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We study a periodic medium driven over a random or periodic substrate, characterizing the nonequilibrium
phases which occur by dynamic order parameters and their correlations. Starting with a microscopic lattice
Hamiltonian, we perform a careful coarse-graining procedure to derive continuum hydrodynamic equations of
motion in the laboratory frame. This procedure induces nonequilibrium effects convective terms, Kardar-
Parisi-Zhang KPZ) nonlinearities, and nonconservative forcesich cannot be derived by a naive Galilean
boost. Rather than attempting a general analysis of these equations of motion, we argue that in the random case
instabilities will always destroy the long-range ordeRO) of the lattice. We suggest that the only periodicity
that can survive in the driven state is that of a transverse smectic, with ordering wave vector perpendicular to
the direction of motion. This conjecture is supported by an analysis of the linearized equations of motion
showing that the induced nonequilibrium component of the force leads to displacements parallel to the mean
velocity that diverge with the system size. In two dimensions, this divergence is extremely strong and can drive
a melting of the crystal along the direction of motion. The resultingen smectigphase should also occur in
three dimensions at intermediate driving. It consists of a periodic array of flowing liquid channels, with
transverse displacements and dengipermeation mode’) as hydrodynamic variables. We study the hydro-
dynamics of the driven smectic within the dynamic functional renormalization group in two and three dimen-
sions. The finite-temperature behavior is much less glassy than in equilibrium, owing to a disorder-driven
effective “heating” (allowed by the absence of the fluctuation-dissipation thepr&his, in conjunction with
the permeation mode, leads to a fundamentafiglytic transverse response for>0.

[S0163-182698)03613-3

I. INTRODUCTION random onddue to material impurities and defectse gen-
erally present, though their relative importance can vary
Nonequilibrium driven solids and liquids arise in a wide from system to system. Closely related problems also arise in
variety of different physical contexts. A common means ofmicroscopic models of friction and lubrication, in which a
driving is to apply a constant or low-frequency spatially uni- surface or monolayer is brought into contact with another
form shear(either a constant shear rate or shear stresssurface and forced to slide relative to it. Some recent simple
which has been studied extensively in colloidal and poly-models of earthquaké&sin which two elastic half-spaces are
meric system$.Such a driving is in a sense severe, since it isslowly driven past each other, also fall into the general class
incompatible with a macroscopically ordered solid, requiringof driven disordered periodic elastic systems.
the continual breaking of a nonzero density of bonds per unit Much of the recent focus in theggnned elastic media
time. If translational symmetry is broken explicitly by the has been omrquilibrium behavior, since, unlike their colloi-
presence of, e.g., a periodic substrate or quenched impuritiekal and polymeric counterparts studied in the shear geom-
fixed in space, a gentler sort of driving is possible. In thisetry, these systems exhibit a nontrivial competition between
case, even a uniform translation of the system is nontrivialthe externalsubstrate or disorder-inducepotential and the
and it can be driven out of equilibrium simply by applying a tendency for local order. In the random case, this was argued
constant force or pulling at a constant velocity. by Larkin® to generate long-range elastic distortions. More
A considerable number of such systems have been sulbecent works have reinvestigated this problem in some detail,
jects of recent investigation. These include flux lattices insuggesting the existence of a novel “Bragg glass” phase in
type-1l superconductor&® charge-density wavg€DW's) in  three and possibly two dimensiotfs? In the periodic case
anisotropic conductorsmagnetic bubble arraysand the (known as intrinsic pinning in the vortex communitthe
magnetically induced Wigner crystal in a two-dimensionalpotential can either lock-in commensurate phases, generate
electron ga$:’ In all these systems the relevant degrees ofinite (but qualitatively unimportafntincommensurate distor-
freedom—Dbe they vortices in superconductors or electrons itions of the lattice, or stabilize anisotrogiquid-crystalline
metals—form a lattice inside a solid matrix, provided by thestates. Though for both types of matrix some detailed ques-
superconducting or conducting material. Both a periodic potions remain unanswere@n particular, the stability of the
tential (due to the underlying crystal latticeand a quenched studiedelastic glassy phases to proliferation of topological
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defects, the equilibrium phases and transitions in these sys-potential® We expect, however, that in the presence of a
tems have been extensively studied and are fairly well unrandom potential chaotic dynamics is much more germane,
derstood. and furthermore, that most systems of experimental interest
Once the elastic medium is driven, however, a host ofontain appreciable external thermal noise. Nevertheless,
new questions arises: Under a uniform applied external forcéhere possible, we will comment on the extensions of our
fex, What is the mean velocity(fey) (thel-V curve, in the conclusions to the noiseless case. _
context of superconductors and CDW’and is this uniquely Our approach to the problem is first to devise a means of
determined or dependent upon history or other variables? Dg/assifying the nonequilibrium phases, then to determine the
ordered solid phases exist at low temperatures or weak diglynamical equations of motion governing these phases. Fi-
order, and if so how are they characterized? Can one develdjlly, using these equations, we can begin to calculate the
nonequilibrium phase diagrams, with phases classified by olhase diagram and the properties thereof. We summarize the
der parameters and symmetry analogous to equilibrium proghain results below, reserving a comparison with previous
lems? What are the properties of the resulting nonequilibWork for the discussion section of the paper. A preliminary
rium dynamic phase transitions and the nature of the/ersion of some of the results of this paper appeared in Ref.
fluctuations? Under what conditions does such a systerh9-
reach a nonequilibriursteady stateand what are the hydro-
dynamic modes in this case? A. Order parameters and correlation functions

Along with these new questions come a number of NewW A famework for classifying phases was introduced in
physical variables which play important roles. While equilib- Ref. 16 in the context of CDW's, and we generalize it here

rium behavior is relatively insensitive to detailed dynamical;y ,qre complex periodic media. As in equilibrium, phases

laws, tr|1ere E no reason ftod_expect_ this for ? drilv en system. 1. characterized by broken symmetry. An ordinary crystal is
particular, the nature of dissipation surely plays a CrUCIaIglobally periodic, and hence has broken translational and ro-

rorl]t_a.hTms dlst|r:jgmshes,. e.g., friction and Iulb”tfat'ogz N tational symmetry. Because the periodicity is sustained over
which (to a good approximationenergy can only be redis- |4 gistances, we say that it has translational long-range

tributed among vibrational modes of the solid, from charge-,.qa, (LRO). To quantify this notion, we must introduce

density-wave or vortex solids, in which energy can be transgjitaple order parameters.

ferred out of the collective modes to dissipate into electronic \ya consider initially a general model where the constitu-
degrees of freedom. In the latter case, which we focus ORnts of the driven lattice may be “oriented manifolds,”

here, it is appropriate to consider overdamped dynamics,ich are extended in some direction, such as magnetic-flux
while for the former inertial effects may be significant. Also lines in a three-dimensional superconductor. The configura-

crucial are conservation laws, which generally give rise Qo of guch a lattice is described by labeling each manifold
additional hydrodynamic modes. In equilibrium, the interac-y, s ndisplaced equilibrium transverse position, The
tions of these with elastic degrees of freedom are constrainedi .21 coordinates parallel to the oriented manifidg

by t.he fluctuqtlon—d|35|pat|on theorg_fﬁl_)T) not to modify along the magnetic-field direction in the vortex latliGae
static correlations. For the nonequilibrium lattice, however, arametrized by al,-dimensional vector, and r=(x,2)
they must be treated explicitly. Finally, a driven system ma he number of transverse dimensions is denotedibgnd

thibit C‘?,mp'f”f dynamics even in_ the absence of extern he dimensionality of space t=d;+d,. The lattice may be
th_ermlal, | or Itlme-r?_ep(;endent_, _nqsg. Wh_en the e.Xtemaldescribed by a density field smoothed out on the scale of the
Pomssteeatej\;e pIZrigé\?’ctqlaas(ia;il;riggilstlépgt?;?g;oCrZﬂy%;\lg—nselatti-ce _sp_acingp(x,z), Which_ in t_he ordered phase bec_omes
otic solut’ions Wh’ile in the Iattér case, dynamical chaoéaeno.dlc.m the transverse dl_reptlon. For the_vortex lattice the
likelv qives riée 10 an effective “tem era,ture” and restora- density is Fhe local magn_enc |nduct|on,_whlle for the QDW
IKely 9 P and the Wigner crystal it is the electronic charge density. In

:Ir?:fglfl e;%zg'g'tﬁcr;g;ed rce;gnul;’;:]r Sr(i)rl::;?olgsbr;z(i/g\?vtitﬁxglrg;et e ordered phase the collection of oriented manifolds ac-
P P np Pie, uires long-range periodicity, defined by a reciprocal lattice

arbitrary complexn)_/. Of course, faqtors such as the nature Of i hasis vectorgQ}. The density field is then written as
the external potential, dimensionality, and range of interpar-
ticle interactions, which control the equilibrium state, influ- lee _ .
ence the driven dynamics as well. _ _ p(X,2)=po+ EE polr)e X, (1.7)
A complete answer to these questions for all possible Q

cases is beyond the scope of a single paper. '.”Ste.ad' we W\'Mherepo is the mean density. The complex Fourier compo-
focus here on systems with overdamped, dissipative dynam- oo tsfve =% Allth litudes t ¢
ics which reach statistically steady states. This can occufentspq(r) ?a_'Sfyp—Q_pQ' All the amplitudes ranli orm
either due to the presence of external time-dependent nois@$ po— poe'®? under a lattice translatiom—x+a.™" A
which forces the system to explore the available phase spaceonzero expectation value of tig,’s thereby indicates bro-

or due to intrinsic chaotic dynamics. Note that this conditionken translational symmetry. As a result of the broken trans-
is violated by overdamped phase-only models.g., lational symmetry, long-wavelength fluctuations in the or-

Fukuyama-Lee-Ricé) of CDW'’s, in which there is a unique dered phase can be described in terms of long-wavelength
periodic long-time attractor, as shown by Middletdnit distortions of the Fourier modes, which can in general be
may also be violated in zero-temperature simulations of vorwritten in terms of an amplitude and a phase as

tex dynamics under some circumstances, as observed re- _ _ -

cently by Nori in some regimes for a strong periodic pinning po(r)=poo(r)e'Q ¥ (1.2
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Note that the phase in each Fourier amplitude is not an inimited) Bragg peak atq,=Q. If CQ(r,0)~|r|"7, these
dependently fluctuating variable in the ordeLed state. It isrroaden to power-law form. Io(r,0) decays exponentially
constrained by, e.g., cubic interactions of thg, which  for large|r|, only diffuse peaks if any exist. In these three
leave only the vector of phas@s They correspond to dis- Cases, the system is said to possess long-range, quasi-long-

. : : > . range, and short-range translational order wave vector
gcgﬁéotﬂsd?g&gi;?ntgz?’ﬁzln(fn:?ii?ﬂbg?gwbe interpreted as a Q), respectively. These will be abbreviated LRO, QLRO,

So far, this discussion applies equally well to both equi-an%SR(t)’ rTSp%C“Ve!{)‘ mt:]he retmatlncfie;r of thelpapgra_ it
librium and driven solids. Consider now thimme dependence o(r.t) also describes the extent o temporal periodicity.

he local densi . lid ~ By analogy to the translational characterization, we say that
?rf(;) e;ootﬁ:\t ensity. In a moving solid, we expe$t=vt o qystem possesses long-range, quasi-long-range, or short-

range temporal ordéat frequencyw=Q-v) if C5(0,t) goes

1 to a constant value, decays algebraically, or decays exponen-

p(X,2,t)=po+ _2 pQ(r,t)eiQ-[HVt], (1.3 tially, respectively. This temporal order can be experimen-
27q tally probed through theynamicstructure function

where
S(a,0)=(|5p(q,)|?)
rt)=po(r,t)e 'V, 1.4
pQ( ) pQ( ) ( ) :E f ei(q,Q)_rfi(wa.v)t<p (r,t)p*(0,0)>
Physically, the oscillations in the density simply reflect the Q Jrt Q Q
fact that individual constituents of the lattice pass any given a7

point in a regular periodic fashion. The setgf fields com-
prises the order parameters for the nonequilibrium systenSystems with temporal LRO will display sharp peaks at mul-
Neglecting topological defec{s.e., dislocationsamounts to tiples of the washboard frequeney=Q-v in the S(q, )
assuming that the amplituge,  is constant. Elastic defor- and in the related power spectrum of velocity fluctuations.
mations of the solid are then described entirely by phas&uch system should also exhibit “complete mode locking”
fluctuations in terms of a single-valued coarse-grained disto an arbitrarily weak external periodic driving at these fre-
placement fieldp(r). It is important to distinguish between quencies.
the displacement field defined in the moving or crystal frame In a random system, temporal order is generally more
(where the conventional phonon field is definadd the dis- robust than the translational order. Physically, the difference
placement field in the laboratory frame. Throughout this paarises because impurities inhomogeneously stress the system.
per we denote byph(r) the displacement field in the labora- The responding nonuniform distortion, however, can have
tory frame, while we reserve the symbolr) for the very little fluctuation in time, and thereby can leave the tem-
conventional phonon field. Many of the experimental sys-poral ordered relatively unaffected. It will, of course, have
tems of interest form triangular lattices. In this case, the resome effect on the dynamics, because disturbances propagate
ciprocal lattice of allowed) is also triangular. The Fourier differently atop the nonuniform background, and because the
components for the three smallest of these wave vectors atecal strains lower the barriers to defect nucleation. We can-
the primary order parameters characterizing the orderedhot exclude the possibility of a phase in which dislocations
phase(pg)#0 (the brackets indicate a time average or av-are unbound, but frozen in the laboratory frame. Such a
erage over thermal noiseOf course, the secondary “spec- phase would exhibit translational SRO but temporal LRO,
tator” order parameterpg with larger Q (formed as any and would be the driven analog of the vortex-glass phase
linear combination of these three minimum reciprocal-latticeoriginally proposed by Fisher, Fisher and Hi&&iven the
vectorg are of course also nonzero in the solid, but may berelative instability of this phase in equilibrium, we think this
considered as induced by the primary order parameters. Theytenario is, however, somewhat unlikely.
do not play a direct role in critical phenomena and influence What particular types of translational order can in prin-
only more subtle experimental effects such as higher-ordegiple arise in a driven system? Of course, a disordered liquid
Bragg spots. state is possibléand may be the only stable phase in low
A quantity of immediate experimental interest is the staticdimensiong When translational order is present, it can occur
structure factor, which is the Fourier transform of the equalat a variety of wave vector®. For weak disorder at low
time density-density correlation function and is given by  temperatures, it is natural to expect that a full reciprocal
lattice of wave vectors characterizing a crystal should be
— 2y _ i(q-Q)-r * important(i.e., have appreciablgy). In two dimensions, for
S(@=(|9p(a.0[%) % fre {palr:Dpg(0.L). instance, the smallest of theseQwouId typically be arranged
(1.5 into a hexagon. If, as seems natural, and can be shown in
some simple models, reflection symmetry perpendicular to
the applied force is not broken, this can take one of two
orientations, with a diagonal oriented either parallel or per-
_ * pendicular to the force. Since the applied force breaks rota-
Co(r, ) =[{pa(r,t)p5(0,0))lens, (1.8 tional symmetry, however, there is no reason for the corre-
governs the behavior of the structure factor. We used anguldations at all six points to be identical. Instead, if the system
(squarg brackets to denote therméllisordej averages. If evolves continuously with increasing temperature or disor-
Co(r,0)—const for large|r|, S(q) has a shargresolution  der, it is natural to expect that LRO will be lost first at some

Hereg=(q;,q,) is the full wave vector. The order-parameter
correlator,
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so that the amplitude of the order parameters fluctuates very
little. In this case, a phase-only or elastic approximation is
natural, and only thep fields remain in the description. This
method has the disadvantage of excluding topological de-
fects, which must be reintroduced by hand to complete the
description, as has been successfully done for equilibrium
systems, such as, for example, Kosterlitz and Thouless treat-
ment of 2D superfluids and 2D melti§.Determining the
relevance or irrelevance of such defects upon the elastic de-

(a) scription in disordered systems is a difficult and unsolved
problem. If, however, the phase-only approximation predicts
only small displacements in the ordered phase, it can be ex-
pected to be a self-consistent approximation out to a rather
long length scale. If, by contrast, large distortions are found,

aT the original assumption of order is inconsistent, and we have
X ° Y \ discovered an instability of the solid phase.
070000 0e 00.q guSy — To determine the nature and stability of the possible or-
0.0.090.g 000 % o 00 Py . .
vl ee- ® e .'. ete.00 e dered nonequilibrium phases, this paper focuses on the elas-
,.‘0’,..., 002 o0 tic approach. Assuming constant amplitude of the order pa-
) gl 9. 0% @ . . .
rameters,Cq can be written in terms of the displacement
(b) X field correlation as
FIG. 1. (a) Schematic illustration of a moving glass, which be- Co(r,t)=|pgol[(e' QLA D= HOON] (1.8

comes unstable to the proliferation of dislocations with Burgers

vectors along the direction of motion. At large velocities, we expectwhere we have pulled out the amplitude factor.dfis a
that unbound dislocations will be widely separated, with spacingsGaussian random variable,

X sm @nd ygn, in the directions longitudinal and transverse to the

motion, respectively. A naive estimate based on the linearized

theory(for, e.g., superconductirfgms, d, =0, d,=2) probably gives Cq(r,t)=[pq.o*exp{— QiQ;Bj;(r,t)}, (1.9
an upper bound for these scalest,=cgsa’(yv)"/A* and yqn, ) ) )

<ceea’(yv)3/A% Nonlinear (KPZ) effects very likely shorten Wherei andj denote Cartesian components aig(r) are
these lengths considerably. On larger scales, the “lattice” crossefe components of a mean-square displacement tensor,
over to the driven smectic state displayed(ln, with only trans-

verse periodicity and liquidlike order along the direction of motion. N — ) _ , e

The dislocations with Burgers vectors along the direction of motion By (rO=KLi(r.1) = #0011 4;(r) = #(0.0))Jens
allow the weakly coupled liquid channels to move at different ve- (1.10

locities. Generally, the displacements fluctuate in a non-Gaussian

subset of these wave vectors. The surviving state has a Iessvrggn:frésf i:l;at uiclﬁa.tli\?e I?mnciitczsatt?ocr?g fgrrr]i% Fé?\l(vre\t/)er’
periodicity, with only a single line of Bragg peaksymme- oes tF()) a con_gtant at lon gistanc(e‘aimes) theﬁ slé) does
try requires that the other solid peaks disappear paijwise 9 9 '

represents therefore a layered liquid smecticstate. This Co(r.1). If B;(r.t) grows algebraically, thelﬁ:Q_(r,t)_has
can be either a longitudinal smectic, with ordering wave vec—StretCheOI exponential forrfihough not necessarily with the

tor parallel to the velocity, or a transverse smectic, with pe_nalve stretching exponensuggesting that in a physical sys-

S L : : tem topological defects might proliferate and lead to short-
riodicity in the direction perpendicular to the velocity. We range order, and ifB; (r.t) grows logarithmically, then

argue below that only the case of a transverse smectic show
in Fig. 1(b) is stable, and indeed, that this is likely to be a CQ(l:t) decays as or slower than a power law.
more generic state than the true solid when the system is T(_) caIcngteBij(r,t), we employ the analog of hydrogjy-
driven. namic equations of motion. In general, the hydrodynamics of
systems far from equilibrium is far more complex than its
equilibrium counterpart. In particular, fluctuations about the
nonequilibrium steady state do not satisfy a fluctuation-
There are at least two analytical approaches to calculatindissipation theorem and the external driving force breaks
Cq(r,t). One is to construct a density-functional or Landau-both the rotational and reflectiofparallel to the forcgin-
like theory for the order parameteps,. For the nonequilib-  variance of the equilibrium system. As a result, the hydrody-
rium driven system considered here, this would be a set ofiamic equations contain many more parameters than in equi-
stochastic partial differential equations. This has the advanibrium. A general construction based only on symmetry
tage of allowing large amplitude fluctuations, and hence inconstraints is thus not very useful, and a concrete derivation,
cluding dislocations in a natural way. The disadvantage ofvhich provides precise values for these parameters, is desir-
this approach is its intractability. It is often difficult to re- able. We perform such a derivation in Sec. Il. Our first main
cover relatively simple properties in the ordered phase. Aesult is the complete nonequilibrium hydrodynamic equa-
second approach is to assume a large degree of local ord¢ign of motion for the driven lattice,

B. Hydrodynamics and elasticity
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Yii 019 = Aiajda Pt Biagjdadpdjt Ciajpkda®idpPx qy

+Filr, é,t]1+ 7i(r,0), (1.19 ,

where the coefficients\, B, andC are nonzero only when
the number of subscripts taking values of axes perpendicular
to the driving force is even. Explicit expressions for these are

given in Sec. II.F and » represent quenched random and
external “thermal” forces, respectively. Equatiofi.11)
remedies the deficiencies of varioad hocequations of mo- (@)
tion proposed in previous workd.Similar equations have
been considered also in the context of sedimenting colloidal
crystals in Ref. 22.

