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The temperature dependence of the uniform susceptikiliy diluted two-dimensional Ising antiferromag-
nets RbCo, ,Mg,F,, 0<x=<0.4, is investigated in the limit of vanishing external field. DataXer0.15 are
compared with those obtained for=0 and 0.4 by Breedt al. (1969 and Ikeda(1983, respectively. Whereas
in the pure casex=0, Fisher's(1962 ‘“energetic contribution” dominates, Aharongt al's (1979,1986
“random contribution” becomes increasingly important with increasing aking into account both terms not
only with respect to the global ordering temperattigg¢x), but also in relation to the “local” phase transition
temperatured )y, throughout the Griffiths regimd,y(x) <Ty<Ty(0), asatisfactory quantitative description of
x vs T is deduced for any above the percolation thresho[$0163-182@08)05914-1]

. INTRODUCTION originates in the double perovskite structure of theNik,
type. In contrast with the strong antiferromagneid) in-

Although the temperature dependence of the uniformplane couplingd of the C&* ions, there is only weak af
zero-field susceptibility of the pure two-dimension@D)  couplingd’ between adjacent layerd’(J~10"°). The cor-
Ising antiferromagnet has extensively been studied by FiSh%sponding 2D-af long-range order sets in ATy

etal,"’there is, to the best of our knowledge, no convincing— 102 k. Simultaneously, owing to dimensional crossover,
attempt to describe its overall temperature dependence in ng long-range order is established.

e e eomsbon e ety . FIOUE 1 hows he emperaur dependence o he mag;
pendence of the uniform magnetic zero-field susceptibility o etic uniform susceptibility of pure BBOF, (full cwcles)..
he data were measured by Breed and co-workers using a

Rb,Co, _,Mg,F, and its dilution dependent evolution. It . oo
turns out, that two aspects are of major importance. On th@enauium magnetometér. The static ~susceptibility x
=JM/JH was approximately determined according o

one hand, it is the dilution induced crossover from pure Ising ! HE )
to random-exchange behavior. Here the relevance of M/H whereM is the magnetization anH is a small ap-
Griffiths-type weak singularitishas to be considered. As Plied magnetic field of the strengtd =0.77 MA/m (9640
was shown qualitatively in the case of the diluted 3D IsingQ€)- The well-known temperature dependence of the suscep-
antiferromagnet Re ,Zn,F,, x=0.53;" anomalous behavior tibility of the pure RRCoF, gives rise to the logarithmic
of the uniform susceptibility is expected in the temperaturesingularity ofd(Tx)/dT vs T at Ty~102 K (Ref. 2 (Fig. 1,
rangeTy(X)<T<Ty(0).

In the case of the 2D system R, _,Mg,F,, the anoma- - - ; - - - - 8

lies due to singular behavior at “local” phase transitions tor ]
turn out to be directly measurable throughout the above Grif- °
fiths range. On the other hand and in addition, with increas- : 1°

ing dilution x disorder-induced contributions to the uniform
susceptibility become increasingly important. According to
Aharony and co-worker$ these terms are due to the local
imbalance of the sublattice occupations, which arise below
the ordering temperaturéy(x). In this paper evidence is
provided that this conjecture also holds for the entire series
of “local” phase transitions af | within the Griffiths phase,

x [a.u.]
d/dT (T %) [a.u.]

TN(X)<T<Ty\(0). It turns out that these contributions are 50 100 150 200 250

at the origin of the surprisingly large extra peak that is ob- TIK]

served in the vicinity ofTy(x) at sufficiently large dilution, _ o
e.g.,x=0.4.7 FIG. 1. Temperature dependence of the zero field susceptibility

x (circles of Rb,CoF, (data from Ref. 8 and the corresponding
Il. EXPERIMENTAL RESULTS derivative of Ty with respect to temperatur@quares The solid
and dashed lines represent the best fit of @d) to the data and its
Single crystals of pure BRoF, are known as prototypi- temperature derivative, respectivelsee text Ty(0) is indicated
cal 2D Ising antiferromagnefsTheir 2D magnetic character by a vertical dashed line.
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' ' ' ' ' ' ' according to the paramagnetic response of isolated magnetic
e 1 moments. They vs T data in Fig. 3 were measured by
FMG o M lkeda’ He used SQUID magnetometry and the approxima-
‘ tion y~M/H with H=0.057 MA/m (720 Os.

