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Phonon-assisted asymmetric tunneling in a double-well potential:
Consequences for neutron scattering and diffusion
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Institut fir Festkaperforschung, Forschungszentrumlidh, D-52425 Jlich, Germany
(Received 28 August 1997

We investigate the dynamics of a light interstitial atom in a double-well potential and extend the small
polaron theory to include tunneling transitions from the ground state to excited states as well as asymmetry
between sites. Starting from a generalized spin-boson Hamiltonian we use the resolvent of the time-
development operator to derive formulas for transition rates and neutron-scattering structure factors. We show
how with only two parameters the model allows for a quantitative description of hydrogen diffusion in bcc
metals up to high temperatures. Asymmetry between the wells strongly reduces the mobility, particularly at
low temperatureq.S0163-18208)00913-§

[. INTRODUCTION figurations of the host lattice occur, also increases. In these
configurations the H can tunnel from one site to another
Much attention has been focused in recent years on theithout additional phonon dressing. The diffusion constant
tunneling and diffusion of light interstitials such as hydrogenthen approaches an Arrhenius behavior at elevated tempera-
(and its isotopes including positive muoim metals'?> The  tures.
most clearcut situation, which permits a detailed comparison Alltough calculations are normally done by assuming
of experiment and theory, is the one in which H is trapped byonly linear coupling between the H coordinate and the lattice
other heavier interstitials such as @r N), in a metal like one, quadratic terms can modify the resfiftsn addition,
Nb.2 In this, the H moves in a double-well potential createdeven low concentrations of H and O interstitials can lead to
by O and the host Nb atoms. In metals the temperature ddeng-ranged strain interactions that render the two sites in-
pendence of H tunneling and diffusion at low temperatures izolved in the tunneling transition asymmetric. For small
determined by the excitations of the conduction electron@symmetry and low temperatures this causes otherwise for-
which influence both the coherent and incoherent tunnelindpidden one-phonon processéd.arger asymmetries can be
rates These so-called nonadiabatic effects which resultdue to geometry and composition. We will see that at higher
e.g., in an anomalous power-law dependence of the diffusiotemperatures tunneling between strongly inequivalent sites
constant on temperature, are well documented in théecomes feasible.
literature® The simple small polaron picture breaks down at higher
Our emphasis in this paper is on the regime of moderatéemperatures, in particular as the Condon approximation
temperaturegsuch asT=60 K, in Nb:(OH),] where the loses validity. Experimentally, a break in the Arrhenius
phonon excitations dominate the electronic ones. This reeurve for H diffusion in Nb and Ta is observédee Fig. 2
gime is still quantum mechanical and closely resembles théurther down.'* Computer simulations have shown that this
familiar small polaron scenarfd’ In this description one as- is due to tunneling in excited states of the H vibrattén®
sumes that the H follows adiabatically the lattice distortions.The transition of the H in its ground state in one well to an
It can tunnel from one site to another whenever its energy irexcited state in the second well is enhanced with the increase
both sites is equal, i.e., in a so-called coincidence configuraef temperature and asymmetry of the wells.
tion. Tunneling is allowed to a set of equivalent neighboring In this paper we will extend the description of the small
sites and the tunneling frequency is taken as a constant, ipolaron problem to include both the transition to an excited
dependent of the lattice distortion. state and asymmetry. Figure 1 shows schematically the
Since the tunneling frequencies are smaller than the hostouble-well system for the H which is immersed in the pho-
lattice frequencies the host is distorted near the H such as twon bath of the host lattice. Much of the theoretical discus-
lower its energy(self-trapping. Neighboring sites of the H sion on the tunneling in such a potential has been hitherto
are only equivalent if this distortion is transported togetherrestricted to the truncated Hilbert space of the two lowest
with the H. Consequently the H tunneling frequency isenergy states, denoted cryptically by ) and|+), within
“dressed,” causing a reduction by a factor of nearly 10 atwhat is called the spin-boson HamiltonightHowever, if the
the lowest temperatures, in the example of Nb: (QEWith asymmetry(parametrized by,) is large, the possible pres-
increasing temperatures the dressing factor diminishes ragnce of a nearby state, which is the first vibrational excited
idly and coherent tunneling is suppresSe@®n the other state in the deeper of the two wells, such as the left one in
hand, the same mechanism leads to an increase of the incbig. 1, and denoted by0), cannot be neglected. Therefore,
herent tunneling rates and thus the H diffusion by theone now has to deal with two tunneling frequenciesand
so-called phonon-assisted tunneling. Moreover, as the tem,, indicated in Fig. 1. We study here the consequences of
perature increases, the rate with which coincidence consuch asymmetric tunneling for the diffusion.
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FIG. 1. Schematic representation of the double-well system. FIG. 2. Diffusion constant of H in bcc metals. Experimental

