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Relaxation, homogeneous broadening, and frequency shifts:
Application to electronic transitions in solids doped with rare-earth ions

W. Beck, D. Ricard, and C. Flytzanis
Laboratoire d’Optique Quantique du CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex, France

~Received 27 October 1997!

We first recall the results of relaxation theory regarding homogeneous broadening and frequency shift of a
transition. We then apply these very general results to the electron-phonon interaction case reconsidering, in
particular, the broadening and shift due to acoustic phonons in the Debye approximation and their mutual
relationship. The experimental data corresponding to the7F1←7F0 transition of the CaF2:Sm21 system are
reported and interpreted in the light of our theoretical results. In this case, previous theories do not allow us to
distinguish between Raman processes involving acoustic or optical phonons. Our theory however demonstrates
that acoustic phonons do not play the major role here and that the broadening and shift are due to coupling with
the TO phonons.@S0163-1829~98!04214-3#
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I. INTRODUCTION

The knowledge and understanding of the homogene
width of electronic transitions is often of prime importanc
This is true, for example, of rare-earth ions doped in crys
line or glassy matrices. For one-photon transitions, nonlin
optical techniques such as photon echo, saturation spec
copy, fluorescence line narrowing, or site-selective photo
minescence excitation spectroscopies allow us to mea
the homogeneous linewidth. For two-photon transitio
similar measurements prove much more difficult. The te
perature dependence of the homogeneous linewidth~and also
of the frequency shift! is of great help in trying to understan
the broadening mechanisms. It is often observed that c
pling with acoustic phonons plays a major role and, wh
trying to interpret their experimental results, many autho1

refer to the theory presented in Ref. 2. A more detailed
count of the calculations underlying this theory is given
Ref. 3. But it turns out that, in a few instances, the proced
that is used in deriving the theory is not correct and t
some of the results should be used with caution.

The purpose of the present paper is twofold. We first g
the correct formulation of theory and the correct results.
then present experimental data for the example of the7F1

←7F0 line of CaF2:Sm21 at 256 cm21 and discuss them in
the light of our theory. This paper is organized as follows:
Sec. II, devoted to theory, we first recall the general res
for homogeneous broadening and frequency shift, obtai
from relaxation theory as it should, and then turn to the c
of electron-phonon coupling. We keep the results as gen
as possible and point out where precisely the previ
approach2,3 has to be amended. In the case of acou
phonons, using the Debye approximation and assuming
only low-frequency modes play a role, we show that pu
dephasing is related in a simple way to the frequency sh
In Sec. III, we give experimental data obtained using coh
ent anti-Stokes Raman scattering spectroscopy, pertainin
the 7F1←7F0 line of CaF2:Sm21 and apply the results o
Sec. II to interpret these data. We show that the TO phon
570163-1829/98/57~13!/7694~7!/$15.00
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of the CaF2 matrix are responsible for the temperature d
pendence of the width and position of this line.

II. ELECTRON-PHONON INTERACTION: THEORY

We start reconsidering the same situation as in Ref
There, the system is a rare-earth ion in the static crystal
field created by the host matrix. It weakly interacts with
environment considered as made of the acoustic phonon
the matrix. The interaction Hamiltonian is written asV1
1V2 with

V15C(
k

S \vk

2Mv2D 1/2

~ak2ak
1! ~1!

and

V25D(
k

(
k8

S \vk

2Mv2D 1/2S \vk8
2Mv2D 1/2

~ak2ak
1!~ak82ak8

1
!.

~2!

C andD are operators acting on the system~C is antihermi-
tian!, k ~or k8! labels the phonon mode,vk is the phonon
angular frequency,M is the mass of the crystal,v is the
average sound velocity, andak andak

1 are the phonon anni
hilation and creation operators.

Giving the proper meaning toC(\/2Mv2)1/2 and
D\/2Mv2, the interaction HamiltoniansV1 andV2 also de-
scribe ion-optical phonon or ion-photon interaction. In th
section, we will give the general formulas and, in some
stances, those specifically corresponding to acoustic phon
as discussed in Ref. 2. Our results will then be of mo
general use.

