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Relaxation, homogeneous broadening, and frequency shifts:
Application to electronic transitions in solids doped with rare-earth ions
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We first recall the results of relaxation theory regarding homogeneous broadening and frequency shift of a
transition. We then apply these very general results to the electron-phonon interaction case reconsidering, in
particular, the broadening and shift due to acoustic phonons in the Debye approximation and their mutual
relationship. The experimental data corresponding to’fhg—F transition of the CafFSn?" system are
reported and interpreted in the light of our theoretical results. In this case, previous theories do not allow us to
distinguish between Raman processes involving acoustic or optical phonons. Our theory however demonstrates
that acoustic phonons do not play the major role here and that the broadening and shift are due to coupling with
the TO phonong.S0163-18208)04214-3

[. INTRODUCTION of the Cak matrix are responsible for the temperature de-
pendence of the width and position of this line.

The knowledge and understanding of the homogeneous
width of electronic transitions is often of prime importance.
This is true, for example, of rare-earth ions doped in crystal- We start reconsidering the same situation as in Ref. 2.
line or glassy matrices. For one-photon transitions, nonlineaFhere, the system is a rare-earth ion in the static crystalline
optical techniques such as photon echo, saturation spectroféeld created by the host matrix. It weakly interacts with its
copy, fluorescence line narrowing, or site-selective photoluenvironment considered as made of the acoustic phonons of
minescence excitation spectroscopies allow us to measutBe matrix. The interaction Hamiltonian is written a4
the homogeneous linewidth. For two-photon transitions, V2 with
similar measurements prove much more difficult. The tem-

II. ELECTRON-PHONON INTERACTION: THEORY

1/2
perature dependenpe_ of the homoge_neou_s linewadtt also V,=C> (;‘&z (ay—ay) (1
of the frequency shiftis of great help in trying to understand k Mv
the broadening mechanisms. It is often observed that cousnq
pling with acoustic phonons plays a major role and, when
trying to interpret their experimental results, many authors fiog \ Y hoe |\ Y2 . .
refer to the theory presented in Ref. 2. A more detailed ac—VZ:DEk 2 (W) (W (ax—ay ) (aw —ay,)-
count of the calculations underlying this theory is given in “ )

Ref. 3. But it turns out that, in a few instances, the procedure ) _ . .
that is used in deriving the theory is not correct and thalC @ndD are operators acting on the systeis antihermi-
some of the results should be used with caution. tian), k (or k') labels the phonon modey is the phonon

The purpose of the present paper is twofold. We first give?9ular frequencyM is the mass of the crystal; is the
the correct formulation of theory and the correct results. WefvVerage sound velocity, are anda, are the phonon anni-
then present experimental data for the example of ‘the hilation and creation operators. w12
—F, line of CaR:Sn?" at 256 cm* and discuss them in lemgz the proper meaning toC(#/2Muv*)™* and
the light of our theory. This paper is organized as follows: InDh./ZM.U ’ the_ Interaction Hamlltonlan‘s’l ?‘”de ’?‘ISO de- .

. scribe ion-optical phonon or ion-photon interaction. In this

Sec. Il, devoted to theory, we first recall the gen_eral res.ultaection, we will give the general formulas and, in some in-
for homoger_1e0us broade_nlng and frequency shift, obtaine ances, those specifically corresponding to acoustic phonons
from relaxation theory as it should, and then turn to the casg¢ qiscussed in Ref. 2. Our results will then be of more
of electron-phonon coupling. We keep the results as ge”er@eneral use.
as possible and point out where precisely the previogs Coupling between the system with a Hamiltondg and
approach® has to be amended. In the case of acoustiGis environment or bath with a Hamiltonia leads to a
phonons, using the Debye approximation and assuming thahite lifetime for the eigenstates ¢fs, to dephasing of the
only low-frequency modes play a role, we show that purepff-diagonal matrix elements of the system’s density matrix
dephasing is related in a simple way to the frequency shiftand to a frequency shift for the transitions. This is a result of
In Sec. IlI, we give experimental data obtained using coherre|axation theory in which one considers the system and bath
ent anti-Stokes Raman scattering spectroscopy, pertaining hsemble as a whole with its Hamiltonian
the 'F,—F, line of CaFR:Sn?" and apply the results of

