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Crossover from pure Ising to random-exchange dominated behavior
of the two-dimensional antiferromagnet Rb2Co12xMgxF4
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Angewandte Physik, Gerhard-Mercator-Universita¨t Duisburg, D-47048 Duisburg, Germany

D. P. Belanger
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The temperature dependence of the uniform susceptibilityx of diluted two-dimensional Ising antiferromag-
nets Rb2Co12xMgxF4, 0<x<0.4, is investigated in the limit of vanishing external field. Data forx50.15 are
compared with those obtained forx50 and 0.4 by Breedet al. ~1969! and Ikeda~1983!, respectively. Whereas
in the pure case,x50, Fisher’s~1962! ‘‘energetic contribution’’ dominates, Aharonyet al.’s ~1979,1986!
‘‘random contribution’’ becomes increasingly important with increasingx. Taking into account both terms not
only with respect to the global ordering temperatureTN(x), but also in relation to the ‘‘local’’ phase transition
temperaturesTN8 throughout the Griffiths regime,TN(x)<TN8 <TN(0), asatisfactory quantitative description of
x vs T is deduced for anyx above the percolation threshold.@S0163-1829~98!05914-1#
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I. INTRODUCTION

Although the temperature dependence of the unifo
zero-field susceptibility of the pure two-dimensional~2D!
Ising antiferromagnet has extensively been studied by Fis
et al.,1,2 there is, to the best of our knowledge, no convinci
attempt to describe its overall temperature dependence i
luted 2D Ising antiferromagnets. It is the aim of this article
give a quantitative description of the overall temperature
pendence of the uniform magnetic zero-field susceptibility
Rb2Co12xMgxF4 and its dilution dependent evolution.
turns out, that two aspects are of major importance. On
one hand, it is the dilution induced crossover from pure Is
to random-exchange behavior. Here the relevance
Griffiths-type weak singularities3 has to be considered. A
was shown qualitatively in the case of the diluted 3D Isi
antiferromagnet Fe12xZnxF2, x50.53,4 anomalous behavio
of the uniform susceptibility is expected in the temperat
rangeTN(x)<T<TN(0).

In the case of the 2D system Rb2Co12xMgxF4, the anoma-
lies due to singular behavior at ‘‘local’’ phase transitio
turn out to be directly measurable throughout the above G
fiths range. On the other hand and in addition, with incre
ing dilution x disorder-induced contributions to the unifor
susceptibility become increasingly important. According
Aharony and co-workers5,6 these terms are due to the loc
imbalance of the sublattice occupations, which arise be
the ordering temperatureTN(x). In this paper evidence is
provided that this conjecture also holds for the entire se
of ‘‘local’’ phase transitions atTN8 within the Griffiths phase,
TN(x)<TN8 <TN(0). It turns out that these contributions a
at the origin of the surprisingly large extra peak that is o
served in the vicinity ofTN(x) at sufficiently large dilution,
e.g.,x50.4.7

II. EXPERIMENTAL RESULTS

Single crystals of pure Rb2CoF4 are known as prototypi-
cal 2D Ising antiferromagnets.8 Their 2D magnetic characte
570163-1829/98/57~13!/7791~7!/$15.00
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originates in the double perovskite structure of the K2NiF4
type. In contrast with the strong antiferromagnetic~af! in-
plane couplingJ of the Co21 ions, there is only weak a
couplingJ8 between adjacent layers (J8/J'1026). The cor-
responding 2D-af long-range order sets in atT<TN
5102 K. Simultaneously, owing to dimensional crossov
3D long-range order is established.

Figure 1 shows the temperature dependence of the m
netic uniform susceptibility of pure Rb2CoF4 ~full circles!.
The data were measured by Breed and co-workers usin
pendulum magnetometer.8 The static susceptibility x
5]M /]H was approximately determined according tox
'M /H whereM is the magnetization andH is a small ap-
plied magnetic field of the strengthH50.77 MA/m ~9640
Oe!. The well-known temperature dependence of the susc
tibility of the pure Rb2CoF4 gives rise to the logarithmic
singularity ofd(Tx)/dT vs T at TN'102 K ~Ref. 2! ~Fig. 1,