Coupling between the system with a HamiltonianHS and
its environment or bath with a HamiltonianHB leads to a
finite lifetime for the eigenstates ofHS , to dephasing of the
off-diagonal matrix elements of the system’s density mat
and to a frequency shift for the transitions. This is a result
relaxation theory in which one considers the system and b
ensemble as a whole with its Hamiltonian

H5HS1HB1V, ~3!
7694 © 1998 The American Physical Society
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57 7695RELAXATION, HOMOGENEOUS BROADENING, AND . . .
whereV is the interaction Hamiltonian. The case whereV is
of the form

V5AF, ~4!

the tensorial product of an operatorA acting on the system
and an operatorF acting on the bath and where^F&50 is
discussed in detail in Ref. 4. In the most general case,V is
the sum of such products. The system1bath ensemble is
characterized by its density matrixr. In the interaction pic-
ture,r I defined as

r I5eiH 0t/\re2 iH 0t/\, ~5!

where H05HS1HB , slowly evolves only due to the cou
pling V:

i\
dr I

dt
5@VI~ t !,r I #, ~6!

whereVI(t) is related toV in the same way asr I is related
to r. We observe thatV1 andV2 are of the form~4! with, for
example,

A152 iC and F15(
k

S \vk

2Mv2D 1/2

i ~ak2ak
1!.

We have added thei and2 i factors in order to makeA1 and
F1 Hermitian.V2 is of second order compared withV1 , but
may play an important role, as will become clear.

We first come back to the case whereV5AF.4 The sys-
tem evolution is described by the density matrixs5TrB r.
The bath being large is characterized by a roughly tim
independent density matrixsB and enters the relaxation pro
cess through correlation functions of the formg(t)
5^FI(t)FI(0)&5TrB@sBFI(t)FI(0)#. This correlation
function g(t) can be written as

g~t!5(
m

pm(
n

u^muFun&u2eivmnt, ~7!

where m and n denote eigenstates of the bathvmn5(Em
2En)/\ and pm is the probability that statem is occupied.
Such correlation functions rapidly decay to zero with a tim
constanttc . Homogeneous broadening corresponds to w
is known as the fast modulation regime when the correla
time tc is much smaller than the time constants describ
the evolution ofs I , which we will vaguely denote asTR .
Considering time intervalsDt such thattc!Dt!TR , the
coarse-grained time evolution ofs I is given by second-orde
time-dependent perturbation theory

Dsaa8
I

Dt
5

1

i\

1

Dt
^F&(

c
E

t

t1Dt

dt8~Aace
ivact8sca8

I

2sac
I Aca8e

ivca8t8!

1 (
b,b8

Raa8bb8e
i ~va2va82vb1vb8!tsbb8

I , ~8!

wherea, a8, c, b, andb8 denote eigenstates of the syste
andva5Ea /\.
-

at
n
g

The first-order term vanishes when^F&50, as assumed in
Ref. 4. We first concentrate on the second-order term
recall the main results. The relaxation matrixR is given in
Ref. 4 and may also be found elsewhere.5 Because of the
presence of the exponential in the second term of Eq.~8!,
only the secular terms for whichva2va85vb2vb8 are rel-
evant. We apply this general result to two different situatio
assuming that we do not have coherencessab with a very
low free-evolution frequency. We first consider the popu
tion of statea, saa , which is coupled to all the diagona
elements. WhencÞa, Rccaa ~which is real and positive! is
the transition probabilityWa→c for the system to go per uni
time from statea to statec. It is given by

Wa→c5
1

\2 uAcau2E
2`

1`

dte2 ivcatg~t!, ~9a!

which, using Eq.~7!, may be rewritten as

Wa→c5
2p

\2 uAcau2(
m

pm(
n

u^muFun&u2d~vmn2vca!,

~9b!

with Aca5^cuAua&, d being the Dirac ‘‘function.’’ Summing
Wa→c over all statesc different from statea, we get the
inverse lifetime of statea.

We then consider the off-diagonal elementsab . Mostly,
the transition frequencyvab is unique andsab is only
coupled to itself. The relevant element of the relaxation m
trix Rabab may be decomposed in its real and imaginary pa
as

Rabab52Gab2 iDab
~2! . ~10!

