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Spin conductance, dynamic spin stiffness, and spin diffusion in itinerant magnets

Peter Kopietz*
Institut für Theoretische Physik der Universita¨t Göttingen, Bunsenstrasse 9, D-37073 Go¨ttingen, Germany

~Received 25 August 1997!

We discuss analogies between the charge and spin response functions of itinerant magnets. We show that the
spin analog of the charge stiffness isnot given by the usual spin stiffnessrs , but by thedynamic spin stiffness
Ds , which is obtained from the dynamicspin conductance Gs(v) in the limit of vanishing frequencyv. The
low-frequency behavior ofGs(v) is used to define ideal spin conductors, normal spin conductors, and spin
insulators. Assuming diffusive spin dynamics, we show that the spin-diffusion coefficient is proportional to
limv→0ReGs(v). We exploit this fact to develop an extrapolation scheme for the spin-diffusion coefficient in
the paramagnetic phase of the Hubbard model.@S0163-1829~98!04310-0#
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I. INTRODUCTION

In a classic paper on theTheory of the Insulating State
Kohn1 pointed out that the behavior of the charge stiffne
Dc can be used to distinguish the conducting from the in
lating state of interacting electrons. PhysicallyDc can be
identified with the weight of the Drude peak of th
frequency-dependent conductivitys(v). A system with a
finite value ofDc deserves to be called anideal conductor,
because thens(v) diverges asDc /( iv) for v→0. In con-
trast, anormal conductordoes not have a Drude peak (Dc

50), and the conductivitys(v) approaches a nonzero valu
for vanishing frequency. Finally, theinsulatingstate can be
characterized byDc50 and s(v50)50. Note thatDc is
defined in terms of the conductivity, a dynamic quanti
Nevertheless,Dc can be obtained without explicitly calcula
ing s(v): as shown by Kohn,1 the second derivative of th
free energy with respect to a fictitious vector potent
~which is equivalent to a twist in the boundary conditions
the many-body wave function! is proportional to the charge
stiffness. More recently, the arguments of Kohn1 have been
sharpened by Shastry and Sutherland,2 who calculatedDc
exactly for Heisenberg-Ising and Hubbard rings using
ansatz of Bethe.

Another important observable, which is closely related
Dc , is the superfluid stiffnessrc ~the motivation for our
slightly unconventional notation will become obvious b
low!. WhereasDc characterizes the normal conducting pro
erties of the system, a finite value ofrc indicates long-range
superconducting correlations.Dc and rc can both be ob-
tained as different limits of the wave-vector and frequen
dependent current response functionKab(q,v), which is
given by the Kubo formula.3 We shall briefly summarize the
relevant definitions in Sec. II.

While Dc and rc in Hubbard and related models hav
recently been studied numerically by several groups,3–5 the
analogous quantitiesDs and rs that characterize thespin
dynamics have not received much attention. In fact, so
authors seem not to be fully aware of the physically differ
meaning of the spin analogDs of the charge stiffness on th
one hand, and the spin analogrs of the superfluid stiffness
on the other hand. The quantityrs is commonly called the
570163-1829/98/57~13!/7829~6!/$15.00
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spin stiffness, and is related to the change in energy due t
small static twist in the directions of the spins at the boun
aries of the system.6 A finite value of rs in the thermody-
namic limit is a manifestation of~quasi!-long-range magnetic
order. Obviously, the spin stiffnessrs and the superfluid
stiffnessrc are analogous quantities: both measure the
gree of off-diagonal long-range order in the system. B
what is the spin analog of the charge stiffness, and what i
physical meaning? In this paper we shall not only answ
this question, but also discuss the more general concep
the spin conductanceGs(v). We show that the limiting be-
havior of Gs(v) for vanishing frequencyv can be used to
define ideal spin conductors, normal spin conductors, and
spin insulators, in complete analogy with the charge tran
port. Normal spin conductors are of particular interest,
cause systems with diffusive spin dynamics fall into this c
egory. In Sec. IV we shall use the concept of the s
conductance to develop an extrapolation scheme for ca
lating the spin-diffusion coefficient of these systems. For
calized spin models~such as the Heisenberg model! we have
discussed the spin conductance and its usefulness for
calculation of the spin-diffusion coefficient in Ref. 7.