Sec. Il to interpret these data. We show that the TO phonons H=Hgs+Hg+V, 3
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whereV is the interaction Hamiltonian. The case wh¥tés The first-order term vanishes whéR) =0, as assumed in
of the form Ref. 4. We first concentrate on the second-order term and
recall the main results. The relaxation matRxis given in
V=AF, (4)  Ref. 4 and may also be found elsewh&mecause of the

presence of the exponential in the second term of (Bj.
only the secular terms for which,— vy = w,— vy are rel-
evant. We apply this general result to two different situations
assuming that we do not have coherenogg with a very
low free-evolution frequency. We first consider the popula-
tion of statea, o,,, which is coupled to all the diagonal
elements. Whert#a, R, (Which is real and positiveis
—iHgt/h (5) the transition probabilityV,_, . for the system to go per unit
time from statea to statec. It is given by

the tensorial product of an operatAracting on the system
and an operatoF acting on the bath and whef&)=0 is
discussed in detail in Ref. 4. In the most general c¥ses
the sum of such products. The systebath ensemble is
characterized by its density matrjx In the interaction pic-
ture, p' defined as

iH ot/

p'=etotipe

whereHy=Hg+Hpg, slowly evolves only due to the cou-

ling V: 1 e ies
P Woc=pz Al [ dreeewgn, (o3
|
., dp
if E:[Vl(t)’f’l]’ (6) which, using Eq(7), may be rewritten as
whereV'(t) is related toV in the same way ag' is related 2 ) )
to p. We observe tha¥;, andV, are of the form(4) with, for Waﬂc:F |Acal 2,} DMEV: [{ulF[)]* (@~ wca),
example, (9b)
, hoy \ 2 . with A.,=(c|Ala), & being the Dirac “function.” Summing
A;=—iC and F1=§k: oMoZl (@) W,_ over all statesc different from statea, we get the
inverse lifetime of stata.
We have added theand —i factors in order to maké, and We then consider the off-diagonal elemeny,. Mostly,
F, Hermitian.V, is of second order compared with, but  the transition frequencyw,, is unique ando,, is only
may play an important role, as will become clear. coupled to itself. The relevant element of the relaxation ma-

We first come back to the case whafe AF.* The sys-  trix Ryp,p may be decomposed in its real and imaginary parts
tem evolution is described by the density matsix Trg p. as
The bath being large is characterized by a roughly time-
independent density matrixg and enters the relaxation pro- Rapab=—Tap— 1AL . (10

cess through correlation functions of the forg(r .
=(F'(T)F'(g»:TrB[oBF'(T)F'(O)]. This correr?alftign I' ,p, (also denoted Ti,,,) is the decay rate of the coherence
function g(r) can be written as oap- Itis the half-width of thea— b transition. It is made of

two contributionsl" ,,=T"02"%4 134 with

— 20iw,,T
g(7) % IO,LEV [(u|Flv)[“e"“we, (@) rggﬂﬁt’:% (;b Wy ot > Waﬁc>, (11)

c#a
where u and v denote eigenstates of the badl),,=(E, ) . o
—E,)/# andp, is the probability that statg: is occupied. e, hglf the sum o_f thg inverse lifetimes of statl_ear)d b.
Such correlation functions rapidly decay to zero with a timeTNis first contribution is therefore known as lifetimfer
constantr,. Homogeneous broadening corresponds to whafionadiabatir broadening. The second contribution is ob-
is known as the fast modulation regime when the correlatioff@ined as
time 7 is much slmaller than the time constants describing 1 Y
the evolution ofo', which we will vaguely denote a$y. ad._ _ 2f
Considering time interval\t such thatr,<At<Tg, the Fab=257 (Aaa=Aun)” ] 0(n)dr, (129
coarse-grained time evolution of is given by second-order