Gab ~also denoted 1/T2ab! is the decay rate of the coherenc
sab . It is the half-width of thea→b transition. It is made of
two contributionsGab5Gab

nonad.1Gab
ad. with

Gab
nonad.5

1

2 S (
cÞb

Wb→c1 (
cÞa

Wa→cD , ~11!

i.e., half the sum of the inverse lifetimes of statesa andb.
This first contribution is therefore known as lifetime~or
nonadiabatic! broadening. The second contribution is o
tained as

Gab
ad.5

1

2\2 ~Aaa2Abb!
2E

2`

1`

g~t!dt, ~12a!

or, using Eq.~7!:

Gab
ad.5

p

\2 ~Aaa2Abb!
2(

m
pm(

n
u^muFun&u2d~vmn!.

~12b!

This second contribution is known as pure dephasing or a
batic broadening. Dab

(2) may be written as (DEa
(2)

2DEb
(2))/\ where

DEa
~2!5P(

m
pm(

n
(

l

u^ l ,nuVua,m&u2

Ea1Em2El2En
, ~13!
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in which P means the Cauchy principal part, is a secon
order frequency shift.l is any eigenstate ofHS .

We now come back to the first-order term in Eq.~8! that
does not vanish when̂F&Þ0. Again, because of the pres
ence of the exponentials, only the secular terms are relev
This implies that the populationssaa are unaffected by this
first-order term that in fact only leads to the first-order fr
quency shiftDab

(1)5(DEa
(1)2DEb

(1))/\ with

DEa
~1!5Aaa^F&. ~14!

When, for a given interaction Hamiltonian, the first-ord
frequency shift does not vanish, the second-order one ma
neglected.

Coming back to our ion-phonon coupling problem, w
first consider lifetimes. As they stand,V1 andV2 are, respec-
tively, one-phonon and two-phonon operators. The o
phonon decay rate of the population of levela is immedi-
ately recovered@Eq. ~3! of Ref. 2# from Eq.~9b! usingV1 as
the perturbation. The bath may also induce two-phonon tr
sitions. For example, theakak8 term in V2 corresponds to
absorption of two phonons. We may also have Raman p
cesses in which the system is promoted from statea to state
b ~with Eb.Ea , for example! by absorption of a phononvk

and emission of a phononvk8 . The operatorakak8
1 in V2 will

do this, for example. Energy conservation requires thatvba
5 vk2vk8 . If we use Eq.~9b! with V2 as the perturbation
we obtain the transition rate

Wa→b
V2 5

2p

\2 S \

2Mv2D 2

u2Dbau2E r~v!vp0~v!

3r~v2vba!~v2vba!@p0~v2vba!11#dv,

~15!

where r~v! is the phonon density of modes,p0(v)
5(e\v/kBT21)21 is the mean phonon number at tempe
ture T, kB being Boltzmann’s constant. The factor of 2
front of D comes from the possible interchange betweek
and k8. Considering acoustic phonons, such a Raman p
cess is possible only whenvba is smaller than the highes
phonon frequency. If we setvba50 and use the Debye ap
proximation@r(v)53L3v2/(2p2v3) with L3 the volume of
the crystal#, we recover the first term in the square brack
in Eq. ~6a! of Ref. 2.

But repeated action ofV1 also leads to Raman transition
that may be described by an effective Hamiltonian. Its
pression is obtained in Ref. 4 considering the transition pr
ability from initial stateu i &5ua,m& to final stateu f &5ub,n&
as

W5 lim
h→01

(
d

V1ud&^duV1

Ei1 ih2Ed
, ~16!

whered is any eigenstate ofH0 . It may be recovered using
the relaxation theory pushed to fourth order as shown in
Appendix. Since the relevantF is the same inV2 and W
~namely,akak8

1 !, the two add. To get the total Raman tran
tion rate, we must replace in Eq.~15! 2D with the frequency-
dependent
-

nt.

-

be

-

n-

o-

-

o-

s

-
-

e

2Deff
~ba!52D1(

l
S Cu l &^ l uC
Eal1\vk

1
Cu l &^ l uC

Eal2\vk8
D ~17!

in which the infinitesimalh has been dropped. The tota
Raman transition rate is then

Wa→b
R 5

2p

\2 S \

2Mv2D 2E u2Deff,ba
~ba! u2r~v!vp0~v!

3r~v2vba!~v2vba!@p0~v2vba!11#dv.

~18!

