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Spin conductance, dynamic spin stiffness, and spin diffusion in itinerant magnets

Peter Kopietz
Institut fir Theoretische Physik der Universit&attingen, Bunsenstrasse 9, D-37073tBwen, Germany
(Received 25 August 1997

We discuss analogies between the charge and spin response functions of itinerant magnets. We show that the
spin analog of the charge stiffnessist given by the usual spin stiffnegg, but by thedynamic spin stiffness
D, which is obtained from the dynamgpin conductance Gw) in the limit of vanishing frequencw. The
low-frequency behavior o6¢(w) is used to define ideal spin conductors, normal spin conductors, and spin
insulators. Assuming diffusive spin dynamics, we show that the spin-diffusion coefficient is proportional to
lim,_oReG¢(w). We exploit this fact to develop an extrapolation scheme for the spin-diffusion coefficient in
the paramagnetic phase of the Hubbard mod&0163-182@08)04310-0

I. INTRODUCTION spin stiffnessand is related to the change in energy due to a
small static twist in the directions of the spins at the bound-
In a classic paper on th€heory of the Insulating State, aries of the systeA finite value of pg in the thermody-
Kohn! pointed out that the behavior of the charge stiffnessnamic limit is a manifestation dfjuasj-long-range magnetic
D. can be used to distinguish the conducting from the insuorder. Obviously, the spin stiffness; and the superfluid
lating state of interacting electrons. Physically. can be stiffnessp. are analogous quantities: both measure the de-
identified with the weight of the Drude peak of the gree of off-diagonal long-range order in the system. But
frequency-dependent conductivity(w). A system with a what is the spin analog of the charge stiffness, and what is its
finite value of D, deserves to be called adeal conductoy  physical meaning? In this paper we shall not only answer
because thewr(w) diverges adD./(iw) for »—0. In con-  this question, but also discuss the more general concept of
trast, anormal conductordoes not have a Drude peak{ the spin conductanc&(w). We show that the limiting be-
=0), and the conductivity(w) approaches a nonzero value havior of G¢(w) for vanishing frequency can be used to
for vanishing frequency. Finally, thiasulating state can be defineideal spin conductorsnormal spin conductorsand
characterized byp.=0 and o(w=0)=0. Note thatD, is spin insulators in complete analogy with the charge trans-
defined in terms of the conductivity, a dynamic quantity. Port. Normal spin conductors are of particular interest, be-
NeverthelessD, can be obtained without explicitly calculat- cause systems with diffusive spin dynamics fall into this cat-
ing o(w): as shown by Kohf the second derivative of the €90y In Sec. IV we shall use the concept of the spin
free energy with respect to a fictitious vector potentialconductance to develop an extrapolation scheme for calcu-
(which is equivalent to a twist in the boundary conditions onlat'_ng the _sp|n-d|ffu5|0n coefficient .Of these systems. For lo-
the many-body wave functigns proportional to the charge calized spin modelésuch as the Heisenberg motele have

stiffness. More recently, the arguments of Kblrave been discussed the spin conductance and its usefulness for the

calculation of the spin-diffusion coefficient in Ref. 7.
sharpened by 'Shastry aqd Sutherlénaho ca_lculated_Dc For definiteness we shall consider the repulsive Hubbard
exactly for Heisenberg-Ising and Hubbard rings using the

ansatz of Bethe. model, although our considerations are easily generalized for

Another important observable, which is closely related toOther itinerant magnets. The Hamiltonian is givenHpy-T
D., is the superfluid stiffnesp. (the motivation for our +V, with
slightly unconventional notation will become obvious be-
low). Wheread . characterizes the normal conducting prop-
erties of the system, a finite value pf indicates long-range .
superconducting correlation®, and p, can both be ob- T:—tz 21 [cicria +H.CI, 1)
tained as different limits of the wave-vector and frequency- “
dependent current response functinz(q,w), which is
given by the Kubo formuld.We shall briefly summarize the
relevant definitions in Sec. Il. V=U2

