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Nonequilibrium steady states of driven periodic media
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We study a periodic medium driven over a random or periodic substrate, characterizing the nonequilibrium
phases which occur by dynamic order parameters and their correlations. Starting with a microscopic lattice
Hamiltonian, we perform a careful coarse-graining procedure to derive continuum hydrodynamic equations of
motion in the laboratory frame. This procedure induces nonequilibrium effects@e.g., convective terms, Kardar-
Parisi-Zhang~KPZ! nonlinearities, and nonconservative forces# which cannot be derived by a naive Galilean
boost. Rather than attempting a general analysis of these equations of motion, we argue that in the random case
instabilities will always destroy the long-range order~LRO! of the lattice. We suggest that the only periodicity
that can survive in the driven state is that of a transverse smectic, with ordering wave vector perpendicular to
the direction of motion. This conjecture is supported by an analysis of the linearized equations of motion
showing that the induced nonequilibrium component of the force leads to displacements parallel to the mean
velocity that diverge with the system size. In two dimensions, this divergence is extremely strong and can drive
a melting of the crystal along the direction of motion. The resultingdriven smecticphase should also occur in
three dimensions at intermediate driving. It consists of a periodic array of flowing liquid channels, with
transverse displacements and density~‘‘permeation mode’’! as hydrodynamic variables. We study the hydro-
dynamics of the driven smectic within the dynamic functional renormalization group in two and three dimen-
sions. The finite-temperature behavior is much less glassy than in equilibrium, owing to a disorder-driven
effective ‘‘heating’’ ~allowed by the absence of the fluctuation-dissipation theorem!. This, in conjunction with
the permeation mode, leads to a fundamentallyanalytic transverse response forT.0.
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I. INTRODUCTION

Nonequilibrium driven solids and liquids arise in a wid
variety of different physical contexts. A common means
driving is to apply a constant or low-frequency spatially u
form shear~either a constant shear rate or shear stre!,
which has been studied extensively in colloidal and po
meric systems.1 Such a driving is in a sense severe, since i
incompatible with a macroscopically ordered solid, requiri
the continual breaking of a nonzero density of bonds per
time. If translational symmetry is broken explicitly by th
presence of, e.g., a periodic substrate or quenched impu
fixed in space, a gentler sort of driving is possible. In t
case, even a uniform translation of the system is nontriv
and it can be driven out of equilibrium simply by applying
constant force or pulling at a constant velocity.

A considerable number of such systems have been
jects of recent investigation. These include flux lattices
type-II superconductors,2,3 charge-density waves~CDW’s! in
anisotropic conductors,4 magnetic bubble arrays,5 and the
magnetically induced Wigner crystal in a two-dimension
electron gas.6,7 In all these systems the relevant degrees
freedom—be they vortices in superconductors or electron
metals—form a lattice inside a solid matrix, provided by t
superconducting or conducting material. Both a periodic
tential ~due to the underlying crystal lattice! and a quenched
570163-1829/98/57~13!/7705~35!/$15.00
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random one~due to material impurities and defects! are gen-
erally present, though their relative importance can v
from system to system. Closely related problems also aris
microscopic models of friction and lubrication, in which
surface or monolayer is brought into contact with anoth
surface and forced to slide relative to it. Some recent sim
models of earthquakes,8 in which two elastic half-spaces ar
slowly driven past each other, also fall into the general cl
of driven disordered periodic elastic systems.

Much of the recent focus in thesepinned elastic media
has been onequilibrium behavior, since, unlike their colloi
dal and polymeric counterparts studied in the shear ge
etry, these systems exhibit a nontrivial competition betwe
the external~substrate or disorder-induced! potential and the
tendency for local order. In the random case, this was arg
by Larkin9 to generate long-range elastic distortions. Mo
recent works have reinvestigated this problem in some de
suggesting the existence of a novel ‘‘Bragg glass’’ phase
three and possibly two dimensions.10–12 In the periodic case
~known as intrinsic pinning in the vortex community!, the
potential can either lock-in commensurate phases, gene
finite ~but qualitatively unimportant! incommensurate distor
tions of the lattice, or stabilize anisotropicliquid-crystalline
states. Though for both types of matrix some detailed qu
tions remain unanswered~in particular, the stability of the
studiedelastic glassy phases to proliferation of topologic
7705 © 1998 The American Physical Society



s
un

o
rc

D
d
el
o

ro
ilib
th
te
-

ew
b-
a
.
ia
in
-
e

ns
ni
o

ic
o
t
c

in

er
a

rn
a

is

o
a-
r
o

e
a
u-

ibl
w

am
c

oi
a
on

o

ng

f a
ne,
rest
ess,
ur

of
the
Fi-
the
the

us
ry
ef.

in
re
es
l is
ro-
ver
nge
e

tu-
,’’
flux
ra-

old

the
es
the
W
In

ac-
ice

o-

ns-
r-

ngth
be

7706 57BALENTS, MARCHETTI, AND RADZIHOVSKY
defects!, theequilibrium phases and transitions in these sy
tems have been extensively studied and are fairly well
derstood.

Once the elastic medium is driven, however, a host
new questions arises: Under a uniform applied external fo
f ext, what is the mean velocityv( f ext) ~the I -V curve, in the
context of superconductors and CDW’s!, and is this uniquely
determined or dependent upon history or other variables?
ordered solid phases exist at low temperatures or weak
order, and if so how are they characterized? Can one dev
nonequilibrium phase diagrams, with phases classified by
der parameters and symmetry analogous to equilibrium p
lems? What are the properties of the resulting nonequ
rium dynamic phase transitions and the nature of
fluctuations? Under what conditions does such a sys
reach a nonequilibriumsteady state, and what are the hydro
dynamic modes in this case?

Along with these new questions come a number of n
physical variables which play important roles. While equili
rium behavior is relatively insensitive to detailed dynamic
laws, there is no reason to expect this for a driven system
particular, the nature of dissipation surely plays a cruc
role. This distinguishes, e.g., friction and lubrication,
which ~to a good approximation! energy can only be redis
tributed among vibrational modes of the solid, from charg
density-wave or vortex solids, in which energy can be tra
ferred out of the collective modes to dissipate into electro
degrees of freedom. In the latter case, which we focus
here, it is appropriate to consider overdamped dynam
while for the former inertial effects may be significant. Als
crucial are conservation laws, which generally give rise
additional hydrodynamic modes. In equilibrium, the intera
tions of these with elastic degrees of freedom are constra
by the fluctuation-dissipation theorem~FDT! not to modify
static correlations. For the nonequilibrium lattice, howev
they must be treated explicitly. Finally, a driven system m
exhibit complex dynamics even in the absence of exte
‘‘thermal,’’ or time-dependent, noise. When the extern
noise level is low, this deterministic dynamics can give r
to steady, periodic, quasiperiodic, or~spatiotemporally! cha-
otic solutions. While in the latter case, dynamical cha
likely gives rise to an effective ‘‘temperature’’ and restor
tion of ergodicity, more regular solutions need not explo
the full phase space and can, in principle, behave with alm
arbitrary complexity. Of course, factors such as the natur
the external potential, dimensionality, and range of interp
ticle interactions, which control the equilibrium state, infl
ence the driven dynamics as well.

A complete answer to these questions for all poss
cases is beyond the scope of a single paper. Instead, we
focus here on systems with overdamped, dissipative dyn
ics which reach statistically steady states. This can oc
either due to the presence of external time-dependent n
which forces the system to explore the available phase sp
or due to intrinsic chaotic dynamics. Note that this conditi
is violated by overdamped phase-only models~e.g.,
Fukuyama-Lee-Rice13! of CDW’s, in which there is a unique
periodic long-time attractor, as shown by Middleton.14 It
may also be violated in zero-temperature simulations of v
tex dynamics under some circumstances, as observed
cently by Nori in some regimes for a strong periodic pinni
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potential.15 We expect, however, that in the presence o
random potential chaotic dynamics is much more germa
and furthermore, that most systems of experimental inte
contain appreciable external thermal noise. Neverthel
where possible, we will comment on the extensions of o
conclusions to the noiseless case.

Our approach to the problem is first to devise a means
classifying the nonequilibrium phases, then to determine
dynamical equations of motion governing these phases.
nally, using these equations, we can begin to calculate
phase diagram and the properties thereof. We summarize
main results below, reserving a comparison with previo
work for the discussion section of the paper. A prelimina
version of some of the results of this paper appeared in R
19.

A. Order parameters and correlation functions

A framework for classifying phases was introduced
Ref. 16 in the context of CDW’s, and we generalize it he
to more complex periodic media. As in equilibrium, phas
are characterized by broken symmetry. An ordinary crysta
globally periodic, and hence has broken translational and
tational symmetry. Because the periodicity is sustained o
long distances, we say that it has translational long-ra
order ~LRO!. To quantify this notion, we must introduc
suitable order parameters.

We consider initially a general model where the consti
ents of the driven lattice may be ‘‘oriented manifolds
which are extended in some direction, such as magnetic-
lines in a three-dimensional superconductor. The configu
tion of such a lattice is described by labeling each manif
by its undisplaced equilibrium transverse position,x. The
internal coordinates parallel to the oriented manifold~e.g.,
along the magnetic-field direction in the vortex lattice! are
parametrized by adl-dimensional vectorz, and r5(x,z).
The number of transverse dimensions is denoted bydt and
the dimensionality of space isd5dt1dl . The lattice may be
described by a density field smoothed out on the scale of
lattice spacing,r(x,z), which in the ordered phase becom
periodic in the transverse direction. For the vortex lattice
density is the local magnetic induction, while for the CD
and the Wigner crystal it is the electronic charge density.
the ordered phase the collection of oriented manifolds
quires long-range periodicity, defined by a reciprocal latt
with basis vectors$Q%. The density field is then written as

r~x,z!5r01
1

2(Q r̃ Q~r !eiQ•x, ~1.1!

wherer0 is the mean density. The complex Fourier comp
nentsr̃ Q(r ) satisfy r̃ 2Q5 r̃ Q* . All the amplitudes transform

as r̃ Q→ r̃ QeiQ•a under a lattice translationx→x1a.17 A
nonzero expectation value of ther̃ Q’s thereby indicates bro-
ken translational symmetry. As a result of the broken tra
lational symmetry, long-wavelength fluctuations in the o
dered phase can be described in terms of long-wavele
distortions of the Fourier modes, which can in general
written in terms of an amplitude and a phase as

r̃ Q~r !5 r̃ Q,0~r !eiQ•f̃~r !. ~1.2!



in
t

-
a

ui

he
e

em

-
as
di
n
m

pa
-

ys
re
r
a

re
v
-

ic
b
h
c

rd

ti
ua

er

u

e
long-

O,

ty.
hat
hort-

nen-
n-

ul-

ns.
g’’
e-

ore
nce
tem.
ve

m-
ve
gate
the
an-
ns

a
O,
ase

is

in-
uid
w
ur

cal
be

ged
n in

to
wo
er-
ta-

rre-
em
or-
e
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Note that the phase in each Fourier amplitude is not an
dependently fluctuating variable in the ordered state. I
constrained by, e.g., cubic interactions of ther̃ Q , which
leave only the vector of phasesf̃. They correspond to dis
tortions of the lattice, and indeedf̃ can be interpreted as
sort of displacement field~but see below!.

So far, this discussion applies equally well to both eq
librium and driven solids. Consider now thetime dependence

of the local density. In a moving solid, we expectf̃5vt
1f, so that

r~x,z,t !5r01
1

2(Q rQ~r ,t !eiQ•@x1vt#, ~1.3!

where

rQ~r ,t !5 r̃ Q~r ,t !e2 iQ•vt. ~1.4!

Physically, the oscillations in the density simply reflect t
fact that individual constituents of the lattice pass any giv
point in a regular periodic fashion. The set ofrQ fields com-
prises the order parameters for the nonequilibrium syst
Neglecting topological defects~i.e., dislocations! amounts to
assuming that the amplituderQ,0 is constant. Elastic defor
mations of the solid are then described entirely by ph
fluctuations in terms of a single-valued coarse-grained
placement fieldf(r ). It is important to distinguish betwee
the displacement field defined in the moving or crystal fra
~where the conventional phonon field is defined! and the dis-
placement field in the laboratory frame. Throughout this
per we denote byf(r ) the displacement field in the labora
tory frame, while we reserve the symbolu(r ) for the
conventional phonon field. Many of the experimental s
tems of interest form triangular lattices. In this case, the
ciprocal lattice of allowedQ is also triangular. The Fourie
components for the three smallest of these wave vectors
the primary order parameters characterizing the orde
phase:̂ rQ&Þ0 ~the brackets indicate a time average or a
erage over thermal noise!. Of course, the secondary ‘‘spec
tator’’ order parametersrQ with larger Q ~formed as any
linear combination of these three minimum reciprocal-latt
vectors! are of course also nonzero in the solid, but may
considered as induced by the primary order parameters. T
do not play a direct role in critical phenomena and influen
only more subtle experimental effects such as higher-o
Bragg spots.

A quantity of immediate experimental interest is the sta
structure factor, which is the Fourier transform of the eq
time density-density correlation function and is given by

S~q!5^udr~q,t !u2&5(
Q

E
r
ei ~q2Q!•r^rQ~r ,t !rQ* ~0,t !&.

~1.5!

Hereq5(qt ,qz) is the full wave vector. The order-paramet
correlator,

CQ~r ,t !5@^rQ~r ,t !rQ* ~0,0!&#ens, ~1.6!

governs the behavior of the structure factor. We used ang
~square! brackets to denote thermal~disorder! averages. If
CQ(r ,0)→const for largeur u, S(q) has a sharp~resolution
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limited! Bragg peak atqt5Q. If CQ(r ,0);ur u2h, these
broaden to power-law form. IfCQ(r ,0) decays exponentially
for large ur u, only diffuse peaks if any exist. In these thre
cases, the system is said to possess long-range, quasi-
range, and short-range translational order~at wave vector
Q), respectively. These will be abbreviated LRO, QLR
and SRO, respectively, in the remainder of the paper.

CQ(r ,t) also describes the extent of temporal periodici
By analogy to the translational characterization, we say t
the system possesses long-range, quasi-long-range, or s
range temporal order~at frequencyv5Q•v) if CQ(0,t) goes
to a constant value, decays algebraically, or decays expo
tially, respectively. This temporal order can be experime
tally probed through thedynamicstructure function

S~q,v!5^udr~q,v!u2&

5(
Q

E
r ,t

ei ~q2Q!•r2 i ~v2Q•v!t^rQ~r ,t !rQ* ~0,0!&.

~1.7!

Systems with temporal LRO will display sharp peaks at m
tiples of the washboard frequencyv5Q•v in the S(q,v)
and in the related power spectrum of velocity fluctuatio
Such system should also exhibit ‘‘complete mode lockin
to an arbitrarily weak external periodic driving at these fr
quencies.

In a random system, temporal order is generally m
robust than the translational order. Physically, the differe
arises because impurities inhomogeneously stress the sys
The responding nonuniform distortion, however, can ha
very little fluctuation in time, and thereby can leave the te
poral ordered relatively unaffected. It will, of course, ha
some effect on the dynamics, because disturbances propa
differently atop the nonuniform background, and because
local strains lower the barriers to defect nucleation. We c
not exclude the possibility of a phase in which dislocatio
are unbound, but frozen in the laboratory frame. Such
phase would exhibit translational SRO but temporal LR
and would be the driven analog of the vortex-glass ph
originally proposed by Fisher, Fisher and Huse.18 Given the
relative instability of this phase in equilibrium, we think th
scenario is, however, somewhat unlikely.

What particular types of translational order can in pr
ciple arise in a driven system? Of course, a disordered liq
state is possible~and may be the only stable phase in lo
dimensions!. When translational order is present, it can occ
at a variety of wave vectorsQ. For weak disorder at low
temperatures, it is natural to expect that a full recipro
lattice of wave vectors characterizing a crystal should
important~i.e., have appreciableCQ). In two dimensions, for
instance, the smallest of these would typically be arran
into a hexagon. If, as seems natural, and can be show
some simple models, reflection symmetry perpendicular
the applied force is not broken, this can take one of t
orientations, with a diagonal oriented either parallel or p
pendicular to the force. Since the applied force breaks ro
tional symmetry, however, there is no reason for the co
lations at all six points to be identical. Instead, if the syst
evolves continuously with increasing temperature or dis
der, it is natural to expect that LRO will be lost first at som
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7708 57BALENTS, MARCHETTI, AND RADZIHOVSKY
subset of these wave vectors. The surviving state has a le
periodicity, with only a single line of Bragg peaks~symme-
try requires that the other solid peaks disappear pairwise!. It
represents therefore a layered liquid orsmecticstate. This
can be either a longitudinal smectic, with ordering wave v
tor parallel to the velocity, or a transverse smectic, with
riodicity in the direction perpendicular to the velocity. W
argue below that only the case of a transverse smectic sh
in Fig. 1~b! is stable, and indeed, that this is likely to be
more generic state than the true solid when the system
driven.

B. Hydrodynamics and elasticity

There are at least two analytical approaches to calcula
CQ(r ,t). One is to construct a density-functional or Landa
like theory for the order parametersrQ . For the nonequilib-
rium driven system considered here, this would be a se
stochastic partial differential equations. This has the adv
tage of allowing large amplitude fluctuations, and hence
cluding dislocations in a natural way. The disadvantage
this approach is its intractability. It is often difficult to re
cover relatively simple properties in the ordered phase
second approach is to assume a large degree of local o

FIG. 1. ~a! Schematic illustration of a moving glass, which b
comes unstable to the proliferation of dislocations with Burg
vectors along the direction of motion. At large velocities, we exp
that unbound dislocations will be widely separated, with spaci
x sm and ysm in the directions longitudinal and transverse to t
motion, respectively. A naive estimate based on the lineari
theory~for, e.g., superconductingfilms, dl50, dt52! probably gives
an upper bound for these scales:xsm&c66a

8(gv)7/D4 and ysm

&c66a
4(gv)3/D2. Nonlinear ~KPZ! effects very likely shorten

these lengths considerably. On larger scales, the ‘‘lattice’’ cros
over to the driven smectic state displayed in~b!, with only trans-
verse periodicity and liquidlike order along the direction of motio
The dislocations with Burgers vectors along the direction of mot
allow the weakly coupled liquid channels to move at different v
locities.
ser
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so that the amplitude of the order parameters fluctuates
little. In this case, a phase-only or elastic approximation
natural, and only thef fields remain in the description. Thi
method has the disadvantage of excluding topological
fects, which must be reintroduced by hand to complete
description, as has been successfully done for equilibr
systems, such as, for example, Kosterlitz and Thouless tr
ment of 2D superfluids and 2D melting.20 Determining the
relevance or irrelevance of such defects upon the elastic
scription in disordered systems is a difficult and unsolv
problem. If, however, the phase-only approximation predi
only small displacements in the ordered phase, it can be
pected to be a self-consistent approximation out to a ra
long length scale. If, by contrast, large distortions are fou
the original assumption of order is inconsistent, and we h
discovered an instability of the solid phase.

To determine the nature and stability of the possible
dered nonequilibrium phases, this paper focuses on the e
tic approach. Assuming constant amplitude of the order
rameters,CQ can be written in terms of the displaceme
field correlation as

CQ~r ,t !5urQ,0u2@^eiQ•@f~r ,t !2f~0,0!#&#ens, ~1.8!

where we have pulled out the amplitude factor. Iff is a
Gaussian random variable,

CQ~r ,t !5urQ,0u2exp$2QiQjBi j ~r ,t !%, ~1.9!

where i and j denote Cartesian components andBi j (r ) are
the components of a mean-square displacement tensor,

Bi j ~r ,t !5@^@f i~r ,t !2f i~0,0!#@f j~r ,t !2f j~0,0!#&#ens.

~1.10!

Generally, the displacements fluctuate in a non-Gaus
manner, so that Eq.~1.10! is not strictly correct. However
we expect its qualitative implications to hold. IfBi j (r ,t)
goes to a constant at long distances~times!, then so does
CQ(r ,t). If Bi j (r ,t) grows algebraically, thenCQ(r ,t) has
stretched exponential form~though not necessarily with th
naive stretching exponent!, suggesting that in a physical sys
tem topological defects might proliferate and lead to sho
range order, and ifBi j (r ,t) grows logarithmically, then
CQ(r ,t) decays as or slower than a power law.

