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Phonon-assisted asymmetric tunneling in a double-well potential:
Consequences for neutron scattering and diffusion

S. Dattagupta* and H. R. Schober
Institut für Festkörperforschung, Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 28 August 1997!

We investigate the dynamics of a light interstitial atom in a double-well potential and extend the small
polaron theory to include tunneling transitions from the ground state to excited states as well as asymmetry
between sites. Starting from a generalized spin-boson Hamiltonian we use the resolvent of the time-
development operator to derive formulas for transition rates and neutron-scattering structure factors. We show
how with only two parameters the model allows for a quantitative description of hydrogen diffusion in bcc
metals up to high temperatures. Asymmetry between the wells strongly reduces the mobility, particularly at
low temperatures.@S0163-1829~98!00913-8#
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I. INTRODUCTION

Much attention has been focused in recent years on
tunneling and diffusion of light interstitials such as hydrog
~and its isotopes including positive muon! in metals.1,2 The
most clearcut situation, which permits a detailed compari
of experiment and theory, is the one in which H is trapped
other heavier interstitials such as O~or N!, in a metal like
Nb.3 In this, the H moves in a double-well potential creat
by O and the host Nb atoms. In metals the temperature
pendence of H tunneling and diffusion at low temperature
determined by the excitations of the conduction electr
which influence both the coherent and incoherent tunne
rates.4 These so-called nonadiabatic effects which res
e.g., in an anomalous power-law dependence of the diffus
constant on temperature, are well documented in
literature.5

Our emphasis in this paper is on the regime of mode
temperatures@such asT>60 K, in Nb:(OH)x# where the
phonon excitations dominate the electronic ones. This
gime is still quantum mechanical and closely resembles
familiar small polaron scenario.6,7 In this description one as
sumes that the H follows adiabatically the lattice distortio
It can tunnel from one site to another whenever its energ
both sites is equal, i.e., in a so-called coincidence config
tion. Tunneling is allowed to a set of equivalent neighbori
sites and the tunneling frequency is taken as a constant
dependent of the lattice distortion.

Since the tunneling frequencies are smaller than the
lattice frequencies the host is distorted near the H such a
lower its energy~self-trapping!. Neighboring sites of the H
are only equivalent if this distortion is transported togeth
with the H. Consequently the H tunneling frequency
‘‘dressed,’’ causing a reduction by a factor of nearly 10
the lowest temperatures, in the example of Nb:(OH)x .3 With
increasing temperatures the dressing factor diminishes
idly and coherent tunneling is suppressed.5 On the other
hand, the same mechanism leads to an increase of the
herent tunneling rates and thus the H diffusion by
so-called phonon-assisted tunneling. Moreover, as the t
perature increases, the rate with which coincidence c
570163-1829/98/57~13!/7606~9!/$15.00
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figurations of the host lattice occur, also increases. In th
configurations the H can tunnel from one site to anot
without additional phonon dressing. The diffusion consta
then approaches an Arrhenius behavior at elevated temp
tures.

Alltough calculations are normally done by assumi
only linear coupling between the H coordinate and the latt
one, quadratic terms can modify the results.8,9 In addition,
even low concentrations of H and O interstitials can lead
long-ranged strain interactions that render the two sites
volved in the tunneling transition asymmetric. For sm
asymmetry and low temperatures this causes otherwise
bidden one-phonon processes.10 Larger asymmetries can b
due to geometry and composition. We will see that at hig
temperatures tunneling between strongly inequivalent s
becomes feasible.

The simple small polaron picture breaks down at high
temperatures, in particular as the Condon approxima
loses validity. Experimentally, a break in the Arrheni
curve for H diffusion in Nb and Ta is observed~see Fig. 2
further down!.11 Computer simulations have shown that th
is due to tunneling in excited states of the H vibration.12,13

The transition of the H in its ground state in one well to
excited state in the second well is enhanced with the incre
of temperature and asymmetry of the wells.