values: Nb:H(Ref. 11, O; Nb:H (Ref. 25, O; Ta:H (Ref. 11, A.

A very accurate method of estimating the diffusion coef-Corresponding theoretical curves with no asymmety=(0) in-
ficient, especially of an interstitial like H, is neutron cluding transitions from ground state to excited state: solid and
scattering® When it comes to H the predominant scatteringdashed lines.
is incoheren® such that the data are determined by the so-
called self-correlation function, i.e., the time correlation be-the crossover phenomenon depicted in Fig. 2 from the de-
tween the position of theamescatteref” When the scatterer fived temperature dependencelgfs.
moves in a restricted domaie.g., the double-well potential ~ With the aim and scope of the paper in the background an
illustrated in Fig. 1 the incoherent scattering cross section is,outline is as follows. In Sec. Il we formulate the problem by

in general, represented by the following structure fatfor: ~first sketching the step@ Sec. Il A) necessary for calculat-
ing the incoherent structure factor and filling-in the gaps in

fo(k-d) - our discussion following Eq(1). In Sec. Il B we motivate
RgC(—iw)],  the Hamiltonian which generalizes the spin-boson Hamil-
1) tonian, in order to be able to treat asymmetric tunneling, as
exemplified by Fig. 1. In Sec. Il C we set up the notation for
wherek is the wave-vector transfer and is the frequency the averaged time-development operator required for com-
transfer from the incident to the scattered neutron during theuting the structure factor. Section Il contains the main
scattering process. mathematical results on the structure factor and diffusion. In
We shall give a derivation of this result and precise meanSec. IV we analyze the transition rates in the so-called
ings of various terms in the sequel. At this stage, however, iElynn-Stoneham approximatiénFinally, in Sec. V we dis-
suffices to simply state that the first term in Efj. describes cuss the results on diffusion and present our conclusions.
the “elastic” component, proportional to & function of

2
S(k,w)zfl(k'd)5(‘*’)+; 1+exp(Aw/kgT)

frequency:f, andf, are the “form factors” which depend Il. FORMULATION OF THE PROBLEM
on the product ok and the “size”d of the scattering region,
e.g., the distance between the two minima of the double well A. The structure factor

in Fig. 1; the denominator in the second term is a detailed The experimentally measured incoherent scattering of
balance factor; an€(—iw) is the Laplace transform of a neutrons is related to the structure fatfor
certain correlation function which contains all the informa-
tion about the dynamics of the scatterer.

We postpone the discussion 6f —i») and merely indi-
cate at this point how to extract the diffusion coefficient. It ) .
turns out that in théncoherent tunnelingegime C(—iw) x(exp(—ik-r(0))explik-r(1))), ®)
can be replaced by its Markovian limit in which case one can,herek andw have been defined previoudlipllowing Eq.

S(k,w)=(27-r)_1fx dt expli wt)

write (1)], r(0) andr(t) are the positions of the scattekee., H in
the present instantat times 0 and, respectively, and the
E(—iw)=2 _ 8 _ ) angular brackets imply thermal averaging over the equilib-
7T —lo+T, rium ensemble of the system. The time development(Of

) ) . is given by the usual Heisenberg picture:
Equation(2) then yields a sum of Lorentzians, all centered

around w=0. The net result is a quasielastic component r(t)=exp(iHt)r(0)exp(—iHt), #=1, (4)
riding on top of the elastic component and the width of

which is related to the diffusion coefficiebt. Therefore, our where’ is the Hamiltonian of the system.