To calculateBi j (r ,t), we employ the analog of hydrody
namic equations of motion. In general, the hydrodynamics
systems far from equilibrium is far more complex than
equilibrium counterpart. In particular, fluctuations about t
nonequilibrium steady state do not satisfy a fluctuatio
dissipation theorem and the external driving force bre
both the rotational and reflection~parallel to the force! in-
variance of the equilibrium system. As a result, the hydro
namic equations contain many more parameters than in e
librium. A general construction based only on symme
constraints is thus not very useful, and a concrete derivat
which provides precise values for these parameters, is d
able. We perform such a derivation in Sec. II. Our first ma
result is the complete nonequilibrium hydrodynamic equ
tion of motion for the driven lattice,
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g i j ] tf j5Aia j]af j1Biab j]a]bf j1Cia j bk]af j]bfk

1F̃ i@r ,f,t#1h i~r ,t !, ~1.11!

where the coefficientsA, B, andC are nonzero only when
the number of subscripts taking values of axes perpendic
to the driving force is even. Explicit expressions for these
given in Sec. II.F̃ and h represent quenched random a
external ‘‘thermal’’ forces, respectively. Equation~1.11!
remedies the deficiencies of variousad hocequations of mo-
tion proposed in previous works.21 Similar equations have
been considered also in the context of sedimenting collo
crystals in Ref. 22.

One noteworthy feature of Eq.~1.11! is the proliferation
of gradient terms beyond the usual equilibrium elastic o
~contained in theB term!.23 These represent convective e
fects and dependence of the substrate-lattice interaction u
the local deformation of the lattice. To properly account
them, it is crucial to treat the phonon modes near the z
boundary, not considered in previous calculations. Espec
important are theA terms, which lead to propagating mod
at low frequencies and wave vectors.

Another key feature is the random forceF̃ i@r ,f,t#. It is
distinguished from the equilibrium form in two ways. First,
contains nontrivial time dependence, as can be seen fro

F̃ i@r ,f,t#5(
Q

eiQ•@x2vt2f~r ,t !#Fi~r !, ~1.12!

where Fi(r ) is a time-independentquenched random vari
able, which we will refer to as astatic pinning force~the
exponential factor in Eq.~1.12! comes from the transforma
tion from the moving to the laboratory frame!. The terms
with Q•vÞ0 therefore oscillate in the sliding solid. The se
ond distinction is seen from the decomposition

Fi~r !5Fi
eq~r !1Fi

neq~r !. ~1.13!

The first term on the right-hand side of Eq.~1.13! is the
equilibriumcomponent of the static pinning force and can
written as the gradient of a potential, as required by
fluctuation-dissipation theorem. Its correlations are appro
mately given by

@Fi
eq~r !F j

eq~r 8!#ens52] i] jG~r2r 8!, ~1.14!

whereG(r ) is the correlator of the Gaussian random pote
tial. The second term in Eq.~1.13! is thenonequilibriumpart
of the static pinning force, with correlator

@Fi
neq~r !F j

neq~r 8!#ens5gi j d~r2r 8!. ~1.15!

The variancegi j of this static force is given in Eq.~2.51! and
vanishes in the absence of external drive. A nonzerogi j im-
plies thatFi

neq is nonconservative, violating the fluctuation
dissipation theorem.

C. Analysis

A general analysis of Eq.~1.11! is quite difficult. In prin-
ciple, the stability and behavior of the putative moving gla
can be determined by an renormalization-group~RG! analy-
sis of the full equations of motion@Eqs. ~1.11!#, including
both the KPZ nonlinearities (Cia j bk) and the random force
ar
e

al

s

on
r
e
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e
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s

@Fi(r ,f,t)#. Past experience with other nonequilibriu
KPZ-like equations16,24 suggests that instabilities are qui
ubiquitous in low dimensions. We expect such instabilit
will occur also in this case, at least in two dimensions a
quite possibly in three, and leave an analytical check of t
hypothesis to future research. Provided such an instab
occurs, can any residual order survive in the driven sta
Two physical realizations of partially ordered moving sta
have already been suggested: the longitudinal and the tr
verse smectic. A longitudinal smectic is equivalent to a co
ventional driven CDW, studied earlier by Chenet al.24 and
by Balents and Fisher.16 These authors concluded that th
phase is unstable in two dimensions, but may exist at la
velocities in three dimensions~although the role of disloca
tions and KPZ nonlinearities in three dimensions deser
further study!.

The only possible ordered phase ind52 is thus a trans-
verse smectic@discussed in the previous subsection and illu
trated in Fig. 1~b!; the static structure function correspondin
to a transverse smectic and crystal is schematically illustra
in Figs. 2~b! and 2~a!, respectively# with some degree of
order at a periodic set ofQ perpendicular to the velocity
This is of course also a possibility ind53, regardless of the
stability of the lattice. The marginal stability of the drive
lattice in three dimensions allows for a dynamic phase tr
sition between the driven smectic~at intermediate velocities!
to a moving lattice~at high velocities!. We illustrate the cor-
responding dynamic phase diagrams in Fig. 3.

The latter part of the paper is devoted to an analysis
this possibility. In Sec. IV, we present the hydrodynam

FIG. 2. ~a! The static structure factor for the moving gla
sketched in Fig. 1~a!, with sharp peaks at all the reciprocal-lattic
vectors of a triangular lattice. The static structure factor of
driven transverse smectic is shown in~b!. Sharp peaks~dark spots!
only appear along theqy axis; some remnant of short-range loc
triangular lattice order can appear in the form of weak and diffu
peaks at finiteqx ~light spots!.
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equations of motion for the smectic. These include a sim
fied version of Eq.~1.11!, supplemented by an additional on
for the conserved particle density. Unlike in a vaca
cy/interstitial-free solid, this is not generally slaved to t
smectic displacement, and constitutes a separate hydr
namic mode.25 This is the well-known permeation mode
smectic liquid crystals.

Even these equations are somewhat intractable, s
Secs. V and VI we study the ‘‘toy model’’ in which th
permeation mode is decoupled from the smectic displa
mentfy[f. This is best done using renormalization-gro
~RG! techniques, which are controlled in two limits. At an
neard53, the RG is controlled by a low-temperature fixe
point, which is analyzed using afunctional RG in Sec. V.
The fixed-point temperatureT* increases with decreasin
dimension until ind52, more conventional sine-Gordon R
techniques can be applied. Directly in three dimensio
there is a slow asymptotic approach to zero temperature

From these RG calculations come several concrete pre
tions. In a three-dimensional smectic, the structure factor
power-law Bragg peaks along the axis in momentum sp
perpendicularto the velocity, as illustrated in Fig. 2~b! @to be
contrasted with a moving solid or Bragg glass, illustrated
Fig. 2~a!, which we believe are unstable to the transve
smectic#. Because these peaks are entirely transverse,

FIG. 3. Schematic phase diagram for a finite-temperature dr
solid in ~a! d52 and~b! d53 dimensions. In~a! we have used a
dashed line as a boundary between the moving liquid and the tr
verse smectic to emphasize that the smectic might be unstable i
and therefore asymptotically indistinguishable from a moving l
uid. In ~b! we have similarly used a dashed boundary between
moving smectic and lattice, to emphasize that it is likely that
moving lattice is unstable even in 3D. In~b! the hatched ‘‘?’’ region
indicates the interesting possibility of a moving Bragg glass in 3
at low drives.
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smectic exhibits neither narrow-band-noise nor compl
mode locking ~although incomplete mode locking is o
course possible for sizeable ac drives!. The response to a
force f' transverse to the mean direction of motion is a s
perposition of two effects. First, the permeation mode p
vides a nonvanishing linear component of the velocityv'

perm

5mpermf' . Secondly, the smectic responds in a nonline
manner, resemblinga threshold at low temperatures b
crossing over tolinear response at very low forces forT
Þ0.

In two dimensions, the RG study of the elastic model a
predicts only short-rangeasymptotic transversetranslational
correlations and quasi-long-range temporal correlatio
These calculations actually indicate that the system is out
the regime of validity of the elastic approximation. We e
pect that ind52 an eventual instability of even the smect
state to unbinding of transverse dislocations may occu
larger length scales. Nevertheless, the RG results should
up to this length, and, as in three dimensions, also pre
superimposed linear and nonlinear transverse velocity
sponses.

We conclude the Introduction with a summary of the r
mainder of the text. Section II describes the derivation
hydrodynamic equations of motion for the driven lattic
which we study perturbatively in Sec. III. Sections IV pr
sents the equations of motion for the transverse sme
which are analyzed using renormalization-group techniq
in Secs. V and VI. The specific predictions of the RG f
correlation and response functions are given in Sec. VII. S
tion VIII summarizes our results, makes comparisons w
other work, and gives a synopsis of remaining open qu
tions and future applications of these ideas. Finally, six A
pendixes give technical details unsuitable for the body of
paper.

II. DERIVATION OF HYDRODYNAMICS

As discussed above, the goal of this paper is to study
nonequilibrium steady states that arise in driven periodic m
dia. We will focus on the low-energy and long-waveleng
properties of these steady states, in cases where thes
uniquely defined. This should be the case provided ergo
ity is achieved, either through a small nonzero ‘‘therma
noise or via intrinsic chaotic dynamics of the system in t
absence of external noise. We will not discuss ze
temperature systems in which relatively simple global attr
tors exist with nonchaotic~e.g. periodic! dynamics.

In the limit of interest, then, we expect a sort of hydrod
namic description to hold. Such hydrodynamics is partic
larly successful in equilibrium because it is highly co
strained. It must respect both detailed balance~to reduce to
equilibrium statistical mechanics! and the symmetries of the
system—in this case translations, rotations, and reflectio
Out of equilibrium, a putative steady-state equation of m
tion can be much more general. The fluctuations around
driven state need not satisfy any fluctuation-dissipation re
tion, and the external driving force breaks both rotational a
reflection invariance.

For this reason, there are many more parameters in
hydrodynamic description. In the absence of further input
is therefore considerably less powerful than equilibrium h

n

s-
2D
-
e

e
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drodynamics. To make it useful, we need a means of ca
lating these parameters ‘‘microscopically.’’ This is possib
for weak external potentials.

The calculation proceeds in two stages. Beginning wit
microscopic lattice Hamiltonian, we first explicitly coars
grain the equations of motion. This is a mode-eliminati
procedure in momentum space, reminiscent of a single
of rescaling in a renormalization-group calculation. It is th
stage which requires a weak external potential, since
elimination can only be performed perturbatively in the
mode-coupling terms. The end result is an effective equa
of motion for the phonon modes with momenta within
small sphere of radiusL!2p/a in momentum space (a is
the lattice spacing!.

The second step is to transform the equation of mot
from the moving frame~in which the conventional phono
coordinate or displacement field is defined! to the laboratory
frame ~more relevant for physical measurements!. While
technically much simpler than the previous mod
elimination step, it is possible only at this stage, since
transformation can be carried out only as a gradient exp
sion, with the small parameterLa!1.

A. Formulation

The formulation of the problem begins with some micr
scopic Hamiltonian, describing particles connected
springs. The natural degrees of freedom are thus the
placements of these particles, whose gradients are expe
to be small provided the potential acting on the particles
weak. The high-momentum modes being eliminated h
therefore describesmall relative displacements of nearb
~say, neighboring! particles. Small though these are, they a
crucial to the physics of thesliding solid.

Furthermore, the effects of the fixed external potential
expected to be most pronounced when it is has strong p
odic components commensurate with the driven lattice. T
is intuitively reasonable, and indeed comes out of our m
detailed calculations. This physics, however, comes preci
from these high-momentum modes at the scale of the la
spacing. Even if the lattice is not pinned into a static co
figuration, these modes are the most strongly coupled to
static matrix, and thereby give rise to the seeds of interes
nonlinear dynamics.

We consider a general model in which the constituents
the driven lattice may be ‘‘oriented manifolds,’’ which ar
extended in some directions. This allows for systems incl
ing, for example, vortex lines in a three-dimensional sup
conductor. The conformation of a manifold with undisplac
equilibrium transverse positionx in a distorted lattice is de
scribed by the displacement vectoru(x,z), such that the true
position is

X~x,z!5x1u„x,z…, ~2.1!

where u and x are dt-component vectors, whilez has dl
components.

A natural microscopic Hamiltonian, valid in most cases
u-
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H5(
xx8

E
zz8

V[x2x81u~x,z!2u~x8,z8!,z2z8]

1(
x
E

z
U@x1u„x,z!,z]. ~2.2!

Here V@x,z# is a two-body manifold-manifold interaction
andU@x,z# is the external potential of the static medium.

Expanding the interaction potential in the usual way giv
the elastic energy

H'
1

2(x,x8
E

zz8
Ki j ~x2x8,z2z8!ui~x,z!uj~x8,z8!

1(
x
E

z
U@x1u„x,z…,z#, ~2.3!

where the elastic matrix

Ki j ~r !5(
x8

E
z8

] i] jV~r 8!dx,0d~z!2] i] jV@r #. ~2.4!

At this point, it pays to establish some notation. In t
previous equation, we have already adopted a convention
indices. Latin indices alphabetically followingi denote trans-
verse (x) coordinates, whilea,b, . . . ,h denote longitudinal
(z) ones. If an index may range over the full space, a Gr
indexa,b, . . . will be used. We will attempt to usex andz
~with primes, etc.! exclusively as transverse and longitudin
coordinate vectors, with corresponding momentaqt andqz .
These will often be assembled into vectors in the f
d-dimensional space denotedr5(x,z) andq5(qt ,qz).

In Fourier space, using reflection symmetry, the elas
matrix is

Ki j ~q![(
x
E

z
Ki j ~r !eiq–r5(

x
E

z
] i] jV~r !@12eiq–r#. ~2.5!

Overdamped relaxational dynamics is defined by

g] tui~r ,t !52
dH

dui~r ,t !
1 f i , ~2.6!

wheref is an external force. This is equivalent to the equ
tion of motion

g] tui~r ,t !52(
x8

E
z8

Ki j ~r2r 8!uj~r 8,t !

1F̃ i@x1u~r ,t !1vt,z#, ~2.7!

where we have shiftedu to remove the external force,v5f/g,
and

F̃ i~r !52] iU~r !. ~2.8!

In general,v5f/g is not the true steady-state velocity for
given forcef, since interactions with the impurities intermi
tently pin the lattice and thereby reduce the sliding spe
This finite renormalization~which is quantitatively small at
large velocities! can, however, be neglected for the curre
purpose of studying the properties of the steady state. Th
analogous to ignoring the mass renormalization in fi
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theory~or Tc shift in critical phenomena!. Of course from the
experimental point of view, the velocity curvev( f ) ~like the
true Tc) is an important and measurable quantity.

B. Mode elimination

Having set up the dynamics, we are now in a position
perform the coarse graining. We will use the Martin-Sigg
Rose~MSR! formalism,26 which allows the mode elimina
tion to be performed by functional integration. The object
interest in the MSR method is the statistical weight

W@ û,u#5e2 S̃, ~2.9!

where the actionS̃5S01 S̃1, with

S05(
x
E

zt
ûi~r ,t !Fg] tui~r ,t !1(

x8
E

z8
Ki j ~r2r 8!uj~r 8,t !G

~2.10!

and

S̃152(
x
E

zt
ûi~r ,t !F̃ i@x1u~r ,t !1vt,z#. ~2.11!

With this choice of weight, correlation functions are give
by the functional integral

^ui~r ,t !uj~r 8,t8!•••&5E @dû#@du#ui~r ,t !uj~r 8,t8!•••e2 S̃.

~2.12!

In this expression, the left-hand side should be interprete
simply the product of the specifiedui evaluated along the
solution of Eq. ~2.7!. The right-hand side is the result o
functional integration overall functionsu,û. Because of this
identity, we will freely employ angular brackets in eith
context. We note that this equality relies crucially on prop
regularization of the equal-time correlators in the fie
theory. In particular, we will choose the causal conventio

^ui~r ,t !û j~r 8,t !&50. ~2.13!

Correlation functions involving the fieldû have the physica
interpretation ofresponsefunctions, as can be seen by sim
ply differentiating a correlation function with respect to a
applied force. This convention then simply implies that the
is no instantaneous~and hence discontinuous! response to a
perturbation.

Within the MSR formalism, we can now readily carry o
the mode elimination. The fields are first separated into
parts via

u~r ,t !5u,~r ,t !1u.~r ,t !,

û~r ,t !5û,~r ,t !1û.~r ,t !. ~2.14!

Here the slow and fast fields are defined by

u,~r ,t ![E
uqtu,L

E
qzv

u~q,v!eiq–r2 ivt, ~2.15!
o
-

f

as

r

e

o

û,~r ,t ![E
uqtu,L

E
qzv

û~q,v!e2 iq–r1 ivt, ~2.16!

u.~r ,t ![E
uqtu.L

E
qzv

u~q,v!eiq–r2 ivt, ~2.17!

û.~r ,t ![E
uqtu.L

E
qzv

û~q,v!e2 iq–r1 ivt, ~2.18!

where we have adopted opposite Fourier sign convent
for the displacement and response fields, and all momen
integrations are restricted to within the Brillouin zone. Co
relation functions of the slow fields describe all the lon
wavelength~i.e., hydrodynamic and elastic! behaviors of the
system, and can be obtained from the effective weight

Weff @u, ,û,#5e2 S̃eff5E @du.#@dû.#e2 S̃. ~2.19!

For simplicity, let us consider the model at zero tempe
ture, i.e., in the absence of any external time-depend
noise. Because the potential couples the slow and fast mo
we will nevertheless obtain nontrivial renormalizations of t
slow dynamics from the mode elimination.

We proceed by inserting the decomposition in Eq.~2.14!
into the actionS̃. Furthermore assuming that the potentialU
is weak, we may expand the exponential and perform
functional integrations over the fast modes order by ord
re-exponentiating the resulting expressions, which then
pend only upon the slow fields. The elastic part of the Ham
tonian is diagonal in momentum space,

S05E
q,v

ûi~q,v!@ igv1Ki j ~q,v!#ui~q,v!, ~2.20!

so that upon decomposition the slow and fast fields are
coupled in this term:

S0@u,û#5S0@u, ,û,#1S0@u. ,û.#. ~2.21!

The effective potential is therefore

S̃eff5S0@u, ,û,#2 ln^e2 S̃1&0. , ~2.22!

where the angular bracket with the subscripts indicates i
gration over the fast modes (.) with the additional weight
factor e2S0 (0).

From this point onward, the treatment differs for the p
riodic and random potential, so we divide the remainder
this subsection into two parts. Each involves the concep
ally straightforward perturbative calculation of the average
Eq. ~2.22!. This is somewhat tedious technically, so deta
will be given in Appendixes A and B.

1. Periodic potential

We can specify a periodic potential by the Fourier deco
position,

U~x!5(
Q

eiQ–xUQ . ~2.23!
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Note that we have taken the potential to be independen
the continuous longitudinal coordinatesz.

Inserting the above Fourier decomposition and evalua
the expectation value in Eq.~2.22! to second order inU
gives corrections toS0 which correspond to a renormalize
equation of motion~see Appendix A!. Since for smallL, the
remaining ‘‘slow’’ fields have small gradients, the correct
equation of motion may be written in the continuum appro
mation. It takes the general form

g̃ i j ] tuj5Ãia j]auj1B̃iab j]a]buj1C̃ia j bk]auj]buk

1Fi
s@x1u~r ,t !1vt,z#. ~2.24!

Here the gradients may be understood either as lattice di
ences or as the corresponding expressions in momen
space. The coefficients are

g̃ i j 5gd i j 2(
Q

QiQjQkQl uUQu2i
]

]v
Gkl~Q,v•Q!,

~2.25!

Ãia j5(
Q

QiQjQkQl uUQu2i
]

]qa Gkl~Q,v•Q!, ~2.26!

B̃iab j5Biab j
0 2

1

2(Q QiQjQkQl uUQu2
]

]qa

]

]qb Gkl~Q,v•Q!,

~2.27!