One noteworthy feature of E@l.1)) is the proliferation 0|
of gradient terms beyond the usual equilibrium elastic ones y
(contained in theB term).?® These represent convective ef-
fects and dependence of the substrate-lattice interaction upon *n/a
the local deformation of the lattice. To properly account for 1
them, it is crucial to treat the phonon modes near the zone
boundary, not considered in previous calculations. Especially qx
important are the\ terms, which lead to propagating modes
at low frequencies and wave vectors.

Another key feature is the random for&e[r, ¢,t]. It is (b)
d|st|ngwshed f_ro_m t_he equilibrium form in two ways. First, it g o (a) The static structure factor for the moving glass
contains nontrivial time dependence, as can be seen from gyetched in Fig. @), with sharp peaks at all the reciprocal-lattice

vectors of a triangular lattice. The static structure factor of the
Eir,¢,t]=>, e QD v=ar bl (1), (1.12  driven transverse smectic is shown(b). Sharp peakedark spots
Q only appear along the, axis; some remnant of short-range local
triangular lattice order can appear in the form of weak and diffuse
peaks at finiteg, (light spots.

LN B ]
® oo o
e o|0 o

where F;(r) is a timeindependengjuenched random vari-
able, which we will refer to as atatic pinning force (the

exponential factor in Eq(1.12 comes from the transforma- . ) N
tion from the moving to the laboratory frameThe terms LFi(T,¢t)]. Past experience with other nonequilibrium
with Q-v#0 therefore oscillate in the siiding solid. The sec- KPZ-like equation¥®?* suggests that instabilities are quite

ond distinction is seen from the decomposition ubiquitous in low dimensions. We expect such instabilities
will occur also in this case, at least in two dimensions and
Fi(n)=Fr)+F"qr). (1.13  quite possibly in three, and leave an analytical check of this

hypothesis to future research. Provided such an instability

The first term on the right-hand side of E(L.13 is the occurs, can any residual order survive in the driven state?

equilibrium component of the static pinning force and can beTwo physical realizations of partially ordered moving states

written as the .gra.d|ent of a potential, as required by thﬁﬁave already been suggested: the longitudinal and the trans-
fluctuation-dissipation theorem. Its correlations are appProxiy, o ca smectic. A longitudinal smectic is equivalent to a con-

mately given by ventional driven CDW, studied earlier by Chenal?* and
[FE)FE(r) Jne= — 30T (T —1"), (114 by Balents and Fls_héﬁ These authors concluded that this
phase is unstable in two dimensions, but may exist at large
whereI’(r) is the correlator of the Gaussian random poten-velocities in three dimension@lthough the role of disloca-
tial. The second term in E@1.13 is thenonequilibriumpart  tions and KPZ nonlinearities in three dimensions deserves

of the static pinning force, with correlator further study.
ne e . » , The only possible ordered phasedr2 is thus a trans-
[FFOF(r) Jens= gy O(r —1). (119 yverse smectifdiscussed in the previous subsection and illus-

The variancay;; of this static force is given in Eq2.51 and trated in Fig. 1b); the §tatic structure function c_orresponding
vanishes in the absence of external drive. A nonzgyom- fto a _transverse smectic and crystal is §chemat|cally illustrated
plies thatF"™is nonconservative, violating the fluctuation- N Figs. 2b) and 2a), respectively with some degree of
dissipation theorem. ord_er_ at a periodic set o p_erpen_dlcular to the velocity.
This is of course also a possibility o= 3, regardless of the
stability of the lattice. The marginal stability of the driven
lattice in three dimensions allows for a dynamic phase tran-
A general analysis of Eq1.1]) is quite difficult. In prin-  sition between the driven smectiat intermediate velocitigs
ciple, the stability and behavior of the putative moving glassto a moving lattice(at high velocities We illustrate the cor-
can be determined by an renormalization-gréR®) analy-  responding dynamic phase diagrams in Fig. 3.
sis of the full equations of motiofEgs. (1.11)], including The latter part of the paper is devoted to an analysis of
both the KPZ nonlinearities €, . 5) and the random forces this possibility. In Sec. IV, we present the hydrodynamic

C. Analysis
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smectic exhibits neither narrow-band-noise nor complete
d= mode locking (although incomplete mode locking is of
course possible for sizeable ac drive$he response to a
force f, transverse to the mean direction of motion is a su-
perposition of two effects. First, the permeation mode pro-
vides a nonvanishing linear component of the velogft§™
= tpemf, - Secondly, the smectic responds in a nonlinear
moving e manner, resemblinga threshold at low temperatures but
liquid .~ . . crossing over tdinear response at very low forces far
/~ moving smectic £0.
mov}ng lattice F In two dimensions, the RG study of the elastic model also
predicts only short-rangasymptotic transversganslational
correlations and quasi-long-range temporal correlations.
These calculations actually indicate that the system is outside
d=3 the regime of validity of the elastic approximation. We ex-
pect that ind=2 an eventual instability of even the smectic
state to unbinding of transverse dislocations may occur at
larger length scales. Nevertheless, the RG results should hold
up to this length, and, as in three dimensions, also predict
superimposed linear and nonlinear transverse velocity re-
. sponses.
movmis  / moving We conclude the Introduction with a summary of the re-
smectic .
.~ lattice mainder of the text. Section Il describes the derivation of
- hydrodynamic equations of motion for the driven lattice,
which we study perturbatively in Sec. Ill. Sections IV pre-

FIG. 3. Schematic phase diagram for a finite-temperature driver?'ents the equations of motion for the transverse smectic,

solid in (2) d=2 and(b) d=3 dimensions. Ir(@ we have used a 'hich are analyzed using renormalization-group techniques
dashed line as a boundary between the moving liquid and the trand’ Secs'. Vv and VI. The SpeCITIC predlct'lonslof the RG for
verse smectic to emphasize that the smectic might be unstable in ZEPrrelat'on and response functions are given in Se_C' VIL. S_ec-
and therefore asymptotically indistinguishable from a moving lig-tion VIII summarizes our results, makes comparisons with
uid. In (b) we have similarly used a dashed boundary between th@ther work, and gives a synopsis of remaining open ques-
moving smectic and lattice, to emphasize that it is likely that thetions and future applications of these ideas. Finally, six Ap-
moving lattice is unstable even in 3D. (b) the hatched “?” region ~ pendixes give technical details unsuitable for the body of the
indicates the interesting possibility of a moving Bragg glass in 3D,Paper.

at low drives.

>

vortex glass

moving
liquid

.

—

moving lattice F

Bragg glass

. . . . . . Il. DERIVATION OF HYDRODYNAMICS
equations of motion for the smectic. These include a simpli-

fied version of Eq(1.11), supplemented by an additional one  As discussed above, the goal of this paper is to study the
for the conserved particle density. Unlike in a vacan-nonequilibrium steady states that arise in driven periodic me-
cy/interstitial-free solid, this is not generally slaved to thedia. We will focus on the low-energy and long-wavelength
smectic displacement, and constitutes a separate hydrodgroperties of these steady states, in cases where these are
namic mode® This is the well-known permeation mode in uniquely defined. This should be the case provided ergodic-
smectic liquid crystals. ity is achieved, either through a small nonzero “thermal”
Even these equations are somewhat intractable, so inoise or via intrinsic chaotic dynamics of the system in the
Secs. V and VI we study the “toy model” in which the absence of external noise. We will not discuss zero-
permeation mode is decoupled from the smectic displacecemperature systems in which relatively simple global attrac-
ment ¢,= ¢. This is best done using renormalization-grouptors exist with nonchaotice.g. periodi¢ dynamics.
(RG) techniques, which are controlled in two limits. At and  In the limit of interest, then, we expect a sort of hydrody-
neard= 3, the RG is controlled by a low-temperature fixed namic description to hold. Such hydrodynamics is particu-
point, which is analyzed using fnctional RG in Sec. V. larly successful in equilibrium because it is highly con-
The fixed-point temperaturg@* increases with decreasing strained. It must respect both detailed balaficereduce to
dimension until ind=2, more conventional sine-Gordon RG equilibrium statistical mechanigand the symmetries of the
techniques can be applied. Directly in three dimensionssystem—in this case translations, rotations, and reflections.
there is a slow asymptotic approach to zero temperature. Out of equilibrium, a putative steady-state equation of mo-
From these RG calculations come several concrete predi¢ion can be much more general. The fluctuations around the
tions. In a three-dimensional smectic, the structure factor hagriven state need not satisfy any fluctuation-dissipation rela-
power-law Bragg peaks along the axis in momentum spac#on, and the external driving force breaks both rotational and
perpendicularto the velocity, as illustrated in Fig(® [to be  reflection invariance.
contrasted with a moving solid or Bragg glass, illustrated in  For this reason, there are many more parameters in the
Fig. 2(@), which we believe are unstable to the transversenydrodynamic description. In the absence of further input, it
smectid. Because these peaks are entirely transverse, the therefore considerably less powerful than equilibrium hy-
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drodynamics. To make it useful, we need a means of calcu-
lating these parameters “microscopically.” This is possible H=2> J V[x=x'+Uu(x,2)—~u(x',z),z- 2]
for weak external potentials. xS

The calculation proceeds in two stages. Beginning with a
microscopic lattice Hamiltonian, we first explicitly coarse +; LU[XJFU(X'Z)’Z]' (2.2
grain the equations of motion. This is a mode-elimination
procedure in momentum space, reminiscent of a single steffere V[x,z] is a two-body manifold-manifold interaction,
of rescaling in a renormalization-group calculation. It is thisand U[x,Zz] is the external potential of the static medium.

stage which requires a weak external potential, since the Expanding the interaction potential in the usual way gives

elimination can only be performed perturbatively in theseth® elastic energy

mode-coupling terms. The end result is an effective equation 1
of motion for the phonon modes with momenta within a H~ =, f Kij(x—x’,z—z’)ui(x,z)uj(x’,z’)
small sphere of radiud <27/a in momentum spacea(is 25 Jat
the lattice spacing
The second step is to transform the equation of motion + JU[X+ u(x,2),z], 2.3
from the moving framgin which the conventional phonon Xz
coordinate or displacement field is defined the laboratory where the elastic matrix
frame (more relevant for physical measurementgvhile
te_chpicqlly much _simple_r than the .previous _mode- Kij(r):E J FIN(1") 808(2) — aiNV[1]. (2.4
elimination step, it is possible only at this stage, since the Y J7
transformation can be carried out only as a gradient expan-

sion, with the small parametéra<1. At this point, it pays to establish some notation. In the

previous equation, we have already adopted a convention for
indices. Latin indices alphabetically followinglenote trans-

A. Formulation verse &) coordinates, while,b, ... h denote longitudinal
_ _ ) ) (2) ones. If an index may range over the full space, a Greek
The formulation of the problem begins with some micro- indexa, B, ... will be used. We will attempt to useandz

scopic Hamiltonian, describing particles connected bywith primes, etd. exclusively as transverse and longitudinal
springs. The natural degrees of freedom are thus the digoordinate vectors, with corresponding momeqtandg, .
placements of these particles, whose gradients are expectgflese will often be assembled into vectors in the full
to be small provided the potential acting on the particles isj-dimensional space denoted: (x,z) andq=(q,q,).

weak. The high-momentum modes being eliminated here |n Fourier space, using reflection symmetry, the elastic
therefore describesmall relative displacements of nearby matrix is

(say, neighboringparticles. Small though these are, they are
crucial to the physics of thsliding solid. . .
Furthermore, the effects of the fixed external potential aré<i1'(q)52X LKiJ(r)elq = g fzaiajV(r)[l—e'q 1. (29
expected to be most pronounced when it is has strong peri-
odic components commensurate with the driven lattice. This Overdamped relaxational dynamics is defined by
is intuitively reasonable, and indeed comes out of our more
detailed calculations. This physics, however, comes precisely oH
from these high-momentum modes at the scale of the lattice youi(r,t)=— m+fi '
spacing. Even if the lattice is not pinned into a static con- . o )
figuration, these modes are the most strongly coupled to thwheref is an external force. This is equivalent to the equa-
static matrix, and thereby give rise to the seeds of interestinfon of motion
nonlinear dynamics.
We consider a general model in which the constituents of yaui(r,t)=— >, f Kij(r=r")u;(r’,t)
the driven lattice may be “oriented manifolds,” which are < J7
extended in some directions. This allows for systems includ- —~
ing, for example, vortex lines in a three-dimensional super- +Fi[x+u(r,t) +vt,z], 2.7
conductor. The conformation of a manifold with undisplaced,,here we have shifted to remove the external force=f/y,
equilibrium transverse positiox in a distorted lattice is de- g
scribed by the displacement vecta(x,z), such that the true

position is Fi(r)=—a,U(r). (2.9

In general,v=f/y is not the true steady-state velocity for a
X(X,2) =x+u(X,2), (2.1  given forcef, since interactions with the impurities intermit-
tently pin the lattice and thereby reduce the sliding speed.
This finite renormalizatioriwhich is quantitatively small at
where u and x are d;-component vectors, while hasd, large velocitiey can, however, be neglected for the current
components. purpose of studying the properties of the steady state. This is
A natural microscopic Hamiltonian, valid in most cases, isanalogous to ignoring the mass renormalization in field

(2.6
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theory(or T, shift in critical phenomenaOf course from the . . Ciartiot
experimental point of view, the velocity curedf) (like the U<(r,t)5f |<AJ’ u(d,w)e” "N (2.1
true T;) is an important and measurable quantity. i Az

B. Mode elimination u>(r,t)Ef ‘ AJ u(g,w)e'artet) (2.17
> w
Having set up the dynamics, we are now in a position to “ *
perform the coarse graining. We will use the Martin-Siggia- . ~ . .
Rose (MSR) formalism?® which allows the mode elimina- U>(r.t)5f f u(g,w)e” 9T (2,18
tion to be performed by functional integration. The object of la>A / aze
interest in the MSR method is the statistical weight where we have adopted opposite Fourier sign conventions
. ~ for the displacement and response fields, and all momentum
Wu,u]=e"*, (2.9 integrations are restricted to within the Brillouin zone. Cor-
o~ — ] relation functions of the slow fields describe all the long-
where the actiorB=So+ S;, with wavelength(i.e., hydrodynamic and elastibehaviors of the

system, and can be obtained from the effective weight

S=2 Lf““’”

yatui(r,t)+2 L,Kij(r—r’)uj(r’,t)}

Wet[Uo ,U_]=€ Sefi= f [du-][du-]e"S. (2.19

(2.10
and For simplicity, let us consider the model at zero tempera-
ture, i.e., in the absence of any external time-dependent
- 2 ~ - noise. Because the potential couples the slow and fast modes,
S1=— - fnui(r’t)Fi[X+ ur,y+vt,zl. (21D e will nevertheless obtain nontrivial renormalizations of the
slow dynamics from the mode elimination.