For definiteness we shall consider the repulsive Hubb
model, although our considerations are easily generalized
other itinerant magnets. The Hamiltonian is given byĤ5T̂

1V̂, with

T̂52t(
r

(
a51

d

@cr
†cr1aa

1H.c.#, ~1!

V̂5U(
r

Fcr↑
† cr↑2

1

2GFcr↓
† cr↓2

1

2G , ~2!

where r labels theN sites of ad-dimensional hypercubic
lattice, andaa are the primitive vectors with lengtha in
direction a51, . . . ,d. The operatorscrs

† , s5↑,↓ create
spin-s electrons at lattice siter , andcr

†5@cr↑
† ,cr↓

† # are two-
component operators.
7829 © 1998 The American Physical Society
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II. CHARGE RESPONSE: CHARGE
AND SUPERFLUID STIFFNESS

Let us first recall the Kubo formula for the conductivit
which measures the linear charge response to an electro
netic field. The usual frequency-dependent conductivity
be written assab(v)5(e2/h)a22dGab(v), where the di-
mensionless conductance8 Gab(v) can be obtained from the
current response functionKab(q,v),

Gab~v!5 lim
q→0

Kab~q,v1 i01!

i ~\v1 i01!
. ~3!

The current response function has two contributions

Kab~q,v1 i01!52dabDdia1Pab~q,v1 i01!, ~4!

where the diamagnetic partDdia is proportional to the ther-
mal expectation value of the kinetic energy operator

Ddia5
1

dN
^2T̂&[

1

dN(
n

pn^nu2T̂un&, ~5!

and the paramagnetic contribution is for general comp
frequencyz given by

Pab~q,z!5
1

N(
n,m

pnF ^nuĴa~q!um&^muĴb~2q!un&
Em2En2\z

1
^nuĴb~2q!um&^muĴa~q!un&

Em2En1\z
G . ~6!

Here un& denotes a complete set of exact eigenstates oĤ,
and pn5((me2Em /T)21e2En /T are the thermal occupatio
probabilities of states with energiesEn , whereT is the tem-
perature~measured in units of energy!. The current operators
are

Ĵa~q!5
t

2i(r
e2 iq•r@cr

†~cr1aa
2cr2aa

!2H.c.#. ~7!

The charge stiffness tensor@Dc#ab and the superfluid stiff-
ness tensor@rc#ab can be defined via the following limiting
procedures:

@Dc#ab52 lim
v→0

@ lim
q→0

Kab~q,v1 i01!#, ~8!

@rc#ab52 lim
q→0

@ lim
v→0

Kab~q,v1 i01!#. ~9!

For completeness, let us also introduce theq-dependent su-
perfluid stiffness9

@rc~q!#ab52 lim
v→0

Kab~q,v1 i01!, ~10!

which probes the response to time-independent transv
electromagnetic fields~see below!. Equations~3! and ~8!–
~10! relate physical quantities characterizing the charge
namics to the appropriate limits of the linear-response fu
tion Kab(q,v). For convenience, we have chosen a gau
where the scalar potential is set equal to zero, so that
electric field is represented by a vector potential,E(t)5
2c21]A(t)/]t. This gauge, which is used very often in th
ag-
n
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-
-
e
he

literature, has the advantage that the current response ca
expressed entirely in terms of the current-current correla
function. Of course, the physical current response is ga
invariant, see Ref. 10.