The square bracket in Eq.~6a! of Ref. 2 should be replaced
by the modulus squared of theba matrix element ofDeff

(ba) . In
nuclear magnetic resonance, Raman transition rates o
dominate one-phonon ones.6

We now turn to homogeneous linewidths. The lifetim
broadening contribution is easily obtained from the lifetim
using Eq.~11!. The pure dephasing contribution should
obtained using Eq.~12b!. Because of the presence ofd(vmn)
in Eq. ~12b!, one-phonon processes, two-phonon absorp
or emission do not lead to pure dephasing. The pure dep
ing contribution is due to Raman processes. Here againV2
acts directly andV1 in a cascaded process and we show
the Appendix that the result may also be expressed in te
of an effective Hamiltonian. The pure dephasing contribut
is then given by

Gab
ad5

p

\2 S \

2Mv2D 2E @2~Deff,aa
~aa!

2Deff,bb
~bb! !#2

„r~v!v…

2p0~v!„p0~v!11…dv, ~19!

whereDeff
(aa) or Deff

(bb) are defined similarly toDeff
(ba) . It should

be emphasized that the notion of a transition rate from s
a to itself is meaningless and that it is not always true that
width of a line is the sum of the energy spreads of the t
energy levels involved in the transition. This would apply
the lifetime broadening contribution, it does not apply to t
pure dephasing one. Equation~12b! indeed clearly shows
that pure dephasing involves (Aaa2Abb)

2.
In the case of acoustic phonons, using the Debye mo

and assumingv la@vk in Eq. ~17!, Eq. ~19! leads to

Gab
ad5

p

\2 S 3\

2p2rv5D 2

~Deff,aa
~aa!,02Deff,bb

~bb!,0!2S kBT

\ D 7

j6~uD /T!,

~20!

where r is the density of the crystal anduD is the Debye
temperature.j6(x) is defined as

j6~x!5E
0

x t6et

~et21!2 dt

andDeff
(aa),0 ~now frequency independent! as

Deff
~aa!,05D1(

l

Cu l &^ l uC
Eal

.

The temperature dependence ofGab
ad is the same as predicte

in Ref. 2,T7 whenT!uD andT2 whenT@uD . In fact, as
already pointed out,6 due to the slow convergence ofj6 , the
T7 dependence is observed only at very low temperature



if
-

a
he
ve

th
f-
ibu
re
nd

s
si

d

s-

u

id

er
rm

rst
ic
okes
a-
s,
e,
-
re-
y,

s a
s
ctral

in
ng
o
re-
osi-
nd
nti-
tion
the
sing
ed
the
of

tted

in
d
e-
be
is

ich

u-

57 7697RELAXATION, HOMOGENEOUS BROADENING, AND . . .
We finally discuss frequency shifts. The frequency sh
Dab of thevab transition is mainly the sum of two contribu
tions. The first contribution is obtained using Eq.~13! andV1
as the perturbation

DEa
~2!5(

l
uCalu2S \

2Mv2D
3PE r~v!vS p0~v!

Ea2El1\v
1

p0~v!11

Ea2El2\v Ddv.

~21!

The second contribution is obtained using Eq.~14! andV2 as
the perturbation:

DEa
~1!52DaaS \

2Mv2D E r~v!v@2p0~v!11#dv.

~22!

Blue shifts as well as red shifts have been observed. Yen
co-workers2 put forward the idea that this could be due to t
Cauchy principal part in the first contribution. An alternati
explanation is that noa priori conclusion may be drawn
regarding the sign of (DEa2DEb).

At this stage, a few remarks should be made. First,
contribution ofV1 , DEa

(2) , may be recovered using the e
fective Hamiltonian approach. Second, this same contr
tion is counted twice in Ref. 2. Third, we observe that,
gardingV2 , the frequency shift is obtained at first order a
pure dephasing at second order. RegardingV1 , the fre-
quency shift is obtained at second order and pure depha
at fourth order. This makes sense since, using a semiclas
approach, we would getGad5D2tc . However, except in
very simple cases,tc cannot be calculateda priori.

In the case of acoustic phonons, using the Debye mo
and assumingv la@vk in Eq. ~17!, Eqs.~21! and~22! lead to

Dab~T!2Dab~0!52
1

\ S 3\

2p2rv5D @Deff,aa
~aa!,02Deff,bb

~bb!,0#

3S kBT

\ D 4

h3~uD /T! ~23!

for the temperature-dependent frequency shift.h3(x) is de-
fined as

h3~x!5E
0

x t3

et21
dt.