1.0}

08I

04 L

ool K | Ill. THEORY AND COMPARISON WITH EXPERIMENTAL
‘ ozr / RESULTS

04l ool la o o] | According to Fishman and Aharon§the contribution of

Ala.u]

T T the singular part of the free energy to the static uniform
40 B0 B0 100 120 140 160 180 200 susceptibility of a diluted Ising antiferromagnet is given by
TIK]

FIG. 2. Temperature depenc_ie_r?ce of the in-phase component of X(T,Ty)= % (Ag+ At o= Ay|t|2PH 7 %), (1)
the complex zero-field susceptibility of RBoy ggMgg 144 at con-
stant frequency =10 Hz. The full line represents the best fit of Eq.
(12) to the data(see text The dashed vertical lines mark the wheret=(T—Ty)/Ty is the reduced temperaturg; , ; are
boundaries of the Griffiths phas€y(x)<T<Ty(0). Theinset constants withA,(t>0)/A,(t<0)~1° A3(t>O)EO,6 and
shows the decomposition of the fitting result inf@energy and @, B, y are the critical exponents of the specific heat, the
(Xrandom VS T (broken and solid line, respectively staggered magnetization, and staggered susceptibility, re-
spectively. ¢>v is the crossover exponent from random-

squares In contrast with that, they vs T data of exchange to random-field critical behavior. It should be no-
Rb,Coy gdMg, 144 (Fig. 2, open circlegsexhibit a drastically  ticed that criticality is destroyed by arbitrarily weak external
steepened increase pht T=Ty(x=0.15). Itis followed by fields inD=2 dimensions as a consequence of the resulting
a quasilinear increase betwediR(x)=75.2 K andTy(0) random fields acting on the af order parameter. Nevertheless,
=102 K. Both features are significant deviations from thethe crossover exponedtis well defined® As will be shown
temperature behavior of the pure system. In contrast wittpelow, our analysis revealg~1.85, i.e., ¢/y~1.06 if
Breed and co-workefsye measured the temperature depen-y=1.75 is accepted for the 2D random-exchange Ising model
dence of the in-phase componeyitof the complex ac sus- (REIM).® It is the aim of the following analysis to generalize
ceptibility via superconducting quantum interference deviceéEd. (1) in order to describe the global temperature depen-
(SQUID) susceptometry at constant frequenty 10 Hz.  dence ofy in the concentration range<Ox<0.4.
Sincef=10 Hz is far below the typical spin-flip frequency =~ We start with generalizing the firdtdependent term of
of ~10'° Hz and magnetic losses are negligible, the in-phas&Q. (1). It is called the energetic contribution af (Ref. 6
componenty’ of the complex susceptibility is a good ap- and is well known from the pure 2D Ising antiferromagnet.
proximation of the static susceptibility. Moreover, Ikeda In that case, the specific he@tis related to the susceptibility
obtained very similar results on Rba, gMg, &, with static  according to
magnetometry. Hence, dynamical rounding of the data is
ruled out. d

With increasing dilution the evolution of the vs T data C~f 47 (Tx), 2
proceeds in such a way that the steepened increase, which
one observes fox=0.15, merges into a pronounced peak at
Tn(x) for x=0.4 (Fig. 3, open squargsFor T<Ty(x), the
susceptibility increases again with decreasing temperatu

wheref is a slowly varying function of temperatufente-
ration of Eq.(2) with respect to the temperature between
the boundarie§ and infinity yields forf~const