Quite generally, at long wavelengths (uqua!1) the cur-
rent response tensorKab(q,v) can be decomposed into
longitudinal part (K i) and a transverse part (K'), i.e.,

Kab~q,v!5q̂aq̂bK i~q,v!1~dab2q̂aq̂b!K'~q,v!,
~11!

where q̂a5âa•q̂, with âa5aa /a and q̂5q/q. The corre-
sponding decomposition for the tensor@rc(q)#ab contains
only a transverse component,

@rc~q!#ab5~dab2q̂aq̂b!rc~q!. ~12!

The longitudinal part vanishes. Physically, this is due to
fact that a static longitudinal vector potential cannot indu
any current.11 If we setq50 in Eq. ~11! we haveK'(0,v)
5K i(0,v), because for a spatially uniform field the longitu
dinal and transverse response are identical. Thus, the con
tance tensorGab(v) in Eq. ~3! and the charge stiffness ten
sor @Dc#ab in Eq. ~8! are proportional to the unit matrix~for
a system with cubic symmetry!. The usual charge stiffnes
Dc and superfluid stiffnessrc can be identified with eigen
values of the corresponding tensors@Eqs. ~8! and ~9!# i.e.,

@Dc#ab5dabDc , and @rc#ab5(dab2q̂aq̂b)rc . Note that
with our normalization both quantities have units of energ
rc is proportional to the density of the superconducting el
trons. The finite value ofrc in a superconductor is closel
related to the screening of the magnetic field, i.e., the Me
ner effect. Note that in a normal metalrc50, which is a
consequence of the fact that in the normal metallic st
static magnetic fields are not screened. Finally, let us p
out that the physical meaning of the different order of lim
in Eqs. ~8! and ~9! is easy to understand from the Maxwe
equationcq3E(q,v)5vB(q,v): If we first take the limit
v→0, the electric fieldE vanishes while the magnetic fiel
B can remain finite—in this way we probe the Meissner
fect. On the other hand, if we first letq→0, we are left with
an electric field.

III. SPIN RESPONSE: DYNAMIC AND STATIC
SPIN STIFFNESS

The generalization of the above definitions for the sp
degrees of freedom is straightforward. Denoting bys i , i
5x,y,z, the Pauli matrices, ind dimensions we may define
33d spin-current operators,

Ĵa
i ~q!5

t

2i(r
e2 iq•rFcr

†s i

2
~cr1aa

2cr2aa
!2H.c.G ,

i 5x,y,z, a51, . . . ,d. ~13!

In complete analogy with Eq.~4! we define the retarded spin
current response function

Kab
i j ~q,v1 i01!52dabd i j D

dia1Pab
i j ~q,v1 i01!,

~14!
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TABLE I. Analogous quantities characterizing charge and spin dynamics.

Charge Spin Physical meaning

Charge response functionKab(q,v) Spin response functionKab
i j (q,v) Linear current response to an external vector potential

ConductanceGab(v) Spin conductance@Gs(v)#ab
i j Response to a time-dependent, spatially constant ve

potential
q-dependent superfluid
stiffnessa @rc(q)#ab

q-dependent spin stiffness@rs(q)#ab
i j Response to a time-independent, spatially varying vec

potential
Superfluid stiffnessrc Spin stiffnessrs Probes long-range correlations~superconducting or

magnetic!
Charge stiffnessb Dc Dynamic spin stiffnessDs Finite for ideal~charge or spin! conductor

aIn the book by Tinkham~Ref. 9! the transverse eigenvalue of this tensor is denoted byK(q).
bAlso known as Drude weight.
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where the diamagnetic contributionDdia is given in Eq.~5!,
and the paramagnetic termPab

i j (q,z) is simply obtained from

Eq. ~6! by replacingĴa→ Ĵa
i and Ĵb→ Ĵb

j . As discussed by
Chandra, Coleman, and Larkin,12 the spin-current respons
function Kab

i j (q,v) gives the spin response to a fictitiou
vector potentialdAb

i (q,v), which describes a space- an
time-dependent modulation in the local-spin density. T
proper definition of the dynamic and static spin-stiffness t
sor is now evident

@Ds#ab
i j 52 lim

v→0
@ lim

q→0
Kab

i j ~q,v1 i01!#, ~15!