FIG. 1. Temperature dependence of the zero field susceptib
x ~circles! of Rb2CoF4 ~data from Ref. 8! and the corresponding
derivative ofTx with respect to temperature~squares!. The solid
and dashed lines represent the best fit of Eq.~11! to the data and its
temperature derivative, respectively~see text!. TN(0) is indicated
by a vertical dashed line.
7791 © 1998 The American Physical Society
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squares!. In contrast with that, thex vs T data of
Rb2Co0.85Mg0.15F4 ~Fig. 2, open circles! exhibit a drastically
steepened increase ofx at TuTN(x50.15). It is followed by
a quasilinear increase betweenTN(x)575.2 K andTN(0)
5102 K. Both features are significant deviations from t
temperature behavior of the pure system. In contrast w
Breed and co-workers,8 we measured the temperature depe
dence of the in-phase componentx8 of the complex ac sus
ceptibility via superconducting quantum interference dev
~SQUID! susceptometry at constant frequencyf 510 Hz.
Since f 510 Hz is far below the typical spin-flip frequenc
of '1010 Hz and magnetic losses are negligible, the in-ph
componentx8 of the complex susceptibility is a good ap
proximation of the static susceptibilityx. Moreover, Ikeda
obtained very similar results on Rb2Co0.8Mg0.2F4 with static
magnetometry.7 Hence, dynamical rounding of the data
ruled out.

With increasing dilution the evolution of thex vs T data
proceeds in such a way that the steepened increase, w
one observes forx50.15, merges into a pronounced peak
TN(x) for x50.4 ~Fig. 3, open squares!. For T!TN(x), the
susceptibility increases again with decreasing tempera

FIG. 2. Temperature dependence of the in-phase compone
the complex zero-field susceptibility of Rb2Co0.85Mg0.15F4 at con-
stant frequencyf 510 Hz. The full line represents the best fit of E
~11! to the data~see text!. The dashed vertical lines mark th
boundaries of the Griffiths phaseTN(x),T,TN(0). The inset
shows the decomposition of the fitting result into^xenergy& and
^x random& vs T ~broken and solid line, respectively!.

FIG. 3. Temperature dependence of the zero-field susceptib
x ~squares! of Rb2Co0.6Mg0.4F4 ~data from Ref. 7!. The full line
represents the best fit of Eq.~11! to the data~see text!. TN(x) is
indicated by a vertical dashed line.
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according to the paramagnetic response of isolated magn
moments. Thex vs T data in Fig. 3 were measured b
Ikeda.7 He used SQUID magnetometry and the approxim
tion x'M /H with H50.057 MA/m ~720 Oe!.

III. THEORY AND COMPARISON WITH EXPERIMENTAL
RESULTS

According to Fishman and Aharony5,6 the contribution of
the singular part of the free energy to the static unifo
susceptibility of a diluted Ising antiferromagnet is given b

x~T,TN!5
1

T
~A11A2utu12a2A3utu2b1g2f!, ~1!

wheret5(T2TN)/TN is the reduced temperature,A1,2,3 are
constants withA2(t.0)/A2(t,0)'1,9 A3(t.0)[0,6 and
a, b, g are the critical exponents of the specific heat, t
staggered magnetization, and staggered susceptibility,
spectively. f.g is the crossover exponent from random
exchange to random-field critical behavior. It should be n
ticed that criticality is destroyed by arbitrarily weak extern
fields in D52 dimensions as a consequence of the resul
random fields acting on the af order parameter. Neverthel
the crossover exponentf is well defined.6,9 As will be shown
below, our analysis revealsf'1.85, i.e., f/g'1.06 if
g51.75 is accepted for the 2D random-exchange Ising mo
~REIM!.6 It is the aim of the following analysis to generaliz
Eq. ~1! in order to describe the global temperature dep
dence ofx in the concentration range 0<x<0.4.

We start with generalizing the firstt-dependent term of
Eq. ~1!. It is called the energetic contribution ofx ~Ref. 6!
and is well known from the pure 2D Ising antiferromagn
In that case, the specific heatC is related to the susceptibility
according to

C' f
d

dT
~Tx!, ~2!

where f is a slowly varying function of temperature.2 Inte-
gration of Eq.~2! with respect to the temperature betwe
the boundariesT and infinity yields forf 'const

xenergy5
b

T S 11
U~T!