C̃ia j bk5
i

2(Q QiQjQkQlQmuUQu2
]

]qa

]

]qb Glm~Q,v•Q!,

~2.28!

where

Biab j
0 [

]

]qa

]

]qb Ki j ~q50! ~2.29!

is the bare linearized elastic matrix. To leading order,
force is unrenormalized,

Fi
s@r #5F̃ i@r #. ~2.30!

Here we have written the expressions in terms of the Fou
transform of the Green’s function,G(q,v), which is defined
in the extended zone scheme~i.e., it is periodically repeated
in each translated copy of the fundamental Brillouin zone!. It
is

G~q,v!5@ ivI 1K~q!#21u~ uqu2L!. ~2.31!

Theu function is present because only a partial mode eli
nation has been performed, so that the slow modes rema
dynamical variables in the coarse-grained theory. Note
these expressionsdiverge in the limit of zero velocity and
identical periodicities, since in this case all theQ are equiva-
lent to the origin in momentum space.

2. Random potential

In the case of the random potential, we adopt the
proach of disorder pre-averaging the MSR function
thereby working directly with the variance of the rando
force. This is done purely for technical reasons: identi
of

g

-

r-
m

e

er

i-
as
at

-
l,

l

results are obtained by coarse graining for a fixed realiza
of disorder and eventually averaging only physical quan
ties.

We take the simplest model for disorder, in whichU(r ) is
Gaussian distributed and statistically translationally inva
ant, with zero mean and second cumulant

@U~r !U~r 8!#ens5G̃~r2r 8!. ~2.32!

The force-force correlator is thus

@ F̃ i~r !F̃ j~r 8!#ens52] i] j G̃~r2r 8!. ~2.33!

The averaged statistical weight is readily computed:

†W@ û,u#‡ens5e2S, ~2.34!

with S5S01S1, and

S15
1

2(r ,r8
E

zz8tt8
ûi~r ,t !û j~r 8,t8!] i] j G̃@x2x81u2u8

1v~ t2t8!,z2z8#. ~2.35!

As before, we can coarse grain by integrating out the f
(.) modes. The analog of Eq.~2.22! is

Seff5S0@u, ,û,#2 ln^e2S1&0. . ~2.36!

In Appendix B, we compute this average to second orde
S1. This again gives an equation of motion of the form, E
~2.24!, but with

Ãia j52(
x
E

zt
G̃ i jkl @x1vt,z#r aGkl~r ,t !, ~2.37!

g̃ i j 5gd i j 1(
x
E

zt
G̃ i jkl @x1vt,z#tGkl~r ,t !, ~2.38!

B̃iab j5Biab j
0 1

1

2(x
E

zt
G̃ i jkl @x1vt,z#r ar bGkl~r ,t !,

~2.39!

C̃ia j bk52
1

2(x
E

zt
G̃ i jklm@x1vt,z#r ar bGlm~r ,t !,

~2.40!

where we have abbreviatedG̃ i j •••

[] i] j•••G̃ . Also useful
are the corresponding expressions in momentum space,

Ãia j5E
q
qiqjqkql G̃~q!i

]

]qa Gkl~q,v•qt!, ~2.41!

g̃ i j 5gd i j 2E
q
qiqjqkql G̃~q!i

]

]v
Gkl~q,v•qt!, ~2.42!

B̃iab j5Biab j
0 2

1

2Eq
qiqjqkql G̃~q!

]

]qa

]

]qb Gkl~q,v•qt!,

~2.43!
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C̃ia j bk5
i

2Eq
qiqjqkqlqmG̃~q!

]

]qa

]

]qb Gkl~q,v•qt!.

~2.44!

A correctiondG i j (r ) is also obtained to the random forc
correlator. Because it is unpardonably ugly, we quote it o
in Appendix B. It is, however, straightforward to show th
the renormalized force-force correlatorcannotbe written in
terms of a random potential correlator, i.e.,

G i j ~r ![G̃ i j ~r !1dG i j ~r !Þ2] i] jG~r !, ~2.45!

for any function G(r ). The difference from the equilibrium
form can be accounted for by separating the force into
components:

Fi
s~r !5Fi

eq~r !1Fi
neq~r !, ~2.46!

where the equilibrium componentFi
eq is the gradient of a

potential, so that

@Fi
eq~r !F j

eq~r 8!#ens52] i] jG
eq~r2r 8!. ~2.47!

The other component we denote a (u-independent! static
force, with the correlator

@Fi
neq~r !F j

neq~r 8!#ens5gi j d~r2r 8!. ~2.48!

Clearly, since the correction termdG i j is small, we have

Geq~r !'G̃~r !. ~2.49!

The static force variance is determined, however, entirely
the correction. It can be obtained by integrating

gi j 5E
r
dG i j ~r !. ~2.50!

Substituting in Eq.~B9! from Appendix B, all but the first
and fourth terms are total derivatives and hence integrat
zero. After a certain amount of manipulation, we find

gi j 5E
q
qiqjqkqlqmqnuG̃~q!u2Gkm~q,qt–v!@Gln~q,2qt–v!

2Gln~q,qt–v!#. ~2.51!

As expected, this expression vanishes forv50, i.e., in order
to satisfy the fluctuation-dissipation relation in equilibrium
the random forcemustbe the derivative of a random poten
tial.

C. Transformation to laboratory frame

Up to this point, we have worked with conventional di
placement fields, defined in the crystal frame. This me
that each particle in the lattice is labeled by its equilibriu
position r5(x,z), and that its actual transverse position
given by

X5x1vt1u~x,z,t !. ~2.52!

Most measurements in the systems of interest are, howe
conducted in the laboratory frame. It is therefore advan
geous to adopt a description based directly in this frame.
do so, we define a new fieldf(r ,t) to be the displacement o
y

o

y

to

s

er,
-
o

the particle which is located at positionr at time t. Formally,
this is described by the implicit equation

f i~X,z,t !5f i„x1vt1u~r ,t !,z,t…5 ũ i~r ,t !. ~2.53!

Here, becauseu is defined only at a discrete set of points$x%,
we have written the previous equation in terms of
smoothed continuum fieldũ defined at all space points. Fo
many purposes this distinction is insignificant, but it w
return at one important juncture.

At this point the need for coarse-grainingprior to the
frame transformation is clear. Eq.~2.53! has an unambiguou
solution definingf only when]aui!1. In this case, we can
obtain the transformation rules for gradients by simply d
ferentiating. They are

] t ũ i5~d i j 1] jf i !~] t1v•¹!f j1•••, ~2.54!

]a ũ i5]af i1]af j] jf i1•••, ~2.55!

]a]b ũ i5]a]bf i1•••. ~2.56!

We are now in a position to transform the equation
motion, Eq.~2.24!. The first step is change fromu field to
the ũ field. This is done by multiplying by a smoothing func
tion and summing, using

ũ~x,z,t !5adt(
x8

D~x2x8!u~x8,z,t !, ~2.57!

whereD(x) is ad-like function smoothed out on the scale
the lattice spacinga, i.e., *x8D(x82x) f (x8)5 f (x) and
D(0)51.

Carrying out this procedure, the gradient and tim
derivative terms are essentially unchanged, withu→ ũ to a
good approximation. The discreteness of the lattice sum
important for the force term, however. It becomes

adt(
x8

D~x2x8!Fi
s@x81vt1u~x8,z,t !,z#

5(
Q

E
x8

eiQ'•x8D~x2x8!Fi
s@x81vt1u~x8,z,t !,z#

'(
Q

eiQ'•xFi
s@x1vt1 ũ~x,z,t !,z#. ~2.58!

Making the final transformation fromũ to f, the force
term becomes

Fi@X,z;f,t#5(
Q

eiQ•„X2vt2f~X,z,t !…Fi
s@X,z#. ~2.59!

Putting this together with the gradient transformation
Eq. ~2.24! becomes

g i j ] tf j~X,z,t !5Aia j]af j1Biab j]a]bf j

1Cia j bk]af j]bfk1Fi@X,z;f,t#.

~2.60!
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At this point, we can regardX as a dummy variable and trea
Eq. ~2.60! as simply a continuum partial differential equ
tion. The transformed gradient coefficients are

g i j 5 g̃ i j , ~2.61!

Aia j5Ãia j2vag̃ i j , ~2.62!

Biab j5B̃iab j , ~2.63!

Cia j bk5C̃ia j bk2 g̃ i j dakv
b1Ãiakd j b . ~2.64!

III. LINEARIZED THEORY

In the previous section we derived the proper form of
hydrodynamic equations, Eqs.~1.11!, describing the low-
energy, long-wavelength properties of a periodic medi
driven through either a periodic or quenched random po
tial. These equations are distinct from their equilibriu
counterpart in three respects. First, in addition to the w
known convective term arising when transforming from t
crystal to the laboratory frame, the coupling of the driv
system to the external potential yields several other te
linear in the gradients of the displacement field; these
collectively described by nonzero coefficientsAia j . Second,
the equations contain nonequilibrium KPZ-type nonlinea
ties that can be thought of as corrections to linear elastic
Third, in the random case there is anonequilibriumcompo-
nent of the static~i.e., f-independent! pinning force. This
force is a genuine nonequilibrium effect, as itcannotbe rep-
resented as the gradient of a potential and vanishes in
absence of external drive.

The remainder of this paper focuses on the random c
which is of more immediate experimental relevance. A
though, as discussed in the Introduction, a general analys
Eqs. ~1.11!, is beyond the scope of this paper, we take t
section to discuss the weak-disorder limit, in which only t

leading ~in G̃) contributions to each term are kept. In th
approximation the dampingg i j 5gd i j is diagonal, and the
leading linear gradient term is simply the convective deri
tive, Aia j'2gd i j v

a. Similarly keeping only the bare elasti
matrix, we obtain the simplified set of nonequilibriu
elastic-hydrodynamic equations for the driven lattice,

g~] t1v•¹t!f i5Biab j
0 ]a]bf j1Fi@r ,f,t#1h i~r ,t !, ~3.1!

whereB0 is the usual elastic matrix,h i represents ‘‘thermal’’
noise~which as we will see in Sec. V can appear even at z
physical temperature!, and the random forceFi is given by
Eqs. ~1.12! and ~1.13! and contains all nonlinearities. Not
that we have kept both the equilibrium and nonequilibriu
components contained inFi , since, although these are o

differing order inG̃ , they cannot be regarded as correctio
to any zeroth-order terms. One important ingredient wh
has been left out of Eq.~3.1! is the set of KPZ nonlinearities
(Cia j bk terms!. While these coefficients are probably sma
they may very well modify the asymptotic long-distance b
havior. Based on previous work on somewhat simpler~but
instructive! models,24,27 we expect that these effects wi
only increasethe distortions of the moving lattice, and fu
e
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thermore, that the increase in displacements will be m
pronounced in the longitudinal direction.

We therefore proceed with the analysis of Eq.~3.1!, ex-
pecting that our resultsunderestimatethe roughness in the
moving lattice, and therefore provide a necessary~but not
sufficient! condition for its stability. To proceed, we not
that, as pointed out by Giamarchi and Le Doussal,28 many of
the terms in the random force, Eq.~2.59!, are oscillatory in
time. Such oscillatory terms average out at large sliding
locities, when the ‘‘washboard’’ frequenciesvQ5Q•v are
large. Even when they are not large, they generate only fi
renormalizations of the other parameters in the model.
therefore drop this oscillatory part ofF, keeping only the
Fourier components of the force orthogonal to the mean
locity,

Fi@r ,f#→ (
Q•v50

eiQ•~x2f!Fi
s~r !, ~3.2!

where we have dropped the explicit time dependencet inside
Fi , since it has disappeared in this approximation. Re
that thef-independent forceFi

s(r ) contains both equilibrium
and nonequilibrium contributions, with the correspondi
correlators given in Eqs.~2.46!–~2.51!.

In this section we will further simplify the problem an
linearize the nonequilibrium hydrodynamic equations~3.1!.
We will then discuss the predictions of the linearized theo
for the decay of translational and temporal order in t
driven lattice.

We recall that we have used the labels longitudinall )
and transverse (t) to denote the directions along the orient
manifolds and transverse to them, respectively. T
d-dimensional position vector was then written in terms o
transverse coordinatex and a longitudinal coordinate vecto
z asr5(x,z). We now choose thex direction~one of thedt
x coordinates! along the direction of the driving force (v
5v x̂) and denote byr' thed21 directions transverse to th
external drive (d5dl1dt). Thesed21 directions can be
further broken up into components transverse and longitu
nal to the oriented manifolds,r'5(y,z), with y a
dt21-dimensional vectors denoting the components of
transverse displacement that are also perpendicular to
external driving force. Thedt-dimensional transverse coord
nate space is then described by a one-dimensional coord
x ~not to be confused withx) and y, respectively, parallel
and perpendicular to the direction of motion, withx5(x,y).
The d-dimensional position vector is written asr5(x,z)
5(x,y,z). We will also use the labels parallel (i) and per-
pendicular (') to denote the directions parallel and perpe
dicular to the external drive. For concreteness we specia
to a lattice where thedl directions along the manifolds tha
compose the lattice are isotropic and the longitudinal ela
properties are described by a single elastic constant, den
by c44. We assume thedt-dimensional lattice is described b
isotropic elasticity, with two elastic constants, a compr
sional modulusc11 and a shear modulusc66. Our model
hydrodynamic equations for the driven lattice are then giv
by

g~] t1v]x!f i5@c66¹ t
21c44¹z

2#f i1~c112c66!] i¹t•f

1Fi@r ,f#, ~3.3!



he

ca
a

la
a

a

t

th
un

e

d

y

o-
e
e

re
to
di
io
e

re

cs

c

s
,

for
ial

l
n-

ily
ion

-

ld

7716 57BALENTS, MARCHETTI, AND RADZIHOVSKY
where for the purposes of this section we have dropped t
mal noise, thereby ignoring thesubdominantthermal fluctua-
tions. These equations describe the important physical
of the lattice of magnetic-flux lines in a three-dimension
superconductors (dl51, dt52). For dl50 and dt52 the
equations describe the elastic properties of driven vortex
tices in superconducting films, driven magnetic bubble
rays, or driven Wigner crystals.

The displacement field can be split into components p
allel and perpendicular to the mean motion,f5(fx ,fy).
The transverse displacementfy is a (dt21)-dimensional
vector. The pinning force is then seen to be independen
fx :

Fi@r ,fy#5 (
Q•v50

eiQ•~x2fy!@Fi
eq~r !1Fi

neq~r !#, ~3.4!

The independence of the static pinning force onfx is a con-
sequence of the precise time-translational invariance of
system. This requires that the equation of motion be
changed upon transformingt→t1t, fx→fx1vt. As ar-
gued above, all explicitly time-dependent terms are irr
evant at low frequencies, thereby implying independence
fx in the same limit. Equation~3.3! is thus linear in the
longitudinal displacementfx , which can therefore be treate
exactly. That is, due to this linearity,fx is slaved in its
dynamics to the nontrivial dynamics offy and can therefore
be eliminated from the equation of motion Eq.~3.3! ~i.e., can
be integrated out exactly in the MSR formulation of the d
namics!.

The only remaining nonlinearity in the equation of m
tion, Eq. ~3.3! is in fy , entering through the random forc
Fi@r ,fy#, which, in this section, we treat perturbatively. W
stress that the validity of this perturbative calculation
quires the displacementsfy transverse to the mean motion
be small, but places no constraints on the size of the
placements along the direction of motion. The perturbat
theory inFi@r ,fy# thus gives a complete description of th
behavior of positional correlations in thex direction out to
asymptotic length scales for the model of Eq.~3.1!. In con-
trast, the predictions of the perturbation theory for the cor
lations of thetransversedisplacementfy presented below
are only valid in the Larkin regime; RG methods of Se
V,VI must be used to go beyond the Larkin length scale.

To lowest order in the random force, we simply negle
the displacement fieldfy in Fi@r ,fy#, Eq. ~3.4!. The Fourier
components of the pinning force are then given by

Fi
~0!~q!5 (

Q•v50
Fi

s~qt1Q,qz!, ~3.5!

with correlations

@Fi
~0!~q!F j

~0!~q8!#ens

5~2p!dld~dl !~qz1qz8!~2p!dtd~dt!~qt1qt8!D i j , ~3.6!

and

D i j 5gi j 1 (
Q•v50

QiQj G̃~Q!

5~D1g0!~d i j 2d ixd jx!1g1d ixd jx . ~3.7!
r-
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The disorder strengthD is the variance of the equilibrium
part of the static pinning force,

D5
1

dt
(

Q•v50
Q2G̃~Q!. ~3.8!

The coefficientsg0 andg1 are determined by the correlation
gi j of the nonequilibrium part of the static pinning force
according to

gi j 5g0~d i j 2d ixd jx!1g1d ixd jx . ~3.9!

They are evaluated in Appendix C, where it is shown that
large sliding velocities and short-ranged pinning potent
(j!a, with j the range of the pinning potential!,

g0,1;
D2

v ~42dl !/2
, ~3.10!

valid for dl,4, the range relevant to all known physica
realizations of this model. The components of the mea
square displacement tensor are given by

Bi j ~r !52E
q
E

v
@12cos~q•r !#@^f i~q,v!&^f j* ~q,v!&#ens.

~3.11!

The correlation functions of the displacement field are eas
calculated in Fourier space. The linear equation of mot
for the disorder-induced displacement yields

^f i~q,v!&5@GL~q,v!Pi j
L ~qt!

1GT~q,v!Pi j
T ~qt!#2pd~v!Fi

~0!~q!, ~3.12!

whereGL(q,v) andGT(q,v) are the longitudinal and trans
verse elastic propagators, respectively,

GL~q,v!5
1

ig~v2vqx!1c11qt
21c44qz

2
, ~3.13!

GT~q,v!5
1

ig~v2vqx!1c66qt
21c44qz

2
, ~3.14!

andPi j
L (qt)5q̂ti q̂t j andPi j

T (qt)5d i j 2q̂ti q̂t j are the familiar

longitudinal and transverse projection operators, withq̂t
5qt /qt . The correlation functions of the displacement fie
are given by

@ u^fx~q,v!&u2#ens52pd~v!F g1

~gvqx!
21@c66qt

21c44qz
2#2

1OS D
qx

2

qy
2 uGLu2D Gd~0!, ~3.15!

@ u^fy~q,v!&u2# ens52pd~v!F D1g0

~gvqx!
21@c11qt

21c44qz
2#2

1OS g1

qx
2

qy
2 uGTu2D Gd~0!, ~3.16!
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whered(0)[(2p)d11d(v50)dd(q50). Because the wave
vector integral in Eq.~3.11! is dominated byqx;(cqy

2/gv),
terms containing (qx

2/qy
2)uGTu2 or (qx

2/qy
2)uGLu2 yield less di-

vergent~generally bounded! contributions to the fluctuation
compared to the terms without this angular factor. The
havior in real space is displayed here for the casedl50,
relevant to vortex lattices in thin superconducting films. T
corresponding expressions fordl51, describing flux-line ar-
rays in three-dimensional superconductors, are given in
pendix D. Fordl50 we obtain

Bxx~x,y!;g1

uyu32dt

gvc66
F 0

~dt!S uxuc66

gvy2 D , ~3.17!

B''~x,y!;~D1g0!
uyu32dt

gvc11
F 0

~dt!S uxuc11

gvy2 D , ~3.18!

where

F 0
~dt!~s!5E ddt21u

~2p!dt21

1

u2 @12cos~ ŷ•u!e2su2
#. ~3.19!

The asymptotic behavior of the scaling function is given
F 0

(dt)(0)5const andF 0
(dt)(s);s(32dt)/2 for s@1.

The instability towards the smectic can already be crud
understood from Eqs.~3.17! and~3.18!. The key point is that
the growing displacements in these equations represent
strains, which tend to be relieved by the introduction of d
locations. Not all dislocations are equivalent, however.
fact, a dislocation preferentially relieves strains along
direction of its Burger’s vector. From Eqs.~3.17! and~3.18!,
the strains along the direction of motion are clearly larg
roughly by the ratioc11/c66, which is very large for vortex
lattices @owing to the long magnetic screening length~pen-
etration depth! l#. Relieving the largest strains first clear
favors unbinding those dislocations with Burger’s vecto
parallel to the drive. This leads to the smectic state wh
retains transverse but not longitudinal positional order.
now explore Eqs.~3.17! and ~3.18! in more detail.