@rs#ab
i j 52 lim

q→0
@ lim

v→0
Kab

i j ~q,v1 i01!#. ~16!

Furthermore, in analogy with theq-dependent superfluid
stiffness introduced in Eq.~10!, let us define theq-dependent
spin-stiffness tensor14

@rs~q!#ab
i j 52 lim

v→0
Kab

i j ~q,v1 i01!. ~17!

Finally, in analogy with Eq.~3! we introduce the dimension
less spin conductance

@Gs~v!#ab
i j 5 lim

q→0

Kab
i j ~q,v1 i01!

i ~\v1 i01!
. ~18!

Because the operatorsĴa
i (0) define the ferromagnetic spi

currents, the limitq→0 in Eqs.~15!, ~16!, and~18! implies
that we are looking atferromagneticcorrelations. In the case
of antiferromagnetismwe simply should consider the limi
q→P instead, whereP5@p/a, . . . ,p/a# is the antiferro-
magnetic ordering wave vector. A summary of the analog
quantities characterizing the charge and the spin dynami
given in Table I. We would like to emphasize that the sp
analog of the Drude weightDc is given by the dynamic spin
stiffnessDs , andnot by the static spin stiffnessrs . It seems
that the dynamic spin stiffness has not been discussed in
literature on the Hubbard model. Following the terminolo
used for the charge dynamics, a system withDs.0 can be
called anideal spin conductor. For Ds50 andGs(0)Þ0 the
system is anormal spin conductor, and thespin insulatorcan
be characterized byDs5Gs(0)50.
e
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IV. SPIN DIFFUSION

A. Spin-diffusion coefficient and Thouless number

To see the connection between the spin conductance
spin diffusion, consider the dynamic structure factor for t
spin degrees of freedom,

Si j ~q,v!5
2p\

N (
n,m

pnd~Em2En2\v!^nuŜq
i um&

3^muŜ2q
j un&. ~19!

Here the Fourier components of the spin operators
Ŝq

i 5( re
2 iq•rcr

†(s i /2)cr . General hydrodynamic argu
ments13 show that the diffusive spin dynamics manifests
self in the following long-wavelength and low-energy for
of the dynamic structure factor

Si j ~q,v!52d i j x
\v

12e2\v/T

Dq2

v21~Dq2!2
, ~20!

where we have assumed cubic symmetry and spin-rotati
invariance. HereD is the spin-diffusion coefficient, and th
static susceptibilityx is

x5
1

T
lim
q→0

E
2`

` dv

2p
Sii ~q,v!5

1

T(
r

^Ŝ0
i Ŝr

i &. ~21!

On the other hand, the real part of the dimensionless s
conductance~18! is given by

Re@Gs~v!#ab
i j 52pd~\v!@Ds#ab

i j 1@Gs8~v!#ab
i j , ~22!

where the weight of thed function can be identified with the
dynamic spin stiffness~15!, and the paramagnetic contribu
tion is

@Gs8~v!#ab
i j 5 lim

q→0

ImKab
i j ~q,v1 i01!

\v

5p
12e2\v/T

\v
lim
q→0

1

N (
n,m

pnd~Em2En2\v!

3^nuĴa
i ~q!um&^muĴb

j ~2q!un&. ~23!
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The matrix elements of the current operatorĴa

5@ Ĵa
x ,Ĵa

y ,Ĵa
z # can be related to the matrix elements of t

spin operatorsŜq via the Heisenberg equation of motio
Using the fact that the Hubbard interaction is sp
rotationally invariant, it is easy to show that to leading ord
in q•aa

i\
]Ŝq

]t
5@Ŝq ,T̂#5 (

a51

d

~q•aa!Ĵa~q!. ~24!

Hence,

~Em2En!^nuŜqum&5 (
a51

d

~q•aa!^nuĴa~q!um&. ~25!