task in this paper is to provide a derivation of the form given We assume that the position of the scatterer coincides
in Eq.(2) based on the model illustrated in Fig. 1 and explainwith the bottom of the well irrespective of whether the scat-
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terer is in the ground or the excited state. In that aasan
be assumed to be a three-valued operator:

©)

where the vectod is defined in Fig. 1, with the origin cho-

sen at the saddle point and thés are projection operators
which have X 3 matrix representations as follows:

0 0O 100
Po=|0 1 0|, P,=[0 0 O],
0 0O 0 0O
0 0O
P =0 0 O (6)
0 01

In Eq. (6) the rows and columns are labeled |by), |0) and
| —), respectively.
Equation(5) can be further simplified as

d. .
r=-3s1+dP,,

5 ™

where 1is the unit matrix. Using the property of the projec-
tion operator that

P.,Ps=P,8,s, aB=01-1, (8

Eq. (3) reduces to

. 2 1 1 2 1
S(k,w)=(1-4(P))si <§k~d)5(w)+ﬁ43| (§k~d)

X f dte (P (0)P.(1)). ©)
Introducing the symmetrized correlation function as
1. . ~ ~
C(t)=§(P+(O)P+(t)+ P.(1)P.(0)), (10

we finally arrive at our earlier expression in EG), where
the Laplace transform dE(t) is defined by

6(z):f:dtexp(—zt)c:(t), z7=—iow. (12)

B. The Hamiltonian

S. DATTAGUPTA AND H. R. SCHOBER

57
Hs=(eo+ €1)PoterP +80(557+57)
+A(S+87)), (13
where theS's are “ladder” operators defined by
0 1 0 0 0O
§;<0+): 0 0 0], Asé‘>= 1 0 0Of,
0 0 O 0 0 O
0 0 1 0 0
=0 0 0], &)= 0 0 (14)
0 0 0 O

Finally, we write down the Hamiltonian for the lattice, taking
cognizance of the distortion created by the “particle” when
it is either in the left or the right well:

1 . . .
quwg(xlﬁ- Pong+P_&— P2,

(15
wherep,, Xq, andmg are, respectively, the momentum, co-
ordinate, and mass of the normal mode, whil€, are the
displacements when the particle is in tp@undstate of the
right (left) well and 5, is the displacement when the particle
is in the excitedstate of the left well. The complete Hamil-

tonian is then given by the sum 6fs and 7, . It can be
written, in the second quantized notation, as

H=(€o+€1)Pot+ P +Ag(Sy+S, ) +A,(57+57)
+2 wgbgbg+ X (by +bg)[PGI+(P_—P,)GE]
q q
(16)

1 . N A
+2 —[Po(GH2+(P.+P_)(Gy?,
q @q

Wherebg(bq) are the usual boson creatinnihilation op-
erators,G,'s are coupling constants given by

m m
o_ /a 32 1_ /M9 3p
Gq— - wy Mg and Gq— - wgy §q,

and we have used E(B).

(17)

rated in the following Hamiltonian:

H02(60+ 61)|50+61|5+ y (12)

where the “zero” of energy has been set at the lelve).

Now, inclusion of two possible tunneling processes with

characteristic energieA, and A, in Eqg. (12) leads to the
following form of the “subsystem” Hamiltonian:

tion to the Hamiltonian, defined by the operator:

by—bg
UEexp{—% (qw—q)

q

[PoGq+(P_—P,)Gg}.
(18)

It is easy to verifylemploying Eq.(8)] that
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R (bq—bg) independent Einstein oscillators, that the exact quantum me-

U=Pyexpg — 2 —Gg chanics deviates significantly from the Lang-Firsov approxi-

q “q mation, in certain parameter reginfésTo what extent these

A (bg—b) deviations are relevant for diffusion of light interstitials is an

+ P+exr{ +E uG}J interesting issue but is beyond the scope of the present in-
q @q vestigation.
(by—b;) The energies and frequencies in the Hamiltonian (E6)

+I5exr{—2 Mgé} (190  should be understood as renormalized quantities. A strong
q Wq coupling between hydrogen and lattice motion has been ob-

served in the vibrational spectrum of the?HIt causes a
large enhancement of the vibrational mean-square displace-
Ti_ -1_ > B A N e &) ment of the H. Its effect has been included, at least partially,
H=UHU ™= (&t e)Pot eaPu + A C-§7+C. &) in the numerical study of H diffusiot?>*where the H and
8 & 1(H4B.&0) N its surrounding host atoms are treated as a quasimolecule
+A4[B_S-1""+B.S; H% wgbg Py, (200 embedded in the host lattice. Additionally, and A, are
renormalized by the coupling to the conduction electtbhs.