While D, and p. in Hubbard and related models have T
recently been studied numerically by several grotipghe
analogous quantitie®¢ and pg that characterize thepin
dynamics have not received much attention. In fact, somavherer labels theN sites of ad-dimensional hypercubic
authors seem not to be fully aware of the physically differentattice, anda, are the primitive vectors with lengta in
meaning of the spin analdg; of the charge stiffness on the direction a=1, ... d. The operators/ , o=1,| create
one hand, and the spin analpg of the superfluid stiffness spin-o electrons at lattice site, andcf=[cfT ,cfl] are two-
on the other hand. The quantipg is commonly called the component operators.
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II. CHARGE RESPONSE: CHARGE
AND SUPERFLUID STIFFNESS

Let us first recall the Kubo formula for the conductivity,
which measures the linear charge response to an electrom
netic field. The usual frequency-dependent conductivity can

be written aso,4(w)=(€?/h)a’? %G ,4(w), where the di-
mensionless conductar’?o@aﬁ(w) can be obtained from the
current response functiok, 5(q, ),

Kaﬁ(q,w+|0+)

G p(w)=Ilim— - 3

ol q—0 i(Aw+i0™)

The current response function has two contributions
Kap(do+i0%)=—8,5D%+P,4(q,0+i0%), (4)

where the diamagnetic paft¥@ is proportional to the ther-
mal expectation value of the kinetic energy operator

S S | 3
Ddla:m<_T>Em; pn(n|—TIn), (5)

and the paramagnetic contribution is for general compleXsnce tenso6

frequencyz given by

(|3 (a)|my(m|I4(—a)[n)
E—E,— %z

1
Pas(0,2)=22> Py
Nn,m

+<n|33<—q>|m><m|3a<q>|n>
E,—E,thz '

(6)

Here|n) denotes a complete set of exact eigenstateld of
and p,= (2 e En'T)"le En/T are the thermal occupation
probabilities of states with energi€s,, whereT is the tem-
peraturemeasured in units of energylhe current operators
are

o t .
(=572 el (Cria,~Crg)—HC]l ()

The charge stiffness tenspD],; and the superfluid stiff-
ness tensofp.],z can be defined via the following limiting
procedures:

[Dclag=— lim[lim Kaﬁ(q,w+i0+)], (8)
w—0 gqg—0
[pcleg=—lM[ MK 5.0 +109)].  (9)

g—0 w—0

For completeness, let us also introduce ¢hdependent su-
perfluid stiffnes$

[pc(D)]ap=— lim K,p(q,0+i07), (10)

w—0
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literature, has the advantage that the current response can be
expressed entirely in terms of the current-current correlation
function. Of course, the physical current response is gauge
invariant, see Ref. 10.

Quite generally, at long wavelengthigfa<1) the cur-

rent response tensdf,;(q,w) can be decomposed into a
longitudinal part K;) and a transverse parK(), i.e.,

Kap(, @) =0a0 K| (0, 0) + (80p— 005K, (0, o),
(11)

where q,=a,-q, with a,=a,/a and q=qg/q. The corre-
sponding decomposition for the tensgr(q)],.s contains
only a transverse component,

[Pe(D]ap=(8ap—Ualp)pe(Q). (12)

The longitudinal part vanishes. Physically, this is due to the
fact that a static longitudinal vector potential cannot induce
any current! If we setq=0 in Eq.(11) we haveK , (0,w)
=K|(0,w), because for a spatially uniform field the longitu-
dinal and transverse response are identical. Thus, the conduc-
«p(®) in Eq. (3) and the charge stiffness ten-
sor[D¢],gz in Eq.(8) are proportional to the unit matrifor

a system with cubic symmetryThe usual charge stiffness
D. and superfluid stiffnesp. can be identified with eigen-
values of the corresponding tens¢Egs. (8) and (9)] i.e.,
[Dc]a,B: 5aBDCY and [pc]aB: (5aﬂ_qan)Pc . Note that
with our normalization both quantities have units of energy.
pc is proportional to the density of the superconducting elec-
trons. The finite value op. in a superconductor is closely
related to the screening of the magnetic field, i.e., the Meiss-
ner effect. Note that in a normal metal=0, which is a
consequence of the fact that in the normal metallic state
static magnetic fields are not screened. Finally, let us point
out that the physical meaning of the different order of limits
in Egs.(8) and(9) is easy to understand from the Maxwell
equationcqX E(q,w) = wB(q,w): If we first take the limit
w—0, the electric fielde vanishes while the magnetic field

B can remain finite—in this way we probe the Meissner ef-
fect. On the other hand, if we first lgt—0, we are left with

an electric field.