Substituting this expression into Eq.~19!, it is easy to show
that

@Gs8~v!#aa
i i 5

12e2\v/T

\v

\

2
lim
q→0

v2

~qa!2
Sii ~q,v!. ~26!

Assuming now the diffusive form~20! of the dynamic struc-
ture factor, we obtain for the spin-diffusion coefficient

\D
a2

5
1

x
lim
v→0

@Gs8~v!#aa
i i . ~27!

Moreover, it is not difficult to show7 that in the presence o
spin diffusion the dynamic spin stiffnessDs vanishes due to
a perfect cancellation between the dia- and paramagn
contributions in Eq.~15!. Thus, the existence of spin diffu
sion means that the system is a normal spin conductor.

Equation~27! can be rewritten in a form which empha
sizes a deep connection between spin diffusion and ch
diffusion in disordered electronic systems.15,16,7Defining the
rescaled dimensionless spin conductance8

gs5S L

aD d22

lim
v→0

@Gs8~v!#aa
i i , ~28!

and the energies

ETh5
\D
L2

, Ds5
1

Nx
, ~29!

~whereL5aN1/d is the linear size of the system! we obtain
from Eq. ~27!

gs5
ETh

Ds
. ~30!

This expression should be compared with the well-kno
Thouless formulag5ETh /D for the dimensionless averag
conductance of a disordered electronic system. Here the
called Thouless energyETh is defined as in Eq.~29! ~with D
now given by the average charge diffusion coefficient of
disordered system!, andD is the average level spacing at th
Fermi energy. Thus, Eqs.~27! and ~30! are nothing but the
Thouless formula for the spin diffusion problem. The dime
sionless numbergs defined in Eq.~30! is the corresponding
-
r

tic

ge

n

o-

e

-

Thouless number. In analogy with disordered electrons
system withgs@1 can be called aspin metal.

B. Spin diffusion in the Hubbard model

The above analogies are not only interesting from a f
mal point of view, but also useful in practice. We now sho
that Eq.~27! offers a new and physically transparent extrap
lation scheme for directly calculating the spin-diffusion c
efficient of the Hubbard model. See Ref. 7 for a similar c
culation for the Heisenberg model, and Ref. 17 for
alternative method to calculate the spin-diffusion coefficie
in the two-dimensionalt-J model.

After some straightforward manipulations, Eq.~27! can
be cast into the form

\D
a2

5
t2

TxE0

`

dsC~s!, ~31!

where the correlation functionC(s) is given by

C~s!5
1

2N
^@ Î ~s!1 Î ~2s!# Î &. ~32!

Here Î (s)5eiĤsÎ e2 iĤ s, and the~dimensionless! current op-
erator Î is

Î 5
1

2i(r
Fcr

†sz

2
~cr1aa

2cr2aa
!2H.c.G5(

k
sin~kxa!

3@ck↑
† ck↑2ck↓

† ck↓#, ~33!

whereck5N21/2( re
2 ik•rcr . The bracket in Eq.~32! denotes

thermal average with respect to the interacting Hamilton
Ĥ5T̂1V̂, see Eqs.~1! and ~2!. Because the kinetic energ
operatorT̂ commutes with the current operatorÎ , for U50
the integral in Eq.~31! does not exist. Then our model is a
ideal spin conductor. This is not surprising, because the
fusive dynamics in a system without disorder must be a c
relation effect. We would like to emphasize that Eq.~31! has
been derived under theassumptionthat the spin dynamics is
diffusive. The divergence of the integral forU50 simply
indicates that in this case our assumption is not correct.