F D , ~3!

whereF5 f b andb5 limT→`(Tx) are constants andU(T) is
the magnetic internal energy. For pure Rb2CoF4, U(T) is
exactly known from Onsager’s solution of the 2D Isin
model.10 Although a50 represents the uncertain case w
respect to the Harris criterion,11 it turns out that, in the case
of diamagnetic dilution,a does not experimentally deviat
from zero. The predicted log-log-behavior of the speci
heat12 may play a role extremely close to the critical tem
perature. However, from an experimental point of view th
is indistinguishable from pure behavior in the case of we
dilution.13,14 We shall henceforth assume that the we
known set of critical exponents,a50, b50.125, g51.75,
also holds for the 2D REIM. In particular, one expects th
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57 7793CROSSOVER FROM PURE ISING TO RANDOM- . . .
the temperature dependence of the energetic contributio
the susceptibility of the diluted system follows at least qua
tatively the behavior of the pure 2D Ising system. Onsage
exact expression of the magnetic internal energy reads

U~T!52J coth
2J

kBT F11
2

p S 2 tanh2
2J

kBT
21DK1~k!G ,

~4!

whereJ is the exchange energy,kB is Boltzmann’s constant
K1(k) is the elliptic integral of the first kind andk
52 sinh (2J/kBT)/cosh2 (2J/kBT). In order to obtain a
closed analytic expression, the elliptic integral may be
proximated by

K1~k!>
p

2
16.43766S 1

~12k2!2p/10021D , ~5!

with a relative accuracy of better then 0.2%. Equation~5! is
an empirical function that interpolates between the numer
values ofK1 according to a least-squares fit. In particular, t
limiting casesK1(k50)5p/2 and K1(k→1)→` are ex-
actly fulfilled.

In the remainder of Eq.~1!,

x random~T,TN!5
1

T
~A12A3utu2b1g2f!, ~6!

the t-dependent term appears only in diluted systems
originates from the fact that the configurational average
the products of the thermal spin averages do not necess
cancel on summing up all possible pairs of these avera
products.5 Since the thermal spin averages are zero ab
TN , this random-exchange term contributes tox only for T
,TN . ForT!TN , utu2b1g2f is a slowly varying function of
temperature withutu2b1g2f→1 for T→0. It is, hence, rea-
sonable to assume the approximate validity of this term o
side the critical region. This was approximately verified f
the linear susceptibility of the layered 3D REIM syste
Fe12xMgxCl2, x50.3, where a steep descent ofx below
TN(x) due to the utu2b1g2f term with 2b1g2f50.62
charaterizes the low-T region.15

Similar behavior is found for Rb2Co12xMgxF4, x50.15
~Fig. 2! and 0.4~Fig. 3!, and will be analyzed below. Very
clearly, however, the temperature dependence ofx strongly
deviates from the expected energylike behavior also aT
.TN(x). For x50.15 we find a weak, but finite convex cu
vature ~Fig. 2!, which becomes much stronger forx50.4
~Fig. 3!. Similarly, as observed in the case of Fe0.7Mg0.3Cl2,
a broadened peak emerges just aboveTN(x).15 At this point
we have to recall that the temperature ran
TN(x)<T<TN(0) represents the Griffiths regime,3 which is
characterized by a continuous series of weak singularit
They are due to ‘‘local’’ phase transitions that contribute
the susceptibility according to a distribution functionP(TN8 ),
as was discussed recently for the case of the 3d REIM
Fe0.47Zn0.53F2 in zero4 and nonzero external field.16 In the
following we shall attempt to describe these extra contri
tions to x by taking into account that all of them obey
temperature dependence following Eq.~1!, where t5T/TN8
21 with TN(x)<TN8 <TN(0) and the term (A2 /T)utu12a is
replaced by Eq.~3!. The distribution of ‘‘local’’ critical tem-
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peratures originates from the corresponding statistical dis
bution of the diamagnetic dilution, which accompanies t
process of ideal crystal growth. Hence, we introduce a d
tribution functionP(TN8 )dTN8 , which describes the probabil
ity to find a local critical temperature within the interva
@TN8 ,TN8 1dTN8 #. It is reasonable to assume that the fluctu
tions of the dilution are normally distributed around the a
erage valuex. In the limit x→0, the critical temperature of a
2D Ising system with nearest-neighbor interaction is a lin
function of the dilution which is given byTN(x)5TN(0)(1
21.33x).11 Hence, the local critical temperaturesTN8 are also
normally distributed around the average valueTN(x), which
characterizes the critical temperature of the global ph
transition. Below that temperature the whole sample is
volved in the process of long-range order. The distribut
function is explicitly given by