time-dependent perturbation theory or, using Eq.(7):

| T
Aziaf: iﬁ % = J T (Ageiend ! PE=72 (Raa=Aon)* 2 Pus [(ulFIn)28(w,).
| c Jt
(12b
- UlacAca'eiwca't’) This second contribution is known as pure dephasing or adia-
. batic broadening. A%) may be written as AE{?
+E’ Raarpp € (2”@~ otenltgh (@) —AE)/% where
wherea, a’, ¢, b, andb’ denote eigenstates of the system AE@=p> p >3 (1. v|VIa, w1 (13)
andwa:Ea/ﬁ. a m # v | Ea+EM_EI_Ey,
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in which P means the Cauchy principal part, is a second-

order frequency shiftl is any eigenstate dflg. 2D = 2D+2
We now come back to the first-order term in E§) that

does not vanish whe{F)#0. Again, because of the pres- in which the infinitesimalz has been dropped. The total

ence of the exponentials, only the secular terms are relevariRaman transition rate is then

This implies that the populations,, are unaffected by this

cliyie | clixiic
Ea|+ﬁ(1)k Ea|_h(1)k/

17

first-order term that in fact only leads to the first-order fre- R (ba) |2
quency shifta W= (AED - AED) /4 with Wa™ _7 ( ) f 12Dl *p(0) wPo()
a aa .

(18

The square bracket in E¢6a) of Ref. 2 should be replaced

y the modulus squared of thea matrix element oD(ba)

nuclear magnetic resonance, Raman transition rates often
dominate one-phonon onés.

We now turn to homogeneous linewidths. The lifetime
broadenmg contribution is easily obtained from the lifetimes
using Eq.(11). The pure dephasing contribution should be

obtained using Eq12b). Because of the presencedffw,,,)

n Eq. (12b), one-phonon processes, two-phonon absorption
oor emission do not lead to pure dephasing. The pure dephas-
ing contribution is due to Raman processes. Here aggin,
acts directly andv; in a cascaded process and we show in
the Appendix that the result may also be expressed in terms
of an effective Hamiltonian. The pure dephasing contribution
is then given by

When, for a given interaction Hamiltonian, the first-order
frequency shift does not vanish, the second-order one may tb
neglected.

Coming back to our ion-phonon coupling problem, we
first consider lifetimes. As they stand; andV, are, respec-
tively, one-phonon and two-phonon operators. The one
phonon decay rate of the population of leweis immedi-
ately recoveredEq. (3) of Ref. 2] from Eq.(9b) usingV,; as
the perturbation. The bath may also induce two-phonon tra
sitions. For example, the,a,, term in V, corresponds to
absorption of two phonons. We may also have Raman pro.
cesses in which the system is promoted from state state
b (with E,>E,, for example by absorption of a phonoa,
and emission of a phonany, . The operatoakak*, in V, will
do this, for example. Energy conservation requires that
= wy—wy . If we use Eq(9b) with V, as the perturbation,
we obtain the transition rate

1_‘ab ﬁ2< ) J[Z(D(e?faaa
Y 2 fi
2

|2D54* f p(@)wPo() ~ D& 12(p( ) ©)?po( @) (Po( @) + 1)dw, (19)

whereD® or DP are defined similarly t® &2 . It should
be empha5|zed that the notion of a transition rate from state
(15 a to itself is meaningless and that it is not always true that the
width of a line is the sum of the energy spreads of the two
energy levels involved in the transition. This would apply to
the lifetime broadening contribution, it does not apply to the
pure dephasing one. Equatid@2b) indeed clearly shows
that pure dephasing involve#\{,— App)?.