1.2 T T T T T T
b ( U(T))
10} Xenergy~ 7 | 11— ©)
T o8l o whereF=fb andb=Ilim¢_.(Ty) are constants arid(T) is
= the magnetic internal energy. For pure,RbF,, U(T) is
exactly known from Onsager’'s solution of the 2D Ising
06 SN model® Although =0 represents the uncertain case with
respect to the Harris criterio,it turns out that, in the case
04 of diamagnetic dilutiona does not experimentally deviate
5 " from zero. The predicted log-log-behavior of the specific

heat? may play a role extremely close to the critical tem-
perature. However, from an experimental point of view this
FIG. 3. Temperature dependence of the zero-field susceptibilitys indistinguishable from pure behavior in the case of weak
x (squares of Rb,Ca, Mgo 44 (data from Ref. ¥. The full line  dilution.**!* We shall henceforth assume that the well-
represents the best fit of EGL1) to the data(see text Ty(x) is  known set of critical exponentsy=0, 8=0.125, y=1.75,
indicated by a vertical dashed line. also holds for the 2D REIM. In particular, one expects that

TIK]



57 CROSSOVER FROM PURE ISING TO RANDOM. . 7793
the temperature dependence of the energetic contribution gieratures originates from the corresponding statistical distri-
the susceptibility of the diluted system follows at least quali-bution of the diamagnetic dilution, which accompanies the
tatively the behavior of the pure 2D Ising system. Onsager'process of ideal crystal growth. Hence, we introduce a dis-
exact expression of the magnetic internal energy reads tribution functionP(Ty)dTy,, which describes the probabil-
ity to find a local critical temperature within the interval
[Ty, Ty+dTyl. It is reasonable to assume that the fluctua-
tions of the dilution are normally distributed around the av-
4 erage valu. In the limitx— 0, the critical temperature of a
whereJ is the exchange energls is Boltzmann's constant, 2D Is_ing system _Wit_h neargst-_neighbor interaction is a linear
Ky(x) is the elliptic_integral of the first kind andc  function of the dilution which is given b (x)=Tn(0)(1
=2 sinh (B/kgT)/cosk (2)/kgT). In order to obtain a — 1.3%).7 Hence, the local critical temperatur€g are also

closed analytic expression, the elliptic integral may be apnhormally distributed around the average valygx), which
proximated by characterizes the critical temperature of the global phase

transition. Below that temperature the whole sample is in-

2
1+ =
v

u(m=-J hZJ
(T)y=- CO'[kB—T

2 tant? 2J 1K
tan kB—T— 1(K)

T 1 volved in the process of long-range order. The distribution
Kilk)=5+ 64376‘% (1= x2) 200" 1) , (5  function is explicitly given by
with a relative accuracy of better then 0.2%. Equatiidnis 1
an empirical function that interpolates between the numerical P(T{)= e*<TN<X>*T&>2/2”2, )
values ofK ; according to a least-squares fit. In particular, the 2mo
limiting casesK,(k=0)=m/2 andK,(k—1)—x are ex-
actly fulfilled. where o determines its width.
In the remainder of Eq(1), Since the SQUID measures the integral magnetic re-

sponse of the sample, the measured susceptibility is given by
the weighted average of all local contributiop§T ). Keep-

ing in mind the onset of long-range order &K Ty, the
average is given by

the t-dependent term appears only in diluted systems. It

originates from the fact that the configurational average of TW(0)

the products of the thermal spin averages do not necessarily (X(T)>=f dTP(T)X(T,TY). (8)
cancel on summing up all possible pairs of these averaged ()

products. Since the thermal spin averages are zero above - o )
Ty, this random-exchange term contributesytonly for T The local susceptibility contributions are given by the super-

<Ty. ForT<Ty, |t|?#77 % is a slowly varying function of posi}ion Oer,nerqy’ Eq.(3), andxandom EQ. (6). The fact that
temperature withjt|2#**~¢—1 for T—0. It is, hence, rea- P(TR)X(T,Ty) is cgntered around some maximum \(alue
sonable to assume the approximate validity of this term outSUggests _to approximate E() by saddlepoint integration
side the critical region. This was approximately verified for methods.” Within reasonable approximatiorsee Appendix
the linear susceptibility of the layered 3D REIM systemA) straightforward calculation yields the following expres-
Fe,_,Mg,Cl,, x=0.3, where a steep descent gpfbelow  SiOn for the energetic contribution to E@),

