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X-ray line broadening due to an inhomogeneous dislocation distribution
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A general theory of x-ray line broadening caused by dislocations is presented. It is shown that the leading
terms determining the shape of the broadened line profile are independent of the actual dislocation distribution.
The intensity distribution can be characterized by average parameters of the dislocation configuration, like the
dislocation density, and its fluctuation. For the determination of these parameters a generalized form of
Wilson's variance method is proposd&0163-182@08)01513-6

INTRODUCTION In Refs. 19 and 20 the source of the asymmetry was in-

vestigated in terms of the dislocation dipole polarization. Un-

X-ray line broadening analysis is a frequently appliedder more general conditions than in the earlier models an
method for the investigation of dislocation structures in dif-asymptotic expression was deduced for the Fourier coeffi-
ferent types of crystalline materials. During the last two de-cients. The mathematical foundation of the theory outlined in
cades several successful measurements were carried out s paper is similar to the model published earlier. However,
deformed Sing|e_crysta”ine and po|ycrysta”ine materia|sit is shown that the result obtained earlier is valid Only if the
(seey e.g., Un’g‘aet a|_,l Hecker et a|_,2 and Klimanek and dislocation-dislocation correlation is weak enOUgh. The

KuzeP) with this technique. More recent developments arePresent study is based only on the analytical properties of the
high-resolution x-ray diffraction investigations on the dislo- displacement field of straight dislocations, and no assump-
cation structure of nanostructured Cu by Unggal* and on  tion is made on the actual form of the dislocation distribu-

the misfit dislocation density in multilayers by Kaganer tion. As a result of this, it can be applied for the inhomoge-

et al,® opening new perspectives in this field. neous dislocation distribution frequently observed in
The first theory for describing the strain-induced BraggeXPerimental investigations.

peak broadening was proposed by Warren and Avergéch_ ) For the determination Of the t.hree_pa.ram.eters CharaCte_riZ—

By Tay'or expansion of the Fourier coefficients of the peak|ng the ”j]homogeneousld|S!Ocat|0n d|St.r|bu.t|0n an eVaIu.auon

they have concluded that the strain-induced broadening€thod is proposed which is a generalization of the variance

scales with the space average of the square of the strain. fRethod first proposed by Wilséh(see also Langford).

was pointed out by Krivoglaet al®1° that if the strain is

due to dislocations, the Warren-Averbach method cannot b6 CATTERED INTENSITY IN TERMS OF DISLOCATION

applied. For a completely random dislocation distribution DENSITY FUNCTIONS

they worked out an analytical expression. A serious problem ) ) .

with their result is, however, that the Fourier coefficients L€t us consider a system & uniform atoms positioned

diverge logarithmically if the crystal size goes to infinity. at the pointsR; i=1, ... N. Within the framework of the

This problem was first resolved by Wilkérs'®by introduc-  kinematic scattering theory, the scattered intenkfiy) has

ing the concept of the restricted random dislocation distributhe form

tion. For small Fourier coefficients the expression derived by

Wilkens has the same form as that obtained by Krivoglaz _ N o

et al, but the crystal size is replaced by the introduced cor- I(k)=C 2 exdix(Rj—R)], (D)

relation length. Besides the somewhat artificial foundation of =1

the restricted random dislocation distribution a significant - ) ) :
shortcoming of the Wilkens theory is that it predicts Sym_whereK is the scattering vector, ar@d is the atomic scatter-

metrical line profiles in contrast with experimental N9 factor, which can be taken as constant in the problem

evidencé* Although within the framework of the theory of unde_r consideration. For a deformed single crystal, after ne-
Wilkens the observed asymmetric broadening can be undefl€cting the second-order terms from Etj) one gets that
stood in terms of the quasicomposite motiék disadvan- c

tage is that it is based on sevee hocassumptions. Fur- 3y — 3 3 peroe ) = P&

thgrmore, as was shown by GHaa randomlypdistributed (s)= VJ dn Jdr expi2miglu(r+ /)~ a(r—n/2)J}
polarized dislocation dipole assembly also causes an asym- -