In the case of acoustic phonons, using the Debye model
and assumingy;,> w, in Eq. (17), Eq. (19) leads to

Wo2o= 77

X p(@— wpa) (0= ®pa)[Po( @~ wpa) T 1]dw,

where p(w) is the phonon density of modegy(w)
=(e"“keT— 1)1 is the mean phonon number at tempera-
ture T, kg being Boltzmann’s constant. The factor of 2 in
front of D comes from the possible interchange betw&en
and k’. Considering acoustic phonons, such a Raman pro-
cess is possible only whesy,, is smaller than the highest
phonon frequency. If we seb,,=0 and use the Debye ap-
proximation[ p(w) = 3L3w?/ (27?v?) with L® the volume of x| 3% \2 5
the crystal, we recover the first term in the square brackets a?, 72 (m) (Dé?faag De?fbbk? ( 7 ) E6(0p/T),
in Eq. (6a) of Ref. 2. P (20)
But repeated action of ; also leads to Raman transitions
that may be described by an effective Hamiltonian. Its ex-wherep is the density of the crystal anéy, is the Debye
pression is obtained in Ref. 4 considering the transition probtemperatureés(x) is defined as
ability from initial state|i)=|a,u) to final state|f)=|b,v)

6t
as _[(x toe
gG(X)_fO (et_l)Z dt
V,|d){d|V
W= lim > M (16) andDE° (now frequency independeras
Clixtic
whered is any eigenstate dfi,. It may be recovered using D(aa =D+ Z E—I
a

the relaxation theory pushed to fourth order as shown in the
Appendix. Since the relevarit is the same iV, andW  The temperature dependencelf is the same as predicted
(namely, akak,) the two add. To get the total Raman transi-in Ref. 2, T’ whenT<6p andT? whenT> 6. In fact, as
tion rate, we must replace in E(L5) 2D with the frequency- already pointed ot due to the slow convergence &f, the
dependent T’ dependence is observed only at very low temperatures.
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We finally discuss frequency shifts. The frequency shift " T " T
A,p Of the wyy, transition is mainly the sum of two contribu- 2.5r
tions. The first contribution is obtained using E§3) andV, ™ [ .
as the perturbation T 20 e
3 | o
A g 15} o
AE§3>=2| |Ca||2(mz) s .
g 10} i
Po( @) Po(w)+1 2 | : P
X + . ] . .
PJp(w)w(Ea—E|+ﬁw E.—E—fiw) @ 05F '.
< i -l'. ) ) ‘-"'I“
(21) (] 0.0} smnangyan”ee” s avuna
The second contribution is obtained using Eigl) andV, as : L . L .
the perturbation: 254 255 256 257
o -0g (cm™)

f
AEM=-D (—)J 2 +1]do.
a a2 2Mp? p(@)o[2po(w)+1]dw FIG. 1. Polarized CARS spectrum of the 256¢miine of

(22 CakR:Snt* taken at 8 K. It shows how the nonresonant contribu-

Blue shifts as well as red shifts have been observed. Yen an%’n is eliminated. The dotted line is a Lorentzian fit.

co-workerg put forward the idea that this could be due to the

7 . -
Cauchy principal part in the first contribution. An alternative M0l€ %. "Fo s the nondegenerate ground state. The first
explanation is that n@ priori conclusion may be drawn excited state’F; remains threefold degenerate in a cubic

regarding the sign ofAE,—AE}). site. The line shape was measured using coherent anti-Stokes

At this stage, a few remarks should be made. First, thd&k@man scatteringCARS) spectroscopy: two nanosecond la-
contribution ofV;, AE® , may be recovered using the ef- ST Pulses at frequenay, andw, (denoted laser and Stokes,
fective Hamiltonian approach. Second, this same contribu[eSp(?Ct'Vely are sllghtly_focused on the 2. r_“'“.”'th'c" sample,
tion is counted twice in Ref. 2. Third, we observe that, re-the differencaw; — w, being tuned in the vicinity of the reso-
gardingV,, the frequency shift is obtained at first order andnance. Due to the thlrd-order nonlinearity, a beam at fre-
pure dephasing at second order. Regarding the fre- qu'encyw3=.2wl—w2 IS gt_enerated. In Raman spectroscopy,
guency shift is obtained at second order and pure dephasirli is beam is denoted anti-Stokes.