With this choice of weight, correlation functions are given e proceed by inserting the decomposition in E4j14
by the functional integral into the actionS. Furthermore assuming that the potential
is weak, we may expand the exponential and perform the
o A D -3 functional integrations over the fast modes order by order,
(ui(r,uy(r',t’).-- ’>:J [duJfdu]ui(r,D)u;(r’,t")---&"". 1o exponentiating the resulting expressions, which then de-
(2.12  pend only upon the slow fields. The elastic part of the Hamil-

. . . . tonian is diagonal in momentum space,
In this expression, the left-hand side should be interpreted as

simply the product of the specified, evaluated along the .

solution of Eq.(2.7). The right-hand side is the result of So=f ui(g,@)[i yo+Kjj(g,0)]ui(q,w), (2.20
functional integration oveall functionsu,u. Because of this e

identity, we will freely employ angular brackets in either so that upon decomposition the slow and fast fields are de-
context. We note that this equality relies crucially on propercoupled in this term:

regularization of the equal-time correlators in the field

theory. In particular, we will choose the causal convention So[U,U]=Se[ U= ,U-]+Sp[ U= ,U=]. (2.21)
(ui(r,t)ﬂj(r’,t)>=0. (2.13  The effective potential is therefore
Correlation functions involving the field have the physical Ser=So[U- U]~ In(e*§1>O> , (2.22

interpretation ofresponsdunctions, as can be seen by sim- ) L .
ply differentiating a correlation function with respect to an where the angular bracket with the subscripts indicates inte-

applied force. This convention then simply implies that theredration over the fast modes>) with the additional weight

is no instantaneou@nd hence discontinuougesponse to a factore‘SO_(O)_ _ _
perturbation. From this point onward, the treatment differs for the pe-

Within the MSR formalism, we can now readily carry out riodic and random potential, so we divide the remainder of

the mode elimination. The fields are first separated into twdhiS Subsection into two parts. Each involves the conceptu-
ally straightforward perturbative calculation of the average in

parts via e : . .
Eqg. (2.22. This is somewhat tedious technically, so details
u(r,t)=u—(r,t)+u(r,t), will be given in Appendixes A and B.
O(r ) =0 (r )+ 0 (r.1). (2.14 1. Periodic potential
We can specify a periodic potential by the Fourier decom-
Here the slow and fast fields are defined by position,

u<(r,t)EquququU(q,w)e‘q*“"t, (2.15 U(x):% e*U,. (2.23
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Note that we have taken the potential to be independent aksults are obtained by coarse graining for a fixed realization

the continuous longitudinal coordinates of disorder and eventually averaging only physical quanti-
Inserting the above Fourier decomposition and evaluatingies.
the expectation value in Eq2.22 to second order irJ We take the simplest model for disorder, in whigir) is

gives corrections t&, which correspond to a renormalized Gaussian distributed and statistically translationally invari-
equation of motior(see Appendix A Since for smallA, the  ant, with zero mean and second cumulant
remaining “slow” fields have small gradients, the corrected _
equation of motion may be written in the continuum approxi- [U(MUI)]en=T(r=1"). (2.32
mation. It takes the general form
_ _ _ _ The force-force correlator is thus
yilﬂtuj=Aiajc7auj+Biaﬁjﬁa&ﬂuj-l—Ciajﬁkﬁaujﬁﬁuk _ _ _
+FIx+u(r,t)+vt,z]. (2.24 [Fi(Fj(r) Jens= = iy T(r=r"). (2.33

Here the gradients may be understood either as lattice differ.€ averaged statistical weight is readily computed:

ences or as the corresponding expressions in momentum . .
space. The coefficients are [WLu,u]lens=€7 >, (2.39

~ J with S=S,+S;, and
7’”275”'_%: QinQkQIlUQ|2i£GkI(QyV'Q)a
(2.29 Sl=—2 (r t)uJ(r 7 )ai&jf[x—x’+u—u’

zZ'tt’

Aiai 2 QiQQAQIIUql%i~ 3 Gk|(Qv Q), (2.26 +tv(t—t"),z-2']. (239

As before, we can coarse grain by integrating out the fast

(>) modes. The analog of EqR.22) is

Biopi =Blugi— E QiQ;QuQIUql? ﬁGkI(Q -Q),

(2.27) Ser=Sol U< ,u-]—In(e~S1)g- . (2.36

aq aq

_ i J 0 In Appendix B, we compute this average to second order in
Ciaipk=5> QiQiQAQIQmIUgl* = =5Gim(Q.v-Q), S,. This again gives an equation of motion of the form, Eq.
2 7997 09 (2.24), but with
(2.28 —r

where

’Aiaj:_z Ltfijkl[XJFVt,Z]faGk|(r,t), (2.37
X
Jd
Blusi= 5 &qBK.mq 0) (2.29

Yi=7y8 + T x+ .
is the bare linearized elastic matrix. To leading order, the Y= zx: fztrljkl[x VEZtG(r), (238

force is unrenormalized,

Fir]=Fi[r] (2.30 Biap=B) -+12 T ijalX+VE, Z]r T PGy (1 1)
i i . . iapj iaBj 2)< 7 ijkl ’ kIVEst),

Here we have written the expressions in terms of the Fourier (2.39
transform of the Green'’s functiog(q, ), which is defined

in the extended zone scherie., it is periodically repeated ~ ~ ap B
in each translated copy of the fundamental Brillouin 2otte Ciajpc= " 52 Ztriiklm[X”LVt’Z]r rPGim(r,t),
is (2.40

—Ti -1 _ ~ ~
G(q,w)=[iwl +K(q)] *6(|g[—A). @30 here we have abbreviateld; ... =d;4;- - -T. Also useful
The 6 function is present because only a partial mode elimi-are the corresponding expressions in momentum space,
nation has been performed, so that the slow modes remain as
dynamical variables in the coarse-grained theory. Note that T 5
these expressiongivergein the limit of zero velocity and Aiaj = o i ()i Gk'(q v-q), (241
identical periodicities, since in this case all Qeare equiva-
lent to the origin in momentum space. _ P
_ 7.,275ij_fQiQJQkQ|r(Q)ia—Gk|(q,V'Qt), (2.42
2. Random potential q w
In the case of the random potential, we adopt the ap-
proach of disorder pre-averaging the MSR functional, § f G V-
thereby working directly with the variance of the random i~ '“’3’ i Al (Q)ﬁq c7qﬁ al v @),
force. This is done purely for technical reasons: identical (2.43
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~ [ ~ Jd 4 the particle which is located at positiorat time t Formally,
Ciaiﬁk:§quiqukQIQmF(q)W Wekl(qvv'qt)- this is described by the implicit equation

(2.44

A correctiondl';(r) is also obtained to the random force

correlator. Because it is unpardonably ugly, we quote it only1€re, because is defined only at a discrete set of poif,
in Appendix B. It is, however, straightforward to show that W& have wnttgn the. previous equation In ter.ms of a
the renormalized force-force correlatcannotbe written in ~ Smoothed continuum field defined at all space points. For

di(X,z,t)= di(x+vt+u(r,t),z,t)=u(r,t). (2.53

terms of a random potential correlator, i.e., many purposes this distinction is insignificant, but it will
_ return at one important juncture.
Lij(n)=T(r)+ 8L(r) # — 8;9;,'(r), (2.45 At this point the need for coarse-grainingior to the

] ] o frame transformation is clear. E(®.53 has an unambiguous
for any function I'(r). The difference from the equilibrium ggution defininge only whena,u;<1. In this case, we can

form can be.accounted for by separating the force into tWyptain the transformation rules for gradients by simply dif-
components: ferentiating. They are

RN =FAD+FH0, (249 2Ti=(8,+0,¢)(AHV-V)+ -+, (2.54

where the equilibrium componefitf® is the gradient of a
potential, so that ﬁaﬁi=é’a¢>i+ﬁa¢jﬁj o+, (2.55

[Fiea(r)F]ea(r’)]ens:_aiajrea(r_r/)- (2-47)

0a0gUi=ydpdi+ - - - (2.56
The other component we denote a-iidependent static
force, with the correlator We are now in a position to transform the equation of
- N , motion, Eq.(2.24). The first step is change from field to
(RPN FFr) Jens= gy 6(r—1). (2489 the{ field. This is done by multiplying by a smoothing func-
Clearly, since the correction terdl’;; is small, we have tion and summing, using
Fe(r)~I(r). (2.49 u(x,z,t)=a%> D(x—x)u(x',zt), (2.57
The static force variance is determined, however, entirely by X'
the correction. It can be obtained by integrating whereD(x) is a é-like function smoothed out on the scale of
the lattice spacinga, i.e., [, D(x'—x)f(x’)=f(x) and
gij:f5rij(r)- 250 D(O=1. . . .
r Carrying out this procedure, the gradient and time-

Substituting in Eq(B9) from Appendix B, all but the first derivative terms are essentially unchanged, withu to a
and fourth terms are total derivatives and hence integrate t800d approximation. The discreteness of the lattice sum is

zero. After a certain amount of manipulation, we find important for the force term, however. It becomes
gij:JqiquKqumqn|F(q)|Zka(qaqt'V)[Gln(qy_qt'V) %>, D(x—x)FIx'+vt+u(x',z1),z]
q X
_Gln(Q!QI'V)]' (25]) :2 f ein'X/D(X_X,)FiS[X"*’Vt‘l‘U(X,,Z,t),Z]
Q Jx

As expected, this expression vanishesver0, i.e., in order

to satisfy the fluctuation-dissipation relation in equilibrium, . _

the random forcenustbe the derivative of a random poten- ~2 e'erFiS[x+ vt+u(x,zt),z]. (2.58
tial. Q

Making the final transformation from to ¢, the force

C. Transformation to laboratory frame
term becomes

Up to this point, we have worked with conventional dis-
placement fields, defined in the crystal frame. This means

that each particle in the lattice is labeled by its equilibrium FilX.z, ¢,t]=% QXS 2RI X 7], (259
positionr=(x,z), and that its actual transverse position is
given by Putting this together with the gradient transformations,

X=x+vt+u(x,zt). (2.52 Eq. (2.24) becomes
Most measurements in the systems of interest are, however, 7ijdi®;(X,2,t) = Aj,jdod;+ Biopjdadpd;
conducted in the laboratory frame. It is therefore advanta- .

geous to adopt a description based directly in this frame. To T Ciajpeda®idpbit FiLX.Z 1],

do so, we define a new field(r,t) to be the displacement of (2.60
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At this point, we can regarl as a dummy variable and treat thermore, that the increase in displacements will be most
Eqg. (2.60 as simply a continuum partial differential equa- pronounced in the longitudinal direction.

tion. The transformed gradient coefficients are We therefore proceed with the analysis of E8.1), ex-
pecting that our resultanderestimateahe roughness in the
y”-:"{/ij , (2.61)  moving lattice, and therefore provide a necessdmyt not

sufficien) condition for its stability. To proceed, we note
(2.62  that, as pointed out by Giamarchi and Le Doug8ahany of

the terms in the random force, E@®.59, are oscillatory in
= time. Such oscillatory terms average out at large sliding ve-

Aigj=Aiaj—v"ij

Biagi=Biag» (2.63 locities, when the “washboard” frequencieso=Q-v are
_ _ _ large. Even when they are not large, they generate only finite
Ciajpk=Ciajpk Yij Sakt” + A ak0ip - (2.64  renormalizations of the other parameters in the model. We

therefore drop this oscillatory part d¢f, keeping only the
IIl. LINEARIZED THEORY Fourier components of the force orthogonal to the mean ve-

locity,
In the previous section we derived the proper form of the y _
hydrodynamic equations, Eq¢l.11), describing the low- Fi[r,(/)]eon e' = PEX(r), ()
vl

energy, long-wavelength properties of a periodic medium
driven through either a periodic or quenched random potenwhere we have dropped the explicit time dependérinside
tial. These equations are distinct from their equilibriumF, | since it has disappeared in this approximation. Recall
counterpart in three respects. First, in addition to the wellthat theg-independent forcE(r) contains both equilibrium
known convective term arising when transforming from theand nonequilibrium contributions, with the corresponding
crystal to the laboratory frame, the coupling of the drivencgrrelators given in Eq¥2.46—(2.51).
system to the external potential yields several other terms |n this section we will further simplify the problem and
linear in the gradients of the displacement field; these ar@nearize the nonequilibrium hydrodynamic equatidBsl).
collectively described by nonzero coefficierits,; . Second, e will then discuss the predictions of the linearized theory
the equations contain nonequilibrium KPZ-type nonlineari-for the decay of translational and temporal order in the
ties that can be thought of as corrections to linear elasticitygriven lattice.
Third, in the random case there inanequilibriumcompo- We recall that we have used the labels longitudinal (
nent of the statidi.e., ¢-independentpinning force. This  and transverset) to denote the directions along the oriented
force is a genuine nonequilibrium effect, ag#@nnotbe rep-  manifolds and transverse to them, respectively. The
resented as the gradient of a potential and vanishes in thedimensional position vector was then written in terms of a
absence of external drive. transverse coordinate and a longitudinal coordinate vector
The _remainder o.f this paper focus_es on the random €asg.asr=(x,z). We now choose the direction(one of thed,
which is of more immediate experimental relevance. Al-y coordinates along the direction of the driving forcev(

though, as discussed in the Introduction, a general analysis of = . .
Eqs.%l.l]) is beyond the scope of this pa%er we takeythiszvx) and denote by, thed—1 directions transverse to the

. . ! . . external drive §=d,+d,). Thesed—1 directions can be
section to discuss the weak-disorder limit, in which only the . -
further broken up into components transverse and longitudi-

leading (in ') contributions to each term are kept. In this nal to the oriented manifoldsy, =(y,z), with y a
approximation the damping;; = yé;; is diagonal, and the d,—1-dimensional vectors denoting the components of the
leading linear gradient term is simply the convective derivatransverse displacement that are also perpendicular to the
tive, Aj,j~ — y&;;v“. Similarly keeping only the bare elastic external driving force. The,-dimensional transverse coordi-
matrix, we obtain the simplified set of nonequilibrium nate space is then described by a one-dimensional coordinate
elastic-hydrodynamic equations for the driven lattice, x (not to be confused witlx) andy, respectively, parallel
0 and perpendicular to the direction of motion, wkk (X,y).

V(0 +V- V) b =Biyp0,dpd +Filr @ t]+ 7i(r,t), (3.1)  The d-dimensional position vector is written as=(x,2)
=(X,Y,2). We will also use the labels parallg])(and per-
endicular () to denote the directions parallel and perpen-
icular to the external drive. For concreteness we specialize
to a lattice where thel, directions along the manifolds that
compose the lattice are isotropic and the longitudinal elastic
properties are described by a single elastic constant, denoted
— by c44. We assume thd,-dimensional lattice is described by
differing order inT", they cannot be regarded as correctionsjsotropic elasticity, with two elastic constants, a compres-
to any zeroth-order terms. One important ingredient whichsional moduluscy; and a shear modulusgs. Our model
has been left out of Ed3.1) is the set of KPZ nonlinearities hydrodynamic equations for the driven lattice are then given
(Ciajpc terms. While these coefficients are probably small, by
they may very well modify the asymptotic long-distance be-

havior. Based on previous work on somewhat simghart = 2 274 — V..
instructive models?*?” we expect that these effects will Y(9t+vdy) hi=[Ce6Vi +CaaV7]hi+(C11~ Cog) i Vi~ b
only increasethe distortions of the moving lattice, and fur- +F[r,¢], (3.3

whereB? is the usual elastic matrix; represents “thermal”
noise(which as we will see in Sec. V can appear even at zer
physical temperatujeand the random forcg; is given by
Egs.(1.12 and(1.13 and contains all nonlinearities. Note
that we have kept both the equilibrium and nonequilibrium
components contained iR;, since, although these are of
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where for the purposes of this section we have dropped theifhe disorder strengtiA is the variance of the equilibrium

mal noise, thereby ignoring treabdominanthermal fluctua-  part of the static pinning force,

tions. These equations describe the important physical case

of the lattice of magnetic-flux lines in a three-dimensional _ 7

superconductorsd(=1, d,=2). Ford,=0 andd,=2 the A= d, ngo QI (Q). (3.9

equations describe the elastic properties of driven vortex lat-

tices in superconducting films, driven magnetic bubble ar-The coefficientsgy, andg, are determined by the correlations

rays, or driven Wigner crystals. g;; of the nonequilibrium part of the static pinning force,
The displacement field can be split into components paraccording to

allel and perpendicular to the mean motiah= (¢, , dy).

The transverse displacemedt, is a (d,—1)-dimensional 9ij = 9o( 8ij — SixOjx) + J10ix Sjx - (3.9
vec.tor. The pinning force is then seen to be independent C’fhey are evaluated in Appendix C, where it is shown that for
by large sliding velocities and short-ranged pinning potential

V=

FLr. )= 2 eiQ,(xfd;y)[FieQ(r)_i_FineO(r)], (3.4) (é<<a, with ¢ the range of the pinning potential
Q-v=0
2
The independence of .the s_tatic pinning forcg@nis_ a con- Jo1~ AA—d/Z’ (3.10
sequence of the precise time-translational invariance of the p4-d)
system. This requires that the equation of motion be un- .
changed upon transforming—t+ 7, é.— ¢, +vr. As ar- valid for d,<4, the range relevant to all known physical
» Px X : ; ; ;
gued above, all explicitly time-dependent terms are irrel_reahzatlg_nslof this model. The c_omp%nents of the mean-
evant at low frequencies, thereby implying independence ofauare displacement tensor are given by
¢y in the same limit. Equatiorf3.3) is thuslinear in the
longitudinal displacemenp, , which can therefore be treated Bij(r)zzf j [1-cogq-N)][{$i(q,®)) B (A, ))ens:
exactly. That is, due to this linearityp, is slaved in its 9w
dynamics to the nontrivial dynamics gf, and can therefore (3.11

be eliminated from the equation of motion B§.3) (i.e,, can  The correlation functions of the displacement field are easily
be integrated out exactly in the MSR formulation of the dy-cqjcylated in Fourier space. The linear equation of motion

namics. o _ o _ for the disorder-induced displacement yields
The only remaining nonlinearity in the equation of mo-

tion, Eq.(3.3} is i_n Py, ente_ring through the randqm force <¢i(q=w)>:[GL(qvw)PiLj(qt)

Filr,éy], which, in this section, we treat perturbatively. We

stress that the validity of this perturbative calculation re- +Gr(0,0)P(a)]278(w)F{%(q), (3.12
quires the displacemens, transverse to the mean motion to -
be small, but places no constraints on the size of the dis¥NereG.(d,») andG(q,») are the longitudinal and trans-
placements along the direction of motion. The perturbatior€rSe elastic propagators, respectively,

theory inFi[r, ¢y] thus gives a complete description of the

behavior of positional correlations in thedirection out to GL(qw)= 1 (3.13
asymptotic length scales for the model of E8.1). In con- L i’Y(w_UqX)+C11qt2+ (;44q§’ ’
trast, the predictions of the perturbation theory for the corre-

lations of thetransversedisplacementg, presented below 1
are only valid in the Larkin regime; RG methods of Secs. Gr(q,w)=- 5 5 (3.19
V,VI must be used to go beyond the Larkin length scale. I y(@—v0x) + Cegl; +Casdl;

To lowest order in the random force, we simply neglect L n n T A -
the displacement fieleb, in Fi[r, ], Eq.(3.4). The Fourier ~ andPy(0y) =0y and Pjj(c) = &i; — g0y are the familiar

components of the pinning force are then given by longitudinal and transverse projection operators, with
=q;/q;. The correlation functions of the displacement field
are given b
Ffa)= 3 FiatQua), (35 gren by
01
with correlations [1{px(0,))|*]ens= 27 5(w)
" o (yv9,) 2+ [ Coellf +Caq02]°

[FO>DF2(a") Jens

— (2m)4 69 (q,+ L) (2m) 40 W (q+g) Ay, (3.6 O 3(0), (319

2

dx
A—|G 2)
q?' L

and
A+go

(y00,)%+[ €199+ C4402]2

[|<¢y(q,w))|2] ens= 2m0(w)