In this paper we will extend the description of the sm
polaron problem to include both the transition to an exci
state and asymmetry. Figure 1 shows schematically
double-well system for the H which is immersed in the ph
non bath of the host lattice. Much of the theoretical disc
sion on the tunneling in such a potential has been hithe
restricted to the truncated Hilbert space of the two low
energy states, denoted cryptically byu2& and u1&, within
what is called the spin-boson Hamiltonian.14 However, if the
asymmetry~parametrized bye1) is large, the possible pres
ence of a nearby state, which is the first vibrational exci
state in the deeper of the two wells, such as the left one
Fig. 1, and denoted byu0&, cannot be neglected. Therefor
one now has to deal with two tunneling frequenciesD0 and
D1, indicated in Fig. 1. We study here the consequence
such asymmetric tunneling for the diffusion.
7606 © 1998 The American Physical Society
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57 7607PHONON-ASSISTED ASYMMETRIC TUNNELING IN A . . .
A very accurate method of estimating the diffusion co
ficient, especially of an interstitial like H, is neutro
scattering15 When it comes to H the predominant scatteri
is incoherent16 such that the data are determined by the
called self-correlation function, i.e., the time correlation b
tween the position of thesamescatterer.17 When the scattere
moves in a restricted domain~e.g., the double-well potentia
illustrated in Fig. 1! the incoherent scattering cross section
in general, represented by the following structure factor:18

S~k,w!5 f 1~k•d!d~v!1
2

p

f 2~k•d!

11exp~\w/kBT!
Re@C̃~2 iv!#,

~1!

wherek is the wave-vector transfer andv is the frequency
transfer from the incident to the scattered neutron during
scattering process.

We shall give a derivation of this result and precise me
ings of various terms in the sequel. At this stage, howeve
suffices to simply state that the first term in Eq.~1! describes
the ‘‘elastic’’ component, proportional to ad function of
frequency:f 1 and f 2 are the ‘‘form factors’’ which depend
on the product ofk and the ‘‘size’’d of the scattering region
e.g., the distance between the two minima of the double w
in Fig. 1; the denominator in the second term is a deta
balance factor; andC̃(2 iv) is the Laplace transform of a
certain correlation function which contains all the inform
tion about the dynamics of the scatterer.

We postpone the discussion ofC̃(2 iv) and merely indi-
cate at this point how to extract the diffusion coefficient.
turns out that in theincoherent tunnelingregime C̃(2 iv)
can be replaced by its Markovian limit in which case one c
write

C̃~2 iv!5(
j

aj

2 iv1G j
. ~2!

Equation~2! then yields a sum of Lorentzians, all center
around v50. The net result is a quasielastic compone
riding on top of the elastic component and the width
which is related to the diffusion coefficientD. Therefore, our
task in this paper is to provide a derivation of the form giv
in Eq. ~2! based on the model illustrated in Fig. 1 and expla

FIG. 1. Schematic representation of the double-well system
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the crossover phenomenon depicted in Fig. 2 from the
rived temperature dependence ofG j ’s.

With the aim and scope of the paper in the background
outline is as follows. In Sec. II we formulate the problem
first sketching the steps~in Sec. II A! necessary for calculat
ing the incoherent structure factor and filling-in the gaps
our discussion following Eq.~1!. In Sec. II B we motivate
the Hamiltonian which generalizes the spin-boson Ham
tonian, in order to be able to treat asymmetric tunneling,
exemplified by Fig. 1. In Sec. II C we set up the notation f
the averaged time-development operator required for c
puting the structure factor. Section III contains the ma
mathematical results on the structure factor and diffusion
Sec. IV we analyze the transition rates in the so-cal
Flynn-Stoneham approximation.6 Finally, in Sec. V we dis-
cuss the results on diffusion and present our conclusions

II. FORMULATION OF THE PROBLEM

A. The structure factor

The experimentally measured incoherent scattering
neutrons is related to the structure factor17

S~k,v!5~2p!21E
2`

`

dt exp~ ivt !

3^exp„2 ik•r ~0!…exp„ik•r ~ t !…&, ~3!

wherek andv have been defined previously@following Eq.
~1!#, r (0) andr (t) are the positions of the scatterer~i.e., H in
the present instance! at times 0 andt, respectively, and the
angular brackets imply thermal averaging over the equi
rium ensemble of the system. The time development ofr (t)
is given by the usual Heisenberg picture:

r ~ t !5exp~ iHt !r ~0!exp~2 iHt !, \51, ~4!

whereH is the Hamiltonian of the system.
We assume that the position of the scatterer coinci

with the bottom of the well irrespective of whether the sc

FIG. 2. Diffusion constant of H in bcc metals. Experiment
values: Nb:H~Ref. 11!, h; Nb:H ~Ref. 25!, s; Ta:H ~Ref. 11!, n.
Corresponding theoretical curves with no asymmetry (e150) in-
cluding transitions from ground state to excited state: solid a
dashed lines.
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7608 57S. DATTAGUPTA AND H. R. SCHOBER
terer is in the ground or the excited state. In that caser can
be assumed to be a three-valued operator:

r52
d

2
P̂22

d

2
P̂01

d

2
P̂1 , ~5!

where the vectord is defined in Fig. 1, with the origin cho
sen at the saddle point and theP̂’s are projection operator
which have 333 matrix representations as follows:

P̂05S 0 0 0

0 1 0

0 0 0
D , P̂15S 1 0 0

0 0 0

0 0 0
D ,

P̂25S 0 0 0

0 0 0

0 0 1
D . ~6!

