using Eq.(16) this gives  tributed to images. Their presence ensures that the flow field
the result forR as obeys the continuity equation with terms involvifg. We

will now indicate, in terms of a simple example, how Eq.
. (23 is interpretable in such a manner.

R= f VRG(R=T1) y-VV(r) dr, (21) We now give an example of vortex motion for the case of

a repulsives function potential centered af:
whereVg=4/JR.

To check for consistency, we examine the size of V(r)=6(r—r,). (24)
(r'=R’)-R=¢(r—R)-R compared with the correctionsr1/
and a?r? [i.e., theO(r'?) in the Taylor expansion We re-
quire or>1/r and o?r? for r~o~*. The first condition 1
gives o'” 9> o*=a>1/2, while the second one gives VVG(r)=— —{cos2d(e,e—6,6)+sin20(ee,+€,6,)}.
(179> ¢(2720)= <1, Hence for both sets of corrections mr

The Green'’s functior{l7) satisfies the identity

to be negligible, we need (25
12 Using Egs.(24) and(25), the vortex velocityfrom Eq.(22)]
Since this region does exist, the expansion is consistent. 0
R=——, (26)
IV. INTERPRETATION OF VORTEX MOTION IR—r,|®

IN TERMS OF IMAGES . .
where 8, is perpendicular to,—R.

We have now deduced the form fBrwhich governs the To interpret this result, let us compare an image approach
vortex motion in an external potential, and in this sectionto the motion of a vortex in the presence of an impenetrable
consider some of the consequences and the interpretation ofcular region centered at,. Then the magnitude of the

Eq. (21). First, note thaR is clearly related to the potential Velocity experienced by the vortex due to the image is of

in anonlocalmanner. Using Eq20), the expression foR in _O(l/d3) whered is the distance between the vortex and its
Eq. (21) can be rewritten as ' image[this is because the magnitude of the velocity field due

to the vortex itself at the circle i®(1/d) and hence the
. dipole moment required to cancel out the normal component
R:_VRJ Ar)-VG(R=r)V(r) dr. (22)  is of this magnitude; hence the velocity field back at the
vortex will be O(1/dx 1/d?)]. This has the same functional
We can further manipulate this by using the identity form as Eq.(26), leading to the interpretation in terms of a
6-VV=(zxVV)-r wherez is perpendicular to the plane of dipole image at the5 function potential, but with a strength
motion, so that Eq(22) becomes which is not unity but proportional to the strength of the
potential. This has some analogy with the difference between
images in electrostatics in the case of metals and dielectrics.
The direction of the motion of the vortex is also consistent:
In the image picture the vortex would be advected around the
circle, in agreement with the angular unit vector in E2f).
It is easy to check that a line @ functions produces motion
fos parallel to the line(of magnitude 1d), in analogy with the
ZXR= VRVef‘f! R .
motion of a vortex in the presence of a wall.
where We note parenthetically that the response of the conden-
sate to aé function perturbation without a vortex is of a
1 V(r) much simpler form: & function change of the condensate.
Ver(R) = ﬁf W dr. (23 This is because the response of the condensate to a perturba-
tion relaxes on a scale of the healing length; the fluid de-
This reproduces the form of the Magnus equation but with arscription only represents behavior on scales larger than the
effective potentiaV 4 which is nonlocal in the substrate po- healing length, and hence the perturbation is @ffanction
tential with a 1JR—r|? kernel. form within the fluid approximation. However, as we have
The most natural interpretation of this result is in terms ofseen, there is an interesting and nontrivial response on length
images. To indicate the relevance of images, note that if thecales in excess of the healing length in the presence of a
potential were sufficiently large, then the density of the filmvortex.
would become zero. For simplicity assume that the boundary Having established that the vortex obeys a Magnus equa-
of the film is a straight line. In that case in a standard mannetion of motion and hence moves parallel to the equipotentials
we may take into account the boundary condition that theof the effective potentiaV¢, we may immediately draw
velocity field perpendicular to the film boundary is zero onsome additional conclusions using the work of Trugman and