at fourth order. This makes sense since, using a semiclassic, |Th_e intensity of the anti-Stokes begm_ls measured as a
approach, we would geF®=A27_. However, except in unction of w;— w5, one at least of the incident frequencies
very simp’le casess, cannot be calcculated prio’ri. being tunable. We use two nanosecond dye lasers of spectral

In the case of acoustic phonons, using the Debye modé’f’idth less than 0.05 cit. The third-order nonlinearity is
and assuming,,> , in Eq. (17) Eqs: (21) and(22) lead to comprised of the resonant Raman contribution originating in
la= %k e ' the Sn" ions and of a nonresonant contribution originating

mainly in the Cak matrix. In the general case, these two
)[Dé?{*;f— DGe] contributions lead to an interference effect that would pre-
vent a precise measurement of the line shape and line posi-
sT\4 tion. Properly adjusting the polarizations of the laser and
T) 73(0p/T) (23)  stokes beams and detecting the right component of the anti-
Stokes beam, one can eliminate the nonresonant contribution
for the temperature-dependent frequency shiff(x) is de- as exemplified in Fig. 1. In order to increase the signal, the
fined as Raman contribution was resonantly enhanced by choosing
w3 slightly below the frequency of the one-photon allowed
x 3 transition at 690.2 nm. Using a closed cycle refrigerator, the
73(X) = J; e—1 dt. linewidth and line position were measured as a function of
temperature in the 8 to 100 K range. The results are plotted
Comparing Egs(20) and (23), we see that, under these as- in Figs. 2 and 3.
sumptions,l“g‘g and the temperature-dependent partAgf, The spectral profile of a line is given as
are related in a simple way. We will make use of this result
in the following section.

1
Aap(T)—Aap(0)=— g (2772pv5

X

a(w)= J ponf @ — @o)W(wo)dwo,

Il. THE EXAMPLE OF THE "F;«’F, TRANSITION

OF CaF,:Sm?* where a(w) is the absorption coefficient or the Raman gain

for example, ano{ @) the homogeneous spectrum and
We have studied the temperature dependence of the width(w,) the inhomogeneous distribution for the central fre-
and position of the ‘F;«—’F, line of CaR:Sm*" at quency. The homogeneous profile is Lorentzian. It may be
256 cmi L. Our sample was grown in a reducing atmosphereseen in Fig. 1 that the global profile also is Lorentzian as is
so that part of the samarium is present in the divalent formoften the case for rare-earth ions doped in crystals, which
The concentration of S ions is about 2.%10 %  implies thatw(w,) also is Lorentziar(this is in agreement
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1.4 The temperature-dependent frequency shift is given by Eq.
- (23) and may be written as
1.2
| T\*
ol Aab<T>—Aab<0)=a(6—D m5(p/T). (25
s [ e then fit the experimental data for the using Eq.
£ osl We then fit th | data for the FWHM using E
< | (24) with 6p=490 K.° From the fit, we get the value af.
§ 0.6 From Egs.(20) and (23), we readily get the relationship
[ I
kgbp —
2_ BYD
0.4} =g a (26)
02 bt e Lo from which we can deduce the value @fand compare the
0 20 40 60 80 100 120 theoretical predictions(25) with the observed frequency
temperature (K) shift. We note that oul',, andA,,, in Egs.(20) and(23) are

in units of rad §* whereas, in Figs. 2 and 3, the FWHM and
FIG. 2. Total full width at half maximum of the 256 crhline the central frequency are in units of th From Fig. 3, it is
as a function of temperature. The circles are the experimental datgjear that this acoustic-phonon model does not provide a
the solid (dotted line is a fit assuming broadening to be due to good fit to the data. This failure should not be due to the
acoustic phonongTO phonons Debye approximation that is known to be valid at low tem-

with theory, Ref. T with a half width T, or. Using hole- perature when the relevant modes are the low-frequency