Comparing Eqs.~20! and ~23!, we see that, under these a
sumptions,Gab

ad and the temperature-dependent part ofDab

are related in a simple way. We will make use of this res
in the following section.

III. THE EXAMPLE OF THE 7F 1—

7F 0 TRANSITION
OF CaF2:Sm21

We have studied the temperature dependence of the w
and position of the 7F1←7F0 line of CaF2:Sm21 at
256 cm21. Our sample was grown in a reducing atmosph
so that part of the samarium is present in the divalent fo
The concentration of Sm21 ions is about 2.531023
t

nd

e

-
-

ing
cal

el

lt

th

e
.

mole %. 7F0 is the nondegenerate ground state. The fi
excited state7F1 remains threefold degenerate in a cub
site. The line shape was measured using coherent anti-St
Raman scattering~CARS! spectroscopy: two nanosecond l
ser pulses at frequencyv1 andv2 ~denoted laser and Stoke
respectively! are slightly focused on the 2 mm-thick sampl
the differencev12v2 being tuned in the vicinity of the reso
nance. Due to the third-order nonlinearity, a beam at f
quencyv352v12v2 is generated. In Raman spectroscop
this beam is denoted anti-Stokes.

The intensity of the anti-Stokes beam is measured a
function of v12v2 , one at least of the incident frequencie
being tunable. We use two nanosecond dye lasers of spe
width less than 0.05 cm21. The third-order nonlinearity is
comprised of the resonant Raman contribution originating
the Sm21 ions and of a nonresonant contribution originati
mainly in the CaF2 matrix. In the general case, these tw
contributions lead to an interference effect that would p
vent a precise measurement of the line shape and line p
tion. Properly adjusting the polarizations of the laser a
Stokes beams and detecting the right component of the a
Stokes beam, one can eliminate the nonresonant contribu
as exemplified in Fig. 1. In order to increase the signal,
Raman contribution was resonantly enhanced by choo
v3 slightly below the frequency of the one-photon allow
transition at 690.2 nm. Using a closed cycle refrigerator,
linewidth and line position were measured as a function
temperature in the 8 to 100 K range. The results are plo
in Figs. 2 and 3.

The spectral profile of a line is given as

a~v!5E ahom~v2v0!w~v0!dv0 ,

wherea~v! is the absorption coefficient or the Raman ga
for example, ahom(v) the homogeneous spectrum an
w(v0) the inhomogeneous distribution for the central fr
quency. The homogeneous profile is Lorentzian. It may
seen in Fig. 1 that the global profile also is Lorentzian as
often the case for rare-earth ions doped in crystals, wh
implies thatw(v0) also is Lorentzian~this is in agreement

FIG. 1. Polarized CARS spectrum of the 256 cm21 line of
CaF2:Sm21 taken at 8 K. It shows how the nonresonant contrib
tion is eliminated. The dotted line is a Lorentzian fit.
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7698 57W. BECK, D. RICARD, AND C. FLYTZANIS
with theory, Ref. 7! with a half width G inhom. Using hole-
burning spectroscopy,G inhom was observed to be temperatu
independent for the 690.2 nm line as will be reported in
pendently. We will then assume that here tooG inhom is tem-
perature independent. The total half width may then be w
ten G(T)5G inhom1Ghom(T), Ghom being the homogeneou
half width as obtained in Sec. II.

The lifetime of the7F1 level is in the microsecond range8

so that lifetime broadening is negligible in our case exc
possibly at very low temperatures.Ghom is then mainly due to
pure dephasing and therefore to~phonon! Raman processes
We first discuss the case where the main mechanism is
pling with the acoustic phonons. The~homogeneous! full
width at half maximum~FWHM! is 2Gab with Gab given by
Eq. ~20!. We may write it as

2Gab5āS T

uD
D 7

j6~uD /T!. ~24!

FIG. 2. Total full width at half maximum of the 256 cm21 line
as a function of temperature. The circles are the experimental d
the solid ~dotted! line is a fit assuming broadening to be due
acoustic phonons~TO phonons!.