Furthermore,

where
0 1 C. Averaged time-development operator
- (GqtGy) . . . .
C.o=exg £ ——(by —bg) |, As mentioned earlier the angular brackets in Ed) in-
q dicate thermal averaging. Thus
2G}
A _ a,,.+ 11 A ~ « -
BF“’%% g (Pa —bqﬁ- @1 C(t)=5 5Te P (0)P.(1)+P.(1P.(0)],
Thus, Eq.(20) allows us to write the total Hamiltonian in a (26)
clearcut system-plus-reservoir form: where
H=Hs+Hg+H, , (22) Z=Tr(e PM), B=(kT)7 27
where the subsystem Hamiltonian is k being the Boltzmann constant. Recalling that the time-
. . dependent operatd?h(t) is defined by an expression similar
Hs=(eot €1)PotePy, (23)  to Eq.(4) and that the “trace” is invariant under the unitary
the reservoir Hamiltonian is ;r:msformation defined by Eq18), we may rewrite Eq(27)
Hr= 2, wqby by, (24) 11 o .
q C(t)=§§Tr[e (PL(O)P()+P()PL(0)],
and the interaction Hamiltonian is (29)
Hi=A80[C §"+C, 5 T+A,[B SV +B, 5. where
(25 _ ~
Z=Tr(e FM), (29

The advantage of the unitary transformation is that in any
treatment with?{, as perturbation, “strong” coupling can be and
easily incorporated by resumming the perturbation series into

a self-energy? as the original coupling constants now occur '|“5+(t):ei77t|5+(o)e—iﬂt‘ (30)

in the exponential argumenfsf. Eq. (21)]. Such a perturba-

tion theory is similar in spirit to the Lang-Firsov approxima- In writing Eq. (28) we have also made use of the fact thiat
tion to the polaron problerff:2! As stated in the Introduction commutes withP_ (0) (and with otherP’s as wel).

our focus is on the incoherent tunneling regime, which ob- It is customary now in the development of perturbation
tains when the temperature is sufficiently high and the photheory to make a factorization assumption, i.e.,

non coupling is sufficiently strong, that the renormalized tun- _

neling frequency is vanishingly small. We shall show in the e Pl~e Pllsg™ PHr, (31
sequel that in the limit of a symmetric two-level system our )

results for the tunneling rates are identical to those of Flynrforrespondingly,

and StoneharfiSince our aim is to assess the effect of asym- -

metry and of tunneling from excited states and its conse- Z=7Zg/R, (32)
guences for neutron scattering we restrict our analysis to ith

straightforward generalization of the Flynn-Stoneham

theory..lt hag begn showr_1 recently by dg Mello and Ran- Z=1+e Peaate Flate) (33)
ninger in a simplified version of the two-site polaron prob-

lem, in which the phonons are replaced by two localized andnd
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Zr=Trg(e AR), (34 O(t) upon taking the trace over the eigenstates of the reser-
voir HamiltonianHg . This calculation is most conveniently
where Tg(---) denotes the trace over the reservoir stateégjone in terms of the resolvent &f(t) by going over to the
alone. Using the properties of the projection oper&tor cf. Laplace transform of Eq.38). The resultant averaged time-

Eq. (8)], we obtain from Eq(28) development operator as a function of the Laplace variable
can be shown to be given, in second-order perturbation
e Ber 1 ~ theory, by?®
C(t)= —Trgle PHR(+ + e+ +)], (35
Zs Zg

- [0@)]a=[z-iLs+2(2)] 7Y, (39)
whereZ is the Liouvillean associated with.>” (Henceforth,
we shall employL with an appropriate subscript to denote . 1o .
the Liouvillean associated with(s, H, or Hg.) In terms of  Where the “self-energy"(2) is
the time-development operatbk(t)