Fluctuations in the direction of the driving force are dom
nated by thenonequilibriumpart of the random drag and b
shear modes. As discussed earlier, the correspond
power-law scaling offx holds out to arbitrary length scale
Since

Bxx;uyu32dt, for y2@~c66/gv !uxu, ~3.20!

Bxx;uxu~32dt!/2, for y2!~c66/gv !uxu, ~3.21!

longitudinal density correlations are short ranged indt,3,
with a stretched-exponential decay. Since, as argued ab
this behavior will persist even once the full nonlinear for
for Fi@r ,fy# is taken into account, the validity of the elast
model itself is in doubt. In particular, for the physical case
dt52, the spatial correlations are in fact exponentially d
caying, and it is natural to expect that this drives the unbi
ing of dislocations with Burger’s vectors parallel to th
drive. If this is the case, both translational and temporal
der for Q•vÞ0 are short range in the driven steady state

In contrast, both the equilibrium and nonequilibrium pa
of the static pinning force contribute to fluctuations in t
-

e

p-

ly

ge
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e

r,

s
h
e

g

ve,

f
-
-

r-

transverse direction, which are controlled by thecompres-
sional modes of the system. For large sliding velocity
weak disorder and intermediate length scales, the equ
rium part of the static pinning force will dominate asg0
;(D/v)2!D in this limit. The perturbation theory employe
here breaks down, however, at lengths larger than the La
lengths,Rc

y andRc
x defined byB''(Rc

x ,Rc
');j2, wherej is

the range of the pinning potential. The Larkin volume
defined for deformations of the lattice in the transverse
rection (fy;j) and it is anisotropic, with

Rc
y;S j2vc11

D D 1/~32dt!

, ~3.22!

Rc
x;gv~Rc

y!2/c11. ~3.23!

It is elongated in the longitudinal direction at large slidin
velocities. Longitudinal displacements (fx) grow without
bound onall length scales indt,3 and a Larkin domain
cannot be defined in this case. As usual, the nonlinearitie
the static pinning force must be incorporated nonpertur
tively to describe the asymptotic decay of the correlatio
beyond the Larkin length scales. We will consider this pro
lem in more detail in the following sections. A natural su
picion is, however, that at asymptotically large distances
finite temperature in two dimensions, the nonequilibriu
random drag,g0, will dominate, destroying also the trans
verse periodicity.

We stress that longitudinal fluctuations—that grow wit
out bound—are induced by shear modes of the lattice. Th
consistent with the intuition that shear modes~rather than
compressional ones! play the dominant role in melting a
crystal. In contrast, transverse fluctuations are controlled
compressional modes. Compressional modes are prese
both solids and liquids and are generally not expected
generate the unbounded strains needed to yield disloca
unbinding.

IV. DRIVEN SMECTIC DYNAMICS

It was shown in the previous section that disorder-induc
fluctuations parallel to the direction of the mean motion gr
algebraically indt,3. This algebraic growth of fluctuation
yields short-range positional correlations along the direct
of the external drive, and it is our belief that this implies t
breakdown of the elastic description along the direction
motion (x). While we have not considered explicitly the ro
of dislocations here, analysis of similar equations of mot
including nonlinearities24,27 suggests that this should occu
~for dt<2) via the unbinding of dislocations with Burger
vectors parallel to the driving force.29 This mechanism
should convert the longitudinal translation and temporal c
relations to the exponential~or stretched exponential! form
typical of a liquid. This is also in agreement with real-spa
images of driven two-dimensional vortex lattices (dt52, dl
50) obtained via numerical simulations.30 Therefore fordt
52 anddl50 the driven lattice can only retain periodicity a
reciprocal-lattice vectorstransverseto the direction of mo-
tion. At best, therefore, it consists of a stack of on
dimensional liquidlike channels, sliding parallel to the dire
tion of motion19 and has the spatial symmetry of a smec
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liquid crystal. It is, however, important to stress that in re
equilibrium smectic liquid crystals the underlying rotation
symmetry~which is brokenspontaneously! enforces softLa-
placian in-layer elasticity.31 In contrast, the rotational sym
metry of the nonequilibrium ‘‘driven smectic’’ discusse
here isexplicitly broken by the external drive. These syste
are therefore characterized by conventionalgradientelastic-
ity.

For the casedt52 anddl51, corresponding to magnetic
flux-line arrays in three-dimensional superconductors,
driven crystal is potentially stable as translational corre
tions decay logarithmically also in the direction of the a
plied force. We recall, however, that the results obtained h
by dropping the KPZ terms are expected to strongly und
estimate the growth of longitudinal fluctuations of a movi
crystal. Since in d53 the transverse line smectic state
equally stable it is possible to have a phase transition
tween the transverse smectic~expected at intermediate ve
locities! and a moving glass~stabilized at high velocities!.
The nonequilibrium smectic state~illustrated in Fig. 4! then
consists of liquidlike sheets of flux lines lying in planes pa
allel to thezx plane. These sheets are periodically space
the y direction, normal to the external drive. Within eac
sheet, however, there is no positional order of the flux lin
and the correlations are liquidlike.

In a smectic liquid crystal the density fieldr becomes an
independent variable, as it is no longer slaved to the
placement field. The density is a conserved quantity
therefore a density fluctuation relaxes at a rate that vanis
in the long-wavelength limit, i.e., it is a hydrodynamic va
able. In addition, the system still has broken translatio
symmetry in the direction perpendicular to that of the me
motion.Both the Goldstone modes of the broken translat
symmetry~the displacementfy) and the conserved densit
field (r) must be retained in a hydrodynamic description.
the remainder of this section we consider the casedt52 and
dl50 of a two-dimensional lattice driven over a disorder
substrate. The hydrodynamic variables of the driven sme
are then a conserved density fieldr and the one-dimensiona
displacement vectorf'(x,z)→f(x,z), describing displace-
ments of the layers in the directions normal to the exter

FIG. 4. Schematic illustration of a driven line smectic, i.
smectic in three dimensions, withdt52, dl51.
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drive and to the layers themselves. As we are only interes
in overdamped systems here, the momentum and energy
not conserved and therefore need not be included explic
in our hydrodynamic description.

The continuum hydrodynamic free energy for the ov
damped smectic is given by

Fs5
1

2Ex
H cLS dr

r0
D 2

1c11
y ~]yf!21K1~]xf!2

12K2~]yf!
dr

r0
J , ~4.1!

wheredr5r2r0, with r0 the equilibrium density. HerecL

is the smectic bulk modulus,c11
y is the in-layer compressibil-

ity, andK1 is the layer bending stiffness. The coupling co
stantK2 also has dimensions of an elastic constant. The
drodynamic equations of the driven smectic conta
additional nonequilibrium terms, as compared to their eq
librium counterpart. The nonequilibrium terms can be co
structed by preserving the invariance under inversions ab
the direction of the external drive (y→2y, f→2f) and
the fact that physical properties are invariant under
‘‘phase shift’’ f→f1a.

Density conservation requires thatr satisfies a continuity
equation,

] tdr1¹• j50, ~4.2!

where j is the number current density. The equation for t
layer displacement@along y, transverse to direction of mo
tion ~x!# is given by

~] t1v]x!f5
j y

r
2

G0

r0
S dFs

df
2Fy@x,f# D , ~4.3!

with G0 being a kinetic coefficient andFy being they com-
ponent of the nonoscillating part of the pinning force giv
in Eq. ~3.2!. We neglect here the oscillatory contributions
the pinning force that only give small corrections to t
nonoscillatory part. We also neglect other contributions
the pinning force that couple to the density. These would
important for a full systematic RG treatment, which we
not attempt here. A discussion of more general equations
the driven smectic that incorporate these terms is left
future work.

To close the equations, a constitutive relation for the c
rent flux j is needed. This is given by

j x5vdr1v1dr1r0v2]yf2r0G1]x

dFs

dr
, ~4.4!

j y5r0v3]xf2r0G2]y

dFs

dr
. ~4.5!

The first term on the right-hand side of Eq.~4.4! arises from
the transformation to the laboratory frame. The terms prop
tional to the coefficientsv1, v2 and v3 are nonequilibrium
terms that can be generated upon coarse graining, by
method described in Sec. II for the driven lattice. Other no
equilibrium terms that yield contributions that are higher o
der in the gradients, and therefore subdominant, have b
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neglected here. By inserting the constitutive equation for
current in Eqs.~4.2! and ~4.3!, one obtains

~] t1 ṽ 1]x!dr52r0ṽ 2]x]yf1@D1]x
21D2]y

2#dr, ~4.6!

and

~] t1 ṽ 3]x!f5D5]y

dr

r0
1@D3]x

21D4]y
2#f1

G0

r0
Fy@x,f#.

~4.7!

Additional ‘‘velocities’’ ṽ 1, ṽ 2, ṽ 3 have been defined as

ṽ 15v1v1 , ~4.8a!

ṽ 25v21v3 , ~4.8b!

ṽ 35v2v3 . ~4.8c!

The coefficientsDi have dimensions of diffusion constan
and are given by

D15G1cL /r0 , ~4.9a!

D25G2cL /r0 , ~4.9b!

D35G0K1 /r0 , ~4.9c!

D45~G0c11
y 2G2K2!/r0 , ~4.9d!

D55~G0K22G2cL!/r0 . ~4.9e!

By solving the hydrodynamic equations in the lon
wavelength limit, one finds that the decay of density a
displacement fluctuations is governed by two diffusi
modes with eigenfrequencies,

vf5 ṽ 3qx2 i FD3qx
21S D42

ṽ 2D5

ṽ 12 ṽ 3
D qy

2G , ~4.10!

vr5 ṽ 1qx1 i FD1qx
21S D21

ṽ 2D5

ṽ 12 ṽ 3
D qy

2G . ~4.11!

For stability we must haveD42 ṽ 2D5 /( ṽ 12 ṽ 3).0 and
D21 ṽ 2D5 /( ṽ 12 ṽ 3).0. The diffusion constantsD1 and
D3 are clearly positive definite. The first mode describ
long-wavelength deformations of the layers and governs
decay of displacement fluctuations. The second mode co
sponds to the permeation mode of the driven ‘‘smectic’’ a
describes the transport of mass across the layers that
occur in these systems without destroying the layer per
icity. It is associated with density fluctuations and it has i
portant physical consequences for the response of the dr
smectic to an additional small driving force applied norm
to the layers~see Sec. VII!.

An important physical quantity that can be measured
both simulations and experiments is the structure facto
the driven periodic medium. As the driven smectic has b
ken translational symmetry in they direction, normal to the
layers and to the external drive, the density field can be w
ten as
e

d

s
e
e-
d
an
-

-
en
l

n
f
-

t-

r~x!5rL~x!1(
Qy

rQy
~x!eiQyy, ~4.12!

where Qy5n2p/a are the reciprocal-lattice vectors corr
sponding to a layer spacinga, with n an integer,rQy

are the

corresponding Fourier components of the density, andrL(x)
is the smooth~liquidlike! part of the density field. The smec
tic structure factor is then given by

S~q'!5SL~q'!1(
Qy

E
x
e2 iqxxe2 i ~qy2Qy!y^rQy

~x!r2Qy
~0!&,

~4.13!

with SL(q')5^urL(q')u2&. The smectic structure function
should therefore consists of a broad liquidlike backgrou
SL(q'), with superimposed peaks at the reciprocal-latt
vectorsQy , normal to the direction of mean motion@see Fig.
2~b!#. As discussed in the Introduction, in a Gaussian the
the correlator of the order parametersrQy

(x) can be written
in terms of the mean-square displacement, according to

^rQy
~x!rQy

* ~0!&'r1
2e2Qy

2^@f~x!2f~0!#2&. ~4.14!

The disorder-induced transverse mean square displaceme
easily calculated from Eqs.~4.6! and~4.7! by treating the the
random forceFy@x,f# as a perturbation, in an analysis sim
lar to that of Sec. III. Conceptually simple but algebraica
tedious calculations show that including the coupling to
density does not change the resulting decay of the correla
function. For simplicity we therefore neglect this coupling
Eq. ~4.7! ~i.e., letdr50) and obtain

@^@f~x!2f~0!#2&#ens5
~D1g0!G0

2

2pr0
2D4ṽ 3

yF 0
~2!S uxuD4

ṽ 3y2 D . ~4.15!

The scaling functionF 0
(2)(s) is identical to that obtained in

Eq. ~3.18! and it has the asymptotic behaviorF 0
(2)(0)

5const andF 0
(2)(s);As for s@1. The perturbation theory

therefore predicts that the smectic Bragg peaks atqy5Qy
decay exponentially with the system size. In other wor
disorder would destroy the transverse periodicity of t
smectic. In fact, we will see in the following sections th
this result continues to hold nonperturbatively. The pow
law scaling of transverse Bragg peaks obtained in simu
tions of two-dimensional driven vortex lattices30 is therefore
most likely an artifact of small systems and weak disord
and would crossover to a disordered form at longer d
tances. We will return to this point later in Sec. VII.

V. RENORMALIZATION GROUP FOR ‘‘TOY’’ SMECTIC

A. Model and MSR formulation

In this section, we will consider a simplified model for th
smectic phase, in which the hydrodynamic fluctuations of
conserved density are neglected. This ‘‘toy’’ smectic is th
modeled simply by dropping Eq.~4.6! and setting dr
5const, leaving the single equation of motion

g~] t1v]x!f5K i]x
2f1K'¹'

2 f1F~f,r !1h~r ,t !. ~5.1!
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Here we have pulled out a factor ofg5r0 /G0, let K i
[D3r0 /G0, K'[D4r0 /G0, andF'→F. For simplicity we
assume longitudinal and transverse elasticity are governe
the same elastic constantK' . We have also added the ran
dom time-dependent ‘‘thermal’’ noiseh, satisfying

^h~r ,t !h~r 8,t8!&52gTd~r2r 8!d~ t2t8!. ~5.2!

The random forceF is characterized by the correlator

@F~f,r !F~f8,r 8!#ens5D~f2f8!d~r2r 8!. ~5.3!

The functionD(f) is periodic with the smectic lattice spac
ing, which we take to bea52p. It includes both the equi-
librium and nonequilibrium components. The latter can
viewed as simply an overall constant contribution toD(f).
In addition to discounting density fluctuations, Eq.~5.1! also
neglects an allowed KPZ nonlinear term of the form

FKPZ5C]xf]yf, ~5.4!

which should be added to the right-hand side of the equa
of motion. Simple power-counting shows, however, that,
contrast to a drivenlattice this term is stronglyirrelevant in
a transverse smectic~see below!.

To analyze Eq.~5.1!, we use the method of MSR to tran
form the stochastic equation of motion into a field theo
similar to what was already done in the Sec. II B to perfo
the single-step coarse graining. In this case, the MSR ‘‘p
tition function’’ is

Z5E @df̂#@df#e2S, ~5.5!

whereS5S01S1, with

S05E
r t
$f̂ r t@g~] t1v]x!2K i]x

22K'¹'
2 #f r t2gTf̂ r t

2 %, ~5.6!

and the interaction term

S152
1

2Er ,tt8
f̂ r tf̂ r t8D~f r t2f r t8!. ~5.7!

By construction,Z51; nontrivial correlation and respons

functions are obtained, however, by inserting appropriatef̂
andf operators into the functional integrand.

B. Power counting

Let us first consider under what conditions the rand
force is arelevantperturbation in the sense of the renorm
ization group~RG! using simple power counting. To do s
we rescale the coordinates and fields by a scale factorb.1:

x'→bx' , ~5.8!

x→bzx, ~5.9!

t→bzt, ~5.10!

f̂→bx̂f̂. ~5.11!

Note that, anticipating a periodic fixed point, we will n

rescalef. To fix the exponentsz and x̂, we choose to keep
by

e

n

,

r-

the termsgv and K' fixed in the quadratic actionS0. This

implies d231z1z1x̂50 andd211z1x̂50, or

z52, ~5.12!

x̂52d112z. ~5.13!

Note that becausef was kept invariant, the temperatureT
necessarily rescales

T→b12dT. ~5.14!

Clearly this is a somewhat artificial choice forD50, since
the theory retains no memory of the periodicity off. It is
rather natural, however, forDÞ0, and will be returned to
below. The exponentz is more subtle. Naively, it should b
determined by the condition thatg be invariant under rescal
ing. Neglecting the random force, we then obtain

znaive52. ~5.15!

We will see that even for small nonzeroD, this is actually
very far from correct.

Fortunately, the rescaling ofD(f) andC is in fact inde-
pendent ofz. The KPZ nonlinearity is stronglyirrelevant:

C→C/b→0, ~5.16!

while the disorder correlator obeys

D~f!→b32dD~f!. ~5.17!

We therefore see that ford.3, the random force is irrel-
evant, and at long length scales has a negligible effect on
moving smectic. Ford<3, however, power counting is in
sufficient to determine the fate of the system.

C. Zero-temperature RG

To proceed, we will perform a systematic RG, workin
perturbatively inS1, expanding it from the exponential an
integrating out ‘‘fast’’ modes with largetransversemo-
menta. This is simplest in the scheme with neither a f
quencyv nor longitudinal momentumqx cutoff. The fields
are first decomposed into their slow (,) components with
q',L/b and fast (.) components withL/b,q',L,
whereL is a hard transverse momentum-space cutoff. T
is,

f5f,1f. , f̂5f̂,1f̂. . ~5.18!

Then the partition function is

Z5E @df̂,#@df,#e2S0@f, ,f̂,#^e2S1@f,1f. ,f̂,1f̂.#&. ,

~5.19!

where the brackets denote an average over the fast fields

respect to the quadratic actionS0@f. ,f̂.#. Relabeling the

surviving slow fieldsf,→f, f̂,→f̂, the renormalization
of the effective action due to the mode elimination is giv
by

e2Seff @f,f̂#5e2S0@f,f̂#^e2S1@f1f. ,f̂1f̂.#&. . ~5.20!
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A cumulant expansion gives

^e2S1&.5expH 2^S1&.1
1

2
^S1

2&.,c1•••J , ~5.21!

where the subscriptc indicate the cumulant~connected! cor-
relator. From Eq.~5.14!, it is natural to suspect that ford
.1 much of the interesting physics is dominated by sm
~renormalized! temperatures. With this in mind, we first con
sider the RG in the extremeT50 case. Then the only non
vanishing expectation values correspond toresponsefunc-
tions:

G.~r ,t !5^f~r 81r ,t81t !f̂~r 8,t8!&.5E
L/b

L ddq'

~2p!d21

3E dqx

2p E dv

2p

e2 iq–r1 ivt

ig~v2vqx!1K iqx
21K'q'

2 .

~5.22!

It is instructive to perform some of the integrations abo
and bring out the dependence onx and t. We are primarily
interested in the limitK i→0, sinceK i is obviously less rel-
evant thangv, which has one lessx derivative. In that limit
these integrals are trivial, and we obtain

G.~r ,t !5E
L/b

L dd21q'

~2p!d21

1

g
e2 iq'–re2~K' /g!q'

2 tu~ t !d~x2vt !.

~5.23!

From this we see that the response function is causal
represents unidirectional propagation along the positivx
axis. Including a nonzeroK i simply spreads out thed func-

tion over a distancedx}AK it. The irrelevance ofK i is indi-
cated by the smallness of this width relative to the dista
vt propagated in the larget-limit.

Working first toO(D), consider the term

^S1&.2S1@f,f̂#'E
r tt8

f̂ r t@D8~0!1D9~0!~ t2t8!] tf r t#

3G.~0,t2t8!. ~5.24!

By symmetry,D8(0)50, and we need to evaluate

E
t
t G.~0,t!5E

q'

.E
vt

teivt

ig~v2vqx!1K iqx
21K'q'

2

5
2gK iL

d21Cd21

~g2v214K iK'L2!3/2dl

5
k̄

112k̄

Ld23Cd21

vK'

dl, ~5.25!

where we defined

k̄[
2K iK'

g2v2
L2, ~5.26!

chosen the infinitesimal rescaling factorb5edl, and defined
Cd5Sd /(2p)d in terms of the surface area of
ll

nd

e

d-dimensional sphereSd52pd/2/G(d/2). Inserting this result
above gives a renormalization of the friction drag coefficie
~the inverse mobility!:

] lguO~D!52
k̄

112k̄

Ld23Cd21

vK'

D9~0!. ~5.27!