Because forU50 the integral in Eq.~31! is infinite, we
expect that for smallU the spin-diffusion coefficient di-
verges with some power oft/U. Of course, for finiteU the
correlatorC(s) cannot be calculated exactly, so that we ha
to make some physically motivated approximation. A sta
dard approximation scheme, which has proven to be q
reliable for the calculation of the spin-diffusion coefficient
the Heisenberg model at high temperatures,7,18 is the Gauss-
ian extrapolation of the short-time expansion ofC(s) to long
times. ExpandingC(s) in powers ofs,

C~s!5 (
n50

`
~21!ns2n

~2n!!
C2n , ~34!

the coefficientsC2n can be written in terms of multiple com
mutators. BecauseC(2s)5C(s), only even powers ofs ap-
pear. The first two coefficients are

C05^ Î 2&, ~35!
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C25^ Î @@ Î ,Ĥ#,Ĥ#&5^ Î @@ Î ,V̂#,V̂#&, ~36!

where we have used@ Î ,T̂#50 and^ Î &50. Assumingthat the
higher coefficients are consistent with a Gaussian, the lo
time extrapolation is

C~s!'C0expF2
C2s2

2C0
G . ~37!

Then we obtain from Eq.~31!

\D
a2

5
t2

Tx

C0

2 F2pC0

C2
G1/2

. ~38!

Note that so far we have not assumed that the interactio
small, so that Eqs.~35!–~38! are valid for arbitraryU. For
simplicity, let us now evaluate the coefficientsC0 andC2 in
the limit U→0. Then the averages in Eqs.~35! and~36! are
easily calculated with the help of the Wick theorem. Spec
izing to the case of half filling, we obtain after a lengthy b
straightforward calculation

C052Ad~T!, ~39!

C254U2Ad~T!Bd~T!, ~40!

where

Ad~T!5
1

N(
k

sin2~kxa! f ~ek /T!@12 f ~ek /T!#, ~41!

Bd~T!5
1

N(
k

f ~ek /T!@12 f ~ek /T!#. ~42!

Here f (x)5@ex11#21 is the Fermi function, and the nonin
teracting energy dispersion ind dimensions isek52dtgk ,
with gk5d21(a51

d cos(k•aa). Away from half filling we
should replaceek→ek2m, wherem is the chemical poten
tial. In the noninteracting limitTx5 1

2 Bd(T), so that we fi-
nally obtain from Eq.~38! in the limit U!t

\D
a2

52Ap
Ad~T!

Bd
3/2~T!

t2

U
. ~43!

Note thatD diverges forU→0, in agreement with the fac
that without correlations there is no spin-diffusion. Obv
ously, the spin diffusion coefficient cannot be calculated
naive perturbation theory in powers ofU.

In the limit T@t we may useAd(`)5 1
4 andBd(`)5 1

8, so
that Eq.~43! reduces to

\D
a2

52Ap
t2

U
, T5`, ~44!

independent of the dimensionality of the system. Recall t
this result has been derived in the weak-coupling limit. Mo
generally, atT5` it is easy to see from Eqs.~31!, ~32!, and
~34! that \D/a2 is proportional tot2/U for all values of U.
This follows from the fact that the expansion~34! of C(s) is
actually an expansion in powers of (Us)2, because the cur
rent operatorÎ commutes with the kinetic energy operatorT̂.
Assuming that the integral is convergent, we may scale
g-

is

l-
t

y

at
e

ut

the U dependence by redefining the integration variables8
5Us. This leads trivially to the energy scalet2/U. We
would like to point out that atT5` the spin-diffusion coef-
ficients of the spinS51/2 quantum Heisenberg antiferro
magnet and the half filled Hubbard model at strong coupl
arenot identical, although both are proportional tot2/U ~see
Refs. 19 and 7!. The reason is that forT5` the value ofD
in the Hubbard model is determined by states with energ
larger thanU, while the mapping to the Heisenberg model
only valid for energy scales smaller thanU. Only in the
interval t2/U!T!U the half filled Hubbard model at stron
coupling can be expected to have the same spin-diffus
coefficient as the corresponding Heisenberg antiferromag
with exchange couplingJ54t2/U.