burning spectroscopy;imnom Was observed to be temperature ones.
independent for the 690.2 nm line as will be reported inde- If of‘l the other hand, we assume the TO phonons at
pendently. We will then assume that here g, is tem- 263 cm - (Ref. 9 to play the dominant role, we cannot cal-
perature independent. The total half width may then be writculate the coherence time anymore and we fit the FWHM
ten T'(T)=Tinnont ThomdT)» Thom beINg the homogeneous and the frequency shift data independently from each other.
half width as obtained in Sec. II. In this case, the density of modegw) being a relatively
The lifetime of the’F level is in the microsecond ranyje narrow peak, the temperature dependence of the FWHM is
so that lifetime broadening is negligible in our case excepflue to the factopg(wro)[Po(wro) +1]. The temperature-
possibly at very low temperaturds, . is then mainly due to ~ dependent frequency shift is proportional gg(wro). Fig-
pure dephasing and therefore(phonor) Raman processes. ures 2 and 3 show that a gOOd fit is obtained in this case. In
We first discuss the case where the main mechanism is coffCt, wto is allowed to vary when fitting the FWHM data and

p||ng with the acoustic phonons_ Tl’(é]omogeneousfu” the.beSt fit is for 263 CI-’T'Il. The same frequency is then used
width at half maximumFWHM) is 2I",, with T',,, given by o fit the frequency shift data. .
Eq. (20). We may write it as Coming back to the case where an acoustic-phonon model

is assumed, had we not had relat{@®), we would also have

o Sy 7§ (05/T) (24) fitted independently the FWHM and the frequen_cy shift data
ab— @ 0p) °& P and we would have obtained reasonably good(&tsost as
good as for TO phonofsThis means that, in the present
257.01 case, the existence of relatid@6) is the true basis upon
256.8 - which we can make a clearcut difference between the two
256.6 | models.
g 25641 IV. CONCLUSION
<2562+ - ,
g We have recalled in this paper how coupling between a
£ 256.0 system and its environment leads, in the fast modulation re-
§_ 2558 gime, to a finite lifetime for the eigenstates of the system, to
@ homogeneous broadening and frequency shift for the transi-
= 255.6T tions between these eigenstates. The case of electron or ion-
2554 | phonon coupling has been considered in some detail, the
255.2 [ main objective of this paper being to give the proper formu-

PRI 1

0 20 40 60 80 100 120 lation of theory and the correct results. For rare-earth ions
doped in solid matrices, acoustic phonons often play the
dominant role. In this case, using the Debye approximation

FIG. 3. Central frequency of the 256 chline as a function of ~and assuming that only low-frequency phonons are relevant,
temperature. The circles are the experimental data, the solid line @€ have shown that pure dephasing is related to the fre-
the theoretical prediction assuming the frequency shift to be due tgluency shift in a simple way. Making use of this, we have
acoustic phonons and the prefactor taken from the fit to FWHMShown that acoustic phonons do not play the major role in
data. The dotted line is a fit assuming it to be due to the TOthe case of the electronic transition between the ground and
phonons. first excited state of Sfi doped in Cak Here, pure dephas-

temperature (K)
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ing and frequency shift are mainly due to the TO phonons.ting V, and writingV instead ofV, for simplicity, the fourth-
Additionally, the theoretical results given in Sec. Il are orderAp' is given by

quite general and should apply to many other situations.

APPENDIX

When considering Raman processes du¥ t@lone, we

1 (At ty t3 ta
A¢=—zj duf d@f de dhQ  (AD)
fi 0 0 0 0

have to go to the fourth order of perturbation theory. Omit-in which Q is a quadruple commutator

Q=V'(t)V'(tz) V(1) V' (t)p' = V' (t) V! (ta) V! (1) p' V! (1) = V(1) V! (ta) VI (t) p' V' (t5)
+V (t) V! (t3)p' V! (1) V' (t2) = V() V! (1) V! (1) p' V! (t3) + V! (1) V! (1) p' V! (1) V' (15)
V() V! (1) p' V! (1) V! (1) = V! (1g) o'V (L) V! (12) V! (3) = V! (1a) V! (1) V! (1) p 'V (1)
+V! (ta) V(1) p' V! (1) V! (ta) + V' (1) V! (1) p' V! (1) V! (t4) = V! (13) p' V! (1) V! (1) V' (14)
V(1) V! (12) 'V (ta) V! (tg) = V!(12) p' V! (L) V! (t3) V! (10) = V(1) p V! (12) V! (13) V' (L)

+p'VI(t) V(1) V! (t3) V' (ts).