P~TN8 !5
1

A2ps
e2~TN~x!2TN8 !2/2s2

, ~7!

wheres determines its width.
Since the SQUID measures the integral magnetic

sponse of the sample, the measured susceptibility is give
the weighted average of all local contributionsx(TN8 ). Keep-
ing in mind the onset of long-range order atT,TN , the
average is given by

^x~T!&5E
TN~x!

TN~0!

dTN8 P~TN8 !x~T,TN8 !. ~8!

The local susceptibility contributions are given by the sup
position ofxenergy, Eq. ~3!, andx random, Eq. ~6!. The fact that
P(TN8 )x(T,TN8 ) is centered around some maximum val
suggests to approximate Eq.~8! by saddlepoint integration
methods.17 Within reasonable approximations~see Appendix
A! straightforward calculation yields the following expre
sion for the energetic contribution to Eq.~8!,

^xenergy~T!&5

aS 12
U~T!

F D
TN5TM~x!

TAS TM2TN~x!

s2 D 2

1
1

s2

3e2@TN~x!2TM #2/2s2

3~A12e2A2[TN~0!2TM ] 2[((TM2TN~x!)/s2)211/s2]

2A12e2A2~TN~x!2TM !2[ ~~TM2TN~x!!/s2!211/s2] !,

~9!

where a is a proportionality constant, whileU(T) and
TM(T) are given by Eqs.~4! and ~A3!, respectively. The
exchange energyJ, which enters the internal magnetic e
ergy U(T), is related toTM via uJu5c3 TM in order to take
into account the proportionality betweenJ and the critical
temperature. The proportionality constantc3 is, however, ex-
pected to deviate from the value of the pure system, beca
in the case of a diluted systemJ has the meaning of an
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effective exchange within a virtual crystal approximatio
Hence,c3 enters Eq.~4! as an unknown fitting parameter.

The above procedure of calculatinĝxenergy& applies
similarly to the calculation of ^x random&. Since
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. (2A3 /T)utu2b1g2f[0 for T.TN8 , its averaging with re-
spect toP(TN8 ) has to be done subsequently for the tempe
ture regionsT,TN(x), TN(x),T,TN(0), andT.TN(0).
Straightforward calculation~see Appendix B! yields
^x random&5
k

T H I 12c4I 2@ l 5TN~x!,u5TN~0!# if T,TN~x!

I 12c4I 2@ l 5T,u5TN~0!# if TN~x!<T<TN~0!

I 1 if T.TN~0!
J , ~10!
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with c45A3 /A1 and I 1 , I 2( l ,u) given by Eqs.~B2! and
~B8!, respectively.

In the final expression of the susceptibility

x5x01xp /T1^xenergy&1^xrandom&, ~11!

we have to take into account two correction terms that
not included in the above analysis.x0 takes into account the
background of the van Vleck type. It amounts to1

3 of the
total parallel susceptibility in the case of the pure syste8

~see Fig. 1!. xp /T takes into account the paramagnetic s
ceptibility of isolated magnetic moments. Their influence
creases with increasing dilution owing to the increasing c
centration ratio of isolated to exchange coupled magn
moments.