R=—zX f (pm-VR)VRG(R—=1)V(r) dr,

with u=(R—r)/|R—r|2.
This implies
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Doniach'* A consequence of Eq23) is that the vortex tra-

jectories must be closed, wit; instead ofV as the under- f dr Y'VSFJ V'(Ysl)—f dr V'YSFJ ds- yS

lying (local) potential. In other words, the vortex travels

along the equipotential lines of the former. The exception to

this is at the saddle points of the effective potential where the B f dr V- y$,= f ds- 5, -0, (29

vortex may “percolate,” allowing in principle an extended

orbit across the systenfOne can think of “hills” and “val- asV.-y=0. . . .

leys” representing the potential, and the percolation thresh- 1ne surface integral in E¢29) will be zero as the veloc-

old corresponding to “lakes” which fill up the valleys, to !ty field parallel to the boundary will ve}n_lsh due Fo additional

connectl However, the speed of the vortex goes to zehee !mages(whlch we do not discuss explicitlyThe final result

to the vanishing of the gradient of the potential the saddle IS thus

points, so that the vortex transport is in fact pathological. 1

These points have immediate parallels with the guiding cen- E=— J' Z 22V dr,

ter ml%ti%n of charged particles in the quantum Hall 2

tegf?ﬁ;’ mot\;¥|?§rzézze§§|it§$§ ?c]: %ng:i?}n?hzaﬂ%:;éeﬁtz .e., thg interaption 'of the depletion due tp the centrifugal
! L . forces interacting with the substrate potential.

Landau subband. Obviously the application of these ideas to It should be stressed that the core regienl will con-

vortices would only be appropriate when the vortex densitytribute to the pinning energy a term of comparable magni-

was extremely low. tude to the long-range part which we are explicitly discuss-
ing; however, the latter yields only a short-range correlated
V. PINNING ENERGY potential as against the long-range correlations which the

So far the discussion has been in terms of the equations &P0ve has. It is readily checked that minus the gradient of
motion. In this section we show that we may calculate thehis potential is indeed the term on the RHS of the equation
pinning energy and moreover that the force which occurs ifPf motion of the vortex and hence is consistent with our
the equation of motion of the vortex is the gradient of thatconsiderations of the equation of motion.
potential.

The expectation value of the energy is VI. DISCUSSION AND CONCLUSIONS

1 In this paper we have only discussed the motion of a
E= EP(VS)2+ §P2+ aVp. single vortex in the presence of a random potential. Let us

now briefly discuss the relevance of this to the more realistic

Now, substituting in the expansions for the density and vecase where there are many vortices present in the system.
locity potential toO(o), there are four terms which depend The vortices may be the remanent vorticity which is pinned
on the vortex position contributing to this energigere by the random potential, or it may be that the substrate is

Spo(r) is defined in Eq(19)]: rotating and hence there is some vorticity with a net sign.

1 We concentrate on the case where the disorder is strong

_ ) compared to the interaction of the vortices at the average

E_f r [5p0v+p15p0+p12 v y~VSl}, @1 separation. Of course in the case of a rotating substrate the
logarithmic nature of the interaction between the vortices

\(/)v:geirne we have taken the vortex core to be situated at th\?vill ensure that the density does not fluctuate too much;

We can interpret the separate terms on the right-hand SioEgowever, the local order in the vortices is determined by the
(RHS) of this equation as follows. The first term is just the igher Fourier components of the random potential, and the

pinning potential energy associated with the decreased dela-re]igirt;mdmus of the vortex lattice which will decrease with

sity as the core is approached. The second term is the inte Because of the long-range interactions, we must consider

action of this decrease in the density with the distortion Ofthe ossibility of an analod of a Coulomb aap which oceurs
the condensate due to the substrate potential. The third ter P y 9 gap