Aijj=0;+ > QinF(Q)
Q-v=0

=(A+do)(6jj = SixSjx) + 910ix O - (3.7 +0 6(0), (3.16

2
Ay
—|G 2)
91q§| 1]
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where §(0)=(27)%"18(w=0)5%q=0). Because the wave transverse direction, which are controlled by tt@mpres-
vector integral in Eq(3.11) is dominated b)qx~(cq§/'yv), sional modes of the system. For large sliding velocity or
terms containingqilq§)|GT|2 or (CI>2</CI32,)|GL|2 yield less di- weak disorder and intermediate length scales, the equilib-
vergent(generally boundedcontributions to the fluctuations rium part of the static pinning force will dominate &g
compared to the terms without this angular factor. The be=-(A/v)?<A in this limit. The perturbation theory employed
havior in real space is displayed here for the cdse0, here breaks down, however, at lengths larger than the Larkin
relevant to vortex lattices in thin superconducting films. Thelengths,RY and R} defined byB, | (R%,R;) ~ &2, where¢ is

corresponding expressions fdy= 1, describing flux-line ar- the range of the pinning potential. The Larkin volume is
rays in three-dimensional superconductors, are given in Apdefined for deformations of the lattice in the transverse di-

pendix D. Ford,=0 we obtain rection (¢,~ ¢) and it is anisotropic, with
_ [(3—dy)
ly[3~ % (dp) |X|ces (gvaﬂ)l '
~ RY~ : (3.22
Bxx(xvY) 01 ’)/UCGGJ:O ’yvy2 ) (317) c A
- R~ yv(RY)?/cyy. 3.2
B, (X,y)~(A+ \|y|3 dt]_-(dt) |X|C11 (3.19 o~ y0(Re)en (323
16y Yo/ yei | ypy?)’ ' It is elongated in the longitudinal direction at large sliding
velocities. Longitudinal displacementsb{) grow without
where bound onall length scales ird,<3 and a Larkin domain
%ty 1 cannot be defined in this case. As usual, the nonlinearities in
]_-gdo(s):f —2[1—005(9~u)e*3“2]. (3.19 t_he static pinn_ing force must b_e incorporated nonpertu_rba-
(2md%-tu tively to describe the asymptotic decay of the correlations

. . . L beyond the Larkin length scales. We will consider this prob-

Thg asymptotic behaw(?r of the scaling function is given by|e in more detail in the following sections. A natural sus-
7:8 Y(0)=const andFé V(5)~ s~ W7 for s>1. picion is, however, that at asymptotically large distances at a

The instability towards the smectic can already be crudelyiinite temperature in two dimensions, the nonequilibrium
understood from Eqg3.17) and(3.18. The key point is that random dragg,, will dominate, destroying also the trans-
the growing displacements in these equations represent largerse periodicity.
strains, which tend to be relieved by the introduction of dis- We stress that longitudinal fluctuations—that grow with-
locations. Not all dislocations are equivalent, however. Inout bound—are induced by shear modes of the lattice. This is
fact, a dislocation preferentially relieves strains along theconsistent with the intuition that shear modeather than
direction of its Burger’s vector. From Eg.17 and(3.18,  compressional ongsplay the dominant role in melting a
the strains along the direction of motion are clearly largercrystal. In contrast, transverse fluctuations are controlled by
roughly by the ratioc,;/ceg, Which is very large for vortex compressional modes. Compressional modes are present in
lattices[owing to the long magnetic screening lengffen-  both solids and liquids and are generally not expected to
etration depth \ ]. Relieving the largest strains first clearly generate the unbounded strains needed to yield dislocation
favors unbinding those dislocations with Burger's vectorsunbinding.
parallel to the drive. This leads to the smectic state which

retains transverse but not Iongitqdinal positio_nal order. We IV. DRIVEN SMECTIC DYNAMICS
now explore Eqgs(3.17) and(3.18 in more detail.
Fluctuations in the direction of the driving force are domi- It was shown in the previous section that disorder-induced

nated by thenonequilibriumpart of the random drag and by fluctuations parallel to the direction of the mean motion grow
shear modes. As discussed earlier, the correspondingigebraically ind,<<3. This algebraic growth of fluctuations
power-law scaling ofp, holds out to arbitrary length scales. yields short-range positional correlations along the direction
Since of the external drive, and it is our belief that this implies the
breakdown of the elastic description along the direction of
By~ [yI*™%, for y?>(ces/yv)|x],  (3.20  motion (x). While we have not considered explicitly the role
(B2 5 of dislocations here, analysis of similar equations of motion
B [X[7 W5, fory*<(cee/yo)lx|, (3.2 including nonlinearitie$*?’ suggests that this should occur
longitudinal density correlations are short rangedijrc3,  (for di<2) via the unbinding of dislocations with Burgers
with a stretched-exponential decay. Since, as argued abovéectors parallel to the driving forcé® This mechanism
this behavior will persist even once the full nonlinear form should convert the longitudinal translation and temporal cor-
for Fi[r,,] is taken into account, the validity of the elastic relations to the exponentidor stretched exponentjaform
model itself is in doubt. In particular, for the physical case oftypical of a liquid. This is also in agreement with real-space
d,=2, the spatial correlations are in fact exponentially deimages of driven two-dimensional vortex lattices 2, d|
caying, and it is natural to expect that this drives the unbind=0) obtained via numerical simulatiof.Therefore ford,
ing of dislocations with Burger's vectors parallel to the =2 andd,=0 the driven lattice can only retain periodicity at
drive. If this is the case, both translational and temporal orfeciprocal-lattice vectorgransverseto the direction of mo-
der forQ.V;tO are short range in the driven Steady state. tion. At best, therefore, it consists of a stack of one-
In contrast, both the equilibrium and nonequilibrium partsdimensional liquidlike channels, sliding parallel to the direc-
of the static pinning force contribute to fluctuations in thetion of motiort® and has the spatial symmetry of a smectic
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drive and to the layers themselves. As we are only interested
in overdamped systems here, the momentum and energy are
not conserved and therefore need not be included explicitly
in our hydrodynamic description.

The continuum hydrodynamic free energy for the over-
damped smectic is given by

1 op
fSZEJ'X( CL( E

2K (i) 2P
2% Po

2
+ Cl{l(ﬁy¢)2+ Kl((?xqb)z

, 4.0

where §p=p— pq, With py the equilibrium density. Here,
is the smectic bulk modulusy, is the in-layer compressibil-
ity, and K, is the layer bending stiffness. The coupling con-
stantK, also has dimensions of an elastic constant. The hy-
FIG. 4. Schematic illustration of a driven line smectic, i.e., drodynamic equations of the driven smectic contain
smectic in three dimensions, with=2, d;=1. additional nonequilibrium terms, as compared to their equi-
librium counterpart. The nonequilibrium terms can be con-
liquid crystal. It is, however, important to stress that in real,Structed by preserving the invariance under inversions about
equilibrium smectic liquid crystals the underlying rotational the direction of the external drivey~—y, ¢——¢) and
symmetry(which is brokerspontaneouslyenforces soft.a- the fact that physical properties are invariant under the
placian in-layer elasticity® In contrast, the rotational sym- ~Phase shift” ¢—¢-+a. _ o o
metry of the nonequilibrium “driven smectic” discussed ~ Density conservation requires thasatisfies a continuity
here isexplicitly broken by the external drive. These systemseguation,
are therefore characterized by conventiogi@dient elastic-

ity.

3,0p+V-j=0, 4.2

For the case;=2 andd, =1, corresponding to magnetic- wherej is the number current density. The equation for the
flux-line arrays in three-dimensional superconductors, théayer displacemenfalongy, transverse to direction of mo-
driven crystal is potentially stable as translational correlation (x)] is given by
tions decay logarithmically also in the direction of the ap-
plied force. We recall, however, that the results obtained here Jy Tof 6Fs
by dropping the KPZ terms are expected to strongly under- (dtvdy)p=—— —( 5

. S : : P po\ 0¢
estimate the growth of longitudinal fluctuations of a moving
crystal Since ind=3 the transverse line smectic state iswith Iy being a kinetic coefficient anBl, being they com-
equally stable it is possible to have a phase transition beponent of the nonoscillating part of the pinning force given
tween the transverse smectiexpected at intermediate ve- in Eq. (3.2). We neglect here the oscillatory contributions to
locities) and a moving glasséstabilized at high velocitigs  the pinning force that only give small corrections to the
The nonequilibrium smectic statélustrated in Fig. 4 then  nonoscillatory part. We also neglect other contributions to
consists of liquidlike sheets of flux lines lying in planes par-the pinning force that couple to the density. These would be
allel to thezx plane. These sheets are periodically spaced inmportant for a full systematic RG treatment, which we do
the y direction, normal to the external drive. Within each not attempt here. A discussion of more general equations for
sheet, however, there is no positional order of the flux lineghe driven smectic that incorporate these terms is left for
and the correlations are liquidlike. future work.

In a smectic liquid crystal the density fieldbecomes an To close the equations, a constitutive relation for the cur-
independent variable, as it is no longer slaved to the disrent fluxj is needed. This is given by
placement field. The density is a conserved quantity and
therefore a density fluctuation relaxes at a rate that vanishes
in the long-wavelength limit, i.e., it is a hydrodynamic vari-
able. In addition, the system still has broken translational
symmetry in the direction perpendicular to that of the mean _ Fs
motion. Both the Goldstone modes of the broken translation Jy=Povadxd—pol'2dy—=. (4.9
symmetry(the displacemeng,) and the conserved density P
field (p) must be retained in a hydrodynamic description. InThe first term on the right-hand side of Eg.4) arises from
the remainder of this section we consider the aise2 and  the transformation to the laboratory frame. The terms propor-
d;=0 of a two-dimensional lattice driven over a disorderedtional to the coefficient® 1, v, andvs; are nonequilibrium
substrate. The hydrodynamic variables of the driven smectiterms that can be generated upon coarse graining, by the
are then a conserved density figldand the one-dimensional method described in Sec. 1l for the driven lattice. Other non-
displacement vectos, (x,z) — ¢(X,z), describing displace- equilibrium terms that yield contributions that are higher or-
ments of the layers in the directions normal to the externatler in the gradients, and therefore subdominant, have been

—Fy[X, ¢]) ' (43)

O0Fs

s @9

Ix=vép+v16p+pouadyd—pol’1d



57 NONEQUILIBRIUM STEADY STATES OF DRIVEN ... 7719

neglected here. By inserting the constitutive equation for the ,
current in Eqs(4.2) and (4.3), one obtains P(X)=PL(X)+§ PQy(X)e'ny, (4.12
y

-~ -~ 2 2 . .
(dy+v19y) p= = pov 2959y p+[D 195+ D3dy16p, (4.6)  where Q,=n2m/a are the reciprocal-lattice vectors corre-

and sponding to a layer spacirag with n an integer,oQy are the
corresponding Fourier components of the density, gr(c)
~ Sp ’ 5 Iy is the smootHhliquidlike) part of the density field. The smec-
(0iF v3dx) = D5‘9yp_0+[D35x+ Dadyld+ o Fy[x, &]. tic structure factor is then given by
(4.7
Additional “velocities” v, v, v3 have been defined as S(qL)ZSL(qL)Jr; fx‘;'qu97'(qnyy)y<PQy(X)P—Qy(o)>’
y
~ 4.1
01:U+Ul, (4Sa ( 3
with S.(q,)={|p.(q,)|?). The smectic structure function
V,=v,+ 03, (4.8p  should therefore consists of a broad liquidlike background
S, (q,), with superimposed peaks at the reciprocal-lattice
Ts=v—vs. (4.80 vectorsQy, normal to the direction of mean motigsee Fig.

2(b)]. As discussed in the Introduction, in a Gaussian theory
The coefficientsD; have dimensions of diffusion constants the correlator of the order paramet@r@y(x) can be written

and are given by in terms of the mean-square displacement, according to
D,=T;c, /pog, (4.99 <pr(X)p6y(O)>NpleiQ§<[¢(x)7¢(0)]2>- (4.14
D2=I"2¢L/po, (4.99 The disorder-induced transverse mean square displacement is
(s gy cated rom Eaek s oy g e e,
Da=(TocY— 2K )/ po, (4.99 lar to that of Sec. Ill. Conceptually simple but algebraically

tedious calculations show that including the coupling to the
density does not change the resulting decay of the correlation
(4.9 . SRR . e
function. For simplicity we therefore neglect this coupling in
By solving the hydrodynamic equations in the long- EG- (4.7) (i.e., letp=0) and obtain
wavelength limit, one finds that the decay of density and )
(A+go)T} f(z)( XDy

displacement fluctuations is governed by two diffusive 2 _
modes with eigenfrequencies, [([¢(x)—¢(0)] >]en5_2 0 7ay2 . (419

Ds=(I'oKa—=T'2¢1)/po-

2. ~
7Tp0D4U3

o~ 2 _vaDs |, The scaling functionF{?)(s) is identical to that obtained in
@97 vath 1 Datht| D 51—53)%1' (4.10 Eq. (3.18 and it has the asymptotic behavigfF{?(0)
=const andF{?)(s)~ s for s>1. The perturbation theory
_ _ ) v,Ds 5 therefore predicts that the smectic Bragg peaksjatQ,
0, =V 10x 1| D105+ D2+?}- = dy|- (411  decay exponentially with the system size. In other words,
1 3

disorder would destroy the transverse periodicity of the

For stability we must haveD4—'z)"2D5/(?fl—;3)>O and smectic. In facF, we will see in the follow?ng sections that
~ ~ o~ e this result continues to hold nonperturbatively. The power-

Da+v,Ds/(vy—v3)>0. The diffusion constant®; and |5y scaling of transverse Bragg peaks obtained in simula-

D3 are clearly positive d(_afinite. The first mode describesjong of two-dimensional driven vortex lattic8ss therefore
long-wavelength deformations of the layers and governs thg, ot jikely an artifact of small systems and weak disorder,

decay of displacementl fluctuations. The §ec0nd mode COIMeing would crossover to a disordered form at longer dis-
sponds to the permeation mode of the driven "Smectic” andances we will return to this point later in Sec. VII.

describes the transport of mass across the layers that can

occur in these systems without destroying the layer period-

icity. It is associated with density fluctuations and it has im- V. RENORMALIZATION GROUP FOR “TOY” SMECTIC
portant physical consequences for the response of the driven A. Model and MSR formulation

smectic to an additional small driving force applied normal hi . i id implified model for th
to the layerssee Sec. Vi In this section, we will consider a simplified model for the

An important physical quantity that can be measured irsmectic phase, in which the hydrodynamic fluctuations of the

both simulations and experiments is the structure factor ofOnserved density are neglected. This “toy” smectic is then
the driven periodic medium. As the driven smectic has bromodeled simply by dropping Eq(4.6) and setting 5p
ken translational symmetry in thedirection, normal to the ~— ¢ONnst, leaving the single equation of motion

layers and to the external drive, the density field can be writ-

ten as Y(d+vd) p=K|Gzp+K, VZh+F(p,1)+5(r,t). (5.0
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Here we have pulled out a factor of=py/I'y, let K the termsyv andK, fixed in the quadratic actiof,. This
=D3po/Tg, K =Dypo/Ty, andF, —F. For simplicity we impliesd—3+z+§+;(=0 andd—1+z+;(=0, or
assume longitudinal and transverse elasticity are governed by

the same elastic constalt . We have also added the ran- (=2, (5.12
dom time-dependent “thermal” noise, satisfying

((rOn(r 1) =2yTar=r)at-t'). (52 x=-dti-z 13
Note that becausé was kept invariant, the temperatufe

The random forcé- is characterized by the correlator -
necessarily rescales

[F(o.NF(@" 1) ensm A(p— ") S(r—r"). (5.3
The functionA(¢) is periodic with the smectic lattice spac- o o . .
ing, which we take to ba=2. It includes both the equi- Clearly this is a somewhat artificial choice far=0, since
librium and nonequilibrium components. The latter can bethe theory retains no memory of the periodicity #f It is
viewed as simply an overall constant contributionAtog). ~ rather natural, however, foh#0, and will be returned to
In addition to discounting density fluctuations, E§.1) also  below. The exponert is more subtle. Naively, it should be

T—bl 9T, (5.14

neglects an allowed KPZ nonlinear term of the form determined by the condition thatbe invariant under rescal-
ing. Neglecting the random force, we then obtain
Fkpz=Cixppdyd, (5.9
Zhaive™ 2. (5.19

which should be added to the right-hand side of the equation

of motion. Simple power-counting shows, however, that, inWe will see that even for small nonzeto, this is actually

contrast to a drivemattice this term is stronglyrrelevantin  very far from correct.

a transverse smectisee below. Fortunately, the rescaling @(#) andC is in fact inde-
To analyze Eq(5.1), we use the method of MSR to trans- pendent ofz. The KPZ nonlinearity is stronglyrelevant

form the stochastic equation of motion into a field theory,

similar to what was already done in the Sec. Il B to perform C—C/b—0, (5.1

th_e single-_step coarse graining. In this case, the MSR “parynile the disorder correlator obeys

tition function” is

i A(p)—b3 A(g). (5.17
ZZJ [del[dgle™, (5.5  we therefore see that fat>3, the random force is irrel-
) evant, and at long length scales has a negligible effect on the
whereS= S+ S, with moving smectic. Fod<3, however, power counting is in-

sufficient to determine the fate of the system.

So= f {pul v(dtva) —Kg—K Vi1du—yTén}, (5.6
r C. Zero-temperature RG

and the interaction term To proceed, we will perform a systematic RG, working
1 L perturbatively inS;, expanding it from the exponential and
Slz__f b A(bri— bryr). (5.7  integrating out “fast” modes with largeransversemo-
2 ) menta. This is simplest in the scheme with neither a fre-

By construction,Z=1: nontrivial correlation and response 9uéncy nor longitudinal momentunay, cutoff. The fields
~ are first decomposed into their slow<] components with

g,<A/b and fast ¢&) components withA/b<q, <A,
where A is a hard transverse momentum-space cutoff. That
is,

functions are obtained, however, by inserting appropréate
and ¢ operators into the functional integrand.

B. Power counting

Let us first consider under what conditions the random d=P_ +d~, I=P_+d-. (5.18
force is arelevantperturbation in the sense of the renormal-
ization group(RG) using simple power counting. To do so,
we rescale the coordinates and fields by a scale féctat:

Then the partition function is

z=f [dep_[de_]e Solo< d<ligSildat b bbby

X, —bx, , 5.8
| —bx, (5.9 (5.19
x—bx, (5.9 where the brackets denote an average over the fast fields with
t— b, (5.10 respect to the quadratic acticfi@[¢>A,¢>]. Relabeling the
R surviving slow fields¢.— ¢, ¢-— ¢, the renormalization
d—bX. (5.17) Of the effective action due to the mode elimination is given

by
Note that, anticipating a periodic fixed point, we will not

rescaled. To fix the exponentg and y, we choose to keep g Sl dl=g= Sl dlg=Sildt b= bt dly (520
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A cumulant expansion gives d-dimensional spherg,=279%/T'(d/2). Inserting this result
above gives a renormalization of the friction drag coefficient
(the inverse mobility.