In Eq. ~6! the rows and columns are labeled byu1&, u0& and
u2&, respectively.

Equation~5! can be further simplified as

r52
d

2
1̂1dP̂1 , ~7!

where 1̂is the unit matrix. Using the property of the proje
tion operator that

P̂aP̂b5 P̂adab , ab50,1,21, ~8!

Eq. ~3! reduces to

S~k,v!5~124^P̂1&!sin2S 1

2
k•dD d~v!1

1

2p
4sin2S 1

2
k•dD

3E
2`

`

dteivt^P̂1~0!P̂1~ t !&. ~9!

Introducing the symmetrized correlation function as

C~ t !5
1

2
^P̂1~0!P̂1~ t !1 P̂1~ t !P̂1~0!&, ~10!

we finally arrive at our earlier expression in Eq.~1!, where
the Laplace transform ofC(t) is defined by

C̃~z!5E
0

`

dtexp~2zt!C~ t !, z52 iv. ~11!

B. The Hamiltonian

The energy-level scheme shown in Fig. 1 can be incor
rated in the following Hamiltonian:

Ho5~e01e1!P̂01e1P̂1 , ~12!

where the ‘‘zero’’ of energy has been set at the levelu2&.
Now, inclusion of two possible tunneling processes w
characteristic energiesD0 and D1 in Eq. ~12! leads to the
following form of the ‘‘subsystem’’ Hamiltonian:
-

Hs5~e01e1!P̂01e1P̂11D0~Ŝ0
~1 !1Ŝ0

~2 !!

1D1~Ŝ1
~1 !1Ŝ1

~2 !!, ~13!

where theŜ’s are ‘‘ladder’’ operators defined by

Ŝ0
~1 !5S 0 1 0

0 0 0

0 0 0
D , Ŝ0

~2 !5S 0 0 0

1 0 0

0 0 0
D ,

Ŝ1
~1 !5S 0 0 1

0 0 0

0 0 0
D , Ŝ1

~2 !5S 0 0 0

0 0 0

1 0 0
D . ~14!

Finally, we write down the Hamiltonian for the lattice, takin
cognizance of the distortion created by the ‘‘particle’’ whe
it is either in the left or the right well:

HL5(
q

F pq
2

2mq
1

1

2
mqvq

2~xq1 P̂0hq1 P̂2jq2 P̂1jq!2G ,
~15!

wherepq , xq , andmq are, respectively, the momentum, c
ordinate, and mass of the normal mode, while6jq are the
displacements when the particle is in thegroundstate of the
right ~left! well andhq is the displacement when the partic
is in theexcitedstate of the left well. The complete Hami
tonian is then given by the sum ofHS andHL . It can be
written, in the second quantized notation, as

H5~e01e1!P̂01e1P̂11D0~Ŝ0
~1 !1Ŝ0

~2 !!1D1~Ŝ1
~1 !1Ŝ1

~2 !!

1(
q

vqbq
1bq1(

q
~bq

11bq!@ P̂0Gq
01~ P̂22 P̂1!Gq

1#

1(
q

1

vq
@ P̂0~Gq

0!21~ P̂11 P̂2!~Gq
1!2#, ~16!

wherebq
1(bq) are the usual boson creation~annihilation! op-

erators,Gq’s are coupling constants given by

Gq
05Amq

2
vq

3/2hq and Gq
15Amq

2
vq

3/2jq , ~17!

and we have used Eq.~8!.
At this stage it is useful to perform a unitary transform

tion to the Hamiltonian, defined by the operator:

U[expH 2(
q

~bq2bq
1!

vq
@ P̂0Gq1~ P̂22 P̂1!Gq

1#J .

~18!

It is easy to verify@employing Eq.~8!# that
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57 7609PHONON-ASSISTED ASYMMETRIC TUNNELING IN A . . .
U5 P̂0expF2(
q

~bq2bq
1!

vq
Gq

oG
1 P̂1expF1(

q

~bq2bq
1!

vq
Gq

1G
1 P̂2expF2(

q

~bq2bq
1!

vq
Gq

1G . ~19!