metric profile, and so asymmetric broadening can appear un- xexp(isn), v

der more general conditions than those considered in the L . ) .
quasicomposite model. Recently, Levine and Thort$on Where(r) IS thf displacement f|eld(_ is the volgme of trje
have proposed an alternative model to overcome the problefystal, ands=«—2mg. Here the reciprocal lattice vectgr
of crystal size dependence by the introduction of finite sizevas introduced. As can be seéfs) is proportional to the
coherent blocks. Fourier transform of the function
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1 The above form ofA(fi) allows the introduction of differ-
A(ﬁ)=vf driexp{2mig[a(F+1i/2)—G(F—i/2)]}, (3)  ent order density functions frequently used in statistical me-
chanics. Taking the statistical average of several dislocation
in which i is the Fourier parameter. First its properties areconfigurations the sums in Eq7) can be replaced by
investigated. weighted integrals, leading to the formula
In order to obtain the form oA(A) due to a dislocation
network, a system ol parallel straight dislocations is con- .
sidered with line vectors parallel to tizeaxis. Denoting the ~ A(N)= Ef
position of theith dislocation byf; in the xy plane, the total
displacement field at the pointis

1- f w(F)B(F—Fy,A)dr2

- @(F, 7)B(F=F1.A
"’E W'y, Fp)B(F—1,N)

N
0(F)= 2, Gaind F— ), (@) , o, 1
=1 X B(F—F,,A)dridrs— Ef j JW(3)(F1,F2,F3)
where U, 1) is the displacement field of a single disloca-
tion. After substituting Eq(4) into Eq. (3) we get that X B(F—Fy,A)B(F—F,,A)B(F—F3,A)dridradr3
1 N
A1) = Ef [I [1-B(F—r},m]dr?, (5) e ldr?, (8)
j=1
whereF is the cross section of the crystal, and the notationwhere wX(f;,f>, ... ) stands for thekth-order density
o T, o function. It is important that the different order density func-
B(ryn):l_exp[277|g[using(r+n/2)_using(r_n/2)]}(6) tions are not independent from each other, namely,
is introduced. Expressiont5) can be transformed into a Wk D(FLL P, L P )
power series 0B:
1 ®(r 7 > >N r2
=N—k| W (F1,Fo, o Fro1.F)drg. (9

The expressions obtained above are valid only if all the
1 N dislocations have the same Burgers vectors. In a deformed
XB(F—r,n)— 5. >, B(f—rj,A)B(F—f,n) crystal the net Burgers vector is close to zero, and so dislo-
J#I=m cations with both positive and negative signs have to be al-
lowed for. Equation(8) can be easily generalized for this
. (7)  case:

XB(F—Fy i)+ - -

1 1
A(ﬁ):Ef drzll—fdri[w@(n)s(r—rl,ﬁ)+w<_1>(r1)3*(r—rl,ﬁ)]+EJ drif dri[w'?, (F,F,)B(F—Fy,A)
X B(F—Fp,A)+ W2 (F,Fp)B* (F—F1,A)B* (F—Fp,A)+W2 (F,Fp)B(F—F,A)B*(F—F,,MA)

+ WP, (F1,F2)B* (F—Fy,A)B(F—Fp,A)]+-- -, (10)

where w® w® w7, F,),w® (Fy,F), and s investigated. By the variable substitutiép—F—F; one
w'? (F,,F,) are the one- and two-particle density functionsobtains

with positive and negative signs, respectively, and the aster-

isk denotes the complex conjugate.

fo(r,ﬁ):fwgl)(r— F1)B(Fy,A)dr?. (12
TERMS IN A(f) PROPORTIONAL

TO THE FIRST-ORDER DENSITY FUNCTIONS
As a first step the leading term of expressiag), As it was proposed by Warren and Averb&cdme can try

to approximatef®(r,i) with a power series. However, as
was first pointed out by Krivoglaz and Ryboshapla i

0/7 R — 1)/ P2 = 2
f (r,n)—f W (F)B(r=ry,mdry, (12) =0 the second derivative df(f,nR),
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92 o Since the first two derivatives df:(,ii) are finite for small
anianjf (F,M =0 fi’s, it can be approximated by a second-order polynomial:
1, = ~ 2 e R APTR 7 PR
- [ W= r)ama s o rodr, ORI SOED] g ST
n= n=
13 =aYn;+aPnn;. (22)
is infinite. In the above expression the distortion tensor Equations(20) and (21) lead to the function equation
a(ﬁsing)i(r) 1
i (14) OF /) - 7 FF 2 =aP(On+a2(Fnin. - (22