FIG. 3. Central frequency of the 256 cm21 line as a function of
temperature. The circles are the experimental data, the solid lin
the theoretical prediction assuming the frequency shift to be du
acoustic phonons and the prefactor taken from the fit to FWH
data. The dotted line is a fit assuming it to be due to the
phonons.
-

t-

t

u-

The temperature-dependent frequency shift is given by
~23! and may be written as

Dab~T!2Dab~0!5aS T

uD
D 4

h3~uD /T!. ~25!

We then fit the experimental data for the FWHM using E
~24! with uD5490 K.9 From the fit, we get the value ofā.
From Eqs.~20! and ~23!, we readily get the relationship

a25
kBuD

2p\
ā, ~26!

from which we can deduce the value ofa and compare the
theoretical predictions~25! with the observed frequenc
shift. We note that ourGab andDab in Eqs.~20! and~23! are
in units of rad s21 whereas, in Figs. 2 and 3, the FWHM an
the central frequency are in units of cm21. From Fig. 3, it is
clear that this acoustic-phonon model does not provid
good fit to the data. This failure should not be due to t
Debye approximation that is known to be valid at low tem
perature when the relevant modes are the low-freque
ones.

If, on the other hand, we assume the TO phonons
263 cm21 ~Ref. 9! to play the dominant role, we cannot ca
culate the coherence time anymore and we fit the FWH
and the frequency shift data independently from each ot
In this case, the density of modesr~v! being a relatively
narrow peak, the temperature dependence of the FWHM
due to the factorp0(vTO)@p0(vTO)11#. The temperature-
dependent frequency shift is proportional top0(vTO). Fig-
ures 2 and 3 show that a good fit is obtained in this case
fact,vTO is allowed to vary when fitting the FWHM data an
the best fit is for 263 cm21. The same frequency is then use
to fit the frequency shift data.

Coming back to the case where an acoustic-phonon m
is assumed, had we not had relation~26!, we would also have
fitted independently the FWHM and the frequency shift d
and we would have obtained reasonably good fits~almost as
good as for TO phonons!. This means that, in the prese
case, the existence of relation~26! is the true basis upon
which we can make a clearcut difference between the
models.

IV. CONCLUSION

We have recalled in this paper how coupling betwee
system and its environment leads, in the fast modulation
gime, to a finite lifetime for the eigenstates of the system
homogeneous broadening and frequency shift for the tra
tions between these eigenstates. The case of electron or
phonon coupling has been considered in some detail,
main objective of this paper being to give the proper form
lation of theory and the correct results. For rare-earth io
doped in solid matrices, acoustic phonons often play
dominant role. In this case, using the Debye approximat
and assuming that only low-frequency phonons are relev
we have shown that pure dephasing is related to the
quency shift in a simple way. Making use of this, we ha
shown that acoustic phonons do not play the major role
the case of the electronic transition between the ground
first excited state of Sm21 doped in CaF2. Here, pure dephas

ta,

is
to
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ing and frequency shift are mainly due to the TO phonon
Additionally, the theoretical results given in Sec. II a

quite general and should apply to many other situations.

APPENDIX

When considering Raman processes due toV1 alone, we
have to go to the fourth order of perturbation theory. Om
s

.

-

ting V2 and writingV instead ofV1 for simplicity, the fourth-
orderDr I is given by

Dr I5
1

\4 E
0

Dt

dt4E
0

t4
dt3E

0

t3
dt2E

0

t2
dt1Q ~A1!

in which Q is a quadruple commutator
Q5VI~ t4!VI~ t3!VI~ t2!VI~ t1!r I2VI~ t4!VI~ t3!VI~ t2!r IVI~ t1!2VI~ t4!VI~ t3!VI~ t1!r IVI~ t2!

1VI~ t4!VI~ t3!r IVI~ t1!VI~ t2!2VI~ t4!VI~ t2!VI~ t1!r IVI~ t3!1VI~ t4!VI~ t2!r IVI~ t1!VI~ t3!

1VI~ t4!VI~ t1!r IVI~ t2!VI~ t3!2VI~ t4!r IVI~ t1!VI~ t2!VI~ t3!2VI~ t3!VI~ t2!VI~ t1!r IVI~ t4!

1VI~ t3!VI~ t2!r IVI~ t1!VI~ t4!1VI~ t3!VI~ t1!r IVI~ t2!VI~ t4!2VI~ t3!r IVI~ t1!VI~ t2!VI~ t4!