Ill. SPIN RESPONSE: DYNAMIC AND STATIC
SPIN STIFFNESS

The generalization of the above definitions for the spin
degrees of freedom is straightforward. Denotingddy i
=X,Y,z, the Pauli matrices, id dimensions we may define
3Xd spin-current operators,

~ t . g
J;(Q):EZ e 't C:?(Cr+aa_cr—aa)_H-C- )

which probes the response to time-independent transverse
electromagnetic field¢see below. Equations(3) and (8)—

(10) relate physical quantities characterizing the charge dy-
namics to the appropriate limits of the linear-response funcin complete analogy with Eq4) we define the retarded spin-
tion K,45(g,w). For convenience, we have chosen a gaugeurrent response function

where the scalar potential is set equal to zero, so that the
electric field is represented by a vector potent&(t) =

—c 19A(t)/at. This gauge, which is used very often in the

i=xy,z, a=1,...d. (13

Klg(q,0+i07)= = 8,56;D%+ Pl ,(q,w+i0%),
(14
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TABLE |. Analogous quantities characterizing charge and spin dynamics.

Charge Spin Physical meaning

Charge response functidf,s(q,w)  Spin response functioK‘C{ﬁ(q,w) Linear current response to an external vector potential

Conductances, 5(w) Spin conductancEGy(w)11, Response to a time-dependent, spatially constant vector
potential

g-dependent superfluid g-dependent spin stiffne$$zs(q)]‘[iﬁ Response to a time-independent, spatially varying vector

stiffnes$ [ po(a) 1ap potential

Superfluid stiffnesp, Spin stiffnesspg Probes long-range correlationgsuperconducting or
magneti¢

Charge stiffne&DC Dynamic spin stiffnes® Finite for ideal(charge or spinconductor

8n the book by Tinkham(Ref. 9 the transverse eigenvalue of this tensor is denoteH (m).
bAlso known as Drude weight.

where the diamagnetic contributi@®@ is given in Eq.(5), IV. SPIN DIFFUSION
and the paramagnetic terﬁjw(q 2) is simply obtained from
Eq. (6) by replacingd,—J' andJ —>JJ As discussed by
Chandra, Coleman, and Larl&ﬁ the spm -current response
function Ka (q,0) gives the spin response to a fictitious
vector potentialéA'ﬁ(q,w), which describes a space- and
time-dependent modulation in the local-spin density. The ) 20t R
proper definition of the dynamic and static spin-stiffness ten- Sl(q,w)= TE Pnd(Em—En—fie)(n|SIm)
sor is now evident n,m

A. Spin-diffusion coefficient and Thouless number

To see the connection between the spin conductance and
spin diffusion, consider the dynamic structure factor for the
spin degrees of freedom,

. . (S
[DyJlg=— Im[imKi (qw+i09)], (19 XIS gln)- 9
00 a-0 Here the Fourier components of the spin operators are
i T . S e el (a'2)c General hydrodynamic argu-
N —— ij + r-
[pslap (:'Lno[l'inoKaﬁ(q'“’Ho )] (18 entd® show that the diffusive spin dynamics manifests it-

self in the following long-wavelength and low-energy form

Furthermore, in analogy with the-dependent superfluid ©f the dynamic structure factor
stiffness introduced in Eq10), let us define thg-dependent
spin-stiffness tensét ) N fiw Dq?

Si(g,w)=268"
(q,0) Xl_e—ﬁw/T w2+ (D)2

, (20
[ps(@)])p=—lim K 4(q,0+i07). 17)
©=0 where we have assumed cubic symmetry and spin-rotational

invariance. HereD is the spin-diffusion coefficient, and the

Finally, in analogy with Eq(3) we introduce the dimension- . R
y od a® static susceptibilityy is

less spin conductance

[ 1 © do 1 e a
K! 5( ,w+i0") =i j gii _ - i &iy 21
[Gy(@)]l 5= lim =t FeTD ) 19 x=3im | ozS(@e=33 &S). @
q—0 i(Aw+i0™)
Al On the other hand, the real part of the dimensionless spin