Figure 1~solid line! shows the best fit of Eq.~11! to thex
vs T data of pure Rb2CoF4. Clearly in this casêx random& and
xp /T vanish for obvious reasons. Further,^xenergy& degener-
ates to Eq.~3!. The final result of the fitting procedure yield
b5116.604 K, 1/F50.616, J/kB592.92 K, andx050.61.
Obviously, the data are well described by Eq.~11! within a
wide temperature range. For the pure 2D Ising antiferrom
net on a square lattice the exact relationTN
50.5673qJ/2kB holds,1 whereq54 is the number of mag
netic nearest neighbors. Using this relation we obtainTN
5105.4 K. Obviously, this relation also holds for our ‘‘en
ergetic’’ approximation, because the derivatived/dT (Tx)
vs T of the fitting result~Fig. 1, broken line! exhibits a vir-
tually logarithmic singularity atTN(0)5105.4 K, which de-
viates from the experimental valueTN(0)'102 K ~Fig. 1,
squares! by only '3%. Although this discrepancy may or
gin from the inadequate temperature resolution of the exp
mental data in the vicinity ofTN , a systematic shift of the
fitting result cannot be ruled out according to the weak,
finite Heisenberg-type character of the exchange interac
in Rb2CoF4.

18 However, the large value of the backgroun
x050.61 remains unreasonable. It may indicate that the
proximation x'M /H is not appropriate in the case ofH
50.77 MA/m used in the experiments.8 Probably, the ap-
plied magnetic field is not small enough in order to avo
nonlinearities ofM vs H.

Figure 2~solid line! shows the result of the best fit of Eq
~11! to thex vs T data of Rb2Co0.85Mg0.15F4. With regard to
the relatively high temperatures,T.50 K, the paramagnetic
contributionxp /T has been neglected. The fit involves t
proportionality constantsa5384.06 andk590.73 that enter
e
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ic

g-

ri-

t
n

p-

Eqs. ~9! and ~10!, respectively. Moreover, the fitting proce
dure yields the values of 1/F50.049 that enters Eq.~1!,
c25132.24 that enters Eq.~A3!, c351.19 that mediates be
tween the effective exchange, andTM , c450.483 that enters
Eq. ~10!, the van Vleck backgroundx050.31 ~Ref. 8! and
s50.38 the width of the distribution functionP(TN8 ). Fur-
thermore we find 2b1g2f50.14, which impliesf51.86.
Hence,f/g51.06 and 2b1g2f50.14,2b50.25 is in ac-
cordance with theory.6 The inset of Fig. 2 shows the ene
getic ~dashed line! and the random exchange contributio
~solid line!, respectively. As expected, the steep increase ox
vs T below TN(x) originates exclusively from the nonene
getic contribution̂ x random&. The quasilinear increase ofx vs
T within TN(x),T,TN(0) appears to be accidental in vie
of the opposite curvatures revealed by both contributio
Hence, this remarkable temperature dependence canno
taken as a typical signature of the Griffiths phase as m
have been assumed at the first glance. However, since
Griffiths temperatureTN(0) enters our theory, Eqs.~9! and
~10!, it is at the origin of a subtle kinklike temperature d
pendence ofdx/dT vs T at TN(0). In fact, closer inspection
of the temperature derivative of the experimental data se
to confirm this prediction, although the scatter of the d
prevents its ultimate evidence.

Figure 3~solid line! shows the best fit of Eq.~11! to thex
vs T data of Rb2Co0.6Mg0.4F4. In this case the energetic con
tribution to ^x& turns out to be negligible with respect to th
random-exchange contribution. The fitting procedure yie
k56.60, c450.68, xp57.46, TN(x)517.79 K, and x0
50.04. Very remarkably, we find 2b1g2f50.13, which
differs but slightly from the corresponding fitting paramet
for x50.15. Again, the condition 2b1g2f50.13,0.25 is
fulfilled. As expected, the resulting widths52.66 of the dis-
tribution function is larger than forx50.15. The observed
amount, however,s~0.4!'7.1s~0.15!, does not follow the
relation Dx}Ax, which one might expect from natural sta
tistics. Probably this is a consequence of the crossover f
equilibrium ~Gaussian! to percolation ~Poisson! statistics
when approaching the percolation threshold,xp50.41. At
closer inspection of Fig. 3 the fit exhibits a kinklike behavi
at TN(x). According to our theory, this reflects the residu
influence of the temperature dependence of the thermal
averages, which vanish atT.TN8 . Unfortunately the tem-
perature resolution of the experimental data is not suffici
in order to resolve this detailed structure.
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IV. CONCLUSION