When considering transitions froirto f, only the fourth and

the thirteenth terms ifA2) contribute. The fourth term reads

| 1 At iy t3 ty
ApHAZF fo dt4fo dt3J'0 dtzfo dtl

X 2 Vigre'oratay g, eleaitsp)
d/

X Y, Ve @iy el @artz, (A3)
d

To get rid of the constraints,>t; andt,>t,, we multiply

the integrand by the Heaviside functior{t,—t;) and
0(t,—t1) and make use of the relationships

-1 efiE’(t47t3)/h
*iEd/(t4*t3) _ . H _ !
€ 0ta—ts) W|LI”:)1+ 2qi j E'+in—Ey dE’,
(Ad)
' 1 giE(ta—ty)/h
e'Fdlmg(t,—t;)= lim —f ———dE,
21 0, 2m ) E—in—Eq
(A5)

(A3) then becomes

| 1 (1
Apff,4:F dt, | dtz [ dE >

Vfdrvdri
X2 =
d’ E _Ed/

oo ol 2

XZ Vidvdf ei(Ei—E)tllﬁei(E—Ef)tzlﬁ’
7 E-Eyg

ol (Er—Ety/h gl (E' ~Etg /h

(AB)

(A2)

where the infinitesimaly is implicit. We then set;=t’, t,
—ty=7", t,=t", and t,—t;=7". The integral over7r’,
which may now be negative as well as positive, yields
27h 8(E' —E;). In the same way, the integral ovet yields
271 8(E—E;). Integrating overE’ and E, Eq. (A6) be-
comes

rorny

1 At , t’ " Vfdrvdr‘
Apita=72 fo dt fo dt dE E—Ele pi

1~ Eaqr
ViaVat
- wift
x% E-g e (A7)
Settingt’ —t"= 7, we finally get
Apiea 1 (= VigVas ViarVari oo
4 _ wgT |
At ?JodTg Ei—Ed§ E—E, ¢ Pir
(A8)

The thirteenth term gives the same result except for the
change ofr in — 7 in the exponent. Summing the two con-
tributions and integrating overyields 27 6( ws;) thus recov-
ering the effective HamiltoniakV of Eq. (16).

Considering the dephasing rdig,,, the first, fourth, thir-
teenth, and sixteenth terms in E@\2) contribute. For the
first term, we must find the relationship betwekpi; andp}
with |i)=|a,u) and |f)=|b,u). The integrand in the
equivalent of Eq(A3) is then

(V' (L) V' (t) i) IV (t)V (1)1,

with |i’y=|a,v). Other intermediate states correspond to
lifetime broadening. One then proceed in the same way as
above.t, andt; andt, andt; being properly ordered, we
have the factor- 1/27i twice, which gives a positive contri-
bution toT',,. This leads to the equivalent &, in Eq.
(12b).
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For the fourth term, we must find the relationship betweerNow t, andt; are in wrong order so that we have a factor
Api; with |iY=|a,v) and|f)=|b,v) on the one hand and —1/27i and a factor 1/i giving a negative contribution to
pl.¢ with |i"y=|a,u) and|f’)=|b,u) on the other hand. Tap. This is anAy,Ap, term. The thirteenth term closely
The corresponding integrand is corresponds to the fourth one and the sixteenth term closely

corresponds to the first one. It is then a simple matter to
(V' DV (1) i) p) (B IV (1) V(1) | ). recover the effective Hamiltonian.

1see, for instance, A. Ellens, H. Andres, A. Meijerink, and G.  Photon InteractiongWiley, New York, 1992, pp. 262 and 28.
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