S(2)=[L{(z—iLs—iLR) 1L Tay- (40)
e Pa

C(t)= Zs

_ —BHR(]
ZR(+ [Trre”PRUM)|++), (30 We have shown earlit that the expression in E¢39),

with the decomposition of the Hamiltonian as in EG2)
where made possible by the unitary transformation in E#8),
leads in a straightforward manner to the results in the so-
U(t)ze‘h 37) called dilute bounce gas approximati6BBGA) of an un-
' derlying spin-boson Hamiltonial{. Considering that DBGA
The dynamics of the system is then governed byater-  yields excellently accurate results for strong damping and
agedtime-development operator moderately good results even for weak damping especially
when the temperature is not too low, we presume the same
R 1 R approach here for the three-level model. Our first task is to
[U(t)]av=Z—TrR(e‘BHRU(t)). (38) evaluate the matrix elements of the ‘“superoperator”
R [U(z)]av which has a X9 matrix representation, for the
three-level case. Denoting the states?ef by the Greek
indices w,v, etc., we consider first the elements f‘)(z).
The idea is to treat the interactiol, in a systematic Following the same procedure as in Ref. 19 the requisite 81
perturbation theory treatment and determine the average @lements can be read out from

. MATHEMATICAL RESULTS

<Mn|H||77”’)(7ln’|H|IM’n>+ (v'n|H [ gn")(pn'|H,|vn)
z—i(Ey—Ey)—i(EZ-EY "5 z—i(E,—En)—i(EL—ED)

(,U,V|S(Z)|,LLIV,):E, <n|pR|nl> 51/11’27}

(pnl )0 (B vn)  (unf e [l vn)
z—i(Ey —Ep)—i(E4 —EY z-i(E,—Ey)—i(E4—EY)/)

(41)

In the above, we have used the notatipp|n’), etc., for the also to make use of the sum over the reservoir states to

eigenstates of the Hamiltonigri such that express the right-hand side in terms of correlation functions
of the reservoir operator§. andB. [cf. Eq. (21)]. Addi-
Hgln)=E|n). (42)  tionally, we will be interested only in thexcoherent tunnel-

ing regimein which the termsu=v and u’'=v' are rel-
In addition, pg is used to designate the density matrix asso—evam’ reducing the .number of requisite elements from 81 to
. - . 9. Furthermore, the incoherent tunneling regime is the one in
ciated with the reservoir: : : T .
which the Markovian approximation is valid and hence we
can setz equal to zero. After some algebra, we can collect all

exp(— BHR) the nine terms as follows:
PR="7 (43

(++|2(0)|++)=To, +I'_,, (443

The strategy now, as indeed in our earlier wbths to R
write the denominators in E@¢41) as integrals over time and (++1]2(0)|00)=—Ty, , (44b
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(HHRO)="T—, (440 Aozé(F+0+Fo++F++F+)[1—[l
(00£(0)[00=T,,, (440
) AT 4ol 4 +T ol +To. T, )]™
(OOIE(O)|++):_F+07 (44e N (F+0+F0++F+,+F,+)2 !

(003(0)|——)=0, (441) (479

& _ 1
(——|20)|-—)=T._, (449 A:E(r+o+r0++r++r+)‘1+ 1
(—=12(0)[++)=-T,_, (44h) "
_4(F+0F+—+F+0F—++F0+F+—)
(——12(0)|00)=0, (44i) (TotTop+T 4T _ )2 '
where (479
- ‘ We break Eq.46) into partial fractions and combine with
F0+=A§f dte<'(C_(0)C.(t))g, (459  Eq.(36) to finally write
- e Pa(l, I, 1
F+O=A§f dte ©4C,(0)C_(t))r,  (45b) s oA Z
+[Ao_(F+0+F+—)+F+0F+—/Ao] 1

o ) Ag—A Z+A
r,;&{f dte '9YB_(0)B, ())r, (450 0 0

[A—(T,o+T, )+T. o, /A] 1
* A—Ag 2T Al

r+_=A%f dté<(B, (0)B_())r. (450
- (48)
The quantityl" , o(I'5+.) has the interpretation of the rate of  The transition probabilities have to satisfy the detailed
tunneling from the stat¢0)(|+)) to |+)(]0)) (cf. Fig. ).  balance relations:
[Similar interpretations can be given for_  (I',_).] The
correlation functions in Eq45) are defined as thermal aver- Pol'+o=P+lo+, P-I'y_=psT_4, (49
age over the reservoir states.