Note that we have obtained no renormalization of the spa
gradient terms. This is actually a general consequence
taking an ultralocal~i.e., d-function correlated! random
force. For such a force, it is straightforward to show that
static response function

G~q,v50!5
1

2 igvqx1K iqx
21K'q'

2 ~5.28!

is unrenormalized, i.e., exact even whenF is included in the
equation of motion. Thusgv, K i , andK' suffer no diagram-
matic corrections at any order.

The next step is to examine the renormalization ofD. The
first corrections~for T50) arise atO(D2). To determine
these, we must compute the next term in the cumulant
pansion. This is

dS252
1

2Er1t1t18

r2t2t28

^f̂ r1t1
f̂ r1t

18
D~f r1t1

2f r1t
18
!f̂ r2t2

f̂ r2t
28

3D~f r2t2
2f r2t

28
!&c

.. ~5.29!

At this point we are aided by a simplifying feature th
actually makes this part of the calculation easier than
equilibrium one. Since we have a propagating mode alo
the x axis, in the limit of zero longitudinal damping,K i50,
the response function vanishes unlessx.0. This means that
two response fields at differentx points cannot be contracted
since this would give the productG(x2x8,•)G(x82x,•),
which vanishes forany x. Instead, a nonvanishing contribu

tion obtains only when bothf̂ fields are taken from the sam
term. This gives

dS252
1

2Er1t1t18

r2t2t28

f̂ r1t1
f̂ r1t

18
D~f r2t2

2f r2t
28
!D9~f r1t1

2f r1t
18
!

3@G.~r12r2 ,t12t2!G.~r12r2 ,t12t28!

2G.~r12r2 ,t12t2!G.~r12r2 ,t182t28!#. ~5.30!

Each term contains two response functions, which c
strain their arguments to be small. To leading~zeroth! order
in gradients off, we may approximatef r2t2

'f r1t1
and

f r2t
28
'f r1t1

in the first term, while in the secondf r2t
28

'f r1t
18
. This leads to the simpler formula

dS252
I

2Er1t1t18
f̂ r1t1

f̂ r1t
18
D9~f r1t1

2f r1t
18
!

3@D~0!2D~f r1t1
2f r1t

18
!#, ~5.31!

where the same integralI occurs in both terms. In the limi
K i→0, it becomes
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I 5E
q'

.E
qx

G.~q,v50!G.~2q,v50!'
Ld23Cd21

2gvK'

dl.

~5.32!

This gives the second-order contribution to the renormal
tion of D(f):

] lD~f!uO~D2!52
Ld23Cd21

2gvK'

D9~f!@D~f!2D~0!#. ~5.33!

At T50, these are all the necessary mode-eliminat
contributions. Combining these results with the sc
changes, we thus arrive at the zero-temperature RG e
tions

] lD~f!5~32d!D~f!2
Ld23Cd21

2gvK'

D9~f!@D~f!2D~0!#,

~5.34!

] lg5F22z2
k̄

112k̄

Ld23Cd21

gvK'

D9~0!Gg, ~5.35!

] lK i522K i , ~5.36!

] l k̄522k̄, ~5.37!

where the flow for the dimensionless parameterk̄ is exact
and independent of the choice of the rescaling exponenz,

z, andx̂.

Behavior in d532e dimensions

As a first attempt at an analysis of these results, we c
sider the problem ind532e dimensions. Defining the di
mensionless random-force correlator

G~f![
Ld23Cd21

gvK'

D~f!, ~5.38!

the RG flow equation for this dimensionless random fo
variance is given by

] lG~f!5~32d!G~f!2
1

2
G9~f!@G~f!2G~0!#. ~5.39!

For e!1, we thus expect to find a fixed point withG
5O(e). However, evaluating Eq.~5.39! at f50 demon-
strates that@in contrast to equilibrium case, where there w
an additional stabilizing2G8(f)2/2 term# this is only pos-
sible if G(0)* 50. Like other functional RG equations atT
50, Eq.~5.39! leads to a nonanalytic force-force correlato
This can be seen directly by differentiating twice above a
evaluating at the origin:

] lG9~0!5~32d!G9~0!2
1

2
@G9~0!#2. ~5.40!

SinceG9(0;l 50),0, this equation leads directly to a dive
gence. In fact, all ‘‘fixed points’’~see below for an explana
tion of the quotation marks here! have a slope discontinuity
at the origin. A little analysis demonstrates that the largl
behavior ofG is
-

n
e
a-

n-

e

s

.
d

G~f; l !;emin
n

H ~f2p22pn!22
p2

3 J 1G0~ l !, ~5.41!

whereG0 is the zero Fourier component ofG(f) and satis-
fies

] lG05eG01
2p2

3
e2. ~5.42!

Note that althoughG0522p2e/3 provides a formal fixed
point solution, it is unphysical: for this value,G(0)50,
which would imply the~positive semidefinite! variance of
F(f,r ) vanishes, and hence thatF is uniformly zero, clearly
in contradiction withG(f)Þ0. For any physical situationG0
will be larger. For instance, equilibrium initial condition
require that the force arise as a derivative of a random
tential, and hence that the integral overD(f) vanish. For the
solution above, this givesG050.22p2e/3. Indeed,G0 can
be identified as the variance of thestatic force calculated
using the single-step coarse graining in Sec. II B.

For physical situations, it is clear from Eq.~5.42! that G0
is a stronglyrelevantvariable which will flow off under the
RG. Luckily, as pointed out by Narayan and Fisher in th
study of CDW depinning,32 this does not really present
problem. It can be easily shown that the static random fo
does not effect the dynamics in a purelyelasticmodel, by the
same argument used above to demonstrate the exact
response function~i.e., shifting it away and showing that th
distribution of the shifted force is unmodified!. This is also
essentially the same argument used in the Cardy-Ost
problem, in which there is also a runaway random for
~which is, in that case however, the gradient of a potenti!.

The nonanalyticity ofG has important consequences f
the dynamics. Indeed inspection of Eq.~5.35! shows that it is
problematic: the quantityD9(0) is ~minus! infinity at the
fixed point ~and indeed becomes infinite at a finite leng
scale!. Physically, the nonanalyticity ofG is related to the
existence of multiple metastable minima in the effective p
tential on the scalel and a concurrent ‘‘sharpness’’ of thi
potential. At zero temperature, this sharpness leads to t
ping of the phasef and hence to a breakdown of the simp
assumption of analyticity in the coarse-grained dynamics
detailed analysis33 shows that the divergence ofD9(0) can
be interpreted as the signature of a multivalued force re
niscent of static friction, and corresponds to the existence
a nonzero transverse critical force to ‘‘depin’’ the smectic34

D. Finite-temperature RG

A simpler means of controlling these singularities is
include nonzero thermal fluctuations, which act to loca
average the effective potential and effect thermally activa
motion between different metastable states on long-t
scales. In hopes of obtaining a workable dynamics, we
thus led to consider the effects of a nonzero temperature
the same time we must also ask if temperature is a rele
or irrelevant perturbation around theT50 fixed point con-
sidered here. Naively, from Eq.~5.14!, we would expectT be
strongly irrelevant ford near three. In equilibrium, the cor
responding~power counting there gives 22d) result is ex-



a

d
d
nc

w
fi-

io

l t
na

Eq.

f
the

5
in

to

e

ture

57 7723NONEQUILIBRIUM STEADY STATES OF DRIVEN . . .
act; again due to Galilean invariance and the FDT, there
no diagrammatic renormalizations toT.35

Because of the lack of FDT, we will, surprisingly, be le
to a completely different conclusion. Consider the mo
elimination at a nonzero temperature. The correlation fu
tion,

C.~r ,t !5^f r1r8,t1t8f r8t8&.

5E
qv

. 2gTe2 iq–r1 ivt

g2~v2vqx!
21~K iqx

21K'q'
2 !2 ~5.43!

is now nonzero. This now makes it possible to contract t
f fields when renormalizing the MSR functional. It is suf
cient to work only to linear order inD ~or G). Following the
same method as earlier, we find

dS1
~T!5^S1&.

~T!52
1

2Er tt8
f̂ r tf̂ r t8D9~f r t2f r t8!@C.~0,0!

2C.~0,t2t8!#. ~5.44!

This gives two terms. The first contributes a renormalizat
of D. That correlation function gives

C.~0,0!5E
q'

.E
vqx

2Tg

g2~v2vqx!
21~K iqx

21K'q'
2 !2

5
T

2AK iK'

Ld22Cd21dl. ~5.45!

Note that the integral is singular in theK i→0 limit. Physi-
cally, this is because some damping is needed to contro
thermal fluctuations excited in the propagating longitudi
mode. Incorporating this piece in the RG equation forG
gives

] lG~f!5F ~32d!1T̄
]2

]f2GG~f!2
1

2
G9~f!@G~f!2G~0!#,

~5.46!

where

T̄[Ld22Cd21

T

2AK'K i
. ~5.47!

The second term in Eq.~5.44! gives a correction to the
temperature. This is simple to see, since in this termut2t8u
is kept small, so thatf r t8'f r t ~and likewise forf̂). This
gives

dS5
1

2Er t
~f̂ r t!

2D9~0!E
t8

C.~0,t2t8!. ~5.48!

This integral is finite in the limitK i→0, giving

E
t8

C.~0,t2t8!5E
q'

.E
qx

2Tg

g2v2qx
21K'

2 q'
4

5
T

K'v
Ld23Cd21dl. ~5.49!
re
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This is a renormalization ofgT. Taking into account the
renormalization ofg obtained earlier@Eq. ~5.35!#, one finds

] lT5F12d2S 1

2
2

k̄

112k̄
D G9~0!GT. ~5.50!

Using the definition of the dimensionless temperature
~5.47!, this becomes

] l T̄5F22d2S 1

2
2

k̄

112k̄
D G9~0!G T̄. ~5.51!

d532e redux

Equations~5.46! and ~5.51! complete the modified set o
RG flows at nonzero temperature. Let us focus again on
behavior ford532e, discussed above forT50. As sus-
pected, the presence of the diffusionlike term in Eq.~5.46!
indeed acts to smooth out the cusp inG(f) ~a simple heu-
ristic argument for this rounding is given in Refs. 36 and 3!.
To see this, consider the ‘‘adiabatic’’ approximation

which Eq. ~5.46! is solved for fixed nonzeroT̄, ignoring

corrections to] lG arising from the scale dependence ofT̄.
To carry this out, we search for a solution

G~f,l !5G~0,l !2~32d!G̃„f,T̄~ l !…, ~5.52!

where G̃(0,l )50. Evaluating Eq.~5.46! at f50 gives the
flow equation forG(0,l ), which in turn implies an equation

for G̃(f) in the ‘‘adiabatic’’ approximation:

] lG~0,l !5~32d!G~0!1T̄G9~0!, ~5.53!

mG̃9~0!5G̃~f!1mG̃9~f!1
1

2
G̃9~f!G̃~f!, ~5.54!

where m5T̄/e!1. Multiplying Eq. ~5.54! through by

G̃8(f), allows one to perform one integral, and thereby

solve for G̃(f) exactly in an implicit form. One finds

E
0

G̃
dĜF p2

u lnmu
ln~11Ĝ/2m!2Ĝ G21/2

52f, ~5.55!

for 0<f<2p. For uf22pnu@mAu lnmu ~with integer n),
this reduces to the zero-temperature solution in Eq.~5.41!. It
contains, however, a boundary layer nearf52pn. Inside
this boundary layerG(f) remains smooth, and a simpl
computation finds

G9~0!52
p2e2

T̄ln~e/T̄!
. ~5.56!

Putting this result back into Eq.~5.51! gives, to leading order
in e,

] l T̄52T̄1
p2e2

2ln~e/T̄!
. ~5.57!

The new term leads to a fixed point at a nonzero tempera
given by
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T̄* ;
p2e2

2u lneu
. ~5.58!

Note that in equilibrium, i.e., inv→0 limit, k̄→`, k̄/(1
12k̄)→1/2, and two terms appearing inside the parenthe
in Eq. ~5.51! exactly cancel due to the FDT, preserving t

power-counting result and leavingT̄ irrelevant. Here, for any
finite v, they do not, and the noise renormalization~first
term! overwhelms the dynamic renormalization~second
term! due to strong irrelevance ofk̄ ~or equivalentlyK i),
thereby destabilizing the zero-temperature fixed point. T

asymptotic flow ofT̄ is then given by

] l T̄5F22d2
1

2
G9~0!G T̄. ~5.59!

E. Behavior in three dimensions

In three dimensions, we expect thatT̄ flows to zero, and
the above analysis is invalid. To analyze this case, cons
first the behavior ofG(f) at T50. From Eq.~5.40!, we see
that even ford53, G9(0) diverges at a finite scale, and th
nonanalyticity remains. Indeed, forT50, a solution~pre-
sumably the asymptotic attractor for an arbitrary initial co
dition! of Eq. ~5.39! is

G~f; l ;T5e50!5a~ l !min
n

H ~f2p22pn!22
p2

3 J 1G0~ l !,

~5.60!

where
]la~l!52a2, ~5.61!

] lG05
2p2

3
a2. ~5.62!

Thus the amplitude of the ‘‘cuspy’’ part of the disorder co
relator decays slowly to zero,

a~ l !5
a~0!

11 la~0!
. ~5.63!

Employing again the adiabatic approximation for smallT̄
Þ0, one finds

G9~0,l ;d53!5
2p2@a~ l !#2

T̄~ l !ln„a~ l !/T̄~ l !…
. ~5.64!

Putting this back into Eq.~5.51!, the ‘‘fixed point’’ for e
Þ0 now drifts slowly down towards zero. The corre
asymptotic behavior is obtained simply by substitutinge
→a( l ) in Eq. ~5.58!, giving

T̄~ l !;
p2a2

2u lnau
;

p2

2l 2u lnl u
, ~5.65!

for large l . Note that this is faster than the usual case o
marginally irrelevant operator (;1/l ), but much slower than
the naive power-counting result (;e2 l).
es

e

er

-
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VI. DYNAMICS OF 2 1e-DIMENSIONAL SMECTIC

In this section, we study the toy model for the drive
smectic neartwo dimensions. Based on an extrapolation
the results of the previous section@Eq. ~5.58!#, we expect
that in this case the governing stable fixed point should oc
at a renormalized temperature of order one. In this regard
52 plays a special role, since@see Eq.~5.59!# dimensionless

temperatureT̄ becomes marginal.
For temperatures ofO(1), thecharacter of the functiona

RG @Eq. ~5.46!# is substantially changed. This is because
linear operator

L̂532d1T̄
]2

]f2 ~6.1!

has adiscretespectrum~defined in the space of 2p-periodic
functions!,

L̂cosnf5~32d2T̄n2!cosnf. ~6.2!

For T̄.32d, therefore, all the harmonics but the consta

(n50) are irrelevant, andD(f)→D0. For (32d)/4,T̄,3
2d, we can study the onset of nontrivial random-force c
relations by truncating the Fourier expansion ofD at n51:37

D~f!5D01D1cosf. ~6.3!

Equation~6.3! displays one distinct advantage over the f
functional RG treatment in the previous section:D(f) in this
limit is manifestly analytic, so perturbation theory is uni
formly valid. By contrast, the treatment ford'3, while
physically reasonable, is considerably less controlled.
deed, from Eq.~5.59! or Eq. ~5.56!, G9(0)* 522(d22) is
O(1) in this limit, and althoughG(f) is O(e), it is unclear
how the singular derivatives might enter into higher-ord
corrections.

To implement the complimentary, strictly controlled a
proach ford521e, we simply insert Eq.~6.3! in Eq. ~5.46!,
dropping harmonics withn>2. This gives

dD̄0~ l !

dl
5~32d!D̄0~ l !1

1

4
D̄1

2, ~6.4!

dD̄1~ l !

dl
5~32d2T̄!D̄12

1

2
D̄1

2, ~6.5!

dT̄~ l !

dl
5S 22d1

1

2
D̄1D T̄~ l !, ~6.6!

whereD̄0,1[D0,1Cd'
Ld23/(K'guvu). We pause to point ou

that Eq.~6.3! is equivalent to the physical approximation
the equation of motion,

g~] t1v]x!f~r ,t !5~K i]x
21K'¹'

2 !f~r ,t !1F0~r !

1F1~r !cos@y2f~r ,t !#1h~r ,t !, ~6.7!

with

@F0~r !F0~r 8!#ens52D0d~d!~r2r 8!, ~6.8!



no

it
pl
s

lly
o

at
e
b
n

g

a

ys
ab
is

-

n

er
in

he

to
in
xe
o
6

rm
m

f

Eq.

as-
-

e

this
nt
nse

f

57 7725NONEQUILIBRIUM STEADY STATES OF DRIVEN . . .
@F1~r !F1~r 8!#ens52D1d~d!~r2r 8!. ~6.9!

For completeness, we rederive Eqs.~6.4!–~6.6! directly from
Eqs.~6.7!–~6.9! in Appendix E. Note that Eq.~6.4! implies

that the randomf-independent drag correlatorD̄0 is always
generated by the disorder and is relevant, even if it is

present in the ‘‘bare’’ equation of motion. AlthoughD̄0 runs
off to infinity, as discussed in the previous subsection,
effects can luckily be taken into account exactly, by a sim
transformation on the fieldf. The remaining flow equation

for D̄1( l ) and T̄( l ) contain three fixed points

Gaussian: T̄* 50, D̄1* 50, ~6.10!

Zero temperature: T̄* 50, D̄1* 52~32d!, ~6.11!

Driven smectic: T̄* 5522d, D̄1* 52~d22!. ~6.12!

Of these, only the driven smectic fixed point is globa
stable. Fortunately, it is also perturbative, and hence c
trolled, for d near 2, and indeed becomes exact in thed
→21 limit. Furthermore, the driven smectic fixed point th
is perturbative neard52 appears to smoothly match onto th
finite disorder, finite-temperature fixed point that was o
tained at strong coupling by a functional renormalizatio
group calculation neard53 in Sec. V D.

Equations~6.5!,~6.6! are also the nonequilibrium analo
of the Cardy-Ostlund fixed line38 that describes the 111 di-
mensional vortex glass state18 and the super-rough phase of
crystal surface grown on a random substrate.39,40 Because of
the lack of fluctuation-dissipation theorem for the driven s
tem considered here, the Cardy-Ostlund fixed line is dest
lized by the nontrivial renormalization of temperature. Th

disorder generated thermal renormalization@D̄1-dependent
term in Eq.~6.6!# is reminiscent of the ‘‘shaking’’ tempera
ture, discussed by Koshelev and Vinokur.41 Note, however,
that the ‘‘heating’’ found here is a multiplicative rather tha
an additive effect, as was suggested in Ref. 41.

In d521e dimensions the flow equations have an int
esting spiral structure around the driven smectic fixed po
as is illustrated in Fig. 5.

The structure of the renormalization-group flow in t
physically interesting case ofd52 is displayed in Fig. 6.

In d52 the driven smectic fixed point moves down
zero disorder and merges into the zero-disorder fixed l
Despite the absence of a globally stable finite disorder fi
point in d52, we expect nontrivial observable effects ass
ciated with the interesting RG flows displayed in Fig.
Qualitatively, a moving lattice at temperatureT with disorder
D1 behaves at long times and length scales as a the
moving smectic with an effective disorder-enhanced te
peratureTeff(T,D1).

To determineTeff , we take advantage of the solvability o
Eqs.~6.5!,~6.6! in two dimensions. Dividing Eq.~6.5! by Eq.
~6.6! gives

dD̄1~ T̄!

dT̄
52

12T̄

T̄
2

D̄1

T̄
. ~6.13!
t
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This has the exact solution

D̄1
eff522T̄ eff1 f /T̄eff , ~6.14!

where f is given by the initial conditionsD̄1( l 50)5D̄1,

T̄( l 50)5T̄ as

f 5T̄@D̄1221T̄#. ~6.15!