. . . . . . 20
comes from the change in the kinetic energy due to the su ﬂi::!? (iatr?,nr'gfeerSC'ttoatt'ﬁgsl‘jénn;th'g?g;';g;%fraes disrilsfrrféxtra
strate effect on the density. The final term comes from th(:i‘/ortexg topthe system. In the cgse of vortices with g logarith-
change in the kinetic energy due to the distortion of the flow y ' 9

field due to the substratgée., the consequence of the vortex {2': dg]iiri(:;gn’b?r?assgsel\%/ )Oi Sgatat)cvfl)évi? tthhe; i,ri]tirz;\gt)ii)n
flowing around “obstacles” in the substrateNow the first ' €€ ’

and second terms cancel pas=—V. Thus we are left with with excitations where a vortex is moved within the system
the final two terms is more complicated as one is creating a dipole and the den-

sity of these excitations does not tend to zero at zero energy.
1 The above results all assume that the parti¢lestices in
2=f dr [—VE Y2+ y-VS,|. (28)  our caseg reside on a lattice; however, if the potential is
smooth, then as well as excitations where the vortex is
The (inverse power law nature ofp, means that the pin- moved between local minima in the overall potentdle to
ning is nonlocal as to be expected from the discussion inthe combination of the underlying potential and the effect of
Sec. IV. We may now rewrite the second term using thethe other vorticesthere are excitations where it remains in
two-dimensional divergence theorem the minimum which it started in. It is those excitations with
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which we have been concerned in this paper. deduced by analogy with the case of a charged particle in a
These excitations woulchat least in principlg contribute  magnetic field—which is very similar upon the addition of

to the damping of a torsion balance. This may be seemn inertial mass term. As well as the “guiding center” mo-

readily by considering a vortex in an approximately har-tion of the vortex along the equipotentials, there is now some

monic potential well Ve(r)=(1/2)Kr?] experiencing a su- (fas “cyclotron motion” (a discussion of this effect in clas-

perflow with amplitudeA and frequency in the direction sical hydrodynamics is given by Larflp. However, the

x. The equation of motion for the vortex with positiorand ~ value of the inertial masgand hence the magnitude of the

unit circulation is then cyclotron motion has been a controversial issue. The sug-
gestion of Baym and Chandférwas that it was associated
(r — Acotx) X z= — Kr. with the virtual mass due to the backflow around a cylinder

_ ) . of radius approximately the coherence length. However,
The effect of the superflow is to give a response in terms of,gre recently Duai has argued that the mass is larger by a

the motion of the vortex which is resonant@=wo=K  facor of 20-30 due to the finite compressibility of helium.
(that is, if the period of the superflow is the same as thqn terms of the analog of the “cyclotron radius,”

frequency of the vortex moving around the welFor in- /o= (pl w) "2 whereu is the mass of the vortex, will only

stance, thex component of the vortex position is change from being roughly an interatomic distance to being
AQ 4-5 times that size.
X= aCoswot + Bsinwot + ———sinQt. In this paper we have npthing to say about corrgctions to
0~ wj the mean field picture. This has been addressed in part by
H 24 . .
So those vortices which have associated natural frequenciddV €t al,”" where the magnitude of the vortex effective

which are the same as that of the torsion balance will b&n@ss has been considered from a quantum point of view. The
excited significantly. Of course this frequency is rather low'€lationship between these calculations and the effects due to

on a microscopic scale and so it may be insignificant inbackflow is not very clear and we will make no other com-
practice. ment on these matters. _ _

The extent to which the excitations are single vortex in " Summary we have derived the effective potential that a
their nature is hard to estimate in general. However, one mayCrt€x experiences due to a potential coupled to the under-
start from the assumption of only a single vortex being ex-Ying bosons. The former is much smoother than the latter,
cited and then examine whether the amplitude spreads §ith long-range tails. We showed that the tails may be inter-
other vortices. The single-vortex excitation has a characte@réted as due to “images” caused by variations in the con-
istic frequency involved in precessing around an equipotend€nsate density. Moreover, the effective potential was equal
tial of V. Whether this may then excite neighboring vorti- ©© the pinning energy in the expectation value of the Hamil-
ces depends on whether the natural frequencies of th@nian with a Hartree wave function representing the vortex.
neighboring vortices are sufficiently similar for a “resonant”
process. If the random potential has a sufficiently large vari-
ance, as is assumed here, this is very unlikely, and so most
excitations will only involve one vortex. Hence the results of We would like to acknowledge the support of the EU
this paper will be relevant. through Grant No. CT90 0020. H.H.L. would like to thank

We have not considered here the effect of the vorticefrofessor M. A. Moore for helpful discussions and the SERC
having a nonzero inertial mass. The effect of this may bdor support while this work was carried out.
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