Let us now discuss the low-temperature limitT!t. Using
the fact that forT→0

f ~ek /T!@12 f ~ek /T!#→
T

2dt
d~gk!, ~45!

it is easy to see that Eq.~43! reduces to

\D
a2

52Ap
ad

bd
3/2F2dt

T G1/2 t2

U
, T!t, ~46!

where the numerical constantsad andbd are

ad5
1

N(
k

sin2~kxa!d~gk!, ~47!

bd5
1

N(
k

d~gk!, dÞ2. ~48!

In d52 the integral in Eq.~48! is logarithmically divergent
~for N→`), so that at low temperaturesb2 is given by

b2'
4

p2
ln~4t/T!. ~49!

Because we have assumed that the system is in the para
netic state, Eq.~46! should be valid for temperatures abov
the magnetic ordering temperatureTN . Keeping in mind that
in d<2 there is no long-range order at any finite tempe
ture, and that ind.2 the ordering temperatureTN is expo-
nentially small at weak coupling, Eq.~46! describes the low-
temperature behavior of the spin-diffusion coefficient in
wide range of temperatures that are small compared with
bandwidth 4dt. Although the precise numerical value of th
prefactor in Eqs.~43! and ~46! depends on our Gaussia
extrapolation scheme, the energy scalet2/U in Eq. ~43! and
the low-temperature behavior given in Eq.~46! should be
independent of the details of the extrapolation method.

V. SUMMARY AND CONCLUSIONS

In this work we have used analogies between charge
spin response functions of itinerant magnets to clarify
concept of the static and dynamic spin stiffness. Start
from the general Kubo formula for the relevant linea
response functions, we have shown that thedynamicspin
stiffnessDs is the precise spin analog of the charge stiffne
Dc . The usual~static! spin stiffnessrs is the spin analog of



e
t

h

e

h

e

z

o

new
lat-

in

ar-

ns-
ra-
ive
ted
f
ra-

g

as
in-

rk

7834 57PETER KOPIETZ
the superfluid stiffnessrc , and is only finite in the presenc
of long-range magnetic order. Considering the fact that
charge stiffness has recently received a lot of attention,3–5 it
is rather surprising that the corresponding quantityDs has
not been studied. Partially, this might be due to the fact t
Ds has often been confused with the static spin stiffnessrs .
Table I summarizes analogous quantities. We would like
emphasize again that a finite value ofDs does not imply the
existence of long-range magnetic order. A simple exampl
the Hubbard model forU50, whereDs.0 but rs50. A
value Ds.0 simply means that the system is an ideal sp
conductor, so that the spin transport is not diffusive. T
analogy with charge transport is obvious: an ideal conduc
has a finite charge stiffnessDc.0, implying an infinite con-
ductivity. But a perfect conductor is not necessarily a sup
conductor. Only in the latter caserc.0.

The low-frequency behavior of the dynamic spin condu
tanceGs(v) can be used to classify the spin dynamics in
three categories: ideal spin conductors, normal spin cond
tors, and spin insulators. In Sec. IV we have further analy
a particular class of normal spin conductors, namely syste
with diffusive spin dynamics. In this case the dynamic sp
stiffness vanishes, but the spin conductanceGs(v) has a
finite limit for vanishing frequency, which is proportional t
the spin-diffusion coefficient. The concept of the spin co
he
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ductance and the associated Thouless number offers a
and physically transparent extrapolation scheme for calcu
ing the spin-diffusion coefficient.

We hope that our work will stimulate further research
this field. Numerical calculations ofGs(v) and Ds in
strongly correlated itinerant magnets are called for. In p
ticular, by varying some external parameter~such as tem-
perature, doping, or interaction strength!, it might be possible
to observe transitions between the three types of spin tra
port discussed above. Numerical calculations of the tempe
ture dependence of the spin conductance might also g
evidence for spin-charge separation in strongly correla
systems: Very recently Si20 pointed out that the existence o
spin-charge separation manifests itself in different tempe
ture dependences of the spin and charge conductances.
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