=Sy = — E 2
(e ™). =ex <Sl>>+2<sl>>,c+ , (5.2)

k  A93Cy
where the subscript indicate the cumulaniconnecteg cor- N ¥lo lA”(O). (5.27

relator. From Eq(5.14), it is natural to suspect that fat 1+2k VK
>1 much of the interesting physics is dominated by smallNote that we have obtained no renormalization of the spatial
(renormalizegitemperatures. With this in mind, we first con- gradient terms. This is actually a general consequence of
sider the RG in the extremE=0 case. Then the only non- taking an ultralocal(i.e., s-function correlatefl random

vanishing expectation values correspondrésponsefunc-  force. For such a force, it is straightforward to show that the

tions: static response function
G- () =((r+1. 0B )= [ | -
r,n= r+r, r, = - G(g,w=0)=— 5.2
- = Jam(2m)eH (6.0=0) —iyvayx+Kge+ K, of 529

day Tigrtiot is unrenormalized, i.e., exact even witens included in the

f J 27 iy(w— qu)+ Klqu+ KNl : equation of motion. Thusv, K|, andK, suffer no diagram-

matic corrections at any order.
(5.22 The next step is to examine the renormalizatiotofrhe

. . _ . 2 .
It is instructive to perform some of the integrations abovelirst corrections(for T=0) arise atO(A%). To determine

and bring out the dependence »randt. We are primarily these_, weﬂr}nu;t compute the next term in the cumulant ex-
interested in the limi;— 0, sinceK| is obviously less rel- pansion. This 1
evant thanyv, which has one less derivative. In that limit

. L . 1 A A
these integrals are trivial, and we obtain 8S,= fr1t1‘1<¢f1t br i A(Brye, = br ) Drot, b
ot
A dihq 1 2 ratatz
= e iarrg= (K /y)art —
G (r,t) fA/bWTl ‘}’e L Te™ RVt g(t) S(x—vt). XA(d’rzt _¢r2té)>c>- (5.29
(5.23

At this point we are aided by a simplifying feature that
From this we see that the response function is causal angctually makes this part of the calculation easier than the
represents unidirectional propagation along the positive equilibrium one. Since we have a propagating mode along
axis. Including a nonzer# simply spreads out thé func-  thex axis, in the limit of zero longitudinal dampingg; =0,

tion over a distancéx« \/K_Ht The irrelevance oK is indi-  the response function vanishes unlgss0. This means that

cated by the smallness of this width relative to the distancéwo response fields at differertpoints cannot be contracted,

vt propagated in the largelimit. since this would give the producs(x—x',-)G(x'—Xx,-),
Working first toO(A), consider the term which vanishes foany x Instead, a nonvanishing contribu-

tion obtains only when botﬁ; fields are taken from the same
(S0--SI6.01= | $lA/(0)+A7(O)t-t)agy]  term. This gives

’ 1 ~ iy
XG=(0t—t'). (5.24 6S,=— Efrltlt%¢rltl¢rltiA( ¢r2t2_ ¢r2té)AN(¢rltl_ (brlti)
By symmetry,A’(0)=0, and we need to evaluate ratats
oo X[Go(ry=rati—tp)Go(ry—rp,t— 1))
ff G-(0m= fqi pvpe= qu)+KHqX+KM ~Go(r =Tt~ 1)Go (- —th)]. (530
2yK”Ad 1Cy-1 Each term contains two response functions, which con-
(7 v +4K K A2)3’2d| strain their arguments to be small. To leadizgroth order
' in gradients of¢, we may approximatep, ; ~ ¢, and
_ K Ad*3Cd,ld| (5.25 ¢fzt§~¢f1t1 in the first term, while in the secon@rzté
1+2x UK, ' %‘ﬁfl‘i' This leads to the simpler formula
where we defined | A
0S=— Efr . t/¢r1t1¢rltiA”(¢r1t1_ ¢r1ti)
_ ZKHKLAZ (5.26 ity
T ' X[A(0) = Albry,~ ey, (5.3

chosen the infinitesimal rescaling factore®, and defined where the same integréloccurs in both terms. In the limit
Cy=Sy/(27)Y in terms of the surface area of a K;—0, it becomes
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Ad—3 2

> Cy—1 . , T
I=J J G>(q,w=O)G>(—q,w=O)~2—dl. I'(¢;l)~emini (¢—7—2mn) 3 +To(), (5.4
q; Jax n

oK,
(5.32

This gives the second-order contribution to the renormaliza?herel'o is the zero Fourier component b{(¢) and satis-
tion of A(¢): fies

d-3 2 2

A°T°Cqy_
(D)o =~ 5 A (SIA(#) - A(0)]. (5.33 AT o= Mot €. (5.42

At T=0, these are all the necessary mode-eliminatiorn\gie that althoughy= — 272¢/3 provides a formal fixed
contributions. Combining these results with the Sca|epoint solution, it is unphysical: for this valud;(0)=0

changes, we thus arrive at the zero-temperature RG equ@mich would imply the(positive semidefinite variance of
tions F(¢,r) vanishes, and hence thatis uniformly zero, clearly
Ad3C, in_contradiction with}“(¢)¢0. For gpy.phys_ic.a_ll situatiquo
&|A(¢)=(3—d)A(¢)—WA”((;&)[A((#)—A(O)], will be larger. For instance, equilibrium initial conditions
YUK, require that the force arise as a derivative of a random po-
(5.34 tential, and hence that the integral ovef¢) vanish. For the
solution above, this giveE,=0> — 27%€¢/3. Indeed ], can

K Adiacd—l be identified as the variance of ttsatic force calculated
A"(0) |y, (5.35

(9|’y: 2—z—

1+2x YK, using the single-step coarse graining in Sec. Il B.
For physical situations, it is clear from E.42) thatI',
aK|=—2K|, (5.3 Is a stronglyrelevantvariable which will flow off under the
RG. Luckily, as pointed out by Narayan and Fisher in their
dKk=—2K, (5.37) study of CDW depinning? this does not really present a

. problem. It can be easily shown that the static random force
where the flow for the dimensionless parameteis exact does not effect the dynamics in a purelasticmodel, by the
and independent of the choice of the rescaling exporgnts same argument used above to demonstrate the exact static
Z, and;(. response functiofi.e., shifting it away and showing that the
distribution of the shifted force is unmodifiedThis is also
Behavior in d=3— e dimensions essentially the same argument used in the Cardy-Ostlund

As a first att t at sis of th It problem, in which there is also a runaway random force
_As afirst attempt at an analysis of INese results, We Cofly,wich s, in that case however, the gradient of a potential
sider the problem ird=3— e dimensions. Defining the di-

: The nonanalyticity ofl’ has important consequences for
mensionless random-force correlator the dynamics. Indeed inspection of E§.35 shows that it is
Ad3C, problematic: the quantittA”(0) is (minug infinity at the
I'(¢p)=———A(¢), (5.39 fixed point (and indeed becomes infinite at a finite length
oK, scalg. Physically, the nonanalyticity of is related to the
the RG flow equation for this dimensionless random force€Xistence of multiple metastable minima in the effective po-
variance is given by tent|allon the scalé and a concurrent “sharpness” of this
potential. At zero temperature, this sharpness leads to trap-
1 ping of the phase and hence to a breakdown of the simple
al(¢)=@=d)[(¢)—I"(HII(#)-T(0)]. (539  assumption of analyticity in the coarse-grained dynamics. A
detailed analyst§ shows that the divergence df’(0) can
For e<1, we thus expect to find a fixed point witi  be interpreted as the signature of a multivalued force remi-
=0(€). However, evaluating Eq(5.39 at =0 demon- niscent of static friction, and corresponds to the existence of
strates thafin contrast to equilibrium case, where there wasa nonzero transverse critical force to “depin” the smeéfic.
an additional stabilizing-T"' (¢)?/2 term] this is only pos-
sible if I'(0)* =0. Like other functional RG equations &t
=0, Eq.(5.39 leads to a nonanalytic force-force correlator.

This can be seen directly by differentiating twice above and A Simpler means of controlling these singularities is to
evaluating at the origin: include nonzero thermal fluctuations, which act to locally

average the effective potential and effect thermally activated

1 motion between different metastable states on long-time

I'"(0)=(3—-d)I'"(0)— E[F"(O)]Z- (5.40  scales. In hopes of obtaining a workable dynamics, we are

thus led to consider the effects of a nonzero temperature. At

Sincel'”(0;1 =0)<0, this equation leads directly to a diver- the same time we must also ask if temperature is a relevant
gence. In fact, all “fixed points'(see below for an explana- or irrelevant perturbation around tfile=0 fixed point con-
tion of the quotation marks herdave a slope discontinuity sidered here. Naively, from E¢5.14), we would expect be

at the origin. A little analysis demonstrates that the ldrge- strongly irrelevant ford near three. In equilibrium, the cor-

behavior ofl" is responding(power counting there gives-2d) result is ex-

D. Finite-temperature RG
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act; again due to Galilean invariance and the FDT, there ar€his is a renormalization ofyT. Taking into account the
no diagrammatic renormalizations 10 renormalization ofy obtained earliefEq. (5.35], one finds

Because of the lack of FDT, we will, surprisingly, be led
to a completely different conclusion. Consider the mode

1«
elimination at a nonzero temperature. The correlation func- T= 1_d_<§_1+2;) o (5.50
tion,
Using the definition of the dimensionless temperature Eg.
Co(r,)=(rsr 1+t Prr)> (5.47), this becomes
J> 2,y-|-e—iq~r+iwt 1 ;
= (5.43 Tolo_g—|Z— oy | T
a0 V(00807 + (K|GZ+ K, G7)2 ar=12-d-lz— o 68D
is now nonzero. This now makes it possible to contract two
¢ fields when renormalizing the MSR functional. It is suffi- d=3- € redux
cient to work only to Iilnear ordpr i (orI'). Following the Equations(5.46) and (5.51) complete the modified set of
same method as earlier, we find RG flows at nonzero temperature. Let us focus again on the

1 behavior ford=3—¢, discussed above foF=0. As sus-
(T)_ M__ = b A (e s pected, the presence of the diffusionlike term in E546
057 =(S0> ZJm'd)”dj” A (b= ¢l C-(00 indeed acts to smooth out the cusplifi¢) (a simple heu-
ristic argument for this rounding is given in Refs. 36 angl. 35
To see this, consider the “adiabatic” approximation in

This gives two terms. The first contributes a renormalizationwhich Eg. (5.46) is solved for fixed nonzerd, |gnor|ng

of A. That correlation function gives corrections tog,I" arising from the scale dependenceTof
To carry this out, we search for a solution

—C-(0,t—t")]. (5.44)

2Ty

oo- [ o

] 0. J o Y (0 =000 %+ (Kt K, 07)? (¢.)=T(0)-(3-d)T(4,T()), (552

T Ad2C. - dl 54 whereF(O,I)=O. Evaluating Eq(5.46 at =0 gives the
2 /KHKl d-1-% (5.49 flow equation forI"(0,l), which in turn implies an equation

. . i . ) for I'(¢) in the “adiabatic” approximation:
Note that the integral is singular in thg—0 limit. Physi-
cally, this is because some damping is needed to control the (9|F(O,I)=(3—d)1“(0)+?r”(0), (5.53

thermal fluctuations excited in the propagating longitudinal
mode. Incorporating this piece in the RG equation For

. - = ~ 1w =
gives ul"(0)=T(¢)+ul"($)+ 1" (H)T(¢), (554
2 J—
} I'(¢)— ;F”(qﬁ)[f‘((ﬁ)—F(O)], where u=Tle<1l. Multiplying Eq. (5.54 through by
(5.46 I''(¢), allows one to perform one integral, and thereby to
solve forI'(¢) exactly in an implicit form. One finds

—
a.r(¢>=[(3 d)+T5 0

where
—-1/2

In(1+l“/2,u) r =2¢, (5.595

_ T fdl—‘
T=A%"2C,_, (5.47

TT2VKLK I
L0 for 0 ¢=<2m. For |¢—27-rn|>,u\/|ln,u| (with integern),
The second term in Eq5.44) gives a correction to the this reduces to the zero-temperature solution in(Bdll). It

temperature. This is simple to see, since in this thrmt’| ~ Contains, however, a boundary layer ne#2mn. Inside
this boundary layed (¢) remains smooth, and a simple

is kept small, s that, = (and likewise forg). This  comnitation finds

gives
77262
2 F”(O): — = (55@
055 [ G [ coor-t). g Tin(eim)
. o o . Putting this result back into E@5.5]) gives, to leading order
This integral is finite in the limiK,—0, giving in e,
o o 2.2
f (0,t—t’ )—J f —2—2— aT=—T+ e (5.57)
a Jovia Kl 2In(elT)

The new term leads to a fixed point at a nonzero temperature

d-3
vA Cy_dl. (549 ooy

TK,
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_ 2.2

., T€ (5.59
2|Ine|” '

Note that in equilibrium, i.e., in—0 limit, k—o, «/(1

+2k)—1/2, and two terms appearing inside the parenthes

in Eq. (5.51) exactly cancel due to the FDT, preserving the

power-counting result and leavifgirrelevant. Here, for any
finite v, they donot, and the noise renormalizatioffirst
term) overwhelms the dynamic renormalizatiofsecond
term) due to strong irrelevance of (or equivalentlyK),

AND RADZIHOVSKY

VI. DYNAMICS OF 2 +e-DIMENSIONAL SMECTIC

In this section, we study the toy model for the driven
smectic neatwo dimensions. Based on an extrapolation of
the results of the previous sectigkqg. (5.58], we expect

&hat in this case the governing stable fixed point should occur

at a renormalized temperature of order one. In this redard
=2 plays a special role, sin¢eee Eq(5.59] dimensionless

temperaturel becomes marginal.
For temperatures dD(1), thecharacter of the functional
RG[Eq. (5.46)] is substantially changed. This is because the

thereby destabilizing the zero-temperature fixed point. Theqoz, operator

asymptotic flow ofT is then given by

t9|T: (559

1 J—
2-d- 5T (0)}T.

E. Behavior in three dimensions

In three dimensions, we expect thRtflows to zero, and

the above analysis is invalid. To analyze this case, considér

first the behavior o' (¢) at T=0. From Eq.(5.40, we see
that even ford=3, I'’(0) diverges at a finite scale, and the
nonanalyticity remains. Indeed, far=0, a solution(pre-
sumably the asymptotic attractor for an arbitrary initial con-
dition) of Eq. (5.39 is

2
[($;1:T=e=0)=a(l)min| (¢— 7—2mn)?— % +To(D),

(5.60
where
aa(l)=—a?, (5.61)
2
&|F0=Taz. (5.62

Thus the amplitude of the “cuspy” part of the disorder cor-
relator decays slowly to zero,

a(0)

a(|)=ra(o). (5.63)

Employing again the adiabatic approximation for smiall
#0, one finds

) 2
rrof:d=3)= — 2]

. (5.69
T(HIn@(H/T())

Putting this back into Eq(5.51), the “fixed point” for e
#0 now drifts slowly down towards zero. The correct
asymptotic behavior is obtained simply by substitutiag
—a(l) in Eq. (5.58, giving

mla 2

2[ina] ~ 217Inl]’

2

T(1)~ (5.69

. —?

L=3—d+ TW
has adiscretespectrum(defined in the space of72-periodic
functions,

(6.2

Lcom¢=(3—d—Tn?)cond. (6.2

or F>3—d, therefore, all the harmonics but the constant
(n=0) are irrelevant, and (¢)—A,. For (3—d)/4<T<3
—d, we can study the onset of nontrivial random-force cor-
relations by truncating the Fourier expansiomoatn=1:3’

A(¢):A0+A1C0&b. (63)

Equation(6.3) displays one distinct advantage over the full
functional RG treatment in the previous sectidr{ip) in this
limit is manifestly analytic so perturbation theory is uni-
formly valid. By contrast, the treatment fad~3, while
physically reasonable, is considerably less controlled. In-
deed, from Eq(5.59 or Eq.(5.56, I'"(0)*=—-2(d—2) is
O(1) in this limit, and althougH’(¢) is O(e€), it is unclear
how the singular derivatives might enter into higher-order
corrections.

To implement the complimentary, strictly controlled ap-
proach ford=2+ e, we simply insert Eq(6.3) in Eq. (5.46),
dropping harmonics witim=2. This gives

dAo(l) — 1
S =(3= A+ A%, (6.4)
A, () —— 1
S =(3-d=T)A; - 5A% (6.5
d_(l)_( 1—)—|
T— 2—d+§Al T(I), (6.6)

whereA_o,lzAoylcdlAd*/(Kl vlv]). We pause to point out
that Eq.(6.3) is equivalent to the physical approximation of
the equation of motion,

Y(d+va) d(r,1)=(Kjaz+ K, V2) (r,t)+Fo(r)

+Fl(r)co$y_¢(rvt)]+n(rlt)v (67)

for largel. Note that this is faster than the usual case of awith

marginally irrelevant operator~1/), but much slower than
the naive power-counting result- ™).

[Fo()Fo(r")]ens=2808'V(r 1), (6.8
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[Fa(NFy(r')]ens=24,8(r—r"). (6.9 X,

For completeness, we rederive E@&4)—(6.6) directly from
Egs. (6.7)—(6.9 in Appendix E. Note that Ec(£.4) implies

that the random-independent drag correlatdy, is always
generated by the disorder and is relevant, even if it is not

present in the “bare” equation of motion. Althoudty runs

off to infinity, as discussed in the previous subsection, its
effects can luckily be taken into account exactly, by a simple g
transformation on the fielp. The remaining flow equations Tg T

for A_l(l) andT(l) contain three fixed points

FIG. 5. Renormalization-group flow diagrartior 2<d=2
+0.3<3) in the disorden ; temperaturd plane, for a set of initial

conditions withA ;(0)=0.2 andT(0) ranging from 0.05 to 0.85, in
increments of 0.2.

Gaussian: 'IT*=O, A_’1‘=O, (6.10

Zero temperature: F‘=0, A_’1‘=2(3—d), (6.11)
This has the exact solution

Driven smectic: 'F*=5—2d, AT=2(d-2). (6.12

Of these, only the driven smectic fixed point is globally AST=2-T o+ f/Teq, (6.14
stable. Fortunately, it is also perturbative, and hence con- _ _
trolled, for d near 2, and indeed becomes exact in the where f is given by the initial conditionsA;(1=0)=A;,
— 2% limit. Furthermore, the driven smectic fixed point that ﬂ' =O)=?as
is perturbative neasl=2 appears to smoothly match onto the
finite disorder, finite-temperature fixed point that was ob- N _
tained at strong coupling by a functional renormalization- f=T[A;—2+T]. (6.19
group calculation nead=3 in Sec. V D.

Equations(6.5),(6.6) are also the nonequilibrium analog The asymptotic effective temperature is determined from Eq.
of the Cardy-Ostlund fixed Iirf€ that describes the-1 di-  (6.14 by settingA®"=0, which gives
mensional vortex glass statend the super-rough phase of a
crystal surface grown on a random substrat¥ Because of — ==
the lack of fluctuation-dissipation theorem for the driven sys- Terr=1+ Vi+ T(A+T=2). (6.16
tem considered here, the Cardy-Ostlund fixed line is destabi-

lized by the nontrivial renormalization of temperature. ThisThis effective temperature has the following meaning: as-
™~ ymptotically, theconnectedcorrelation and response func-

disorder generated thermal renormalizatiah,-dependent ~ i i )
term in Eq.(6.6)] is reminiscent of the “shaking” tempera- tions of a moving smectic at temperatirén the presence of

ture, discussed by Koshelev and Vino}é&n_ﬂ.\lo;e, however, disorderA, are given by the noninteracting, disorder-free
that the “heating” found here is a multiplicative rather than functions withT replaced byT o(T,A,). Of course the de-

an lﬁdgf';ieﬁgﬁ]’eissi\gﬁss tilégfcllgvitzd Lgtﬁifé ?12\/e an inter_tails of the approach to the zero disorder fixed line and to this
—cTe q effective  temperature will determine  subdominant

Zztliggilligltrgtsgl?rﬁtgg a5round the driven smectic fixed pOIntq-dependent corrections to the correlation and the response

The structure of the renormalization-group flow in thefunctlons.
physically interesting case af=2 is displayed in Fig. 6.