1VI~ t2!VI~ t1!r IVI~ t3!VI~ t4!2VI~ t2!r IVI~ t1!VI~ t3!VI~ t4!2VI~ t1!r IVI~ t2!VI~ t3!VI~ t4!

1r IVI~ t1!VI~ t2!VI~ t3!VI~ t4!. ~A2!
ds

the
-

to
as

-

When considering transitions fromi to f , only the fourth and
the thirteenth terms in~A2! contribute. The fourth term read

Dr f f ,4
I 5

1

\4 E
0

Dt

dt4E
0

t4
dt3E

0

t3
dt2E

0

t2
dt1

3(
d8

Vf d8e
iv f d8t4Vd8 ie

ivd8 i t3r i i
I

3(
d

Videiv idt1Vd fe
ivd ft2. ~A3!

To get rid of the constraintst4.t3 and t2.t1 , we multiply
the integrand by the Heaviside functionsu(t42t3) and
u(t22t1) and make use of the relationships

e2 iEd8~ t42t3!u~ t42t3!5 lim
h→01

21

2p i E e2 iE8~ t42t3! /\

E81 ih2Ed8
dE8,

~A4!

eiEd~ t22t1!u~ t22t1!5 lim
h→01

1

2p i E eiE~ t22t1!/\

E2 ih2Ed
dE,

~A5!

~A3! then becomes

Dr f f ,4
I 5

1

\4 E dt4E dt3E dE8S 21

2p i D
3(

d8

Vf d8Vd8 i

E82Ed8
ei ~Ef2E8!t4 /\ei ~E82Ei !t3 /\

3r i i
I E dt2E dt1E dES 1

2p i D
3(

d

VidVd f

E2Ed
ei ~Ei2E!t1 /\ei ~E2Ef !t2 /\, ~A6!
where the infinitesimalh is implicit. We then sett35t8, t4
2t35t8, t25t9, and t22t15t9. The integral overt8,
which may now be negative as well as positive, yiel
2p\d(E82Ef). In the same way, the integral overt9 yields
2p\d(E2Ei). Integrating overE8 and E, Eq. ~A6! be-
comes

Dr f f ,4
I 5

1

\2 E
0

Dt

dt8E
0

t8
dt9(

d8

Vf d8Vd8 i

Ef2Ed8
eiv f i t8r i i

I

3(
d

VidVd f

Ei2Ed
eiv i f t9. ~A7!

Settingt82t95t, we finally get

Dr f f ,4
I

Dt
5

1

\2 E
0

`

dt(
d

VidVd f

Ei2Ed
(
d8

Vf d8Vd8 i

Ef2Ed8
eiv f itr i i

I .

~A8!

The thirteenth term gives the same result except for
change oft in 2t in the exponent. Summing the two con
tributions and integrating overt yields 2pd(v f i) thus recov-
ering the effective HamiltonianW of Eq. ~16!.

Considering the dephasing rateGab , the first, fourth, thir-
teenth, and sixteenth terms in Eq.~A2! contribute. For the
first term, we must find the relationship betweenDr i f

I andr i f
I

with u i &5ua,m& and u f &5ub,m&. The integrand in the
equivalent of Eq.~A3! is then

^ i uVI~ t4!VI~ t3!u i 8&^ i 8uVI~ t2!VI~ t1!u i &r i f
I ,

with u i 8&5ua,n&. Other intermediate states correspond
lifetime broadening. One then proceed in the same way
above.t4 and t3 and t2 and t1 being properly ordered, we
have the factor21/2p i twice, which gives a positive contri
bution to Gab . This leads to the equivalent ofAaa

2 in Eq.
~12b!.
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For the fourth term, we must find the relationship betwe
Dr i f

I with u i &5ua,n& and u f &5ub,n& on the one hand and
r i 8 f 8

I with u i 8&5ua,m& and u f 8&5ub,m& on the other hand
The corresponding integrand is

^ i uVI~ t4!VI~ t3!u i 8&r i 8 f 8
I ^ f 8uVI~ t1!VI~ t2!u f &.
G

nNow t2 and t1 are in wrong order so that we have a fact
21/2p i and a factor 1/2p i giving a negative contribution to
Gab . This is anAaaAbb term. The thirteenth term closel
corresponds to the fourth one and the sixteenth term clo
corresponds to the first one. It is then a simple matter
recover the effective Hamiltonian.
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