Because the operatot;(0) define the ferromagnetic spin conductancé18) is given by

currents, the limig—0 in Egs.(15), (16), and(18) implies

that we are looking derromagnetiacorrelations. In the case RE[Gs(w)]EB: — 78(hw)[Dg]! s [Gi(w) ]aﬁ, (22
of antiferromagnetisnwe simply should consider the limit
g—1II instead, wherdI=[=/a, ... ,m/a] is the antiferro- where the weight of thé function can be identified with the

magnetic ordering wave vector. A summary of the analogouglynamic spin stiffnes$15), and the paramagnetic contribu-
guantities characterizing the charge and the spin dynamics t#n is
given in Table I. We would like to emphasize that the spin

analog of the Drude weighd, is given by the dynamic spin Kuﬁ(q,wﬂm)

stiffnessDs, andnot by the static spin stiffness,. It seems  [G4(w)]l,=lim 7

that the dynamic spin stiffness has not been discussed in the q-0 @

literature on the Hubbard model. Following the terminology 1—e holT

used for the charge dynamics, a system viltj>0 can be =m———Ilim = > py8(En—En—fo)
called anideal spin conductarFor D=0 andG4(0)#0 the ho g o Nam

system is anormal spin conductgrand thespin insulatorcan
be characterized bp = G¢(0)=0. x(n|3L,(a)|m)(m[3,(—a)[n). (23
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Thouless number. In analogy with disordered electrons, a

The matrix elements of the current operataf, . !
system withgs>1 can be called apin metal

=[J%,3%,3%] can be related to the matrix elements of the

spin operators’ASq via the Heisenberg equation of motion.

Using the fact that the Hubbard interaction is spin- B. Spin diffusion in the Hubbard model

rotationally invariant, it is easy to show that to leading order

inqg-a,
08 A - X
h—p =[8,T1= 2 (@-a)Ju(a) (24
Hence,
d
(En—En(n|SJm)= 2 (a-a)(nldu(a)|m). (29

Substituting this expression into EQ.9), it is easy to show
that

. _efﬁwlT % w2 -
’ i _ T ii
[Gs(w)]aa_ ﬁw 2 Ilm a)zs (qvw)

(26)

Assuming now the diffusive forni20) of the dynamic struc-
ture factor, we obtain for the spin-diffusion coefficient

D 1 : ’ ii
2 x llino[Gs(w)]aa- (27)

Moreover, it is not difficult to shoWthat in the presence of
spin diffusion the dynamic spin stiffnegk; vanishes due to
a perfect cancellation between the dia- and paramagnetic

contributions in Eq(15). Thus, the existence of spin diffu-
sion means that the system is a normal spin conductor.

The above analogies are not only interesting from a for-
mal point of view, but also useful in practice. We now show
that Eq.(27) offers a new and physically transparent extrapo-
lation scheme for directly calculating the spin-diffusion co-
efficient of the Hubbard model. See Ref. 7 for a similar cal-
culation for the Heisenberg model, and Ref. 17 for an
alternative method to calculate the spin-diffusion coefficient
in the two-dimensional-J model.

After some straightforward manipulations, E@7) can
be cast into the form

AD 2 " a1
2 Ty, 959 (31)
where the correlation functio@(s) is given by
C(s)= ([I(s +1(=s)]0). (32
HereT(s)ze‘F'STe*‘HS, and the(dimensionlesscurrent op-
eratorl is
.1 o” )
=52 cf7(0r+aa—cr,aa)—H.c. :; sin(k,a)
X[ el ek —cf iy, (33

wherec,=N"%23 e *c, . The bracket in Eq(32) denotes
thermal average with respect to the interacting Hamiltonian

Equation(27) can be rewritten in a form which empha- H=T+V, see Eqs(1) and (2). Because the kinetic energy
sizes a deep connection between spin diffusion and chargsperatorT commutes with the current operatrfor U=0

diffusion in disordered electronic systes->’ Defining the
rescaled dimensionless spin conductdnce

L d—2
gS:<a) ||m [G (w)]aa’ (28)
and the energies
hD 1
ETh:F1 AS:N_X’ (29

(whereL=aNY s the linear size of the systérwe obtain
from Eq. (27)

Em

95=A—S- (30

the integral in Eq(31) does not exist. Then our model is an
ideal spin conductor. This is not surprising, because the dif-
fusive dynamics in a system without disorder must be a cor-
relation effect. We would like to emphasize that E8fl) has
been derived under treessumptiorthat the spin dynamics is
diffusive. The divergence of the integral faf=0 simply
indicates that in this case our assumption is not correct.