Tn(X) due to the|t|?#T7 ¢ term with 28+7y—¢$=0.62

1
Xrandonk T, Tn) = T (Al_A3|t|2B+y_¢)u (6)

charaterizes the low-region®® U(T)

Similar behavior is found for Ri€o,_,Mg,F,, x=0.15 al1- =
(Fig. 2) and 0.4(Fig. 3), and will be analyzed below. Very (Xenergf T))= TN Tw®
clearly, however, the temperature dependencg sfrongly \/ Tu—TnX)\%2 1
deviates from the expected energylike behavior alsd@ at T) +?

>Tyn(x). Forx=0.15 we find a weak, but finite convex cur-
vature (Fig. 2), which becomes much stronger far=0.4
(Fig. 3. Similarly, as observed in the case of,F&lg, «Cls,

a broadened peak emerges just ab®yex).*® At this point

we have to recall that the temperature range
Tn(X)<T<Ty(0) represents the Griffiths regimayhich is
characterized by a continuous series of weak singularities. ©)
They are due to “local” phase transitions that contribute to

the susceptibility according to a distribution functiBiTy),  where a is a proportionality constant, whilé&J(T) and

as was discussed recently for the case of tlieREIM  T,,(T) are given by Eqgs(4) and (A3), respectively. The
Fey4ZNosd» in zerd and nonzero external field.In the  exchange energy, which enters the internal magnetic en-
following we shall attempt to describe these extra contribuergy U(T), is related taTy, via |J|=c5 Ty, in order to take
tions to x by taking into account that all of them obey a into account the proportionality betweenand the critical
temperature dependence following Hd), wheret=T/T{,  temperature. The proportionality constagtis, however, ex-

—1 with Ty(X)<T{=Tn(0) and the term A&, /T)|t|* *is  pected to deviate from the value of the pure system, because
replaced by Eq(3). The distribution of “local” critical tem-  in the case of a diluted systeth has the meaning of an

X @~ [TNOO =Ty 1?20

X (V1 — e~ V2ITNO) =Tl (T =T/ %)+ 11o?]

— J1— e~ 2TNCO-Tw L (Tu =T/ 0?2+ Lo ]
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effective exchange within a virtual crystal approximation. (—A;/T)|t|?#"Y~¢=0 for T>T|, its averaging with re-
Hence,c; enters Eq(4) as an unknown fitting parameter.  spect toP(Ty) has to be done subsequently for the tempera-

The above procedure of calculatinGyenergy applies  ture regionsT<Ty(X), Tn(X) <T<Ty(0), andT>Ty(0).
similarly to the calculation Of (Xyangom- Since  Straightforward calculatioisee Appendix Byields

k |1_C4|2[|:TN(X),U:TN(O)] |f T<TN(X)

<Xrandon*>:f |1—C4|2[|=T,U=TN(O)] |f TN(X)STSTN(O) s (10)
I if T>Ty(0)

with c,=A3/A; and I, I,(I,u) given by Egs.(B2) and Egs.(9) and(10), respectively. Moreover, the fitting proce-

(B8), respectively. dure yields the values of B~0.049 that enters Eq.l),
In the final expression of the susceptibility c,=132.24 that enters E4A3), c;=1.19 that mediates be-
tween the effective exchange, ang , c,= 0.483 that enters