Furthermore,

H̃5UHU215~eo1e1!P̂01e1P̂11D0@Ĉ2Ŝ0
~1 !1Ĉ1Ŝ0

~2 !#

1D1@B̂2Ŝ21~1 !1B̂1Ŝ1
~2 !#1(

q
vqbq

1bq , ~20!

where

Ĉ6[expF6(
q

~Gq
01Gq

1!

vq
~bq

12bq!G ,

B̂6[expF6(
q

2Gq
1

vq
~bq

12bq!G . ~21!

Thus, Eq.~20! allows us to write the total Hamiltonian in
clearcut system-plus-reservoir form:

H̃5HS1HR1HI , ~22!

where the subsystem Hamiltonian is

Hs5~e01e1!P̂01e1P̂1 , ~23!

the reservoir Hamiltonian is

HR5(
q

vqbq
1bq , ~24!

and the interaction Hamiltonian is

HI5D0@Ĉ2Ŝ0
~1 !1Ĉ1Ŝ0

~2 !#1D1@B̂2Ŝ1
~1 !1B̂1Ŝ1

~2 !#.
~25!

The advantage of the unitary transformation is that in a
treatment withHI as perturbation, ‘‘strong’’ coupling can b
easily incorporated by resumming the perturbation series
a self-energy,19 as the original coupling constants now occ
in the exponential arguments@cf. Eq. ~21!#. Such a perturba-
tion theory is similar in spirit to the Lang-Firsov approxim
tion to the polaron problem.20,21As stated in the Introduction
our focus is on the incoherent tunneling regime, which o
tains when the temperature is sufficiently high and the p
non coupling is sufficiently strong, that the renormalized tu
neling frequency is vanishingly small. We shall show in t
sequel that in the limit of a symmetric two-level system o
results for the tunneling rates are identical to those of Fly
and Stoneham.6 Since our aim is to assess the effect of asy
metry and of tunneling from excited states and its con
quences for neutron scattering we restrict our analysis
straightforward generalization of the Flynn-Stoneha
theory. It has been shown recently by de Mello and R
ninger in a simplified version of the two-site polaron pro
lem, in which the phonons are replaced by two localized a
y

to

-
-
-

r
n
-
-
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independent Einstein oscillators, that the exact quantum
chanics deviates significantly from the Lang-Firsov appro
mation, in certain parameter regimes.22 To what extent these
deviations are relevant for diffusion of light interstitials is a
interesting issue but is beyond the scope of the presen
vestigation.

The energies and frequencies in the Hamiltonian Eq.~16!
should be understood as renormalized quantities. A str
coupling between hydrogen and lattice motion has been
served in the vibrational spectrum of the H.23 It causes a
large enhancement of the vibrational mean-square displ
ment of the H. Its effect has been included, at least partia
in the numerical study of H diffusion,13,29,5where the H and
its surrounding host atoms are treated as a quasimole
embedded in the host lattice. AdditionallyD0 and D1 are
renormalized by the coupling to the conduction electrons4,5

C. Averaged time-development operator

As mentioned earlier the angular brackets in Eq.~10! in-
dicate thermal averaging. Thus

C~ t !5
1

2

1

Z
Tr@e2bH

„P̂1~0!P̂1~ t !1 P̂1~ t !P̂1~0!…#,

~26!

where

Z5Tr~e2bH!, b5~kT!21, ~27!

k being the Boltzmann constant. Recalling that the tim
dependent operatorP̂1(t) is defined by an expression simila
to Eq. ~4! and that the ‘‘trace’’ is invariant under the unitar
transformation defined by Eq.~18!, we may rewrite Eq.~27!
as

C~ t !5
1

2

1

Z̃
Tr@e2bH̃

„P̂1~0! P̃̂1~ t !1 P̃̂1~ t !P̂1~0!…#,

~28!

where

Z̃5Tr~e2bH̃!, ~29!

and

P̃̂1~ t !5ei H̃t P̂1~0!e2 i H̃t. ~30!

In writing Eq. ~28! we have also made use of the fact thatU

commutes withP̂1(0) ~and with otherP̂’s as well!.
It is customary now in the development of perturbati

theory to make a factorization assumption, i.e.,

e2bH̃'e2bHSe2bHR. ~31!

Correspondingly,

Z̃5ZSZR , ~32!

with

ZS511e2be11e2b~e01e1! ~33!

and
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ZR5TrR~e2bHR!, ~34!

where TrR(•••) denotes the trace over the reservoir sta
alone. Using the properties of the projection operatorP̂1 @cf.
Eq. ~8!#, we obtain from Eq.~28!