Although diamagnetic dilution does virtually not affe
the critical behavior of 2D Ising systems, there are stro
qualitative deviations of the uniform magnetic susceptibil
x of Rb2Co12xMgxF4 from the ‘‘energetic’’x vs T behavior
of the pure compound,x50. First, owing to subtractive
random-exchange extra contributions,^x random&, we observe
a steep decrease ofx vs T just below TN(x). Second,
Griffiths-type weak singularities have to be taken into a
count at temperatures betweenTN(x) and TN(0). They are
composed of contributions due to bothxenergy and x random
that form a flat, nearly linear anomaly in the casex50.15.
For higher dilution,x50.4, the contributions due tox random
give rise to a pronounced peak atTN(x).

Originally, Ikeda7 proposed a coupling mechanism b
tween the uniform and the staggered susceptibility in orde
explain this peak structure. However, within this paper
have shown, that the dilution-induced evolution of the pe
structure inx vs T originates from the crossover from pu
Ising to random-exchange dominated behavior. Since
crossover affects also the temperature dependence ofx out-
side the critical region, we have generalized Aharony’s
pression ofx for REIM antiferromagnets6 in a phenomeno-
logical way. This generalized expression has then to
averaged with respect to the distribution of local critical te
peratures, which are distributed throughout the tempera
interval TN(x),TN8 ,TN(0) of the Griffiths phase. Within
the framework of an averaged and generalized susceptib
function we are thus able to model the temperature dep
dence of the susceptibility of Rb2Co12xMgxF4 for the con-
centrationsx50, 0.15, and 0.4, i.e., throughout the conce
tration range in which long-range order is exhibited. Fox
50.15 the susceptibility mediates between two extreme s
narios, the pure Ising behavior (x50), which is character-
ized by the energetic susceptibility^xenergy&, and the REIM
behavior, which is dominated bŷx random& in the limit of
strong dilution,x50.4.

It will be interesting to consider the 3D REIM case in a
analogous way. Data obtained previously on Fe0.7Mg0.3Cl2
~Ref. 15! seem to hint at strong importance of^x random&,
which dominates not only atT,TN , but also in the peak
region just aboveTN . Analysis will, however, be more te
dious than in the above 2D case, since the pure-to-ran
crossover inD53 dimensions is connected with a change
the critical behavior. This rules out, e.g., a simple appro
mation of the energylike contribution of the susceptibility
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APPENDIX A

We start with the saddlepoint integration of^xenergy&. Ac-
cording to Eq.~7! the temperature-dependent positionTM of
the maximum value ofP(TN8 )x(TN8 ) can be determined from
the following equation:
g

-

to
e
k

is

-

e
-
re

ity
n-

-

e-

m
f
i-

n-
-

S ]x

]TN8
D

TM

5x~TM !
TM2TN~x!

s2 . ~A1!

From that we calculateTM5TM(T) while we restrict our-
selves for simplicity to the approximation

x~TN8 !5
c1

T F12c2S 12
TN8

T D lnU12
TN8

T
UG , ~A2!

which reproduces the temperature behavior of Eq.~2! in the
critical regionT'TN8 .1 Althoughc1 andc2 are known in the
case of the square Ising lattice,c2 becomes a free paramete
within the following analysis in order to compensate the d
viations of Eq.~A2! with respect to Eq.~3! outside the criti-
cal region. In the limit T'TM the approximation
(12TM /T)lnu12TM /Tu'0 holds. Insertion of Eq.~A2! into
Eq. ~A1! and using the above approximation yields

TM5TN~x!1
c2s2

T
. ~A3!

A series expansion ofx(TN8 ) andP(TN8 ) up to first and sec-
ond order in powers of (TN8 2TM), respectively, yields

x~TN8 !P~TN8 !'A1
B

2
~TN8 2TM !2 ~A4!

with A5x(TM)P(TM) and B52A@((TM2TN(x))/s2)2

11/s2#. The linear term of the expansion vanishes due
Eq. ~A1!. With Eq. ~A4! we calculate the weighted averag
of xenergywithin the saddle-point approximation. It reads

^xenergy&}AE
TN~x!

TN~0!

dTN8 e~2uBu/A!~TN8 2TM !2
. ~A5!