In d=2 the driven smectic fixed point moves down to X
zero disorder and merges into the zero-disorder fixed line. 1
Despite the absence of a globally stable finite disorder fixed
point in d=2, we expect nontrivial observable effects asso-
ciated with the interesting RG flows displayed in Fig. 6.
Qualitatively, a moving lattice at temperaturevith disorder
A, behaves at long times and length scales as a thermal
moving smectic with an effective disorder-enhanced tem-
peratureT .(T,A4).

To determin€l o, we take advantage of the solvability of T

T
Egs.(6.5),(6.6) in two dimensions. Dividing Eq6.5) by Eq. g
(6.6) gives

FIG. 6. Renormalization-group flow diagraffor d=2) in the
disorderA, temperaturdl’ plane, for a set of initial conditions with

(6.13 A_l(0)=0.2 andT(0) ranging from 0.05 to 0.65, in increments of
0.2.

dAL(T) _21—?
dT T

alig
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VII. NONEQUILIBRIUM RESPONSE AND CORRELATION *(b)=xb"2. 7.8

FUNCTIONS _ _ _
In d=2, the dimensionless temperature flows to the fixed

We now turn our attention to the dynamic response andhalf-line (and is hence nonunivergahile in d=3, it flows
correlation functions of a moving smectic. We will consider |ogarithmically to zero, i.e.,
only mean(disorder-averagegroperties here. The mean re-

sponse function is defined by — Tor>1, d=2
T(b=e) ~ 5, (7.9

mert S(p(r+r/ t+t')) b>1| w°/21%|In 1| d=3.

rt= Y] . .
.y on(r',t’) ens For 2<d<3 it flows to a universal valugsee Eqs(5.58
R and(6.12], which is sadly of only formal interest since the
=[{p(r+r't+t")d(r',t'))ens (7.1)  2.5-dimensional smectic is currently experimentally inacces-
o _ ) _ sible.

We similarly define a mean correlation function, The mobility is more complicated, but using EdS.35

and (7.8), we obtain

C(rt)=[{(((r+r"t+t)= (" ,t' ) ]ens (7.2

Given the results of the renormalization-group analysis of
the previous two sections, the long length and time asympW'th
totics of these functions can be computed using standard — o
matching techniques. For the momentum-shell regularization ®(b)=— J"“ bd| ke I7(0)) (7.19)
used here, this matching is most directly done in momentum we 2 e '

0 1+2ke”
and frequency space. Consider first the correlation function ) ) ) )
which for transverse momenturk, and rescaling factor The integrand in Eq(7.11) is exponentially suppressed at
1<b<|A/k,| satisfies the relation largel, so that®(b) has a finite limit adb— . This implies

the finite renormalization

y(b)=ye®®), (7.10

C(k,w;{\})=b%¢+2C(k, b,kb¢, wb%{N(b)}).

(k, 03 {\i}) (k, b,k {\i(o)}) - Ab) ~ e a0 712
b—o

Here{\;(b)} denotes the set of running coupling constants a%

scaleb. The prefactor on the right-hand side arises from the X eC‘.i“Ste’ dfobr Iarge”(srgall ';) E[Ee integral I?’ 'Izqt;(7ﬁ1])' IS ¢
(conventional definition of the Fourier transform, ominated by small [due to the exponential behavior o

«(1)], the constantr is highly nonuniversal. Above two di-
mensions;_at sufficiently_high velocities and temperatures (

<1 and T>a§ in 3D), T flows rapidly to a unique fixed

point, and it becomes parameter independent, with2(d

and the dimensionlessness @fr,t). —2). Ford=2, o depends upon the bare disorder strength
To calculate the correlators at long length and time scale =

we will chooseb=A/lk,[>1 and evaluate the right-hand >1. More interesting is the extreme low-temperature limit,

side of Eq.(7.3). This is simple because the rescaled cor- \which [see Eqs(5.56),(5.64] I'"(0) becomes singular. In
relator is evaluated at a large rescaled transverse wave vectgb this limit gives R '

|k, |b=A equal to the uv cutoff, at which fluctuations are

C(r,t)zfk 2[1—e kel C(k, w), (7.4

%ven fork<1, due to the semi-infinite fixed line witffy;

small, and therefore can be taken into account perturbatively, mal —
without encountering any infrared divergences. However, the o~=——=, T<al. (7.13
computation of the rescaled propagator requires a knowledge Tin(ag/T)

of the running coupling$x;(b)}.

These flows have been studied in Secs. IV and V
Throughout, unless explicitly indicated otherwise, all run-
ning couplingswithoutarguments refer to the bare couplings,
i.e., \;=\;(b=1). It is convenient to choose=¢=2 and

The corresponding low-temperature regime in two dimen-
sions is outside the limits of the controlled RG, but we ex-
pect a result similar to Eq7.13 to hold with, howevera,

of order one. Note that in all caseg is strongly enhanced
as the velocity of the moving smectic is lowered.

x=—d—1. With this choiceK, andyv are invariant, i.e., The remaining flow parameter is the force-force correlator
A(¢). Again, we quote here the results only directlydn
K, (b)=K, 75 =23
In two dimensions, the correlator is well-described as-
yv(b)=yv. (7.6)  ymptotically in the single-harmonic approximatiofEq.

The remaining parameters behave nontrivially. The rescaletf-3)]. From Eq.(6.4), A, grows linearly withb,
temperature and longitudinal elastic modulus follow from

Egs.(5.47 and(5.37), respectively, A—O(b) ~ Zb, (7.14
b—
2(K K= " = = ,
T(b) ~ ————T(b)b™ 1, (7.77  whereA>A,, and forA;<1 andT>1/2 can be estimated
b>1 Adizcdfl by
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Ai forming the above integration, we find two limits. Fdr
TAK Yo o= (7.19 <4 andx<K;/yv, the static roughnesscalesisotropically
L7 2T-1 (similarly to the equilibrium cage with finite anisotropy

As can be easily seen from E(.5), in d=2, the first har-  a"ising due to the difference betwen andK;
monic flows asymptotically to zero according to 3 K)(d—Z)M

Ay(b) ~ Ayb(Tet ), (7.16 CEA(”:R( K,

b—w

Z%Ao“'

| IXIKT?
rt df(A”(W , (7.23

L

_ _ _ - where the scaling function obey§M(x—0)— const and
In three dimensions, we have instead logarithmic f|0WS,f(A1)(X*>Oc)4)X4—d. For d<3, in the asymptotic limitx

and simple manipulations of Eq€5.60—(5.63 give >K/yv, C,(r) becomes infinitely anisotropic owing to the

a _ difference between the convective behavior along the direc-
A(gp,l) ~ 2myvK, —omin{(¢—w—2wn)2—w2}+A, tion of motion (x) and diffusive transport transverse to it
1+la :
b 0 n (alongr,). We find

(7.17
where C _K riid f(z) |X|KL 79
eall) = Yok, A ri?’v , (7.29
2
Zszyv K, [To+ Twao . (7.189  Where the asymptotics of the scaling function are
) N ) ) const, for x—0
We are now in a position to evaluate the right-hand side D (x) G-a2 (7.25
of Eq. (7.9. Settingb=¢'=A/|k, | and using the above re- X » fOr X—=e.
sults, we obtain In three dimensions, the power law in Ed.24 should be
_ replaced by the logarithnr ()°— In|Ar |.
DYk, w)[47K YT+ Ad(w)], d=2 The other important physical correlator measures the ther-
C(k,w)= 1 47%%Kyg ~ mal fluctuations around the static distortion measured by
D YK, w) o “T|R+A5(a)) , d=3, Cea. The thermal correlator is naturally defined as
L
(7.19 C+(r,t)=C(r,t)— Cga(r). (7.26
where For simplicity, we consider only the equal-time thermal fluc-

tuations; corresponding results for nonequal times are easily
— _ 2 2 252
D(k,w)=(yro = ykd“+ (KkH+ K KD (720 gptained from Eqgs(7.19—(7.20. In two dimensions, the

we have defineK = K, K; and from Eq.(5.63, the three- thermal correlator is logarithmic,
dimensional logarithmic coupling constant is —
Cr(r,0)~ 2T YRXZ+ R~ 1y2, (7.27

(7.2)  whereX= K, /K|. Note that the(in 2D nonuniversal co-
efficient of the logarithm above is proportional to the effec-
Equations (7.19—(7.2) have simple physical signifi- tive temperature, and therefotm_u_ndedbelow. Thls_ is a
cance. The first term in each of the square brackets in E onsequence of the roughly semicircular RG TIOWS in Fig. 6.
(7.19 represents time-dependent “thermal” fluctuations. tis interesting to further note th.at by extending above cal-
The second, §-function term represents a static, time- qulatlons to 2 e Q|me_nS|ons, using results of Sec_. VI, we
independent distortion of the smectic, and is in fact identicaf!nd t_hat t?e Ioganthml_c grovxilth Of tgerma(lj corrgéatl]?n f;nc-
in form to the perturbative expressions of Sec. IV. This jstion Is In fact superunlveEe( -€., independent ofl) for
roughly because at the uv momentum cuigéhere the res- <d<3, with the prefacto . above replaced by aniver-
caled correlator is evaluatedhe dis_placement fluctuations g4 fixed point value ofF* —1-2¢ [Eq. (6.12].
are strongly suppressed, and dominated by the value of the |, three dimensions, the logarithmic decay afin Eq.
random force at origirb=0 (as in the naive Larkin approxi- (7.21) renders the Fourier transform of the thermal term in

mation. S Eq. (7.19 nondivergent. The thermal correlator thsatu-
To further explore the implications of Eq&..19—(7.21), ratesat long distances id=3
we now discuss the corresponding expressions in real space

Qo

&= T+ agn(Alk,)’

and time. First consider the long-time liMiCga(r) a
=lim;_..C(r,t), CT(V,O)“:OCCT,O *Tinag]” (7.28
- .
C (r):f 2A[1-e™1] (7.22 Comparing the stati¢€EA) and thermal correlators above,
EA k(yoky) 2+ (K K2+ K, kT)2” ' we see that aanyfixed time, the static contribution ©(r,t)

) ) dominates at long distances, i.e.,
This correlator is analogous to the Edwards-Anderson cor-

relator in a spin glass, and represents a static but random C(r,t) ~ Cga(r). (7.29
conformation of theg field that persists at long times. Per- [r|—o0
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Thus the naive perturbative results of Sec. IV are essentially
correct for the long-distance properties of the correlation \/A
functions. In particularthe structure function in the smectic
phase displays power-law smectic Bragg peaks (transla-
tional QLRO) in three dimensions, with fully rounded smec-
tic peaks (translation SRO) in two dimensions
Similar analysis of the response functi®ik,») shows
that to the leading order in disorder it is given by

1
ilyr(k ) w— Yok ]+ KK+ K KT

(7.39 FIG. 7. Schematic of the nonlinear transverse response for the
and is identical to the response function in the |ineal’ized'n0ving smectic(neglecting the permeation modéncluding the
theory of Sec. I, but with a drag coefficient multiplying  permeation mode simply adds a linear function of slpggto the
o (but not k) replaced by the disorder enhanced renormal-above plot.

R(k,w)

ized yr(k.), The finite-temperaturke-V (velocity-force curve gives an
yr(k,)= yeP ko) (7.3) interpolation between twénear regimes, above and below
f.. For smallyv, the renormalized mobilityygz* is quite
~ YR. (7.32 small. In this case thé-V has a nonlinear feature similar to
k<A that of a threshold, but neverthelessmpletely analyticin

Since yg is finite, the renormalized response function addition, the permeation mode provides a second channel for

R(k, ) implies ananalytic response to a uniform transverse tr_ansport, which further enhances the I.inear mobility. A pos-
external force, and finite linear mobility yz ! in the limit of S|bIe.(though hlghly specg[atl\)gscenarlo at zero tempera-
vanishing transverse force. ture is a sr_naII linear mo'blllty via the permeation of a small
We now turn our attention to theonlinear dynamic re- concentra_\tlon of fIL_Jctuatlng c_Jefects “activated” through lo-
sponse to a transverse for€e. A true calculation of the cal chaotic dynamics, superimposed upon a sharp threshold

nonlinear response ty is beyond the current capabilities of for rtnotlon O.f tr;ﬁ srl‘n?ctldc d?nsnt);]w;ave. Htowever,twe adgaln
these methods. A relatively simple scaling argument sufficegdution (as in € Introduc '9)) at zero-temperature dy-
however, to obtain a rough picture of the dynamics. Conside[rﬁ"’m"cS may be h|ghly npnumversal, with qualitatively differ-
introducing an explicit force into the MSR functional. Since ent behavior occurring in different systems.

it couples directly tog, simple rescaling and use of the re-

lations between the scaling exponegtsz and { leads to a _ .
strong growth of the rescaled forég(b) under the RG, A. Relation to previous work
e 2 Much of the recent interest in driven solids stems from the
fi(b)="1,b". (7.33  \york of Koshelev and VinokutkV),*! who applied pertur-
When this rescaled force becomes large, of the order of theation theory to compute the mean-square displacement of
typical depinning forcd .~ A%2\/A”(0), it becomes a strong the driven solid and argued that the driven system might
perturbation and the damping coefficieptshould cease to €xhibit a nonequilibrium phase transition from a moving lig-
renormalize. Choosing , b= f. defines a {,-dependent ~ Uid to an ordered moving solftf:** The argument was based
rescaling factorb at which to evaluatey via Egs.(7.10, ©n the notion that at large velocities the effect of pinning
(7.11). This gives an effective drag coefficient could be described by an effective “shaking” temperature
Ter~ 1/v2. With this assumption, KV recast the problem into
Yeii(f ) =yre "1/fd for f,<f., (7.34 equilibrium form. This suggested only thermal roughness for
the driven lattice, so that the mean-square displacement

VIIl. DISCUSSION

=y, for f >f, (7.35 would always be bounded uh>2 (with translational QLRO
. . . in d=2), arguing indeed for the stability of the driven lattice
where v=0K K, A?/(yv)? Combining this result with the for dzg. guing y

definition of y Experiments on flux lattices in type-1l superconductors

. have indeed shown evidence for current-induced ordering of
—, (7.36 the vortex array. This evidence has been obtained both indi-
Yer(T1) rectly through transport experimefft4® and by directly
we obtain a nonlinear response which interpolates betweeprobing the structure of a driven vortex lattice by neutron
two differentlinear responses at small and large, sche- scatterind® and decoration experimerfts®® Numerical
matically displayed in Fig. 7. We remark in passing that thissimulations of driven vortex arrays in two dimensions also
simple argument neglects possible renormalizatiorfs dfy ~ Provide clear indication of ordering of the sliding lattice at
the random force. This occurs at zero temperature, and alarge drives'®**4->'we discuss these experiments in more
lows for the possibility of a true critical transverse force in detail below.
that case. A careful treatment of the finite-temperature cross- The notion that nonequilibrium effects might play an im-
over to the abovégenerid behavior is still an open problem. portant role was addressed by Balents and Fi§hier the

v (f)=
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simpler context of CDW’s. They classified the possiblewhich longitudinal dislocations appear in the moving lattice,
phases of driven CDW's and showed that the KV predictiond.e., the scale at which a driven lattice is unstable to the
were violated in this case. In fact, certain static componentgansverse smectic. Such effects have recently been studied
of the quenched disorder persist in a coarse-grained mod#l a simpler model relevant for CDW motion, which contains
even at very large velocity. This static random force arise®nly longitudinal degrees of freedoffl.
physically from spatial inhomogeneities in the impurity dis-
tribution and represents a sort of random drag. Therefore
noise in the nonequilibrium steady state of the sliding CDW
never mimics thermal noise, which is uncorrelated in time. As discussed in the Introduction, there are many physical
As a result these authors concluded that the analogous moxealizations of dirty driven periodic media. Among these, the
ing solid phase of a CDW is stable ird3at large velocities, magnetic-flux lattice in type-Il superconductors is perhaps
but does not exhibit the true long-ranged translational ordethe system that has been most studied experimentally in re-
of an equilibrium 3 crystal. Rather it exhibits the algebraic cent years and where our predictions can most easily be
decay of correlations characteristic of d 8quilibrium crys-  tested.
tal (QLRO). In d=2 in contrast the moving CDW appears The large majority of experimental work has focused on
unstable to the proliferation of phase slips. the nonlinear transport properties of these systems for driv-
A similar reinvestigation of the driven lattice was recently ing forces near the zero-temperature depinning threshold.
undertaken by Giamarchi and Le Dous§aL).?® These au-  Our work, in contrast, focuses on the properties of the sliding
thors focused on the behavior of fluctuations in the directiorstate well above threshold, where the velocity-force charac-
transverse to that of the driving force. They pointed out thateristic approaches a linear form. In this regime one is rather
periodic static component of the pinning force persist in thenterested in the positional and temporal order of the sliding
transverse direction at large drives and suggested that motignedium.
in the driven solid occurs along elastically coupled channels The positional correlations in a current-driven magnetic
parallel to the direction of motion. These authors assumetlux-lattice can be studied directly both by numerical simu-
that disorder-induced displacements in the direction paralldations and experiments. Numerical work is very useful as it
to the driving force always remain bounded and neglected altan provide both direct real-space images of the sliding lat-
fluctuations in this direction. They also suggested that thdice as well as quantitative structural information like the
signature of this anisotropic sliding state, the anisotropicstructure factor. Recent simulations of two-dimensional flux
moving Bragg glas$BG), would be the existence of a finite lattices @;=2, d,=0) by Moon et al*° are in agreement
transverse critical force. with our finding that the periodicity of the driven flux lattice
Considerable elements of GL’s work are retained in ouralongthe direction of motion is absent, i.e., the sliding lattice
calculations. The static periodic transverse force is also noris a smectic. Real-space images of the driven lattice show
vanishing in our model, and leads to glassy channel-like mothat motion occurs along channels that are aligned with the
tion at very low temperatures. There are, however, severalirection of the driving force and periodically spaced in the
key differences from GL's work. First, we give model- transverse direction. Phase slips, however, occur at the chan-
independentharacterization of the possible phases. Secondjel boundaries, indicating that the channels are uncorrelated
we derive our equations of motion from a microscopic dy- and the longitudinal structure is liquidlike. The structure fac-
namics. These have a truhorequilibrium form, which can- tors obtained from these simulations show sharp algebra-
not be obtained simply by a Galilean boost of the equilib-ically divergent peaks at the reciprocal-lattice vec@Qraor-
rium equations of motion. Third, we argue that the mostmal to the external drive. The peaks at the other reciprocal-
stable driven phase is thiansversesmectic, withshort- lattice vectors have a very small intensity that decays
range rather than long-rang®ngitudinal order. Fourth, we exponentially with system size. Similar results have also
point out the importance of thpermeation moddn the  been obtained by other authdfs® One detailed aspect of
transverse smectic, which impliesn@nzero transverse lin- the results of Ref. 30 which do@®t agree with our theoret-
ear response at any finite temperatutestly, we show that ical expectations is thalgebraicdecay of the smectic Bragg
the transverse displacements themselves are much less glag®aks. Our theory predicts in fagiossibly stretchedexpo-
than in equilibrium, owing to the strong enhancement ofnential decay, due to the linear displacement growth in Eq.
thermal noise caused by the breakdown of the fluctuatiori7.24). We believe the observed power-law structure factor
dissipation theorem. scaling is likely a crossover phenomenon, perhaps enhanced
Recent simulations id=2 have confirmed the aniso- by the dispersive elastic moduli due to the short-scale loga-
tropic channel structure of the sliding state? These simu-  rithmic character of the intervortex interaction.
lations also indicate that dislocations with Burger’s vectors Direct experimental evidence of the ordering of the slid-
parallel to the flow are unbound, so that timrachannel ing flux lattice at large velocities was obtained some time
order is liquidlike. The driven array thus indeed appearsago by neutron diffractioi® These experiments have not,
more consistent with a transverse smectic phase proposed hpwever, been able to quantitatively determine the structural
us® than the moving Bragg glass. properties of the driven state. More recently, the channel
All the aforementioned analytical treatments neglectstructure of the driven flux lattice was observed directly by
KPZ-type nonlinearitie§C coefficients in Eq(1.11)]. These decorating the current-driven flux array in NbSE By
are perturbatively irrelevant in the smectic state, as arguedigitizing the decoration images Pardbal. have also very
above. They probably play a role in the behavior of longitu-recently obtained the structure factor of the driven array that
dinal correlations, and may well determine the length scale d@tdeed has the transverse peaks characteristic of a smctic.