C~ t !5
e2be1

ZS

1

ZR
TrR@e2bHR~11uei L̃tu11 !#, ~35!

whereL̃ is the Liouvillean associated withH.17 ~Henceforth,
we shall employL with an appropriate subscript to deno
the Liouvillean associated withHS ,HI or HR .) In terms of
the time-development operatorU(t)

C~ t !5
e2be1

ZS

1

ZR
~11uTrR„e2bHRÛ~ t !…u11 !, ~36!

where

Û~ t !5ei L̂t. ~37!

The dynamics of the system is then governed by theaver-
agedtime-development operator

@Û~ t !#av5
1

ZR
TrR„e2bHRÛ~ t !…. ~38!

III. MATHEMATICAL RESULTS

The idea is to treat the interactionHI in a systematic
perturbation theory treatment and determine the averag
so

d

s

of

Û(t) upon taking the trace over the eigenstates of the re
voir HamiltonianHR . This calculation is most convenientl
done in terms of the resolvent ofÛ(t) by going over to the
Laplace transform of Eq.~38!. The resultant averaged time
development operator as a function of the Laplace variabz
can be shown to be given, in second-order perturba
theory, by19

@Û~z!#av5@z2 iLs1Ŝ~z!#21, ~39!

where the ‘‘self-energy’’Ŝ(z) is

Ŝ~z!5@LI~z2 iLs2 iLR!21LI #av. ~40!

We have shown earlier19 that the expression in Eq.~39!,
with the decomposition of the Hamiltonian as in Eq.~22!
made possible by the unitary transformation in Eq.~18!,
leads in a straightforward manner to the results in the
called dilute bounce gas approximation~DBGA! of an un-
derlying spin-boson Hamiltonian.14 Considering that DBGA
yields excellently accurate results for strong damping a
moderately good results even for weak damping especi
when the temperature is not too low, we presume the sa
approach here for the three-level model. Our first task is
evaluate the matrix elements of the ‘‘superoperato

@Û(z)#av which has a 939 matrix representation, for the
three-level case. Denoting the states ofHS by the Greek
indices m,n, etc., we consider first the elements ofŜ(z).
Following the same procedure as in Ref. 19 the requisite
elements can be read out from
„mnuŜ~z!um8n8…5(
nn8

^nurRun8&S dnn8(h
^mnuHI uhn8&^hn8uHI um8n&

z2 i ~En82En!2 i ~ES
h2ES

n!
1dmm8(h

^n8nuHI uhn8&^hn8uHI unn&

z2 i ~En2En8!2 i ~ES
m2ES

h!

2
^mnuHI um8n8&^n8n8uHI unn&

z2 i ~En82En!2 i ~ES
m82ES

n!
2

^mnuHI um8n8&^n8n8uHI unn&

z2 i ~En2En8!2 i ~ES
m2ES

n8!
D . ~41!
s to
ns

to
e in

e
all
In the above, we have used the notationun&,un8&, etc., for the
eigenstates of the HamiltonianHR such that

HRun&5Enun&. ~42!

In addition,rR is used to designate the density matrix as
ciated with the reservoir:

rR5
exp~2bHR!

ZR
. ~43!

The strategy now, as indeed in our earlier work,19 is to
write the denominators in Eq.~41! as integrals over time an
-

also to make use of the sum over the reservoir state
express the right-hand side in terms of correlation functio
of the reservoir operatorsĈ6 and B̂6 @cf. Eq. ~21!#. Addi-
tionally, we will be interested only in theincoherent tunnel-
ing regime in which the termsm5n and m85n8 are rel-
evant, reducing the number of requisite elements from 81
9. Furthermore, the incoherent tunneling regime is the on
which the Markovian approximation is valid and hence w
can setz equal to zero. After some algebra, we can collect
the nine terms as follows:

„11uŜ~0!u11…5G011G21 , ~44a!

„11uŜ~0!u00…52G01 , ~44b!
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„11uŜ~0!u22…52G21 , ~44c!

„00uŜ~0!u00…5G10 , ~44d!

„00uŜ~0!u11…52G10 , ~44e!

„00uŜ~0!u22…50, ~44f!

„22uŜ~0!u22…5G12 , ~44g!

„22uŜ~0!u11…52G12 , ~44h!

„22uŜ~0!u00…50, ~44i!

where

G015D0
2E

2`

`

dtei e0t^C2~0!C1~ t !&R , ~45a!