Collecting all the terms in Eq:39) and inverting a X 3 where thep’s are the occupation probabilitig8oltzmann
matrix we obtain factorg given by (see Fig. 1

1 87'361 efﬁ(EO*’El)
(z+T o) (z+1', ) (46) p_:Z_' p.= 7 po:Z—- (50
2(z+Ag)(z+A) s s S

(++|[0(2)]ad + +)=

hese relations will be worked out explicitly in Sec. IV.
hey allow us to simplify the various terms in E@8). For
instance, we can show

where the denominator is the determinant of the releva
matrix and OAy,A are the eigenvalues of the mat@(O).
The latter are given by

Fiol's - _

AgtA=T o+To,+T, _+T_,, (473 W—m- (52)
AoA=T o'y _+T o'+, T, (47D  Using this and the fact that the first term in E48) contrib-
utes to the elastic component of the structure factor, we find

from which we derive from Eq. (9)

2 sif((1/2k-d) 1
7 1+expw/kT) A—A,

S(k,w)= 1—4(p+—pi)sin2(%k.d) S(w)+

AZ= AT o+ T 4T ol AG=Ag(Tio+ Ty )+ ol -

X
w2+ A2 w2+AS

(52
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With this, we complete the program set out earlier in Sec. | 10> j(w) 1
[see Eqs(1) and(2)]. (C_(0)C,(1))g= exp{ - EJ do—; cotI-(E,Ba))
The correlation functioi©(t) can be used to calculate the 0 @

diffusion constant of H in a lattice. The two wells are viewed _ :
to describe two adjacent sites the H can occupy during dif- _COT“w(t (1/2)i )
fusion, e.g., in the case of Nb:H two tetrahedral interstitial sinh((1/2) Bw)
sites in the bcc host. For simplicity we assume that left wellsyhere the spectral density of the phonon weight factor is
only have right wells as neighbors and vice versa. The difgefined as

fusion constant is then defined by

; (59

d j(0)=22 g26(w—wg). (60)
D=¢| - §[<r(0)~r(t)+r(t)-r(0)>] a
=0 Substituting Eq(59) in Eq. (458 and changing the contour
d of integration ovet, we obtain
=2¢d? — 5O (53
- A2a—(U2Be [ i ot 1> j(o)
where/ is a geometrical factor for the lattice. From E§3) Iy =Age wdte exp —5 o dow o2
it is easy to derive that
1 coswt
D:§d2[pfr+7+pOF+O+p+(F7++FO+)]1 (54) X COt.’(Eﬁw) _W/Z)Bw) ] (61)
where the expression inside the square parenthesis is the
weighted sum of the partial jump rates. It is evident from Eq.(45b thatI'_ is obtained from Eq.

(61) by simply replacingey by — €. Similarly,
IV. THE FLYNN-STONEHAM REGIME

- - L 24(112) T it 1=, ()
In analyzing the correlation function given in E¢8) we I, =A%eM2be dte '“1'ex 5 do—
have to first compute the various transition rates given in Eq. o 0 w

(45). The harmonic nature of the reservpif. Eq. (24)] al- 1 ¢
lows for a calculation of the correlation functions. Thus we X COtI‘(—,Bw) — .& , (62)
have 2 sinh((1/2) Bw)

942 andI', _ is obtained fronT"_, by replacinge; by — ¢, and
(—q) J(w) is obtained from Eq(61) by replacingg, by G,.