Because fold=0 the integral in Eq(31) is infinite, we
expect that for smallU the spin-diffusion coefficient di-
verges with some power a@fU. Of course, for finiteU the
correlatorC(s) cannot be calculated exactly, so that we have
to make some physically motivated approximation. A stan-
dard approximation scheme, which has proven to be quite
reliable for the calculation of the spin-diffusion coefficient of
the Heisenberg model at high temperatur&sis the Gauss-
ian extrapolation of the short-time expansionaifs) to long
times. Expandingz(s) in powers ofs,

This expression should be compared with the well-known

Thouless formulag=E+,/A for the dimensionless average
conductance of a disordered electronic system. Here the so-

called Thouless enerdyy, is defined as in Eq29) (with D

©

C(s)=2,

2 (2! 34

now given by the average charge diffusion coefficient of thethe coefficientsC,,, can be written in terms of multiple com-
disordered systemandA is the average level spacing at the mutators. Becausé(—s) = C(s), only even powers of ap-
Fermi energy. Thus, Eq$27) and (30) are nothing but the pear. The first two coefficients are

Thouless formula for the spin diffusion problem. The dimen-
sionless numbeg, defined in Eq.(30) is the corresponding

Co=(1?), (39)
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Co=(I[[T,HL,HD=(I[T,V1,V]), (36)

where we have usdd, T]=0 and(i)=0. Assuminghat the

7833

the U dependence by redefining the integration variadile
=Us. This leads trivially to the energy scalg/U. We
would like to point out that al =< the spin-diffusion coef-

higher coefficients are consistent with a Gaussian, the londficients of the spinS=1/2 quantum Heisenberg antiferro-

time extrapolation is

C,s?
C(s)~Cpexp — 2C, | (37)
Then we obtain from Eq31)
hD t2 Cqf 2mC,y|Y?
@ Tx2| C =5
a X 2

magnet and the half filled Hubbard model at strong coupling
arenotidentical, although both are proportionaltfdU (see
Refs. 19 and ) The reason is that foF =« the value ofD

in the Hubbard model is determined by states with energies
larger thanU, while the mapping to the Heisenberg model is
only valid for energy scales smaller thdh. Only in the
intervalt?/U<T<U the half filled Hubbard model at strong
coupling can be expected to have the same spin-diffusion
coefficient as the corresponding Heisenberg antiferromagnet

. - _ 2
Note that so far we have not assumed that the interaction |&ith exchange coupling=4t*/U.

small, so that Eqs(35)—(38) are valid for arbitraryU. For
simplicity, let us now evaluate the coefficiertg andC, in
the limit U—0. Then the averages in Eq85) and(36) are

easily calculated with the help of the Wick theorem. Special-
izing to the case of half filling, we obtain after a lengthy but

straightforward calculation

Co=2A4(T), (39
C,=4U?A4(T)By(T), (40)

where
Ad(T):%; sirf(ka) f(e /T)[1—f(e/T)], (4
By(T)= E fle/T)1—f(e/T)]. (42)

Heref(x)=[e*+1] ! is the Fermi function, and the nonin-

teracting energy dispersion th dimensions ise,=2dty,,
with y,=d"*=%_ cosk-a,). Away from half filing we
should replacesy,— €,— w, whereu is the chemical poten-
tial. In the noninteracting limil y=3B4(T), so that we fi-
nally obtain from Eq(38) in the limit U<t

Ay(T)
B3/2(T) U

Ul

(43

Note thatD diverges forU—0, in agreement with the fact
that without correlations there is no spin-diffusion. Obvi-
ously, the spin diffusion coefficient cannot be calculated b

naive perturbation theory in powers Uf
In the limit T>t we may useAy(«) =3 andBy(*)=3, S
that Eq.(43) reduces to