The asymptotic effective temperature is determined from

~6.14! by settingD̄1
eff50, which gives

T̄eff511A11T̄~D̄11T̄22!. ~6.16!

This effective temperature has the following meaning:
ymptotically, theconnectedcorrelation and response func

tions of a moving smectic at temperatureT̄ in the presence of

disorder D̄1 are given by the noninteracting, disorder-fre

functions withT replaced byT eff(T̄,D̄1). Of course the de-
tails of the approach to the zero disorder fixed line and to
effective temperature will determine subdomina
q-dependent corrections to the correlation and the respo
functions.

FIG. 5. Renormalization-group flow diagram~for 2,d52
10.3,3) in the disorderD1 temperatureT plane, for a set of initial

conditions withD̄1(0)50.2 andT̄(0) ranging from 0.05 to 0.85, in
increments of 0.2.

FIG. 6. Renormalization-group flow diagram~for d52) in the
disorderD1 temperatureT plane, for a set of initial conditions with

D̄1(0)50.2 andT̄(0) ranging from 0.05 to 0.65, in increments o
0.2.
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VII. NONEQUILIBRIUM RESPONSE AND CORRELATION
FUNCTIONS

We now turn our attention to the dynamic response a
correlation functions of a moving smectic. We will consid
only mean~disorder-averaged! properties here. The mean re
sponse function is defined by

R~r ,t !5Fd^f~r1r 8,t1t8!&
dh~r 8,t8! G

ens

5@^f~r1r 8,t1t8!f̂~r 8,t8!&#ens. ~7.1!

We similarly define a mean correlation function,

C~r ,t !5@^„f~r1r 8,t1t8!2f~r 8,t8!…2&#ens. ~7.2!

Given the results of the renormalization-group analysis
the previous two sections, the long length and time asym
totics of these functions can be computed using stand
matching techniques. For the momentum-shell regulariza
used here, this matching is most directly done in momen
and frequency space. Consider first the correlation funct
which for transverse momentumk' and rescaling factor
1,b<uL/k'u satisfies the relation

C~k,v;$l i%!5bd'1z1zC~k'b,kxb
z,vbz;$l i~b!%!.

~7.3!

Here$l i(b)% denotes the set of running coupling constants
scaleb. The prefactor on the right-hand side arises from
~conventional! definition of the Fourier transform,

C~r ,t !5E
kv

2@12e2 ik–r1 ivt#C~k,v!, ~7.4!

and the dimensionlessness off(r ,t).
To calculate the correlators at long length and time sca

we will chooseb5L/uk'u@1 and evaluate the right-han
side of Eq.~7.3!. This is simple because the rescaled c
relator is evaluated at a large rescaled transverse wave v
uk'ub5L equal to the uv cutoff, at which fluctuations a
small, and therefore can be taken into account perturbativ
without encountering any infrared divergences. However,
computation of the rescaled propagator requires a knowle
of the running couplings$l i(b)%.

These flows have been studied in Secs. IV and
Throughout, unless explicitly indicated otherwise, all ru
ning couplingswithoutarguments refer to the bare coupling
i.e., l i[l i(b51). It is convenient to choosez5z52 and

x̂52d21. With this choice,K' andgv are invariant, i.e.,

K'~b!5K' , ~7.5!

gv~b!5gv. ~7.6!

The remaining parameters behave nontrivially. The resca
temperature and longitudinal elastic modulus follow fro
Eqs.~5.47! and ~5.37!, respectively,

T~b! ;
b@1

2~K'K i!
1/2

Ld22Cd21

T̄~b!b21, ~7.7!
d
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d

k̄~b!5k̄b22. ~7.8!

In d52, the dimensionless temperature flows to the fix
half-line ~and is hence nonuniversal!, while in d53, it flows
logarithmically to zero, i.e.,

T̄~b5el ! ;
b@1

H T̄eff.1, d52

p2/2l 2u ln l u d53.
~7.9!

For 2,d,3 it flows to a universal value@see Eqs.~5.58!
and ~6.12!#, which is sadly of only formal interest since th
2.5-dimensional smectic is currently experimentally inacc
sible.

The mobility is more complicated, but using Eqs.~5.35!
and ~7.8!, we obtain

g~b!5geF~b!, ~7.10!

with

F~b!52E
0

ln b

dl
k̄e22l

112k̄e22l
G9~0,l !. ~7.11!

The integrand in Eq.~7.11! is exponentially suppressed a
largel , so thatF(b) has a finite limit asb→`. This implies
the finite renormalization

g~b! ;
b→`

gR5gesK iK'L2/~gv !2
. ~7.12!

Because, for largev ~small k̄) the integral in Eq.~7.11! is
dominated by smalll @due to the exponential behavior o
k( l )#, the constants is highly nonuniversal. Above two di-
mensions at sufficiently high velocities and temperaturesk̄

!1 and T̄@a0
2 in 3D!, T̄ flows rapidly to a unique fixed

point, and it becomes parameter independent, withs52(d
22). For d52, s depends upon the bare disorder stren

even for k̄!1, due to the semi-infinite fixed line withT̄eff
.1. More interesting is the extreme low-temperature lim
in which @see Eqs.~5.56!,~5.64!# G9(0) becomes singular. In
3D, this limit gives

s'
p2a0

2

T̄ln~a0 /T̄!
, T̄!a0

2 . ~7.13!

The corresponding low-temperature regime in two dime
sions is outside the limits of the controlled RG, but we e
pect a result similar to Eq.~7.13! to hold with, however,a0
of order one. Note that in all casesgR is strongly enhanced
as the velocity of the moving smectic is lowered.

The remaining flow parameter is the force-force correla
D(f). Again, we quote here the results only directly ind
52,3.

In two dimensions, the correlator is well-described a
ymptotically in the single-harmonic approximation@Eq.

~6.3!#. From Eq.~6.4!, D̄0 grows linearly withb,

D̄0~b! ;
b→`

D̃b, ~7.14!

whereD̃.D0, and for D̄1!1 and T̄.1/2 can be estimated
by
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D̃'D01
1

4pLK'gv

D1
2

2T̄21
. ~7.15!

As can be easily seen from Eq.~6.5!, in d52, the first har-
monic flows asymptotically to zero according to

D1~b! ;
b→`

D̃1b2~ T̄eff21!. ~7.16!

In three dimensions, we have instead logarithmic flow
and simple manipulations of Eqs.~5.60!–~5.63! give

D~f,l ! ;
b→`

2pgvK'

a0

11 la0
min

n
$~f2p22pn!22p2%1D̃,

~7.17!

where

D̃52pgvK'FG01
2p2

3
a0G . ~7.18!

We are now in a position to evaluate the right-hand s
of Eq. ~7.3!. Settingb5el5L/uk'u and using the above re
sults, we obtain

C~k,v!5H D21~k,v!@4pKgRT̄eff1D̃d~v!#, d52

D21~k,v!F 1

k'

4p3a2KgR

u lnau
1D̃d~v!G , d53,

~7.19!

where

D~k,v!5~gRv2gvkx!
21~K ikx

21K'k'
2 !2, ~7.20!

we have definedK5AK'K i and from Eq.~5.63!, the three-
dimensional logarithmic coupling constant is

a5
a0

11a0ln~L/k'!
. ~7.21!

Equations ~7.19!–~7.21! have simple physical signifi
cance. The first term in each of the square brackets in
~7.19! represents time-dependent ‘‘thermal’’ fluctuation
The second,d-function term represents a static, tim
independent distortion of the smectic, and is in fact identi
in form to the perturbative expressions of Sec. IV. This
roughly because at the uv momentum cutoff~where the res-
caled correlator is evaluated!, the displacement fluctuation
are strongly suppressed, and dominated by the value o
random force at originf50 ~as in the naive Larkin approxi
mation!.

To further explore the implications of Eqs.~7.19!–~7.21!,
we now discuss the corresponding expressions in real s
and time. First consider the long-time limitCEA(r )
5 limt→`C(r ,t),

CEA~r !5E
k

2D̃@12e2 ik–r#

~gvkx!
21~K ikx

21K'k'
2 !2 . ~7.22!

This correlator is analogous to the Edwards-Anderson c
relator in a spin glass, and represents a static but ran
conformation of thef field that persists at long times. Pe
,

e

q.
.

l

he

ce

r-
m

forming the above integration, we find two limits. Ford
,4 andx,K i /gv, the static roughnessscalesisotropically
~similarly to the equilibrium case!, with finite anisotropy
arising due to the difference betweenK' andK i

CEA~r !5
D̃

KS K i

K'
D ~d22!/4

r'
42df D

~1!S uxuK'
1/2

r'K i
1/2D , ~7.23!

where the scaling function obeysf D
(1)(x→0)→ const and

f D
(1)(x→`)→x42d. For d<3, in the asymptotic limitx

.K i /gv, CD(r ) becomes infinitely anisotropic owing to th
difference between the convective behavior along the dir
tion of motion (x) and diffusive transport transverse to
~along r'). We find

CEA~r !5D̃
r'

32d

gvK'

f D
~2!S uxuK'

r'
2 gv D , ~7.24!

where the asymptotics of the scaling function are

f D
~1!~x!}H const , for x→0

x~32d!/2, for x→`.
~7.25!

In three dimensions, the power law in Eq.~7.24! should be
replaced by the logarithm (r')0→ lnuLr'u.

The other important physical correlator measures the th
mal fluctuations around the static distortion measured
CEA . The thermal correlator is naturally defined as

CT~r ,t ![C~r ,t !2CEA~r !. ~7.26!

For simplicity, we consider only the equal-time thermal flu
tuations; corresponding results for nonequal times are ea
obtained from Eqs.~7.19!–~7.21!. In two dimensions, the
thermal correlator is logarithmic,

CT~r ,0!;2T̄efflnA:x21:21y2, ~7.27!

where:5AK' /K i. Note that the~in 2D nonuniversal! co-
efficient of the logarithm above is proportional to the effe
tive temperature, and thereforeboundedbelow. This is a
consequence of the roughly semicircular RG flows in Fig.
It is interesting to further note that by extending above c
culations to 21e dimensions, using results of Sec. VI, w
find that the logarithmic growth of thermal correlation fun
tion is in fact superuniversal~i.e., independent ofd) for 2

,d,3, with the prefactorT̄ eff above replaced by auniver-

sal fixed point value ofT̄* 5122e @Eq. ~6.12!#.
In three dimensions, the logarithmic decay ofa in Eq.

~7.21! renders the Fourier transform of the thermal term
Eq. ~7.19! nondivergent. The thermal correlator thussatu-
ratesat long distances ind53,

CT~r ,0! →
ur u→`

CT,0 }
a0

u lna0u
. ~7.28!

Comparing the static~EA! and thermal correlators above
we see that atanyfixed time, the static contribution toC(r ,t)
dominates at long distances, i.e.,

C~r ,t ! ;
ur u→`

CEA~r !. ~7.29!
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Thus the naive perturbative results of Sec. IV are essent
correct for the long-distance properties of the correlat
functions. In particular,the structure function in the smect
phase displays power-law smectic Bragg peaks (tran
tional QLRO) in three dimensions, with fully rounded sme
tic peaks (translation SRO) in two dimensions.

Similar analysis of the response functionR(k,v) shows
that to the leading order in disorder it is given by

R~k,v!5
1

i @gR~k'!v2gvkx#1K ikx
21K'k'

2 ,

~7.30!

and is identical to the response function in the lineariz
theory of Sec. III, but with a drag coefficientg multiplying
v ~but not kx) replaced by the disorder enhanced renorm
ized gR(k'),

gR~k'!5geF~L/k'!, ~7.31!

;
k'!L

gR . ~7.32!

Since gR is finite, the renormalized response functio
R(k,v) implies ananalytic response to a uniform transvers
external force, and afinite linearmobility gR

21 in the limit of
vanishing transverse force.

We now turn our attention to thenonlinear dynamic re-
sponse to a transverse forcef' . A true calculation of the
nonlinear response tof' is beyond the current capabilities o
these methods. A relatively simple scaling argument suffic
however, to obtain a rough picture of the dynamics. Cons
introducing an explicit force into the MSR functional. Sinc
it couples directly tof, simple rescaling and use of the r

lations between the scaling exponentsx̂, z andz leads to a
strong growth of the rescaled forcef'(b) under the RG,

f'~b!5 f'b2. ~7.33!

When this rescaled force becomes large, of the order of
typical depinning forcef c;Ld/2AD9(0), it becomes a strong
perturbation and the damping coefficientg should cease to
renormalize. Choosingf'b25 f c defines a (f'-dependent!
rescaling factorb at which to evaluateg via Eqs. ~7.10!,
~7.11!. This gives an effective drag coefficient

geff~ f'!5gRe2n~ f' / f c!, for f', f c , ~7.34!

5g, for f'. f c , ~7.35!

wheren[sK iK'L2/(gv)2. Combining this result with the
definition of g

v'~ f'!5
f'

geff~ f'!
, ~7.36!

we obtain a nonlinear response which interpolates betw
two different linear responses at small and largef' , sche-
matically displayed in Fig. 7. We remark in passing that t
simple argument neglects possible renormalizations off' by
the random force. This occurs at zero temperature, and
lows for the possibility of a true critical transverse force
that case. A careful treatment of the finite-temperature cro
over to the above~generic! behavior is still an open problem
lly
n

-
-

d

l-

s,
r

e

en

s

l-

s-

The finite-temperatureI -V ~velocity-force! curve gives an
interpolation between twolinear regimes, above and below
f c . For small gv, the renormalized mobilitygR

21 is quite
small. In this case theI -V has a nonlinear feature similar t
that of a threshold, but neverthelesscompletely analytic. In
addition, the permeation mode provides a second channe
transport, which further enhances the linear mobility. A po
sible ~though highly speculative! scenario at zero tempera
ture is a small linear mobility via the permeation of a sm
concentration of fluctuating defects ‘‘activated’’ through l
cal chaotic dynamics, superimposed upon a sharp thres
for motion of the smectic density wave. However, we ag
caution ~as in the Introduction!, that zero-temperature dy
namics may be highly nonuniversal, with qualitatively diffe
ent behavior occurring in different systems.

VIII. DISCUSSION

A. Relation to previous work

Much of the recent interest in driven solids stems from
work of Koshelev and Vinokur~KV !,41 who applied pertur-
bation theory to compute the mean-square displacemen
the driven solid and argued that the driven system mi
exhibit a nonequilibrium phase transition from a moving li
uid to an ordered moving solid.42,43The argument was base
on the notion that at large velocities the effect of pinni
could be described by an effective ‘‘shaking’’ temperatu
Tsh;1/v2. With this assumption, KV recast the problem in
equilibrium form. This suggested only thermal roughness
the driven lattice, so that the mean-square displacem
would always be bounded ind.2 ~with translational QLRO
in d52), arguing indeed for the stability of the driven lattic
for d>2.

Experiments on flux lattices in type-II superconducto
have indeed shown evidence for current-induced ordering
the vortex array. This evidence has been obtained both i
rectly through transport experiments44,45 and by directly
probing the structure of a driven vortex lattice by neutr
scattering46 and decoration experiments.47,48 Numerical
simulations of driven vortex arrays in two dimensions a
provide clear indication of ordering of the sliding lattice
large drives.49,50,41,51We discuss these experiments in mo
detail below.

The notion that nonequilibrium effects might play an im
portant role was addressed by Balents and Fisher16 in the

FIG. 7. Schematic of the nonlinear transverse response for
moving smectic~neglecting the permeation mode!. Including the
permeation mode simply adds a linear function of slopempermto the
above plot.
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simpler context of CDW’s. They classified the possib
phases of driven CDW’s and showed that the KV predictio
were violated in this case. In fact, certain static compone
of the quenched disorder persist in a coarse-grained m
even at very large velocity. This static random force ari
physically from spatial inhomogeneities in the impurity d
tribution and represents a sort of random drag. There
noise in the nonequilibrium steady state of the sliding CD
never mimics thermal noise, which is uncorrelated in tim
As a result these authors concluded that the analogous m
ing solid phase of a CDW is stable in 3d at large velocities,
but does not exhibit the true long-ranged translational or
of an equilibrium 3d crystal. Rather it exhibits the algebra
decay of correlations characteristic of a 2d equilibrium crys-
tal ~QLRO!. In d52 in contrast the moving CDW appea
unstable to the proliferation of phase slips.

A similar reinvestigation of the driven lattice was recen
undertaken by Giamarchi and Le Doussal~GL!.28 These au-
thors focused on the behavior of fluctuations in the direct
transverse to that of the driving force. They pointed out t
periodic static component of the pinning force persist in
transverse direction at large drives and suggested that mo
in the driven solid occurs along elastically coupled chann
parallel to the direction of motion. These authors assum
that disorder-induced displacements in the direction para
to the driving force always remain bounded and neglected
fluctuations in this direction. They also suggested that
signature of this anisotropic sliding state, the anisotro
moving Bragg glass~BG!, would be the existence of a finit
transverse critical force.

Considerable elements of GL’s work are retained in o
calculations. The static periodic transverse force is also n
vanishing in our model, and leads to glassy channel-like m
tion at very low temperatures. There are, however, sev
key differences from GL’s work. First, we give amodel-
independentcharacterization of the possible phases. Seco
we derive our equations of motion from a microscopic d
namics. These have a trulynonequilibrium form, which can-
not be obtained simply by a Galilean boost of the equil
rium equations of motion. Third, we argue that the m
stable driven phase is thetransversesmectic, withshort-
range rather than long-rangelongitudinal order. Fourth, we
point out the importance of thepermeation modein the
transverse smectic, which implies anonzero transverse lin
ear response at any finite temperature. Lastly, we show that
the transverse displacements themselves are much less g
than in equilibrium, owing to the strong enhancement
thermal noise caused by the breakdown of the fluctua
dissipation theorem.

Recent simulations ind52 have confirmed the aniso
tropic channel structure of the sliding state.30,52 These simu-
lations also indicate that dislocations with Burger’s vect
parallel to the flow are unbound, so that theintrachannel
order is liquidlike. The driven array thus indeed appea
more consistent with a transverse smectic phase propose
us19 than the moving Bragg glass.

All the aforementioned analytical treatments negl
KPZ-type nonlinearities@C coefficients in Eq.~1.11!#. These
are perturbatively irrelevant in the smectic state, as arg
above. They probably play a role in the behavior of longi
dinal correlations, and may well determine the length scal
s
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which longitudinal dislocations appear in the moving lattic
i.e., the scale at which a driven lattice is unstable to
transverse smectic. Such effects have recently been stu
in a simpler model relevant for CDW motion, which contai
only longitudinal degrees of freedom.24

B. Experiments

As discussed in the Introduction, there are many phys
realizations of dirty driven periodic media. Among these, t
magnetic-flux lattice in type-II superconductors is perha
the system that has been most studied experimentally in
cent years and where our predictions can most easily
tested.

The large majority of experimental work has focused
the nonlinear transport properties of these systems for d
ing forces near the zero-temperature depinning thresh
Our work, in contrast, focuses on the properties of the slid
state well above threshold, where the velocity-force char
teristic approaches a linear form. In this regime one is rat
interested in the positional and temporal order of the slid
medium.

The positional correlations in a current-driven magne
flux-lattice can be studied directly both by numerical sim
lations and experiments. Numerical work is very useful a
can provide both direct real-space images of the sliding
tice as well as quantitative structural information like t
structure factor. Recent simulations of two-dimensional fl
lattices (dt52, dl50) by Moon et al.30 are in agreemen
with our finding that the periodicity of the driven flux lattic
along the direction of motion is absent, i.e., the sliding latti
is a smectic. Real-space images of the driven lattice sh
that motion occurs along channels that are aligned with
direction of the driving force and periodically spaced in t
transverse direction. Phase slips, however, occur at the c
nel boundaries, indicating that the channels are uncorrel
and the longitudinal structure is liquidlike. The structure fa
tors obtained from these simulations show sharp alge
ically divergent peaks at the reciprocal-lattice vectorsQ nor-
mal to the external drive. The peaks at the other recipro
lattice vectors have a very small intensity that deca
exponentially with system size. Similar results have a
been obtained by other authors.52,53 One detailed aspect o
the results of Ref. 30 which doesnot agree with our theoret-
ical expectations is thealgebraicdecay of the smectic Bragg
peaks. Our theory predicts in fact~possibly stretched! expo-
nential decay, due to the linear displacement growth in E
~7.24!. We believe the observed power-law structure fac
scaling is likely a crossover phenomenon, perhaps enhan
by the dispersive elastic moduli due to the short-scale lo
rithmic character of the intervortex interaction.