<c<0)c+<t)>R=<c+<0>c<t>>R=exp[ -3

a \@q The so-called Flynn-Stoneham regime is obtained in the
1 high-temperature limit in which the exponent in the second
X cotl-(—,Bwq)(l—cosuqt) term under the integrabvert) in Eq. (61) can be replaced
2 by its short-time limit. Thus
+i sinwgt | |, (55 1> j(w 1
4 ] Iy, ~A2e (¥2Poex ——f detan —Bw
2Jo w? 4
where
1 0 X - dte €ot —t2 E ocd L
9q=(Gq+Gy)- (56) arerex 4)o "YsSinh(1/2) Bw)
Similarly,
- € ™ —62
Gq ) %Age (1KT)[Eg+(1/2)€g] A /4E0kTe 0/16E0le (63)
(B_(0)B.(1))r=(B,(0)B_(t))g=exp — >, | —
q \Wq where
X | cot E,Bw (1—coswgt) 1= (o)
277 q E0=—f do——-. (64)
8Jo 1)
+isinwgt ] (57) Similarly,
- - € ™ —62
where F,+:A§e (UKT)[Ep— (112 €] /me 16E KT
Gy=2G;. (58) (65

We now go to the continuum limit in which we replace the Where

sum overq by an integral over the frequenay of the pho- .
non modes and rearrange the oscillatory terms in the expo- El_lf d ‘J(“’)_ (66)
nents of Eqs(55) and(57). Thus we have, for example, 8Jo
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TABLE I. Input parametersd,,Aq/A1,A5/Ag) and fit param- -8+
eters A1,E;) for the calculation of the diffusion constants of Nb:H
and Ta:H shown in Fig. Hirst three sets of valug¢and Fig. 3(last
set of values The asymmetry paramete;=0.

7

€p AO/Al Az/Ao Al El N;

(meV) (meV) (meV) o

Nb:H (Ref. 19 107 10 4.6 45 o.’o—

Nb:H (Ref. 25 107 10 2.7 24 o
Ta:H (Ref. 1) 114 10 2.8 48
Ta:H (Ref. 1) 114 10 10 2.6 46

The transition rates, Eq$63) and (65) are essentially
determined by three terms, the “naked” tunneling rate, a 1000/ T
t_hermal acltiva.tion factor and a line-shape te_rm. The actiya- FIG. 3. Diffusion constant of H in Ta/ indicates experiment
tion factor is given by the energy needed to distort the lattic&ret. 1), full line indicates theory including transitions between
so as to counteract the self-trapping of the hydrogen, i.e., t@xited statesand partial diffusion constantsiash dotted indicates
create a coincidence configuration. The second exponentiglound state — ground state, dashed indicates ground state — excited
term together with the square root factor stems from astate, dotted indicates excited state — excited state
“shape factor” appropriate for the vibration-level of the hy-

drogen. Also at higher temperatures other processes such as tunnel-
ing between excited states set in. These will have yet higher
V. DISCUSSION tunneling rates which counterbalance at high temperatures
the higher effective activation energy ofey+E;.
To check this conjecture and the stability of the param-
eters we repeated the fit including tunneling between excited

In the limit of vanishing asymmetry,=0 and large ex-
citation energy é,>kT) Eqgs. (63) and (65) reduce to the

ltisuazl CI): ?gﬂjfﬁ;h;zr(srgailln phO;?r;OOmnirssau't :c?;ilrjn;ioarl]ntdhe states as an additional channel. For the F&fg we take the
o+ " 9¥Eq PP same form as foF _ , [Eq.(65)] with ;=0 andA, replaced

so-called coincidence energy, i.e., the minimal energyby A,. Here|0’) stands for the excited level in the right

needed to distort the host lattice from the self-trapped con- . ) o
' . : . - well. Figure 3 shows the results for Ta:H. The fit is now
figuration such that the potential energy of the H is equal in . .
both wells. The same limit would also be obtain for—0 excellent even at the high temperatures. To show the influ-

andA~<A. This imolies however different site occupancies €€ of the three processes, the partial diffusion constants are
0 =Tl P . e occup also shown. With increasing temperature, first ground-state—
for the H in its ground and excited states, a situation not full

covered by our model. As long as there is no change of Y round-state, then ground-state—excited state, and finally,
site Ag>A, will hold. Estimates for the case of Nb:H give xcited-state—excited-state processes dominate. As evi-