B. Experiments
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Temporal order in the driven medium should manifest Finally, it has been suggested that a sliding flux lattice
itself in narrow band nois¢NBN) and mode-locking phe- will exhibit a finite threshold force for response to an addi-
nomena. Both of these have been studied extensively in thiional driving force f, transverse to the mean
context of charge-density waves, but have not been observaalocity’®° and no transverse linear response at zero tem-
in flux lattices, indicating that the driven flux lattice lacks perature. The behavior in a purely dissipatieerdampeg
long-range temporal order. The spectrum of voltage fluctuamodel at zero temperature is somewhat nonuniversal, and
tions can be probed by applying a dc currénbat yields a indeed, such a transverse critical force is certainly likaly
driving forcef~1 on the flux lattice. The local field induced many possible phases, including both the smectic and Bragg
by flux motion is given by glass (BG) At finite temperature, a sharper distinction can be
drawn. A naive extrapolation of the Bragg glass theory to
finite temperature would predict axponentially small, non-

¢0 -~ i P
. =— "¢ ) Q- (x—¢) . L
Ei(r.0) C €ij i p0+§ PQo® CRY linear transverse response at finite temperatures,
~ Y
with ¢, the flux quantum. In a moving solid we expegt UEGNGXF{_<f_° ' (8.3
=vt+ ¢. In a perfect lattice the local voltage contains there- f

fore oscillatory components at the frequencieg=Q-v.

) . . with floc low temperatures and smdl| . Equation
The Fourier spectrum of voltage fluctuations, defined as, th foo /T at low temperatures and smdll . Equatio

(8.3) relies, however, upon two assumptiond) density
fluctuations(the permeation modecan be neglected an@)
s(w)zf Je“"t<Ex(r,t)EX(r’,0)>, (8.2 the T=0 fixed point is stable. Our works shows that both
rrJt these assumptions are incorrect and invalidate&8d.. As
. L - discussed, in Sec. VI, we then expect a velocity-force curve
will then contain, in addition to a dc component, a sharp_ . . i
. with the crossover behavior shown in Fig. 7. For low trans-
fundamental peak atw;=Q;-v, with Q;~2=x/a, and

smaller peaks at all the higher harmonics. This type of spec\—/erse driving forces there are two smilit nonzerplinear

trum, usually referred to as NBN, has indeed been Observe%omponents to the mobility, i.e.,
in sliding CDW'’s and is generally regarded as the signature sm_
of the absence of appreciable phase slips in the sy3tein. oIk awF perd DI &4
contrast, in a liquid phase we expect the Fourier spectrum t@he mobility of the density wave g, has been estimated in
have a Lorentzian form, centered at the frequeagy A  Sec. VII. It is activated at low temperatures, and also sup-
broad power spectrum of voltage fluctuations, withan® pressed for small slidinglongitudina) velocities, with the
decay at large frequencies, known as broadband noiserm
(BBN), is observed in CDW’s when macroscopic velocity .
inhomogeneities arising from phase slips are present in the Pegw= Vg "=y~ tem TKKLAT ()T (8.5
driven systent?® NBN has not been observed in current- )
driven flux lattices. This is consistent with our finding that Where o 1/T at very low temperaturefmore details are
correlations along the direction of motion are always liquid-given in the discussion following Eq7.12]. The second
like, indicating longitudinal phase slips are present in thelefm is a mobility associated with the permeation mode:
system. _ULIT

Systems with temporal LRO should also exhitwimplete Feperd T)~ o€ 707, (8.6

mode Iocking. MOQe .Iocking is an interference effect thats,, T<Uy. Although we have not analytically derived the
can occur in a periodic medium driven by both a dc and amyoye exponential form of the mobility, it seems extremely
ac force. Keeping fixed the amplitude and the frequency Ofjely on physical grounds. Such behavior arises from an
the ac force and varying the amplitude of the dc componentyq(iyated concentration of mobile defetmcancies or inter-
one observes steps in the dc response, known as Shapigiials in 2D, kinks and/or vacancy/interstitial lines in 8D
steps. The_se steps arise _from m_ode Iockmg_ of _the frequenqyith finite “energy” cost Uy. These flow linearly in re-
of the applied ac force with the internal oscillation frequen—sponse to a driving force with mobility,. Additional non-

cies wq of the periodic mediumCompletemode locking  jinear behavior will be superimposed upon this linear term,
(steps in the dc response that remain constant over SOmg it is subdominant at small, . At low temperatures these

finite range of dc bigsto an arbitrarily weak external ac hopjinearities sharpen to a thresholdlike feature around a fi-
drive has again been observed in CDW'sAssuming, as nite f, ., so that the identification of an experimental system

our calculations suggest, that the driven flux lattice has only,q aither a BG or a smectic by the transverse “threshold” or
short-range longitudinal ordeii.e., SRO for wave vectors iical current may be misleading.

with nonzerowg), we would expect at bestcompletemode
locking above a nonzer(perhaps largethreshold ac drive.
For (2+1)-dimensional flux lattices again no complete
mode locking is expected in the smectic state, as the driven We conclude with a summary of some of the many re-
lattice only has quasi-Bragg peaks along the direction irmaining open questions. Equatiofs.11) provide for the
wavevector space perpendicular to the velocity. If a longitufirst time a complete set of hydrodynamic equations to de-
dinally ordered phasé‘Bragg glass™) were stable in 3D, it scribe nonequilibrium states of driven periodic media. A sys-
ought to exhibit mode locking and NBN; the available ex-tematic RG(or othe) treatment of them is, however, daunt-
perimental evidence seems not to support this possibility. ing. Aside from the obvious algebraic complexity, the

C. Open questions
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structure of the equations also raises some interesting coff-o leading order, then, the force is unrenormalized.

ceptual issues. Naively, since first derivative terms are The first nontrivial correction arises at second order. This
present in all the variables, all spatial coordinates seem teffect is actually physically transparent. At first order the fast
scale isotropically, with dynamical exponemt=1. This = modes simply respond linearly to the adiabatic motion of the
power counting, however, is inconsistent with direct pertur-slow modes. However, because of the mode coupling, this
bative (and more sophisticatgdcalculations of physical response is fed back and felt second ordetby the slow
guantities. Preliminary investigations of this problem sug-modes again. It is this feedback that corrects the motion of
gests novel scaling without unique anisotropy or dynamicathe slow degrees of freedom, and is perturbatively estimated
exponent$! A more modest goal, requiring only straightfor- in the next correction. This is given by

ward (if rather tedioug calculations is to extend the RG treat-

ment of the smectic to include the permeation mode, i.e., the 2) 1 N
coupling to density fluctuations, as described by Hgsb) 6Seit = — 52 ZZ,ﬁ,(“in Filx+u+wvt,z]
and(4.7). *

A systematic treatment of topological defects in disor- XEj[x’+u’<+vt',z’]>8>, (A3)

dered lattices is also lacking. Some recent progress along

these lines was made recently for equilibrium elastic glasse P -
in Ref. 12—it remains to be seen whether this work can b fthere we have indicated the argumentsuoind u by the

) ) ] resence or absence of a prime, and furthermore suppressed
extended to driven systems. When dislocatians present, P ' PP

many interesting questions remain at zero temperdiue, U'¢, Mode decomposition. The superscopindicates a cu-
y 94 P .. mulant, or disconnected average, meaning that half of the

possible plastic depinning transition and its properties—the Lare ofésgf) is subtracted off, as demanded by the loga-

associated scaling, noise, and hysteresis—are not resenﬁ? ) . .
understood 9 4 P rithm in Eqg. (2.22. As we saw earlier, only nonequal-time

Finally, an extremely interesting line of inquiry is to ex- response functions can survive the average. This can occur

plore how some of the techniques used here might be e)gnly via the first-order expansion of the displacement field
tended to inertial models appropriate for friction and lubri- out of one of the force terms, to be contracted against the

cation. Such systems presumably are controlled not only b sponse field at the _nonequal tim(_e. Taking into account the
the physics described here, but also by nontrivial mechatV'® Ways in which this can be achieved gives the result
nisms of dissipation and possibly chaotic dynamics.
6523%):_2 f U<i¢9kFi[X+U<+Vt,Z]
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9625111, and partial support by the A.P. Sloan Foundation] Ne € function indicates that only a partial mode elimination
' has been performed, so that the slow modes remain as dy-

namical variables in the coarse-grained theory. Generally,
however, the expressions obtained in this section have
In this appendix we carry out the mode-elimination smooth limits as\ —0, and are well approximated therefore
needed to coarse-grain the driven lattice ipegiodic poten- by using the response function in the full Brillouin zone.
tial. Expanding the=~ St within the brackets in E¢(2.22 to Using th_e Fourier decompos!tlon, E@.Z@, the second-
first order gives prder contribution to the effective action can then be cast
into the form

APPENDIX A

s = - Ui(r,8) + Usi(r, -
et 2 L([u (r)+U=i(r.0] PEEEESS J u-iSfifugr,tl, (A6)
X zt

XFi[x+u r,t)+u=(r,t)+vt,z . (Al . . .
il <(rh+u-(r.b) Do (Al where §f; may be interpreted as an additional effective force

This average can be evaluated by expanding the feraie N the coarse-grained equation of motion for the slow modes
u- and averaging over the fast modes term by term. How!< - The dominant terms if; are those which do not os-
ever, in the absence of thermal noise, the only nonzero faétllate asx is varied. Keeping only these, it takes the form
correlator is the response function, which vanishes by cau-

sality at equal times. Since all the fields in the fwst:order Stluartl=S f S iQinleiQ.[xfx’+u7ur+v(t7t’)]

term are at equal time, all the terms involviagy u-. or u-. x' JZQ

fields are zero, and this average simply gives ><|UQ|Zij(r—r’,t—t’). (A7)

552#2_2 f a<i(r,t)Ei[x+u<(r,t)+vt,z]. (A2) This i_s gr_eatly simplifir—;d by gradient expanding the differ-
X Jazt ence in displacement fields
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u—u'=(r—r")“g,u+(t—t")du
1 [AY:7 Y]
—E(r—r YHr—r")%d,du. (A8)

We then obtain an expansion for the force corrections,

ofi=2 f, 2 iQiQQulUg[?e' )
x' JZ't" Q

XGj(r',t") Flu.], (A9)
where
. ! 1 ’ ’
Flul=1+iQ| x "o+t d,— E(X % mdn
/azr% 1 ,(f‘/ﬁ | m
+z 2b) u,—EQ,er O dgum+ - - .
(A10)

Including these corrections into the effective action gives Eq.

(2.24) in the main text.

APPENDIX B

Here we present the details of mode elimination for a
lattice driven over a@isorderedpotential. Expanding, from

the exponential ¢ 5) and averaging it perturbatively over

the modes outside of the cutoff gives, to linear ordeSjn

(S1)== 8847+ 885 (B1)
where the first term is, as before
88 =Si[u—u.], (B2)

BALENTS, MARCHETTI, AND RADZIHOVSKY 57

(2.24). Extracting these coefficients, we obtain the formulas
quoted in Sec. IIB2 for the derivative coefficients
v, A, B, andC.

It remains to consider the renormalization of the force
term itself. This vanished in the case of the periodic force,
due to the(assumefincommensurability of the lattice and
the substrate. The random potential, however, has Fourier
components commensurate with the moving lattice, which
thereby generates such a renormalization. To evaluate it,
however, we must go to higher order in the disorder variance

I". In particular, we consider the second correction term

1
8% =~ 5(SDs-- (B5)

This is explicitly

1 PR
552:%): 3 i (UIULT [ X —Xo Uy — Up+ V(t—tp), 21— 25]
114

X USULT [ X3 — X4+ Ug— Ug+ V(ta—t4), 23— 24])5
(B6)

where we introduced the obvious abbreviation for the four
lattice sums and longitudinal space and time integrals. This
expectatlon value contains several terms, depending upon the

number ofu fields which are contracted to give response
functions. Terms with one contraction leave three response
fields, which represents the generation of a skewness to the
distribution of the random force, and can be neglected in
what follows. Forming three contractions leaves a single re-
sponse field, which will give higher-order corrections to the
coefficients determined above, and can thus also be ne-
glected(for weak disorder Forming two contractions leaves
two response fields, which is of the proper form to renormal-
ize the random force.

and simply returns the uncorrected bare random force. The 1q gptain these terms, tHe's must be expanded to sec-

next correction is

S(lb)_ z

u(rt

zZ'tt’

jk(r_rl,t_t/)

X 3,3, L[r—1"+u(r,t) —u(r’,t') +v(t—t")].

(B3)

Using Eq.(A8), this becomes

2 I]k|[X VOt,aZ,]

7z tt’

r'eg u+t'gu —lr'“r'ﬂ& 95U
al tYl 2 a? Yl

1"‘" ’ ’
+ Erijk|m[X’+Vt’,Z’]r “r ﬁo"abhﬁlgum] ij(r,,t’),

(B4)
I'. This correc-

where we have abbreviatdd;...=d;d;- - -

ond order in the fast fields-. . This gives

1 _ ~ PN
0S=-3 i [Tijm(12)Tian(34)(u3ub(ur. —uzt)
1=4

X u§ul(ude —ufo))S o+ Tijmn(12)T 4 (34)

><<UI1UJ2(UT>_Ug‘>)(“1> u2>)Usu4 >0] (B7)
where we have now also abbreviated the arguments of the
force correlators. The contractions inside the angular brack-
ets can still be performed in several ways. Each such choice
gives rise to a separate term containing two response func-
tions and a combination of slow fields at different space-time
points. To determine the desired correction to the random
force correlator, we keep only the leading term in a gradient
expansion of the slow field§.e., zeroth order in the gradi-

ent9. Lengthy but simple calculation gives

582 =
eff

Z

zZ'tt’

(r t)uJ(r 1)

tion to the effective action again represents gradient terms in

the coarse-grained equation of motion, of the form of Eq.

X Ol [x=X'+u-—ul+v(t—t'),z=2'], (BY)
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where the renormalization of the force-force correlator is

o702 = = £ Tl x =0 =¥ty 2= 21T XX+t 24 2,161 G (2)
12

+ 2$ Figm[ X=X, = Vt1,Z2= 21T [ Xo+ Vt2, 2] Gn(1) Gm(2— 1)
12

+'fijmn[x,z]}§'fk|[x1—x2+v<t1—t2>,z1—zz]ka(1>Gm<2>
12

- Fijmn[x-z]irm[)ﬂ‘ X1 =X+ V(11— 13),2+ 21— 2| Gy( 1) Gjn(2)
12

+2> j Ciimn[ X2+ Vt, 21Ty [ X+ X+t 5,2+ 2, ]Gy (1) Gn(2)
12

- i Fiimn[ X1+, 2T X+ Xo 4+ Vt5, 2+ 2, ]Gy (1) Gn(2— 1). (B9)
12

Integrating this horrendous equation overone obtains the tors. Focusing for concreteness on the evaluatiog;0fgg

formula for g;; quoted in the text. can be evaluated by a similar procedumge obtain
APPENDIX C 6= 2 Uq[(k+Q>-v]2<k+Q>k<k+Q>|<k+Q>m
Here we estimate the correlator of the nonequilibrium part ‘ 5
of the static random forceg;;, given in Eq.(2.51), in the X (k+Q)n|T'(k+Q)[“Gym(k,q,,(k+Q)-V)
limit of large sliding velocityv. First we note that ag;; is a _ N _
symmetric tensor, it can be written as X[Gjp(k,dz, — (kK+Q)-V)— Gy (k,q,,(k+Q)-V)].
(CH
g9ij=90(8; —vivj) +gviv;j, (C1)  We now split the reciprocal-lattice vector sum in EG4) in
. two parts by separating out the terms w@hv=0 and write
wherev=v/v and
9:=91"+9y”. (CH)
Jot+01= f 208 Am0nl T (@) |?Gien(@, - V) The term_g(ll) denot_es the contribut_ion_tg1 from the sum
q over reciprocal-lattice vectors satisfyinQ-v=0. In this

X[Gin(G — G- V) — Gyn( G- V) ], (C2) term we neglect everywhelecompared tdQ and obtain

and g~ 3 (QV*QQQmQIT(QI?
91:fq(ch'V)ZQkQ|Qan|F(Q)|Zka(q'Qt'V) xf Gim(K,07,Q-V)
X[Gin(G, = G- v) = Gin(0,G V)] ©3 X[Gin(k.0z,~ Q- V)~ Gpn(k,; Q-V)]. (CH)

The physical case of interest here is the one where thin the limit v>27c/(ay), with ¢ a typical elastic constant,
range ¢ of the pinning potential is small compared to the we can now approximate the elastic propagators in(E6)
lattice constanta. The Fourier transform of the variance of by neglecting the in-plane elastic matrix compared to the
the random potential’(q) is then a very broad function on frequencyyQ-v, i.e.,
the scale of the Brillouin zone. To proceed, we exploit the
periodicity of the elastic propagators in reciprocal space, by Skm
letting g;=k+ Q, wherek only spans the first Brillouin zone. Gim(k,q;,Q- V)~ CaP iy
The integral oven; is then replaced by an integral over the adz Ty
first Brillouin zone and a sum over all reciprocal-lattice vec-By inserting Eq.(C7) into Eq. (C6), we obtain

(C7)
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mean-square displacement in real space, we need to evaluate

gﬁl)WZPoQ%O (Q-Vo)2Q4 T (Q)[? integrals of the form,
(¥Q-v)? ' 1—-cogq-r)
. c8 B(r)=2 , (D1)
. f 0L (C402)*+ (¥Q-V)?]? 8 th,qx Y00+ [COf + a1

For d,=0 this gives wherec stands for eithecgg Or €411+ Cgg and the prime de-
notes a cutoff atq, |=A. The integrals oveq, andq, are

2Po (Q=0)\?1 A )2 easily performed. Lettingi=q, X, , one obtains
o~ 2 QIrQ)- ( ) 1 | yp g=q,x,
YU & yva 2
(€9 8= Y Fas g Ay, (D2)
where A=~T'(Q=0)a/¢ is the variance of the equilibrium VCCyqyv

part of the static pinning force defined in E@®.8). For d,

— 2 — H
=1 theq, integral is easily performed, with the result, where s=|X|c/(vyy®) and {=c/ceZ/ly|. The scaling

function ]-"(ld‘)(s,g,A|y|) is given by

3p0 -
(1. _“Po 4 2
9y — 2 |QIQr(Q) du Ay -

812Cy, (yv)¥%QVro f(ld‘)(s,é,/\lxﬂ):J—J u™? 1—-cody-u)

(2m)% 1o
AZ
~— (C10 1

(ayv)¥\cyag? X | cosh{Zu)— Ee‘@d) Jsu— %
To obtain this result, we have assume®u <c,,/£> (al- S
ways satisfied physically in vortex systems for currents be- 1 ¢
low the depairing curreint which allows the implicit upper — Ee“‘(l) Jsut+ ——= (D3)
cutoff (A,~1/¢) in the integral in Eq(C8) to be taken to 2\s
infinity.