X= X0 Xp/ T+ (Xenerg) +{Xrandom (12) Eg. (10), the van Vleck backgroung,=0.31 (Ref. 8 and

we have to take into account two correction terms that arer=0.38 the width of the distribution functioR(Ty). Fur-
not included in the above analysjg, takes into account the thermore we find B+vy—¢=0.14, which implies¢=1.86.
background of the van Vleck type. It amounts 3mf the  Hence,¢/y=1.06 and B+y—¢=0.14<23=0.25 is in ac-
total parallel susceptibility in the case of the pure sy§temcordance with theor§.The inset of Fig. 2 shows the ener-
(see Fig. 1 x,/T takes into account the paramagnetic sus-getic (dashed ling and the random exchange contribution
ceptibility of isolated magnetic moments. Their influence in-(solid line), respectively. As expected, the steep increase of
creases with increasing dilution owing to the increasing convs T below Ty(x) originates exclusively from the nonener-
centration ratio of isolated to exchange coupled magnetigetic contribution! x,angon?- The quasilinear increase gfvs
moments. T within Ty (X)<T<Ty(0) appears to be accidental in view
Figure 1(solid line) shows the best fit of Eq11) to they  of the opposite curvatures revealed by both contributions.
vs T data of pure RECoF,. Clearly in this cas€x angom @nd  Hence, this remarkable temperature dependence cannot be
Xp!T vanish for obvious reasons. Furthéx.nergy degener-  taken as a typical signature of the Griffiths phase as might
ates to Eq(3). The final result of the fitting procedure yields have been assumed at the first glance. However, since the
b=116.604 K, 1F=0.616,J/kg=92.92 K, andy,=0.61.  GCiriffiths temperaturél'y(0) enters our theory, Eq$9) and
Obviously, the data are well described by Efjl) within a  (10), it is at the origin of a subtle kinklike temperature de-
wide temperature range. For the pure 2D Ising antiferromagpendence oflx/dT vs T at Ty(0). Infact, closer inspection
net on a square lattice the exact relatiofy of the temperature derivative of the experimental data seems
=0.5673qJ/2kg holds! whereq=4 is the number of mag- to confirm this prediction, although the scatter of the data
netic nearest neighbors. Using this relation we obfgin prevents its ultimate evidence.
=105.4 K. Obviously, this relation also holds for our “en-  Figure 3(solid line) shows the best fit of Eq11) to the y
ergetic” approximation, because the derivatidedT (Ty) vs T data of RCay Mgq 4F4. In this case the energetic con-
vs T of the fitting result(Fig. 1, broken ling exhibits a vir-  tribution to(x) turns out to be negligible with respect to the
tually logarithmic singularity afry(0)=105.4 K, which de- random-exchange contribution. The fitting procedure yields
viates from the experimental valug(0)~102K (Fig. 1, k=6.60, ¢,=0.68, x,=7.46, Ty(x)=17.79K, and x,
squares by only ~3%. Although this discrepancy may ori- =0.04. Very remarkably, we find 2+ y—¢=0.13, which
gin from the inadequate temperature resolution of the experidiffers but slightly from the corresponding fitting parameter
mental data in the vicinity oy, a systematic shift of the for x=0.15. Again, the condition 2+ y—¢=0.13<0.25 is
fitting result cannot be ruled out according to the weak, bufulfilled. As expected, the resulting widis=2.66 of the dis-
finite Heisenberg-type character of the exchange interactiotfibution function is larger than fox=0.15. The observed
in Rb,CoF,.1® However, the large value of the background amount, howeverg(0.4~7.10(0.15, does not follow the
xo=0.61 remains unreasonable. It may indicate that the aprelation Ax«x VX, which one might expect from natural sta-
proximation y~M/H is not appropriate in the case éf tistics. Probably this is a consequence of the crossover from
=0.77 MA/m used in the experimerftsProbably, the ap- equilibrium (Gaussiah to percolation (Poisson statistics
plied magnetic field is not small enough in order to avoidwhen approaching the percolation threshotg=0.41. At
nonlinearities ofM vs H. closer inspection of Fig. 3 the fit exhibits a kinklike behavior
Figure 2(solid line) shows the result of the best fit of Eq. at Ty(x). According to our theory, this reflects the residual
(11) to the y vs T data of RBCa, ggMdo 15 With regard to  influence of the temperature dependence of the thermal spin
the relatively high temperature$>50 K, the paramagnetic averages, which vanish at>Ty. Unfortunately the tem-
contribution x,,/T has been neglected. The fit involves the perature resolution of the experimental data is not sufficient
proportionality constanta=384.06 andk=90.73 that enter in order to resolve this detailed structure.
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IV. CONCLUSION