Direct experimental evidence of the ordering of the sl
ing flux lattice at large velocities was obtained some tim
ago by neutron diffraction.46 These experiments have no
however, been able to quantitatively determine the struct
properties of the driven state. More recently, the chan
structure of the driven flux lattice was observed directly
decorating the current-driven flux array in NbSe2.48 By
digitizing the decoration images Pardoet al. have also very
recently obtained the structure factor of the driven array t
indeed has the transverse peaks characteristic of a smec54
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Temporal order in the driven medium should manife
itself in narrow band noise~NBN! and mode-locking phe
nomena. Both of these have been studied extensively in
context of charge-density waves, but have not been obse
in flux lattices, indicating that the driven flux lattice lack
long-range temporal order. The spectrum of voltage fluct
tions can be probed by applying a dc currentI that yields a
driving force f ;I on the flux lattice. The local field induce
by flux motion is given by

Ei~r ,t !52
f0

c
e i j ] tf̃ jFr01(

Q
rQ,0e

iQ•~x2f̃!G , ~8.1!

with f0 the flux quantum. In a moving solid we expectf̃
5vt1f. In a perfect lattice the local voltage contains the
fore oscillatory components at the frequenciesvQ5Q•v.
The Fourier spectrum of voltage fluctuations, defined as,

S~v!5E
r ,r8
E

t
eivt^Ex~r ,t !Ex~r 8,0!&, ~8.2!

will then contain, in addition to a dc component, a sha
fundamental peak atv15Q1•v, with Q1;2p/a, and
smaller peaks at all the higher harmonics. This type of sp
trum, usually referred to as NBN, has indeed been obse
in sliding CDW’s and is generally regarded as the signat
of the absence of appreciable phase slips in the system.55 In
contrast, in a liquid phase we expect the Fourier spectrum
have a Lorentzian form, centered at the frequencyv1. A
broad power spectrum of voltage fluctuations, with anv2a

decay at large frequencies, known as broadband n
~BBN!, is observed in CDW’s when macroscopic veloc
inhomogeneities arising from phase slips are present in
driven system.56 NBN has not been observed in curren
driven flux lattices. This is consistent with our finding th
correlations along the direction of motion are always liqu
like, indicating longitudinal phase slips are present in
system.

Systems with temporal LRO should also exhibitcomplete
mode locking. Mode locking is an interference effect th
can occur in a periodic medium driven by both a dc and
ac force. Keeping fixed the amplitude and the frequency
the ac force and varying the amplitude of the dc compon
one observes steps in the dc response, known as Sh
steps. These steps arise from mode locking of the freque
of the applied ac force with the internal oscillation freque
cies vQ of the periodic medium.Completemode locking
~steps in the dc response that remain constant over s
finite range of dc bias! to an arbitrarily weak external a
drive has again been observed in CDW’s.57 Assuming, as
our calculations suggest, that the driven flux lattice has o
short-range longitudinal order~i.e., SRO for wave vectors
with nonzerovQ), we would expect at bestincompletemode
locking above a nonzero~perhaps large! threshold ac drive.
For (211)-dimensional flux lattices again no comple
mode locking is expected in the smectic state, as the dr
lattice only has quasi-Bragg peaks along the direction
wavevector space perpendicular to the velocity. If a long
dinally ordered phase~‘‘Bragg glass’’! were stable in 3D, it
ought to exhibit mode locking and NBN; the available e
perimental evidence seems not to support this possibility
t
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Finally, it has been suggested that a sliding flux latt
will exhibit a finite threshold force for response to an ad
tional driving force f' transverse to the mea
velocity28,30 and no transverse linear response at zero te
perature. The behavior in a purely dissipative~overdamped!
model at zero temperature is somewhat nonuniversal,
indeed, such a transverse critical force is certainly likelyin
many possible phases, including both the smectic and Br
glass (BG). At finite temperature, a sharper distinction can
drawn. A naive extrapolation of the Bragg glass theory
finite temperature would predict anexponentially small, non-
linear transverse response at finite temperatures,

v'
BG;expF2S f 0

f'
D YG , ~8.3!

with f 0
Y}1/T at low temperatures and smallf' . Equation

~8.3! relies, however, upon two assumptions:~1! density
fluctuations~the permeation mode! can be neglected and~2!
the T50 fixed point is stable. Our works shows that bo
these assumptions are incorrect and invalidates Eq.~8.3!. As
discussed, in Sec. VI, we then expect a velocity-force cu
with the crossover behavior shown in Fig. 7. For low tran
verse driving forces there are two small~but nonzero! linear
components to the mobility, i.e.,

v'
sm;@m dw 1mperm~T!# f' . ~8.4!

The mobility of the density wavemdw has been estimated i
Sec. VII. It is activated at low temperatures, and also s
pressed for small sliding~longitudinal! velocities, with the
form

mdw5gR
21'g21e2sK iK'L2/~gv !2

, ~8.5!

where s}1/T at very low temperatures@more details are
given in the discussion following Eq.~7.12!#. The second
term is a mobility associated with the permeation mode:

mperm~T!;m0e2Ud /T, ~8.6!

for T!Ud . Although we have not analytically derived th
above exponential form of the mobility, it seems extreme
likely on physical grounds. Such behavior arises from
activated concentration of mobile defects~vacancies or inter-
stitials in 2D, kinks and/or vacancy/interstitial lines in 3D!
with finite ‘‘energy’’ cost Ud . These flow linearly in re-
sponse to a driving force with mobilitym0. Additional non-
linear behavior will be superimposed upon this linear ter
but it is subdominant at smallf' . At low temperatures these
nonlinearities sharpen to a thresholdlike feature around a
nite f'c , so that the identification of an experimental syste
as either a BG or a smectic by the transverse ‘‘threshold’
critical current may be misleading.

C. Open questions

We conclude with a summary of some of the many
maining open questions. Equations~1.11! provide for the
first time a complete set of hydrodynamic equations to
scribe nonequilibrium states of driven periodic media. A s
tematic RG~or other! treatment of them is, however, daun
ing. Aside from the obvious algebraic complexity, th
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structure of the equations also raises some interesting
ceptual issues. Naively, since first derivative terms
present in all the variables, all spatial coordinates seem
scale isotropically, with dynamical exponentz51. This
power counting, however, is inconsistent with direct pert
bative ~and more sophisticated! calculations of physica
quantities. Preliminary investigations of this problem su
gests novel scaling without unique anisotropy or dynam
exponents.27 A more modest goal, requiring only straightfo
ward~if rather tedious! calculations is to extend the RG trea
ment of the smectic to include the permeation mode, i.e.,
coupling to density fluctuations, as described by Eqs.~4.6!
and ~4.7!.

A systematic treatment of topological defects in dis
dered lattices is also lacking. Some recent progress a
these lines was made recently for equilibrium elastic glas
in Ref. 12—it remains to be seen whether this work can
extended to driven systems. When dislocationsare present,
many interesting questions remain at zero temperature.58 A
possible plastic depinning transition and its properties—
associated scaling, noise, and hysteresis—are not pres
understood.

Finally, an extremely interesting line of inquiry is to ex
plore how some of the techniques used here might be
tended to inertial models appropriate for friction and lub
cation. Such systems presumably are controlled not only
the physics described here, but also by nontrivial mec
nisms of dissipation and possibly chaotic dynamics.
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APPENDIX A

In this appendix we carry out the mode-eliminatio
needed to coarse-grain the driven lattice in aperiodicpoten-

tial. Expanding thee2 S̃1 within the brackets in Eq.~2.22! to
first order gives

dSeff
~1!52(

x
E

zt
^@ û, i~r ,t !1û. i~r ,t !#

3F̃ i@x1u,~r ,t !1u.~r ,t !1vt,z#&0. . ~A1!

This average can be evaluated by expanding the forceF̃ in
u. and averaging over the fast modes term by term. Ho
ever, in the absence of thermal noise, the only nonzero
correlator is the response function, which vanishes by c
sality at equal times. Since all the fields in the first-ord

term are at equal time, all the terms involvinganyu. or û.

fields are zero, and this average simply gives

dSeff
~1!52(

x
E

zt
û, i~r ,t !F̃ i@x1u,~r ,t !1vt,z#. ~A2!
n-
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To leading order, then, the force is unrenormalized.
The first nontrivial correction arises at second order. T

effect is actually physically transparent. At first order the fa
modes simply respond linearly to the adiabatic motion of
slow modes. However, because of the mode coupling,
response is fed back and feltat second orderby the slow
modes again. It is this feedback that corrects the motion
the slow degrees of freedom, and is perturbatively estima
in the next correction. This is given by

dSeff
~2!52

1

2(xx8
E

zz8tt8
^ûi û j8F̃ i@x1u1vt,z#

3F̃ j@x81u,8 1vt8,z8#&0.
c , ~A3!

where we have indicated the arguments ofu and û by the
presence or absence of a prime, and furthermore suppre
the mode decomposition. The superscriptc indicates a cu-
mulant, or disconnected average, meaning that half of
square ofdSeff

(2) is subtracted off, as demanded by the log
rithm in Eq. ~2.22!. As we saw earlier, only nonequal-tim
response functions can survive the average. This can o
only via the first-order expansion of the displacement fie
out of one of the force terms, to be contracted against
response field at the nonequal time. Taking into account
two ways in which this can be achieved gives the result

dSeff
~2!52(

xx8
E

zz8tt8
û, i]kF̃ i@x1u,1vt,z#

3F̃ j@x81u81vt8,z8#Gjk~r2r 8,t2t8!. ~A4!

Here the response function is~in matrix form!

G~q,v!5@ ivI 1K~q!#21u~ uqu2L!. ~A5!

Theu function indicates that only a partial mode eliminatio
has been performed, so that the slow modes remain as
namical variables in the coarse-grained theory. Genera
however, the expressions obtained in this section h
smooth limits asL→0, and are well approximated therefo
by using the response function in the full Brillouin zone.

Using the Fourier decomposition, Eq.~2.23!, the second-
order contribution to the effective action can then be c
into the form

dSeff
~2!52(

x
E

zt
û, id f i@u<,r ,t#, ~A6!

whered f i may be interpreted as an additional effective for
in the coarse-grained equation of motion for the slow mo
u, . The dominant terms ind f i are those which do not os
cillate asx is varied. Keeping only these, it takes the form

d f i@u<,r ,t#5(
x8

E
z8t8

(
Q

iQiQjQke
iQ–†x2x81u2u81v„t2t8…‡

3uUQu2Gjk~r2r 8,t2t8!. ~A7!

This is greatly simplified by gradient expanding the diffe
ence in displacement fields
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u2u8'~r2r 8!a]au1~ t2t8!] tu

2
1

2
~r2r 8!a~r2r 8…b]a]bu. ~A8!

We then obtain an expansion for the force corrections,

d f i5(
x8

E
z8t8

(
Q

iQiQjQkuUQu2eiQ•~x81vt8!

3Gjk~r 8,t8!F @u,#, ~A9!

where

F @u#511 iQlFx8m]m1t8] t2
1

2
~x8mx8n]m]n

1z8az8b]a ]b!Gul ,2
1

2
QlQmr 8ar 8b]aul ]bum1•••.

~A10!

Including these corrections into the effective action gives
~2.24! in the main text.

APPENDIX B

Here we present the details of mode elimination for
lattice driven over adisorderedpotential. ExpandingS1 from

the exponential (e2 S̃) and averaging it perturbatively ove
the modes outside of the cutoff gives, to linear order inS1,

^S1&.5dSeff
~1a!1dSeff

~1b! , ~B1!

where the first term is, as before

dSeff
~1a!5S1@u→u,#, ~B2!

and simply returns the uncorrected bare random force.
next correction is

dSeff
~1b!5(

x,x8
E

zz8tt8
ûi~r ,t !Gjk~r2r 8,t2t8!

3] i] j]kG̃@r2r 81u~r ,t!2u„r 8,t8!1v~ t2t8!].

~B3!

Using Eq.~A8!, this becomes

dSeff
~1b!5(

x,x8
E

zz8tt8
ûi H G̃ i jkl @x82v0t8,z8#

3F r 8a]aul1t8] tul2
1

2
r 8ar 8b]a]bul G

1
1

2
G̃ i jklm@x81vt8,z8#r 8ar 8b]aul]bumJ Gjk~r 8,t8!,

~B4!

where we have abbreviatedG i j •••

5] i] j•••G. This correc-
tion to the effective action again represents gradient term
the coarse-grained equation of motion, of the form of E
.

e

in
.

~2.24!. Extracting these coefficients, we obtain the formu
quoted in Sec. II B 2 for the derivative coefficien
g, A, B, andC.

It remains to consider the renormalization of the for
term itself. This vanished in the case of the periodic for
due to the~assumed! incommensurability of the lattice an
the substrate. The random potential, however, has Fou
components commensurate with the moving lattice, wh
thereby generates such a renormalization. To evaluate
however, we must go to higher order in the disorder varia

G̃ . In particular, we consider the second correction term

dSeff
~2!52

1

2
^S1

2&0.
c . ~B5!

This is explicitly

dSeff
~2!52

1

8 (
124

E ^û1
i û2

j G̃ i j @x12x21u12u21v~ t12t2!,z12z2#

3û3
kû4

l G̃kl@x32x41u32u41v~ t32t4!,z32z4#&0.
c ,

~B6!

where we introduced the obvious abbreviation for the fo
lattice sums and longitudinal space and time integrals. T
expectation value contains several terms, depending upon

number of û fields which are contracted to give respon
functions. Terms with one contraction leave three respo
fields, which represents the generation of a skewness to
distribution of the random force, and can be neglected
what follows. Forming three contractions leaves a single
sponse field, which will give higher-order corrections to t
coefficients determined above, and can thus also be
glected~for weak disorder!. Forming two contractions leave
two response fields, which is of the proper form to renorm
ize the random force.

To obtain these terms, theG̃ ’s must be expanded to sec
ond order in the fast fieldsu. . This gives

dSeff
~2!52

1

8 (
124

E @ G̃ i jm~12!G̃kln~34!^û1
i û2

j ~u1.
m 2u2.

m !

3û3
kû4

l ~u3.
n 2u4.

n !&.0
c 1G̃ i jmn~12!G̃kl~34!

3^û1
i û2

j ~u1.
m 2u2.

m !~u1.
n 2u2.

n !û3
kû4

l &.0
c #, ~B7!

where we have now also abbreviated the arguments of
force correlators. The contractions inside the angular bra
ets can still be performed in several ways. Each such ch
gives rise to a separate term containing two response fu
tions and a combination of slow fields at different space-ti
points. To determine the desired correction to the rand
force correlator, we keep only the leading term in a gradi
expansion of the slow fields~i.e., zeroth order in the gradi
ents!. Lengthy but simple calculation gives

dSeff
~2!5

1

2(x,x8
E

zz8tt8
ûi~r ,t !û j~r 8,t8!

3dG i j @x2x81u,2u<81v~ t2t8!,z2z8#, ~B8!
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where the renormalization of the force-force correlator is

dG̃ i j @x,z#52(
12

E G̃ ikm@x2x12vt1 ,z2z1#G̃ j ln@x1x21vt2 ,z1z2#Gkn~1!Glm~2!

12(
12

E G̃ ikm@x2x12vt1 ,z2z1#G̃ j ln@x21vt2 ,z2#Gkn~1!Glm~221!

1G̃ i jmn@x,z#(
12

E G̃kl@x12x21v~ t12t2!,z12z2#Gkm~1!Gln~2!

2G̃ i jmn@x,z#(
12

E G̃kl@x1x12x21v~ t12t2!,z1z12z2#Gkm~1!Gln~2!

1(
12

E G̃ i lmn@x11vt1 ,z1#G̃k j@x1x21vt2 ,z1z2#Glm~1!Gkn~2!

2(
12

E G̃ i lmn@x11vt1 ,z1#G̃k j@x1x21vt2 ,z1z2#Glm~1!Gkn~221!. ~B9!
a

n
h

.

,

he
Integrating this horrendous equation overr , one obtains the
formula for gi j quoted in the text.

APPENDIX C

Here we estimate the correlator of the nonequilibrium p
of the static random force,gi j , given in Eq.~2.51!, in the
limit of large sliding velocityv. First we note that asgi j is a
symmetric tensor, it can be written as

gi j 5g0~d i j 2 v̂ i v̂ j !1g1v̂ i v̂ j , ~C1!

wherev̂5v/v and

g01g15E
q
q2qkqlqmqnuG~q!u2Gkm~q,qt•v!

3@Gln~q,2qt•v!2Gln~q,qt•v!#, ~C2!

and

g15E
q
~qt• v̂!2qkqlqmqnuG~q!u2Gkm~q,qt•v!

3@Gln~q,2qt•v!2Gln~q,qt•v!#. ~C3!

The physical case of interest here is the one where
rangej of the pinning potential is small compared to th
lattice constant,a. The Fourier transform of the variance o
the random potential,G(q) is then a very broad function o
the scale of the Brillouin zone. To proceed, we exploit t
periodicity of the elastic propagators in reciprocal space,
letting qt5k1Q, wherek only spans the first Brillouin zone
The integral overqt is then replaced by an integral over th
first Brillouin zone and a sum over all reciprocal-lattice ve
rt

the
e
f

e
by

e
c-

tors. Focusing for concreteness on the evaluation ofg1 (g0
can be evaluated by a similar procedure!, we obtain

g15 (
QÞ0

E
k
E

qz

@~k1Q!• v̂#2~k1Q!k~k1Q! l~k1Q!m

3~k1Q!nuG~k1Q!u2Gkm„k,qz ,~k1Q!•v…

3@Gln„k,qz ,2~k1Q!•v…2Gln„k,qz ,~k1Q!•v…#.

~C4!

We now split the reciprocal-lattice vector sum in Eq.~C4! in
two parts by separating out the terms withQ•v50 and write

g15g1
~1!1g1

~2! . ~C5!

The termg1
(1) denotes the contribution tog1 from the sum

over reciprocal-lattice vectors satisfyingQ•v50. In this
term we neglect everywherek compared toQ and obtain

g1
~1!' (

Q•vÞ0
~Q• v̂!2QkQlQmQnuG~Q!u2

3E
k,qz

Gkm~k,qz ,Q•v!

3@Gln~k,qz ,2Q•v!2Gln~k,qz ,Q•v!#. ~C6!

In the limit v@2pc/(ag), with c a typical elastic constant
we can now approximate the elastic propagators in Eq.~C6!
by neglecting the in-plane elastic matrix compared to t
frequencygQ•v, i.e.,

Gkm~k,qz ,Q•v!'
dkm

c44qz
21 igQ•v

. ~C7!

By inserting Eq.~C7! into Eq. ~C6!, we obtain
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g1
~1!'2r0 (

Q•vÞ0
~Q• v̂0!2Q4uG~Q!u2

3E
qz

~gQ•v!2

@~c44qz
2!21~gQ•v!2#2

. ~C8!

For dl50 this gives

g1
~1!'

2r0

g2v2 (
Q•v0Þ0

Q4uG~Q!u2'S G~Q50!

gv D 2 1

j6'S D

gvaD 2

,

~C9!

where D'G(Q50)a/j is the variance of the equilibrium
part of the static pinning force defined in Eq.~3.8!. For dl
51 theqz integral is easily performed, with the result,

g1
~1!'

3r0

8A2c44

1

~gv !3/2 (
Q•vÞ0

uQxuQ4uG~Q!u2

'
D2

~agv !3/2Ac44aj2
. ~C10!

To obtain this result, we have assumedgQv!c44/j2 ~al-
ways satisfied physically in vortex systems for currents
low the depairing current!, which allows the implicit upper
cutoff (Lz;1/j) in the integral in Eq.~C8! to be taken to
infinity.