G105D0
2E

2`

`

dte2 i e0t^C1~0!C2~ t !&R , ~45b!

G215D1
2E

2`

`

dte2 i e1t^B2~0!B1~ t !&R , ~45c!

G125D1
2E

2`

`

dtei e1t^B1~0!B2~ t !&R . ~45d!

The quantityG10(G01) has the interpretation of the rate o
tunneling from the stateu0&(u1&) to u1&(u0&) ~cf. Fig. 1!.
@Similar interpretations can be given forG21(G12).# The
correlation functions in Eq.~45! are defined as thermal ave
age over the reservoir states.

Collecting all the terms in Eq.~39! and inverting a 333
matrix we obtain

~11u@Û~z!#avu11 !5
~z1G10!~z1G12!

z~z1L0!~z1L!
, ~46!

where the denominator is the determinant of the relev
matrix and 0,L0 ,L are the eigenvalues of the matrixŜ(0).
The latter are given by

L01L5G101G011G121G21 , ~47a!

L0L5G10G121G10G211G01G12 , ~47b!

from which we derive
nt

L05
1

2
~G101G011G121G21!H 12F1

2
4~G10G121G10G211G01G12!

~G101G011G121G21!2 G 1/2J ,

~47c!

L5
1

2
~G101G011G121G21!H 11F1

2
4~G10G121G10G211G01G12!

~G101G011G121G21!2 G 1/2J .

~47d!

We break Eq.~46! into partial fractions and combine with
Eq. ~36! to finally write

C̃~z!5
e2be1

ZS
H G10G12

L0L

1

z

1
@L02~G101G12!1G10G12 /L0#

L02L

1

z1L0

1
@L2~G101G12!1G10G12 /L#

L2L0

1

z1LJ .

~48!

The transition probabilities have to satisfy the detail
balance relations:

p0G105p1G01 , p2G125p1G21 , ~49!

where thep’s are the occupation probabilities~Boltzmann
factors! given by ~see Fig. 1!

p25
1

Zs
, p15

e2be1

Zs
, p05

e2b~e01e1!

Zs
. ~50!

These relations will be worked out explicitly in Sec. IV
They allow us to simplify the various terms in Eq.~48!. For
instance, we can show

G10G12

L0L
5p1 . ~51!

Using this and the fact that the first term in Eq.~48! contrib-
utes to the elastic component of the structure factor, we
from Eq. ~9!
S~k,v!5F124~p12p1
2 !sin2S 1

2
k•dD Gd~v!1

2

p

sin2
„~1/2!k•d…

11exp~v/kT!

1

L2L0

3FL22L~G101G12!1G10G12

v21L2
2

L0
22L0~G101G12!1G10G12

v21L0
2 G . ~52!
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With this, we complete the program set out earlier in Se
@see Eqs.~1! and ~2!#.

The correlation functionC(t) can be used to calculate th
diffusion constant of H in a lattice. The two wells are view
to describe two adjacent sites the H can occupy during
fusion, e.g., in the case of Nb:H two tetrahedral intersti
sites in the bcc host. For simplicity we assume that left we
only have right wells as neighbors and vice versa. The
fusion constant is then defined by

D5zF2
d

dt
@^r ~0!•r ~ t !1r ~ t !•r ~0!&#G

t50

52zd2F2
d

dt
C~ t !G

t50

, ~53!

wherez is a geometrical factor for the lattice. From Eq.~53!
it is easy to derive that

D5zd2@p2G121p0G101p1~G211G01!#, ~54!

where the expression inside the square parenthesis is
weighted sum of the partial jump rates.

IV. THE FLYNN-STONEHAM REGIME

In analyzing the correlation function given in Eq.~48! we
have to first compute the various transition rates given in
~45!. The harmonic nature of the reservoir@cf. Eq. ~24!# al-
lows for a calculation of the correlation functions. Thus w
have5

^C2~0!C1~ t !&R5^C1~0!C2~ t !&R5expH 2(
q

S gq

vq
D 2

3FcothS 1

2
bvqD ~12cosvqt !

1 i sinvqt G J , ~55!

where

gq5~Gq
11Gq

0!. ~56!

Similarly,

^B2~0!B1~ t !&R5^B1~0!B2~ t !&R5expH 2(
q

S Gq

vq
D 2

3FcothS 1

2
bvqD ~12cosvqt !

1 isinvqt G J , ~57!

where

Gq52Gq
1 . ~58!