AcJA~10 denced by the small change in the fit parameters given in
0 1~ . . . . . .
To test our results we fitted Eq#63) and (65) to the Table | the model is fairly stable with regard to inclusion of

experimentally measured diffusion constants of H in Nb andaddItlonal tunneling channels.
Ta using expressiofb4). For the sake of simplicity in the
analysis, we assume low hydrogen concentratiangliase
and no trapping sites. The asymmetry will, therefore, play
little role and we sete;=0. The excitation energy of the
hydrogen is then given by, for which we take the experi-
mental value$* We neglect the difference in the coupling to
the lattice of the H in its ground state and its excited state,
i.e., we putEy=E;. To reduce the number of fitting param-
eters further we use a fixed ratio of the naked tunnel split-
tings, Ag=10A;. The two remaining fitting parameters for
each curve are the “naked” ground-state tunneling e
and the coincidence ener@y. Figure 2 shows the resulting
fit to the experimental values for Ta:fRef. 11) and to both .
the Gorski effectt and NMR (Ref. 25 values of Nb:H. The 14 g 1‘0
input and the resultant parameters are shown in Table I.
Given the simplicity of the model the fit is excellent. The
deviations at very high temperatures have to be expected.  FiG. 4. Diffusion with asymmetric wellsg; = e,=1/2x 114

The tunneling rated; has the magnitude expected from mev (solid line). Dashed line indicates ground-state—ground-state
earlier estimate$>?° It has been shown in simulations that contribution, dash dotted line indicates ground-state—excited-state
the second tunneling channel described\y)yis the first one  contribution, dotted line indicates the corresponding symmetric case
to drive the diffusion rate up, with increasing temperatiire. (Ta:H of Fig. 2.
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Our model relates directly to the numerical exteniaf Tunneling in strongly asymmetric potentialg;& A ;)
the small polaron model and gives the same interpretation okill be important for diffusion in alloys. At present, suffi-
the mechanisms underlying diffusion. The relation to thecient data are not availaliléo get reliable parameters for an
“occurrence probability” methotl**?is not so direct. In that interpretation in terms of our model. To get a qualitative
method the excitation of the phonon bath providing the enpicture of the effect we calculated the diffusion constant us-
ergy €, needed for the H to tunnel from stdte ) to state|0) ing the parameters gained for Ta:H but setting the asymme-
is included only partially in the averaging over coincidencetry energy to half the excitation energyy=e;=1/2X114
configurations. The overall conclusion that high-temperatureneV. The results are shown in Fig. 4 together with the sym-
diffusion is by tunneling to excited states also holds in thatmetric case. Diffusion is suppressed by asymmetry, particu-
approach. larly at low temperatures, due to the reduction in the thermal

A different mechanism for high-temperature diffusion occupation of the right well and of the rakg, _ . The tran-
was proposed by Kagan and co-work&8 There the tun-  sitions to the excited state in the left well and hence diffusion
neling rate is increased due to fluctuations in the tunnelin@gt higher temperatures are less affected. The additional con-
barrier. This corresponds to nonlinear terms in the Hamiltribution, not shown in Fig. 4, due to transitions between
tonian not included in Eq(16). The nonlinear terms were excited states would again be strongly reduced by asymme-
however in our earlier simulatidhfound to be too small. try. On the other hand, at high temperatures, asymmetry

At temperatures where the excited state of the H becomesight facilitate transitions to other excited states. These ef-
thermally occupied a delocalization of this state seems tdects cannot be incorporated in a simple model such as ours
occur3%26.12310n the other hand, well defined excited stateswithout additional parameters.
are observed in neutron scattering. Whereas in the first case
the lattice relaxes to its thermal equilibrium configuration
with respect to the H, involving major displacements of the
host atoms, only slight adjustments of the host atom posi- This work was carried out when S.D. was a visitor to the
tions are involved in the second case. The H delocalizatiofrorschungszentrum“lich. He thanks the Alexander von
involves large anharmonic couplings between the H and thélumboldt Stiftung for financial support, and Professor H.
lattice not present in our Hamiltonian. Our model is there-Mluller-Krumbhaar and his group for their warm hospitality.
fore, limited to temperatures where the anharmonicity is noHe and H.R.S. acknowledge lasting collaborations with Pro-
yet too important. fessor H. Grabert and Professor A. M. Stoneham.
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