In the contribution g1
(2) from the Q•v50 of the

reciprocal-lattice vector sum the integral overk is dominated
by k near the center of the Brillouin zone. In this term w
can therefore approximate the elastic propagators by t
long-wavelength form, given in Eqs.~3.13! and~3.14!. After
some lengthy algebra, one can show that in the limit of la
sliding velocities,v@2pc66/(ag), g1

(2);(j/a)g1
(1) and is

therefore negligible for short-ranged pinning potentials.
The evaluation ofg0 can be performed by the sam

method, with the result

g0;g1

a

j
, dl50,

g0;g1ln~a/j!, dl51. ~C11!

In summary, we find that at large sliding velocities bo
componentsg0 and g1 of the correlator of the nonequilib
rium part of the static random force have the sa
asymptotic dependence onv and the disorder strengthD,
with

g0,1'
D2

v ~42dl !/2
, ~C12!

valid for dl,4, the range relevant to all known physic
realizations of this model.

APPENDIX D

Here we examine the predictions of the perturbat
theory described in Sec. III for the real-space decay of p
tional correlations in adt-dimensional lattice of magnetic
flux lines (dl51), driven in thex direction. To obtain the
-

ir

e

e

n
i-

mean-square displacement in real space, we need to eva
integrals of the form,

B~r !52E
qt ,qz

8 12cos~q•r !

~gvqx!
21@cqt

21c44qz
2#2

, ~D1!

wherec stands for eitherc66 or c111c66 and the prime de-
notes a cutoff atuq'u5L. The integrals overqx andqz are
easily performed. Lettingu5q'x' , one obtains

B~r !5
uyu22dt

Acc44gv
F1

~dt!~s,z,Luyu!, ~D2!

where s5uxuc/(vgy2) and z5Ac/c44uzu/uyu. The scaling
functionF 1

(dt)(s,z,Luyu) is given by

F 1
~dt!~s,z,Lux'u!5E dû

~2p!dt21E0

Ly

udt23H 12cos~ ŷ•u!

3Fcosh~zu!2
1

2
e2zuFS Asu2

z

2As
D

2
1

2
ezuFS Asu1

z

2As
D G J . ~D3!

Here u is a (dt21)-dimensional vector, withû5u/u, and
F(x) is the error function. We are interested in th
asymptotic behavior of the scaling function fordt52. For
z50 we find

F 1
~2!~s→0,0,Luyu!; ln~Luyu!,

F 1
~2!~s@1,0,Luyu!; lnS cL2uxu

gv D . ~D4!

For z@1, or uzu@uyuAc44/c,

F 1
~2!~s→0,0,Luyu!; lnS uzu

L
A c

c44
D ,

F 1
~2!~s@1,0,Luyu!; lnS uxuc

vgy2D . ~D5!

The scaling of the mean-square displacement is therefore
isotropic, but logarithmic in all directions.

APPENDIX E

In this appendix we outline the details of the 21e RG
calculation for the single Fourier mode driven smectic mo
defined by Eq.~6.7! in Sec. VI of the main text. It is conve
nient to employ the Martin-Siggia-Rose~MSR! formalism.26

In this formalism one studies the dynamic generating fu
tional Z which is a trace over the displacementsf(r ,t), with
the constraint thatf(r ,t) satisfies the equation of motion Eq
~6.7!, imposed via a functionald function as an integral ove

a response fieldf̂(r ,t). Averaging over the noiseh(r ,t) and
the quenched random forceFp@f(r ,t),r #, the problem can
be recast in the form of a dynamical field theory,
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Z5E @df̂df#e2S0@f̂,f#2S1@f̂,f#, ~E1!

where in addition to the standard quadratic part of the ac
S0

S05E
r ,t

@f̂~r ,t !$g~] t1v]x!2~K i]x
21K'¹'

2 !%f~r ,t !

2gTf̂~r ,t !2#, ~E2!

there is a contributionS1 due to disorder

S152
1

2Er ,t,t8
f̂~r ,t !f̂~r ,t8!D1cos@q0„f~r ,t !2f~r ,t8!…#.

~E3!

In the above, after averaging over disorder we have kept o
the most relevant lowest Fourier component of the rand
force correlation function. We have also deformed the fu

tional integral contour over the response fieldf̂ to the imagi-
nary axis.

We employ the standard momentum shell renormali
tion -group transformation,59 by writing the displacemen
field as f(r ,t)5f,(r ,t)1f.(r ,t), integrating perturba-
tively in D1 the high wave-vector fieldf.(r ,t) nonvanish-
ing for Le2 l,q',L ~with no cutoff on the momentum
along the direction of motionqx and onv), and rescaling the
lengths, the time, and long-wavelength part of the fields w

x'5x8'el , ~E4a!

x5x8ez l , ~E4b!

t5t8ezl, ~E4c!

f,~r ,t !5ex lf~r 8,t8!, ~E4d!

f̂,~r ,t !5ex̂ lf̂~r 8,t8!, ~E4e!

so as to restore the ultraviolet cutoff back toL. Because the
random-force correlatorD1 term is a periodic function off,
it is convenient~but not necessary! to take the arbitrary field
dimensionx50, thereby preserving the period 2p/q0 under
the renormalization-group transformation. Under this tra
formation the resulting effective free-energy functional c
be restored into its original form Eqs.~E2! and~E3! with the
effective l -dependent couplings. To zeroth order we obta

dg~ l !

dl
5~d'1z1x̂ !g~ l !, ~E5a!

dgv~ l !

dl
5~d'1z1x̂ !gv~ l !, ~E5b!

dK'~ l !

dl
5~d'1z1z221x̂ !K'~ l !, ~E5c!

dKi~ l !

dl
5~d'2z1z1x̂ !K i~ l !, ~E5d!

dD1~ l !

dl
5~d'1z12z12x̂ !D1~ l !, ~E5e!
n

ly
m
-

-

h

-
n

dTg~ l !

dl
5~d'1z1z12x̂ !Tg~ l !. ~E5f!

As in the calculation of Sec. V statistical symmetry und
an arbitrary time-independent shift of the displacement fi
f(r ,t)→f(r ,t)1 f (r ) ~time-translational invariance! guar-
antees thatgv, K' and K i do not acquire any graphica
corrections, i.e., their flow equations above areexact. Impos-
ing this requirement at the tree level on the first two coe

cients, and using Eq.~E5a! we obtainz52 and x̂52d'

2z.
More generally but equivalently we look at the dime

sionless coupling constants

T̄[
T

2~K'K i!
1/2

Cd21Ld22, ~E6!

D̄1[
D1

K'guvu
Cd21Ld23, ~E7!

which have tree-level flow equations

dT̄

dl
5~22d!T̄~ l !, ~E8!

dD̄1

dl
5~32d!D̄1~ l !, ~E9!

whose flow isindependentof the arbitrary choiceof rescal-
ing exponents appearing in Eqs.~E4a!–~E4e!.

We now proceed to higher order inD1, perturbatively

integrating the short length modesf̂.(r ,t) andf.(r ,t)

Z5E @df̂,df,#e2S0@f̂,,f,#E @df̂.df.#e2S0@f̂.,f.#

3F12S1@f̂,f#1
1

2
S1@f̂,f#21 . . . G , ~E10!

[E @df̂,df,#e2S0@f̂,,f,#2dS@f̂,,f,#, ~E11!

where the graphical correctiondS to the action~dropping an
unimportant constant! is

dS@f̂,,f,#5^S1@f̂,f#&.2
1

2
^S1@f̂,f#2&.

c 1 . . . ,

~E12!

where the superscriptc means cumulant average, and t
averages are performed with the quadratic action with co
lation and response functions,C(q,v)V[^f(q,v)f(2q,

2v)&, G(q,v)V[^f(q,v)f̂(2q,2v)&, respectively,
given by

C~q,v!5
2Tg

g2~v2vqx!
21~K'q'

2 1K iqx
2!2 , ~E13!

G~q,v!5
1

ig~v2vqx!1~K'q'
2 1K iqx

2!
, ~E14!
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which can be read off from Eq.~E2!. Although naively one
would expect from Eq.~6.6! that as in the equilibrium prob
lem for d.2 temperature is an irrelevant variable, as
demonstrate below~consistent with the functional RG trea
ment of the Sec. V D this zero-temperature fixed point
destabilized by the finite velocity motion. We will therefo
work at a finite temperature.

The first-order correction̂S1@f̂,f#&. contributes to the
renormalization ofg, Tg, and D1, which we designate a
dg (1), d(Tg)(1), anddD1

(1) and illustrate graphically in Fig
8.

Expanding to quadratic order in the short-scale fieldsf̂.

andf. and averaging we obtain

^S1&.5S1@f̂, ,f,#

1
D1

2 E
r ,t,t8

Fq0
2

2
f̂ r ,t

, f̂ r ,t8
, cos@q0~f r ,t

, 2f r ,t8
,

!#

3^~f r ,t
. 2f r ,t8

.
!2&.

12q0f̂ r ,t
, sin@q0~f r ,t

, 2f r ,t8
,

!#^f r ,t
. f̂ r ,t8

. &.G ,
'@12q0

2C.~r50, t50!#S1@f̂, ,f,#

2
1

2
q0

2D1E
r ,t

f̂ r ,t
, f̂ r ,t

, E
dt

C.~r50,dt ! ~E15!

1q0
2D1E

r ,t
f̂ r ,t

, ] tf r ,t
, E

dt
dtG.~r50,dt !, ~E16!

where in the above we used causality@selecting the discreti-
zation withu(0)[0# and took advantage of the fact that th
correlations functions are short-range in time to perfo
small time gradient expansion. Performing above integ
over dt ~best evaluated in Fourierv space! and noting that
the terms in last part of Eq.~E16! renormalizeD1, Tg, and
g, respectively, we find

FIG. 8. Two diagrams that contribute to the renormalization
D1, Tg, andg. The full line corresponds to the correlatorC., the

full-wiggle line is the response functionG., wiggly line is thef̂
field and the vertex is theS1 nonlinearity. The first diagram, is
proportional toT, and is the graphical correction toD1 and Tg,
while the second one, survives even at zero temperature and r
malizesg.
s

ls

dD1
~1!52D1q0

2C.~r50,dt50!

52D1

Tq0
2

2~K iK'!1/2
Cd21Ld22dl, ~E17!

d~Tg!~1!5
1

2
D1q0

2C.~r50, v50!

5D1

Tq0
2

2K'uvu
Cd21Ld23dl, ~E18!

dg~1!5D1q0
2i ]vG.~r50,v50!

5D1

2K iq0
2

g2uvu3
Cd21Ld21dl. ~E19!

The calculation to second order inD1 given by dS2[

2 1
2 ^S1

2&.
c can of course be done directly, however, it

convenient to utilize the functional renormalization-gro
calculation of Sec. V C. There we found for an arbitra
force correlation functionD(f)

dS25
1

2Er ,t,t8
f̂ r ,t

, f̂ r ,t8
, D9~f r ,t

, 2f r ,t8
,

!

3„D~f r ,t
, 2f r ,t8

,
!2D~0!…

Cd21Ld23

2K'guvu
dl, ~E20!

which when applied to the lowest harmonicD(f)
5D1cos@q0f# gives

dS25D1
2q0

2E
r ,t,t8

f̂ r ,t
, f̂ r ,t8

, Fcos@f r ,t
, 2f r ,t8

,
#2

1

2G
3

Cd21Ld23

4K'guvu
dl. ~E21!

The diagram that leads to the above contribution todS2,
renormalizing the zeroth and first harmonics, i.e.,D0, and
D1, respectively, is illustrated in Fig. 9.

We therefore have to second order inD1

dD0
~2!5

D1
2q0

2Cd21Ld23

4K'guvu
dl, ~E22!

f

or- FIG. 9. Diagram that contributes to the renormalization ofD(u),
to second order inD(u), i.e., renormalizes the zeroth and first ha
monics,D0 andD1, respectively with the same notation as in Fig.



r-
g

ou

e

on

ie

a
nt
s

na
e
t
t

h
th
y

e
d
el
fo
t

m

er

ve
m
m

ym

ons

ity

re

t for
e

e
tic.
he
be

x

n-
ivi-

not
60.

of

ents

57 7737NONEQUILIBRIUM STEADY STATES OF DRIVEN . . .
dD1
~2!52

D1
2q0

2Cd21Ld23

2K'guvu
dl, ~E23!

where D0 is the zeroth harmonic of the force-force co
relator, i.e., thef-independent correlator of the random dra
Combining Eqs.~E23! with the zeroth~trivial dimensional
rescaling! and first-order results of Eqs.~E5b!, ~E17!–~E19!
and rewriting the flow equations for the dimensionless c

plings D̄0, D̄1, and T̄ defined by Eqs.~E6! and ~E7!, we
obtain the RG flow equations quoted in the main text, S
VI, Eqs. ~6.4!–~6.6!.

APPENDIX F

In this appendix we discuss the hydrodynamic equati
for the driven smectic of lines~illustrated in Fig. 4! that may
be obtained in a three-dimensional superconductor (dt52,
dl51). This smectic of lines has qualitatively new propert
as compared to the smectic of point particles described
Sec. IV. As discussed by Marchetti and Nelson,60 and Radzi-
hovsky and Frey61 in an isotropic flux-line liquid the con-
served variables associated with hydrodynamic modes
the density fieldr(r ) and the two components of a tange
field density t(r )5(tx ,ty), describing the instantaneou
bending of the lines away from the direction of the exter
field (z direction!. Since flux lines cannot start or stop insid
the sample, the density and the two components of the
field are not independent dynamical variables, but are rela
by a continuity equation in the timelike variablez,

]zdr1¹t•t 50. ~F1!

This is simply the condition of no magnetic monopoles. T
line smectic retains some degree of periodicity along
transverse directiony. This broken symmetry is described b
the layer displacementfy5f. In addition both the con-
served density and one component of the conserved tilt d
sity are associated with independent hydrodynamic mo
since they are not slaved to the layer displacement fi
Having identified the relevant hydrodynamic variables
the line smectic as a one-dimensional layer displacemenf,
a densityr and a tilt densityt, related by Eq.~F1!, we now
proceed to construct the phenomenological hydrodyna
equations for the line smectic and to study the spectrum
the hydrodynamic modes of this system.

The continuum hydrodynamic free energy for the ov
damped line smectic is given by

Fls5
1

2Er
H cLS dr

r0
D 2

1c44S t

r0
D 2

1c11
y ~]yf!21K1

x~]xf!2

1K1
z~]zf!212K2~]yf!

dr

r0
J , ~F2!

wheredr5r2r0, with r0 the equilibrium density. HerecL

andc44 are the smectic bulk and tilt moduli, respectively,c11
y

is the in-layer compressibility,K1
x andK1

z are layer bending
stiffnesses. The coupling constantK2 has dimensions of an
elastic constant. The hydrodynamic equations of the dri
smectic contain additional nonequilibrium terms, as co
pared to their equilibrium counterpart. The nonequilibriu
terms can be constructed by preserving two important s
.
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c.

s

s
in

re

l

ilt
ed

e
e

n-
es
d.
r

ic
of

-

n
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metries of the driven system, the invariance under inversi
about the direction of the external drive (y→2y, f→
2f) and the broken translational invariance in they direc-
tions (y→y1a, f→f1a).

Density and tilt density conservation requires the dens
and the tilt field to satisfy continuity equations60,61

] tdr1“• j50, ~F3!

] tt i1] j Ji j 5]zj i , ~F4!

wherej is the number current density andJi j is the antisym-
metric tilt flux tensor. The density and tilt density fields a
also related by the ‘‘continuity’’ equation~F1!. The equation
for the layer displacement has the same structure as tha
the two-dimensional lattice, Eq.~4.3!, and is repeated her
for completeness

~] t1v]x!f5
j y

r
2

G0

r0

dFls

df
, ~F5!

with G0 a kinetic coefficient. We will not discuss here th
role of disorder on the hydrodynamics of the line smec
Therefore we have not included any pinning force in t
equations of motion. The hydrodynamic equations need to
supplemented by constitutive relations for the current fluj
and the tilt flux Ji j . For simplicity we only consider here
local hydrodynamics, but the nonlocality of the elastic co
stants that is often important in flux-line systems can be tr
ally incorporated. The constitutive equations for thedriven
line smectic contain, however, new nonequilibrium terms
present in their equilibrium counterpart discussed in Ref.
The two components of the current density are given by

j x5~v1v1!dr1r0v2]yf2a1]ztx

2r0G1S ]x

dFls

dr
2]z

dFls

dtx
D , ~F6!

j y5r0v3]xf2a2]zty2r0G2S ]y

dFls

dr
2]z

dFls

dty
D . ~F7!

The antisymmetric tilt flux tensor is written as

Ji j 5e i j Fv4ẑ•~ v̂03t!1r0Gt ẑ•S ¹t3
dFls

dt D G . ~F8!

All the parametersv i and ai entering the nonequilibrium
terms are proportional to the mean velocityv. Since the lon-
gitudinal part of the tilt vector can be eliminated in favor
the density using Eq.~F1!, it is convenient to work in Fourier
space. We introduce longitudinal and transverse compon
of the tilt vector as

t~q!5q̂tt l~q!1~ ẑ3q̂t!tT~q!, ~F9!

with q̂t5qt /qt . Then tL5q̂t•t and tT5( ẑ3q̂t)•t. By in-
serting the constitutive equation for the fluxes in Eqs.~F3!,
~F4! and ~F5!, we obtain

@] t2 i ṽ 1qx1D1qx
21D2qy

22~ q̂x
2D61q̂y

2D7!qz
2#dr

5r0ṽ 2qxqyf1~D62D7!q̂xq̂yqzqttT , ~F10!
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@] t2 i ṽ 3qx1D3qx
21D4qy

21D8qz
2#f

52 iqyS D52
qz

2

qt
2 D7D dr

r0
2 iqzq̂x

D7

r0
tT , ~F11!

@] t1 iv4qx1D9qt
22~D6q̂x

21D7q̂y
2!qz

2#tT

5r0qzqt~v2q̂y
22v3q̂x

2!f1 i ~ ṽ 11v4!q̂yqzdr

1qz
2~D62D7!q̂xq̂y

qz

qt
dr. ~F12!

Finally, the longitudinal part of the tilt density is simpl
related to the density,

tL52
qz

qt
dr. ~F13!

The ‘‘velocities’’ ṽ 1, ṽ 2, ṽ 3 have been defined as

ṽ 15v1v1 , ~F14a!

ṽ 25v21v3 , ~F14b!

ṽ 35v2v3 . ~F14c!

The coefficientsDi have dimensions of diffusion constan
and are given by

D15G1cL /r0 , ~F15a!

D25G2cL /r0 , ~F15b!

D35G0K1 /r0 , ~F15c!

D45~G0c11
y 2G2K2!/r0 , ~F15d!

D55~G0K22G2cL!/r0 , ~F15e!

D65a12G1c44/r0 , ~F15f!
,

-
er

,

it
-

D75a22G2c44/r0 , ~F15g!

D85G0K1
z/r0 , ~F15h!

D95Gtc44/r0 . ~F15i!

By solving the hydrodynamic equations in the lon
wavelength limit, we can find the hydrodynamic eigenfr
quencies that govern the relaxation of density, tilt and d
placement fluctuations. All the modes are propagating
finite velocities and are given by

vr5 ṽ 1qx1 i FD1qx
21S D21

ṽ 2D5

ṽ 12 ṽ 3
D qy

22D6qz
2G ,

~F16!

vf5 ṽ 3qx1 i FD3qx
21S D42

ṽ 2D5

ṽ 12 ṽ 3
D qy

2

1S D82
v3D7

ṽ 31v4
D qz

2G , ~F17!

vt52v4qx1 i FD9qt
22S D61

v3D7

v41 ṽ 3
D qz

2G . ~F18!

For stability, in addition to the conditions stated for the tw

dimensional smectic, we must haveD6,0, D82(v3D7 / ṽ 3

1v4).0, D9.0 and D61v3D7 /(v41 ṽ 3),0. The first
mode corresponds to the permeation mode of smectic liq
crystals and describes the transport of mass across the la
that can occur in these systems without destroying the la
periodicity. The second mode describes long-wavelength
formations of the layers and governs the decay of displa
ment fluctuations. Finally, the third mode governs the rel
ation of tilt fluctuations, that, like density, can occur both
and out of the layers, while preserving the line smectic pe
odicity.
hys.
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