&—X) (T M (A1)

Although diamagnetic dilution does virtually not affect aTy T XL o '

the critical behavior of 2D Ising systems, there are strong M

qualitative deviations of the uniform magnetic susceptibility From that we calculatd,=Ty(T) while we restrict our-

x of Rb,Co,_,Mg,F, from the “energetic” y vs T behavior  selves for simplicity to the approximation

of the pure compoundx=0. First, owing to subtractive

random-exchange extra contributiol,andom, We Observe .. Cp TN

a steep decrease of vs T just below Ty(x). Second, X(Th) == 1_C2(1_T) In

Griffiths-type weak singularities have to be taken into ac-

count at temperatures betwe®q(x) and Ty(0). They are  Which reproduces the temperature behavior of @gin the

composed of contributions due to bofRnergy @Nd Xrandom critical regionT~Ty .1 Althoughc; andc, are known in the

that form a flat, nearly linear anomaly in the case0.15.  case of the square Ising lattiag, becomes a free parameter

For higher dilutionx=0.4, the contributions due t@,qom  Within the following analysis in order to compensate the de-

give rise to a pronounced peak B{(x). viations of Eq.(A2) with respect to Eq(3) outside the criti-
Originally, Ikedd proposed a coupling mechanism be-cal region. In the limit T=Ty, the approximation

tween the uniform and the staggered susceptibility in order t§1— Ty /T)In|1—Ty /T|=~0 holds. Insertion of Eq(A2) into

explain this peak structure. However, within this paper weEq. (Al) and using the above approximation yields

have shown, that the dilution-induced evolution of the peak

structure iny vs T originates from the crossover from pure Ty =Ta(x)+ 1y

Ising to random-exchange dominated behavior. Since this MTON T -

crossover affects also the temperature dependengeoat- ) . ]

side the critical region, we have generalized Aharony’s exA series expansion of(Ty) andP(Ty) up to first and sec-

pression ofy for REIM antiferromagnefsin a phenomeno- ond order in powers of {y—Ty,), respectively, yields

logical way. This generalized expression has then to be

averaged with respect to the distribution of local critical tem-

peratures, which are distributed throughout the temperature

interval Ty(x)<Ty<Tn(0) of the Griffiths phase. Within .

the framework of an averaged and generalized susceptibility)”th ZAZX(TMI)P(TM) and B= _A[((TM_TN(?())/U )

function we are thus able to model the temperature depent 1/0°]. The linear term of the expansion vanishes due to

dence of the susceptibility of RBo,  Mg,F, for the con-  Ed- (A1). With Eq. (A4) we calculate the weighted average

centrations<=0, 0.15, and 0.4, i.e., throughout the concen-Of XenergyWithin the saddle-point approximation. It reads

tration range in which long-range order is exhibited. Kkor W) /

=0.15 the susceptibility mediates between two extreme sce- <Xenerg)>ocAfT dT}, e~ [BIA(T{~Tw)?, (A5)

L

T (A2

2

(A3)

B
X(TYP(TY~A+ 5 (Ty=Ty)? (A4)

narios, the pure Ising behaviok€0), which is character- N(X)

ized by the energetic susceptibilify , and the REIM ) , )

behavior, which is dominated ber::Z;g:; in the limit of  SINce exp—[B|(Ty—Ty)*/A] does not vanish aTy(x) and
strong dilution,x=0.4. Tn(0), it is not appropriate to shift the boundaries of the

It will be interesting to consider the 3D REIM case in an INtégration towards infinity. Hence, in order to calculate the
analogous way. Data obtained previously on g <Cl, Gau_35|an integral with finite boundaries, we use the approxi-
(Ref. 15 seem to hint at strong importance Ofrangor), ~ MAUON
which dominates not only at <T,, but also in the peak ——
region just aboveTy. Analysis will, however, be more te- ,.Jadt ot 1 \/errf deo re-ri= 1 Jr(l—e )
dious than in the above 2D case, since the pure-to-random/o 2 o Jo 2 ’
crossover irD =3 dimensions is connected with a change of (A6)
the critical behavior. This rules out, e.g., a simple approxi-