We now go to the continuum limit in which we replace th
sum overq by an integral over the frequencyv of the pho-
non modes and rearrange the oscillatory terms in the ex
nents of Eqs.~55! and ~57!. Thus we have, for example,
I

f-
l
s
f-

the

q.

o-

^C2~0!C1~ t !&R5expH 2
1

2E0

`

dv
j ~v!

v2 FcothS 1

2
bv D

2
cosv„t2~1/2!ib…

sinh„~1/2!bv…

G , ~59!

where the spectral density of the phonon weight factor
defined as

j ~v!52(
q

gq
2d~v2vq!. ~60!

Substituting Eq.~59! in Eq. ~45a! and changing the contou
of integration overt, we obtain

G015D0
2e2~1/2!be0E

2`

`

dtei e0texpH 2
1

2E0

`

dv
j ~v!

v2

3FcothS 1

2
bv D2

cosvt

sinh„~1/2!bv…

G J . ~61!

It is evident from Eq.~45b! that G10 is obtained from Eq.
~61! by simply replacinge0 by 2e0. Similarly,

G215D1
2e~1/2!be1E

2`

`

dte2 i e1texpH 2
1

2E0

`

dv
J~v!

v2

3FcothS 1

2
bv D2

cosvt

sinh„~1/2!bv…

G J , ~62!

andG12 is obtained fromG21 by replacinge1 by 2e1, and
J(v) is obtained from Eq.~61! by replacinggq by Gq .

The so-called Flynn-Stoneham regime is obtained in
high-temperature limit in which the exponent in the seco
term under the integral~over t) in Eq. ~61! can be replaced
by its short-time limit. Thus

G01'D0
2e2~1/2!be0expX2

1

2E0

`

dv
j ~v!

v2
tanhS 1

4
bv D C

3E
2`

`

dtei e0texpX2t2S 1

4E0

`

dv
j ~v!

sinh„~1/2!bv…

D C
'D0

2e2~1/kT!@E01~1/2!e0#A p

4E0kT
e2e0

2/16E0kT, ~63!

where

E05
1

8E0

`

dv
j ~v!

v
. ~64!

Similarly,

G215D1
2e2~1/kT!@E12~1/2!e1#A p

4E1kT
e2e1

2/16E1kT,

~65!

where

E15
1

8E0

`

dv
J~v!

v
. ~66!
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The transition rates, Eqs.~63! and ~65! are essentially
determined by three terms, the ‘‘naked’’ tunneling rate
thermal activation factor and a line-shape term. The act
tion factor is given by the energy needed to distort the lat
so as to counteract the self-trapping of the hydrogen, i.e
create a coincidence configuration. The second expone
term together with the square root factor stems from
‘‘shape factor’’ appropriate for the vibration-level of the h
drogen.

V. DISCUSSION

In the limit of vanishing asymmetrye150 and large ex-
citation energy (e0@kT) Eqs. ~63! and ~65! reduce to the
usual Flynn-Stoneham~small polaron! result for G21 and
G0150.6 The energyE1 is in harmonic approximation the
so-called coincidence energy, i.e., the minimal ene
needed to distort the host lattice from the self-trapped c
figuration such that the potential energy of the H is equa
both wells. The same limit would also be obtain fore150
andD0!D1. This implies however different site occupanci
for the H in its ground and excited states, a situation not fu
covered by our model. As long as there is no change o
site D0.D1 will hold. Estimates for the case of Nb:H giv
D0 /D1'10.

To test our results we fitted Eqs.~63! and ~65! to the
experimentally measured diffusion constants of H in Nb a
Ta using expression~54!. For the sake of simplicity in the
analysis, we assume low hydrogen concentrations (a phase!
and no trapping sites. The asymmetry will, therefore, p
little role and we sete150. The excitation energy of the
hydrogen is then given bye0 for which we take the experi
mental values.24 We neglect the difference in the coupling
the lattice of the H in its ground state and its excited sta
i.e., we putE05E1. To reduce the number of fitting param
eters further we use a fixed ratio of the naked tunnel sp
tings, D0510D1. The two remaining fitting parameters fo
each curve are the ‘‘naked’’ ground-state tunneling rateD1
and the coincidence energyE1. Figure 2 shows the resultin
fit to the experimental values for Ta:H~Ref. 11! and to both
the Gorski effect11 and NMR~Ref. 25! values of Nb:H. The
input and the resultant parameters are shown in Tabl
Given the simplicity of the model the fit is excellent. Th
deviations at very high temperatures have to be expecte

The tunneling rateD1 has the magnitude expected fro
earlier estimates.12,26 It has been shown in simulations th
the second tunneling channel described byD0 is the first one
to drive the diffusion rate up, with increasing temperature13

TABLE I. Input parameters (e0 ,D0 /D1 ,D2 /D0) and fit param-
eters (D1 ,E1) for the calculation of the diffusion constants of Nb:
and Ta:H shown in Fig. 2~first three sets of values! and Fig. 3~last
set of values!. The asymmetry parametere150.

e0 D0 /D1 D2 /D0 D1 E1

~meV! ~meV! ~meV!