AD t2
—=2{m (44)

independent of the dimensionality of the system. Recall that
this result has been derived in the weak-coupling limit. More

generally, afT=« it is easy to see from Eq$31), (32), and
(34) that#D/a? is proportional tot?/U for all values of U
This follows from the fact that the expansi@¥) of C(s) is

actually an expansion in powers dfi§)?, because the cur-

rent operatof commutes with the kinetic energy operafor

Y,

Let us now discuss the low-temperature liffikt. Using
the fact that forT—0

T
flen/ D1 f(e/T) = 55 8(%0), (45
2dt
it is easy to see that E¢43) reduces to
1D aq [ 2dt]Y?t?
where the numerical constardg andby are
1 :
ay=2 Sin(ke@)d( 7, (47)
1
b= o(n), d#2. (48)

In d=2 the integral in Eq(48) is logarithmically divergent
(for N—), so that at low temperaturéds is given by

by~ izln(4t/T). (49

ar
Because we have assumed that the system is in the paramag-
netic state, Eq(46) should be valid for temperatures above
the magnetic ordering temperaturg . Keeping in mind that
in d<2 there is no long-range order at any finite tempera-
ture, and that ird>2 the ordering temperaturgy is expo-
nentially small at weak coupling, E46) describes the low-
temperature behavior of the spin-diffusion coefficient in a
wide range of temperatures that are small compared with the
bandwidth 41t. Although the precise numerical value of the
prefactor in Egs.(43) and (46) depends on our Gaussian
extrapolation scheme, the energy sdgléJ in Eq. (43) and
the low-temperature behavior given in E@6) should be
independent of the details of the extrapolation method.

V. SUMMARY AND CONCLUSIONS

In this work we have used analogies between charge and
spin response functions of itinerant magnets to clarify the
concept of the static and dynamic spin stiffness. Starting
from the general Kubo formula for the relevant linear-
response functions, we have shown that tlymamic spin
stiffnessDy is the precise spin analog of the charge stiffness

Assuming that the integral is convergent, we may scale ouD.. The usualstatig spin stiffnessp, is the spin analog of
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the superfluid stiffnesp., and is only finite in the presence ductance and the associated Thouless number offers a new
of long-range magnetic order. Considering the fact that thend physically transparent extrapolation scheme for calculat-
charge stiffness has recently received a lot of atterftidit,  ing the spin-diffusion coefficient.

is rather surprising that the corresponding quaniity has We hope that our work will stimulate further research in
not been studied. Partially, this might be due to the fact thathis field. Numerical calculations of54(w) and Dy in

D, has often been confused with the static spin stiffpess  strongly correlated itinerant magnets are called for. In par-
Table | summarizes analogous quantities. We would like tdicular, by varying some external parametsuch as tem-
emphasize again that a finite value®f does not imply the perature, doping, or interaction strengti might be possible
existence of long-range magnetic order. A simple example i$0 observe transitions between the three types of spin trans-
the Hubbard model fotJ=0, whereD;>0 but p;=0. A port discussed above. Numerical calculations of the tempera-
value D.>0 simply means that the system is an ideal spinture dependence of the spin conductance might also give
conductor, so that the spin transport is not diffusive. Theevidence for spin-charge separation in strongly correlated
analogy with charge transport is obvious: an ideal conductosystems: Very recently i pointed out that the existence of
has a finite charge stiffne§,>0, implying an infinite con-  spin-charge separation manifests itself in different tempera-
ductivity. But a perfect conductor is not necessarily a superture dependences of the spin and charge conductances.
conductor. Only in the latter cagg>0.

The low-frequency behavior of the dynamic spin conduc-
tanceG4(w) can be used to classify the spin dynamics into
three categories: ideal spin conductors, normal spin conduc- | would like to thank H. G. Evertz for a discussion during
tors, and spin insulators. In Sec. IV we have further analyzeé workshop on theRole of Dimensionality in Correlated
a particular class of normal spin conductors, namely systemilectronic Systemsat Villa Gualino (Torino, Italy), which
with diffusive spin dynamics. In this case the dynamic spineventually motivated me to write this paper. This work was
stiffness vanishes, but the spin conducta@g€w) has a partially supported by the Deutsche Forschungsgemein-
finite limit for vanishing frequency, which is proportional to schaft, and by the ISI Foundation and EU HC&M Network
the spin-diffusion coefficient. The concept of the spin con-ERBCHRX-CT920020.
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