Hereu is a (d;—1)-dimensional vector, witu=u/u, and
®d(x) is the error function. We are interested in the
asymptotic behavior of the scaling function fdf=2. For
(r=0 we find

In the contribution g{? from the Q-v=0 of the
reciprocal-lattice vector sum the integral okeis dominated
by k near the center of the Brillouin zone. In this term we
can therefore approximate the elastic propagators by the
long-wavelength form, given in Eq3.13 and(3.14). After
some lengthy algebra, one can show that in the limit of large
sliding velocities,v>2mcgs/(ay), {2~ (¢/a)gl?) and is AZlx]
therefore negligible for short-ranged pinning potentials. FP (s> 1,0,A|y|)~|n( cATIX ) (D4)

The evaluation ofg, can be performed by the same Yv
method, with the result

F@(s—0,0Aly))~In(Aly]),

For {>1, or|z|>|y|Vcallc,

a
~g;~, d,=0, 2| [c
Sy 8 f&2><s~0,0A|y|>~'”(X c_>’
44,
~giIn(a/¢), d=1. (C1y Xl
(2) ~
In summary, we find that at large sliding velocities both Fi(s>1L0AlY)) In( vyy? ) (S)

componentgy, and g, of the correlator of the nonequilib-
rium part of the static random force have the sam
asymptotic dependence an and the disorder strength,
with

el he scaling of the mean-square displacement is therefore an-
isotropic, but logarithmic in all directions.

APPENDIX E
AZ

g0'1~11(4——f3||)/2' (C12 In this appendix we outline the details of ther2 RG

calculation for the single Fourier mode driven smectic model
defined by Eq(6.7) in Sec. VI of the main text. It is conve-
nient to employ the Martin-Siggia-Ro$MSR) formalism?®

In this formalism one studies the dynamic generating func-
tional Z which is a trace over the displacemedii§ ,t), with
APPENDIX D the constraint thad(r,t) satisfies the equation of motion Eq.

Here we examine the predictions of the perturbatlon(67) imposed via a functionaf function as an integral over

theory described in Sec. Il for the real-space decay of posia response fleld';(r t). Averaging over the noise(r,t) and
tional correlations in a;-dimensional lattice of magnetic- the quenched random fordg,[ ¢(r,t),r], the problem can
flux lines (d;=1), driven in thex direction. To obtain the be recast in the form of a dynamical field theory,

valid for d,<4, the range relevant to all known physical
realizations of this model.
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dTy()

G = (A + Lz 20T, (ESf

z:f [d(}d¢]e—so[;ﬁv¢]—51[;ﬁv¢]' (ED

where in addition to the standard quadratic part of the action

So

As in the calculation of Sec. V statistical symmetry under
an arbitrary time-independent shift of the displacement field
A &(r,t)— @(r,t)+1(r) (time-translational invariangeguar-
Sto [¢(r,t){'y(ﬁt+vo"x)—(K||¢9)2(+ K, V3)}e(r,t) antees thatyv, K, and K; do not acquire any graphical
rt corrections, i.e., their flow equations above exact Impos-
ing this requirement at the tree level on the first two coeffi-

2 ~
Y07, E2 cients, and using EqE58 we obtain{=2 and y=—d,
there is a contributiors; due to disorder -z
More generally but equivalently we look at the dimen-
sionless coupling constants

1 “ ~
5= — Eﬁ BB Ascofdo((r.0) ~ H(1 1))

(E3 - T 42
=——Cy_1A" 4 (E6)
In the above, after averaging over disorder we have kept only 2(K, Ku)m
the most relevant lowest Fourier component of the random — A
force correlation function. We have also deformed the func- A= K—’y|v|cd71Ad73’ (E7)
tional integral contour over the response figldo the imagi- -
nary axis. which have tree-level flow equations

We employ the standard momentum shell renormaliza-
tion -group transformatio®® by writing the displacement T —
field as ¢(r,t)=¢=(r,t)+ ¢ (r,t), integrating perturba- a7 = 2= DT, (E®)
tively in A; the high wave-vector field>~ (r,t) nonvanish- —
ing for Ae”'<q, <A (with no cutoff on the momentum dA, —
along the direction of motiog, and onw), and rescaling the dr =(3B=d)ay(l), (E9)
lengths, the time, and long-wavelength part of the fields with

whose flow isindependenbf the arbitrary choiceof rescal-

x =x' e, (E4a  ing exponents appearing in EqE43—(E4e.
We now proceed to higher order 4, perturbatively
x=x"efl, (E4D)  jntegrating the short length modes™(r,t) and ¢~ (r,t)
t=t'e?, (E40 . ~ . -
z:f [dp=dp=]e Sol¢ ¢ ]f [dp~dgp~]e Sol¢™¢7]
=(r)=erg(r't'), (E4d
R 1 -
- - X|1-S)[¢,d]+ =Si[ &b, 2+...}, E10
B(r)—eld(r ), (Ede 1[ &, ] > W[ &, ¢] (E10
S0 as to restore the ultraviolet cutoff backAo Because the Ef [d<A1><d¢<]e‘50[‘;5<*¢<]‘55[‘;5<*¢<], (E1))

random-force correlatak ; term is a periodic function o,

it is convenient(but not necessajyto take the arbitrary field \yhere the graphical correctiass to the action(dropping an
dimensiony=0, thereby preserving the periodr2q, under  ynimportant constapis

the renormalization-group transformation. Under this trans-

formation the resulting effective free-energy functional can

N - 1 N
be restored into its original form Eq&E?2) and(E3) with the 0 d=, = 1=(Si[ b, P])~— §<Sl[¢’¢]2>c>+ e
effective|-dependent couplings. To zeroth order we obtain (E12)
dy(l) - where the superscript means cumulant average, and the
dl =(d ) (), (E53 averages are performed with the quadratic action with corre-
dyu(l) R lation and response function§(q,w)V={(¢(q,w)$(—q,
ar -t zEx)yed), (ESH  —0)),  G(q.0)V=(¢(q,0)d(—0,—v)), respectively,
K, (1) i given by
C(q,w)= 2 7z, (E13
dKy(1) - 2(0—00)7+ (K, 2+ K|02)2
dah) _ . G(q,w) = ! E14
o= H 224 208,(),  (ESe ()= gyt (K e KD
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FIG. 8. Two diagrams that contribute to the renormalization of
A4, Ty, andy. The full line corresponds to the correlator, the

full-wiggle line is the response functio®~, wiggly line is the ¢ 6 S
field and the vertex is th&,; nonlinearity. The first diagram, is 2
proportional toT, and is the graphical correction th; and T,

while the second one, survives even at zero temperature and renor-

: FIG. 9. Diagram that contributes to the renormalizatior 6f),
malizesvy.

to second order ik (u), i.e., renormalizes the zeroth and first har-
monics,Aq andA 4, respectively with the same notation as in Fig. 8.

which can be read off from EqE2). Although naively one

would expect from Eq(6.6) that as in the equilibrium prob- SAY=—A,03C”(r=0,6t=0)

lem for d>2 temperature is an irrelevant variable, as we

demonstrate beloyconsistent with the functional RG treat- _ Tdo d—2

ment of the Sec. V D this zero-temperature fixed point is =M 2(KHK )1/2Cd 1AT 7l (E17)

destabilized by the finite velocity motion. We will therefore
work at a finite temperature.

The first-order correctiorQSl[;zS,¢]>> contributes to the
renormalization ofy, Ty, and A;, which we designate as o
gy(l), 8(Ty)®, andsA{M and illustrate graphically in Fig. A12Kq| |Cd A3, (E19
Expanding to quadratic order in the short-scale fie;l:d’s
and ¢~ and averaging we obtain

5(Ty)<1>——A1qoc>(r—o 0=0)

8yM=A,0%19,G7(r=0,0=0)

||0Io _
=A, o |3Cd_1Ad Ldl. (E19

(S)==Si[d-,b-] _ o
The calculation to second order if; given by §S,=

A <
+7 [—d’m%trcoi%((ﬁm b $(S3)¢ can of course be done directly, however, it is
rtt’ convenient to utilize the functional renormalization-group
calculation of Sec. V C. There we found for an arbitrary

X{(ri— ¢r>,t’)2>> force correlation functior ()
+2 < < < > 0> 1 A
q0¢r‘t5|r[q0(¢r,t ¢r,t’)]<¢r,t¢r,t’>>} 552:§f ¢r<t¢r<t'A”(¢r<t_¢r<t/)
ret’ ' '
~ >(r= d-3
[1-03C7(r=0, t=0)IS,[$- -] X (S5 - AN Alvl dl, (E20
1 <0< >
_EQSAlfr’tQSr,tQSr,tfmc (r=0.4t) (E19  \hich when applied to the lowest harmonid ()
=A,c04qo¢] gives
+qSAlfr t;bftat(ﬁstf&tb\tG>(r:0'5t)’ (E16) 582 AlqOJ’ d’r td)r t’ Coi(ﬁrt d)r t’]
| Cd_1Ad_3d| (E21)
4K ylo| T

where in the above we used causaliglecting the discreti- The diagram that leads to the above contributionsy,
zation with #(0)=0] and took advantage of the fact that the renormalizing the zeroth and first harmonics, if£g, and
correlations functions are short-range in time to performAy, respectively, is illustrated in Fig. 9.

small time gradient expansion. Performing above integrals We therefore have to second orderAn

over 6t (best evaluated in Fouries space and noting that ” 2 I
the terms in last part of EqE16) renormalizeA;, Ty, and 5A82):A1%Cd71/\

y, respectively, we find ak_ ol dh (E22)
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Aiqgcd_lAd—:" metries of the driven system, the invariance under inversions

2K, 0] dl, (E23)  about the direction of the external drivey/6—y, ¢—

LY — ¢) and the broken translational invariance in théirec-

where Aq is the zeroth harmonic of the force-force cor- tions (y—y+a, ¢— ¢+a).
relator, i.e., thep-independent correlator of the random drag. Density and tilt density conservation requires the density
Combining Egs.(E23 with the zeroth(trivial dimensional  and the tilt field to satisfy continuity equatidii$*
rescaling and first-order results of Eq§E5h), (E17)—(E19
and rewriting the flow equations for the dimensionless cou- dop+V-j=0, (F3)

plings Ay, A;, and T defined by Eqs(E6) and (E7), we

AR =

obtain the RG flow equations quoted in the main text, Sec. 0Tt 03 =4l F4
VI, Egs. (6.4—(6.6). wherej is the number current density adg is the antisym-
metric tilt flux tensor. The density and tilt density fields are
APPENDIX F also related by the “continuity” equatio(F1). The equation

for the layer displacement has the same structure as that for

In this appendix we discuss the hydrodynamic equationghe two-dimensional lattice, Eq4.3), and is repeated here
for the driven smectic of line€llustrated in Fig. 4that may  for completeness

be obtained in a three-dimensional superconducth=¢,

d;=1). This smectic of lines has qualitatively new properties iy To 6Fs

as compared to the smectic of point particles described in (d+vdy) p= o e 80 (F9
Sec. IV. As discussed by Marchetti and Nel$8and Radzi- 0
hovsky and Fre$t in an isotropic flux-line liquid the con- Wwith I'q a kinetic coefficient. We will not discuss here the
served variables associated with hydrodynamic modes ar@le of disorder on the hydrodynamics of the line smectic.
the density fieldo(r) and the two components of a tangent There_fore we hqve not included any pinning force in the
field density 7(r)=(7y,7,), describing the instantaneous equations of motion. The hydrodynamic equations need to be
bending of the lines away from the direction of the externalsupplemented by constitutive relations for the current flux
field (z direction. Since flux lines cannot start or stop inside and the tilt fluxJ;;. For simplicity we only consider here
the sample, the density and the two components of the tillocal hydrodynamics, but the nonlocality of the elastic con-
field are not independent dynamical variables, but are relatestants that is often important in flux-line systems can be trivi-

by a continuity equation in the timelike variatte ally incorporated. The constitutive equations for tiéven
line smectic contain, however, new nonequilibrium terms not
d,6p+ V- 7=0. (F1)  present in their equilibrium counterpart discussed in Ref. 60.

This is simply the condition of no magnetic monopoles. TheThe two components of the current density are given by

line smectic retains some degree of periodicity along the - _
transverse directiop. This broken symmetry is described by 1= (0F0) 9+ povady$ =8,
the layer displacemend,=¢. In addition both the con- 6F s 6Fs
served density and one component of the conserved tilt den- —pol’sy f7x5_p_ 250

sity are associated with independent hydrodynamic modes X

since they are not slaved to the layer displacement field. 8Fs 8Fs

Having identified the relevant hydrodynamic variables for jyzpovgﬁxgﬁ—az&ﬂy—porz(&y5——525—>. (F7)
the line smectic as a one-dimensional layer displacergent y

a densityp and a tilt densitys, related by Eq(F1), we now  The antisymmetric tilt flux tensor is written as

proceed to construct the phenomenological hydrodynamic
equations for the line smectic and to study the spectrum of
the hydrodynamic modes of this system.

The continuum hydrodynamic free energy for the over- . e
damped line smectic is given by All the parametery); and a; entering the nonequilibrium

terms are proportional to the mean veloaitySince the lon-
1 Sp gitudinal part of the tilt vector can be eliminated in favor of
ﬁs:_f CL| —
2J Po
op
+K§.(az¢)2+2K2(‘9y¢) E], (FZ)

(F6)

Jijzfij 042'(\7())( T)+p0F72' (FS)

or

OF
V, X 'S) .

2 2
7T
+Cyq p—) +CYy(dy ) >+ Ki(dyeh)? the density using EqF1), it is convenient to work in Fourier
0 space. We introduce longitudinal and transverse components

of the tilt vector as

. I . () =dy7i(q) +(2X ) 7r(q), (F9)
where dp=p— pg, With pq the equilibrium density. Here,

andcy, are the smectic bulk and tilt moduli, respectivety, ~ with g;=q,/q;. Then 7 =q- 7 and r=(zXq,)- 7. By in-
is the in-layer compressibilitykX andK? are layer bending serting the constitutive equation for the fluxes in EGFs3),
stiffnesses. The coupling constafs has dimensions of an (F4) and(F5), we obtain

elastic constant. The hydrodynamic equations of the driven - . .

smectic contain additional nonequilibrium terms, as com- [di—iv10x+ D1Q§+ DzQi—(q§D6+q§D7)qf]5p
pared to their equilibrium counterpart. The nonequilibrium - A

terms can be constructed by preserving two important sym- =pov 2050y + (De—D7)0x0yd,0: 77, (F10
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[9—iv 3G+ Dag2+ D405+ Dgqsl¢ D7=a,—I'5C44/po, (F159
2 _ z
i q 5p Loon D7 D8_F0K1/P0: (FlSW
=—iay Ds—aéDy)p——lqqup—rT, (F1D
t ° ° Do=T",Caa/po. (F15i)
[0+ iv 40+ Do — (Dgq2+ D7a§)q§]TT By solving the hydrodynamic equations in the long-
R . _ ~ wavelength limit, we can find the hydrodynamic eigenfre-
=poqzqt(v2q§—v3q§)¢+i(v1+ v4)dyq,6p quencies that govern the relaxation of density, tilt and dis-
placement fluctuations. All the modes are propagating at
~~ q finite velocities and are given b
+02(De=D7)0h0ly - (F12 given by
i tudi i it s Qi ~ . v2Ds
Finally, the longitudinal part of the tilt density is simply ®,= 010 +i| D1gi+| Dot =—=-| 5~ Dsqs |,
related to the density, vi— U3
q (F16
L=——5p. (F13 -
Gt ~ . 2 v2Ds |,
- ~ o~ o~ ] w4=v30x+1| Dags+| Dy—=——=-|q;
The “velocities” v 1, v, v3 have been defined as V1~ U3
vi=v+ug, (F14a vsD;
' ' +| Dg— = qi], (F17)
~ l)3+ Uy
02202+U3, (F14D
~ . 2 U3D7 2
UV3=v—U3. (F149 w,=—040x 11| DoQf —| Degt+——= . (F18
vatug

The coefficientdD; have dimensions of diffusion constants o N N
and are given by For stability, in addition to the conditions stated for the two-

dimensional smectic, we must hallg <0, DB_(U3D7/;3

Dy=T'1¢./po, (F153 .
+v4)>0, Dg>0 and Dg+v3D7/(vstv3)<0. The first
D,=Tc, /po, (F15p  mode corresponds to the permeation mode of smectic liquid
crystals and describes the transport of mass across the layers
D3=TK;/po, (F15¢9  that can occur in these systems without destroying the layer
periodicity. The second mode describes long-wavelength de-
D,=(Tocy;—T,K5)/pg, (F150 formations of the layers and governs the decay of displace-
ment fluctuations. Finally, the third mode governs the relax-
Ds=(I'oK,—T5c )/ po, (F15¢ ation of tilt fluctuations, that, like density, can occur both in
and out of the layers, while preserving the line smectic peri-
D6=a1_rlc44/po, (F15f) 0d|C|ty
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