Since exp@2uBu(TN82TM)2/A# does not vanish atTN(x) and
TN(0), it is not appropriate to shift the boundaries of th
integration towards infinity. Hence, in order to calculate t
Gaussian integral with finite boundaries, we use the appr
mation

E
0

a

dt e2t2'
1

2 AE
0

r̄
drE

0

2p

dw r e2r 2
5

1

2
Ap~12e2 r̄ 2

!,

~A6!

where r̄ 5a21/4 is the geometrical average of the radius
the largest inner and the smallest outer circle that fills in a
contains a square of the area 4a2, respectively. Within this
approximation Eq.~A5! yields the explicit result of Eq.~9!.

APPENDIX B

In the caseT,TN , ^x random& is given by

^x random&}
A1

T H E
TN~x!

TN~0!

dTN8 e2@TN8 2TN~x!#2/2s2

2c4E
TN~x!

TN~0!

dTN8 UT2TN8

TN8
U2b1g2f

e2@TN8 2TN~x!#2/2s2J
~B1!
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with c45A3 /A1 . Using approximation~A6! the first integral
yields

I 1 :5E
TN~x!

TN~0!

dTN8 e2@TN8 2TN~x!#2/2s2

>Ap

2
sA~12e2@TN~0!2TN~x!#2/A2s2

!. ~B2!

The solution of the second integral via saddle-point integ
tion requires the calculation of the maximum position a
cording to d/dTN8 @ u(T2TN8 )/TN8 u2b1g2fP(TN8 )# uT

N8 5TM
50.

Taking into accountT,TN8 , one obtains

@TM2TN~x!#~TM2T!TM5~2b1g2f!Ts2. ~B3!

In order to obtain a quadratic equation inTM , Eq. ~B3! is
roughly simplified within the approximationTM'TN(x). It
yields

@TM2TN~x!#~TM2T!TN~x!5~2b1g2f!Ts2,
~B4!

which has the solution

TM
random5

1

2 S @TN~x!1T#

1A@TN~x!2T#214~2b1g2f!s2
T

TN~x!
D .

~B5!

Since TM
random is located within the interva

TN(x),TM
random,TN(0), thecorresponding negative solutio
-
-

of Eq. ~B5! has to be discarded.
The series expansion ofu(T2TN8 )/TN8 u2b1g2f exp$2@TN8

2TN(x)#2/2s2% up to the second order in powers of (TN8
2TM

random) yields for T,TN(x),

^x random&}
A1

T S I 12c4Arandom

3E
TN~x!

TN~0!

dTN8 e2~ uBrandomu/Arandom!~TN8 2TM
random

!2D
~B6!

with Arandom5A2ps(12T/TM
random)2b1g2fP(TM

random) and

Brandom52ArandomS ~2b1g2f!T
2TM

random2T

@TM
random~TM

random2T!#2

1
1

s2D ,

while I 1 is given by Eq.~B2!. In order to obtain an explicit
expression of the second integral that enters the proport
ality ~B6!, we calculate

I 2~ l ,u!:5ArandomE
l

u

dTN8 e2~ uBrandomu/Arandom!~TN8 2TM
random

!2

~B7!

using generalized lower and upper boundariesl and u. In-
sertion ofArandom and Brandom into Eq. ~B7! and application
of the approximation~A6! yields
I 2~ l ,u!5
ps

A2

~12T/TM
random!2b1g2fP~TM

random!

A~2b1g2f!T
2TM

random2T

@TM
random~TM

random2T!#2 1
1

s2

3$A12e2A2$@~2b1g2f!T#~2TM
random

2T!/@TM
random

~TM
random

2T!#211/s2%~u2TM
random

!2

2A12e2A2$@~2b1g2f!T#~2TM
random

2T!/@TM
random

~TM
random

2T!#211/s2%~ l 2TM
random

!2
%. ~B8!

In the caseTN(x),T,TN(0), ^x random& is given by

^x random&}
A1

T
$I 12c4I 2@ l 5T,u5TN~0!#%, ~B9!

according to (2A3 /T)utu2b1g2f[0 for T.TN8 . In the caseT.TN(0), thesecond term of Eq.~B9! vanishes.
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