: . _— o wherer=a2'* is the geometrical average of the radius of
mation of the energylike contribution of the susceptibility. the largest inner and the smallest outer circle that fills in and

contains a square of the area? respectively. Within this
ACKNOWLEDGMENTS approximation Eq(A5) yields the explicit result of Eq(9).
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A Tn(0) ' 2/ .2
-t dT! e [Th-Tn01%20
APPENDIX A Xrandom 7 J'TN(X) N
We start with the saddlepoint integration(@fenergy - Ac- TN(0) T-T|2 ¢ , s
cording to Eq.7) the temperature-dependent positiby of —C4J N — e [Tn=TnOOIY20
Tn(X) N

the maximum value oP(Ty) x(Ty) can be determined from
the following equation: (B1
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with c,=A3/A;. Using approximatiorfA6) the first integral  of Eq. (B5) has to be discarded.

yields The series expansion OfT—T{)/T{ |22 ¢ exp{—[Tx
TN(O) —Tn(¥)1%20%} up to the second order in powers of [
|1Z=f " dTy e*[T;’\rTN(X)]ZIZUZ _T'r\c;lindon) yields for T<Ty(),
Tn(X)
T A A
[ o — —
= \@ 0'\/(l—e*[TN(O)*TN(X)]Z/\?UZ)_ (B2) <Xrandorr> T 1~ C4Arandom
The solution of the second integral via saddle-point integra- % J’ TNO) AT e (BransontAvanco (T —iandon2
tion requires the calculation of the maximum position ac- Th(X)

cording to d/dTﬁ,[l(T—T,’\,)/T,’\,|23+7‘¢P(T,’\1)]|T&=TM=0.
Taking into accounT<Ty,, one obtains

(B6)
with Arandon™ \/EO'(l—T/TR‘Z‘”dO")ZﬁJr y—¢P(TRimdon) and
[Tu—TnON(Tu—T)Ty=(28+y—¢)Ta*. (B3

In order to obtain a quadratic equation T, , Eq. (B3) is B A (2845 )T 2T -1
roughly simplified within the approximatiofiy,~Ty(x). It randont~ ~ Arandon| (287 [ Tandom random_ 172
yields

1
[Tu=TnOOI(Tu=T)Tn()=(28+ y— $)To?, +t 2]
(B4)
which has the solution while 1, is given by Eq.(B2). In order to obtain an explicit

expression of the second integral that enters the proportion-

1 ality (B6), we calculate
T ( [TNOO+T]

u _ 1 _ rrandom2
| 2(| ’u): :Arandomfl dTl,\l e (‘Brandorﬂ/Arandon}(TN v "

=
+ \/[TN(X)—T]2+4(2ﬂ+ y— )0’ 0"

(B5) : . .
using generalized lower and upper boundatiemdu. In-
Since TRM™ js located within the interval sertion ofAangomand B andominto Eq. (B7) and application
Tn(x)<Tiand%omT(0), thecorresponding negative solution of the approximatior{A6) yields

(B7)

o (1—T/Tiandom 2+ = ¢p(randon
[o(1u)= N

2Trandom_ 1
(2B+y—¢)T [Tﬁndon(-l-l’andom_ T)]Z + ?

X {V1— e V2B y= §TIET M T/ TR TENOM 1) 2 410 (-T2

— V11— e 2By HTIRT T TN TENEM T2 1i02) (1 - TN, (B8)
In the casely(X)<T<Ty(0), {Xrandon IS given by

A
(Xransont 7 {11~ Cal {1 =T,u=Ty(0) T}, (BY)

according to ¢ Az/T)|t|?2*7~¢=0 for T>TJ,. In the casel >Ty(0), thesecond term of Eq(B9) vanishes.
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