Nb:H ~Ref. 11! 107 10 4.6 45
Nb:H ~Ref. 25! 107 10 2.7 24
Ta:H ~Ref. 11! 114 10 2.8 48
Ta:H ~Ref. 11! 114 10 10 2.6 46
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Also at higher temperatures other processes such as tu
ing between excited states set in. These will have yet hig
tunneling rates which counterbalance at high temperatu
the higher effective activation energy of'e01E1.

To check this conjecture and the stability of the para
eters we repeated the fit including tunneling between exc
states as an additional channel. For the rateG080 we take the
same form as forG21 @Eq. ~65!# with e150 andD1 replaced
by D2. Here u08& stands for the excited level in the righ
well. Figure 3 shows the results for Ta:H. The fit is no
excellent even at the high temperatures. To show the in
ence of the three processes, the partial diffusion constant
also shown. With increasing temperature, first ground-sta
ground-state, then ground-state–excited state, and fin
excited-state—excited-state processes dominate. As
denced by the small change in the fit parameters given
Table I the model is fairly stable with regard to inclusion
additional tunneling channels.

FIG. 4. Diffusion with asymmetric wells,e15e051/23114
meV ~solid line!. Dashed line indicates ground-state–ground-st
contribution, dash dotted line indicates ground-state–excited-s
contribution, dotted line indicates the corresponding symmetric c
~Ta:H of Fig. 2!.

FIG. 3. Diffusion constant of H in Ta (n indicates experiment
~Ref. 11!, full line indicates theory including transitions betwee
excited states! and partial diffusion constants~dash dotted indicates
ground state – ground state, dashed indicates ground state – ex
state, dotted indicates excited state – excited state!.
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Our model relates directly to the numerical extension13 of
the small polaron model and gives the same interpretatio
the mechanisms underlying diffusion. The relation to t
‘‘occurrence probability’’ method27,12 is not so direct. In that
method the excitation of the phonon bath providing the e
ergye0 needed for the H to tunnel from stateu1& to stateu0&
is included only partially in the averaging over coinciden
configurations. The overall conclusion that high-temperat
diffusion is by tunneling to excited states also holds in th
approach.

A different mechanism for high-temperature diffusio
was proposed by Kagan and co-workers.28,8 There the tun-
neling rate is increased due to fluctuations in the tunnel
barrier. This corresponds to nonlinear terms in the Ham
tonian not included in Eq.~16!. The nonlinear terms were
however in our earlier simulation29 found to be too small.

At temperatures where the excited state of the H becom
thermally occupied a delocalization of this state seems
occur.30,26,12,31On the other hand, well defined excited stat
are observed in neutron scattering. Whereas in the first c
the lattice relaxes to its thermal equilibrium configuratio
with respect to the H, involving major displacements of t
host atoms, only slight adjustments of the host atom po
tions are involved in the second case. The H delocaliza
involves large anharmonic couplings between the H and
lattice not present in our Hamiltonian. Our model is ther
fore, limited to temperatures where the anharmonicity is
yet too important.
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Tunneling in strongly asymmetric potentials (e1@D1)
will be important for diffusion in alloys. At present, suffi
cient data are not available3 to get reliable parameters for a
interpretation in terms of our model. To get a qualitati
picture of the effect we calculated the diffusion constant
ing the parameters gained for Ta:H but setting the asym
try energy to half the excitation energy,e05e151/23114
meV. The results are shown in Fig. 4 together with the sy
metric case. Diffusion is suppressed by asymmetry, part
larly at low temperatures, due to the reduction in the ther
occupation of the right well and of the rateG12 . The tran-
sitions to the excited state in the left well and hence diffus
at higher temperatures are less affected. The additional
tribution, not shown in Fig. 4, due to transitions betwe
excited states would again be strongly reduced by asym
try. On the other hand, at high temperatures, asymm
might facilitate transitions to other excited states. These
fects cannot be incorporated in a simple model such as
without additional parameters.
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