]

is introduced. The divergence in expressi@8) is due tothe ;4 general solution has the form
fact that the distortion created by a dislocation at the distance
|F1| is inversely proportional t¢r;|, and so the integrand in

Eq. (13) has a 1f,|*-type singularity at the vicinity of’; fO(7,i) = 2a{"(F)n;— ma,(zl) Fyningin(ynin)

=0. (For avoiding divergence at;—c it is assumed that

w(M) goes to zero at infinity. This restriction will be lifted +C; (MHnin;, (23)
later)

\é/here the termC; ;(M)n;n; is the solution of the homoge-

The calculation method proposed here is based on th
neous equation

realization of the fact that if the coefficient befdé¢ry ,n) in
the integral of expressiofl2) was zero af; =0, the diver- 1
gence in Eq(13) would not appear. So if instead 6%(1, 1) f9(r,A) — —f9(F,2A) = 0. (24)
the expression 4
As a consequence of this the coeffici€ht;(r) is not deter-
F1(F, ﬁ):f {w(j)(r* Fp)— w(l)(r—Zrl)}B(rl drl mined by Eq(22). In order to obtain its value the expression
of fO(F,A) in Eq. (12) has to be analyzed. Since the second
(15 derivative of

is considered, the above singularity in the second derivative

of f1(7,i) does not appear. The newly definE{,ii) and tO(F, A) = fO(F )~ a?(ryninin(ynin) (25
fO(7,fi) are not independent from each other. In order to see (2)
their relation let us rewrite expressidh5) in the form is already finite ati=0

2

fl(r*,ﬁ)zf w@(r—rl)s(rl,ﬁ)dri—f wl(F—2f)) C,(F)= (7, )| 5. 26)
! anion;- =0
XB(Fy,A)dri. (16 tis important to note that as has been obtained by Krivoglaz
and Ryboshapl?aCi,]—(F) is proportional to the logarithm of
the crystal size. However, as will be shown later the higher-
order terms in expressiofl0) can cancel this logarithmic

J divergence. In the expression Bf(7', i) in Eq. (21) only the
M- 1)

With the variable substitutionf2 —r; in the second term of
Eq. (16) one gets

formal values of the coefficienta™(r) and a%(r) are
given. The actual expression faf*)(F) can be obtained by
X B(F,2/)dr2, (17)  calculating the first derivative dof°(f,):

1
f1(F,A) = f wH(F—F)B(Fy,A)dri— 7

where the relation (1)) o 1)y e » NP
a; (r)=|7rg|fw+ (Fr=ry B ;(rydry, (27
B(F,/2,3) = B(Fy,2A) (18)
which can be interpreted as
is applied. Equationf18) is a consequence of the fact that the

displacement field of any type of straight dislocation in an alM(rn)=img B (F), (28)
elastic medium fulfills the relation
where(r)|% " is the total distortion at the poiritcreated by
Oeisi(F2) — Ugisi(F1) = Ugisi( KF2) — Ugig(kF),  (19)  all the posmve sign dislocations.
. . - . For determining the coefficiemt3)(1) on the basis of Eq.
wherek is an arbitrary constarifor verification see the dis- (16) the expression

location displacement field in an anisotropic media in Ref.

23). From the comparison of Eq&l2) and(17) we arrive at R o o
a1 =~ f 22w P (=) —w(7—2f)}

IO S 1 S o~
PR =107 ) = 5 197, 20). (20 X 018, () GmBmi(F1)dr (29
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has to be analyzed. Introducing the polar coordinatesH)

for the variablef;, Eq. (29) gets the form V(PP =V NP — T vRY(F 20,
2 ) o 2 e -
a§,£<r>=“m—f drlfo de2a?{w(F—Fy) vO(F, ) =W (F=Fy), (36)
e—0 €
the function
Kj k1,m(¢)
—wO(F=2F 1kl.m
W(F=2F1)1919m— 7 (30
* 119G rl fk(F,ﬁ)=J VK(F,F)B(F,R)dr? (37)

whereK; | m(¢) is a trigonometric polynomial op deter-  can be approximated bykih-order polynomial ofi since its
mined by the actual form of the displacement field of thefirst k derivatives are finite afi=0. After similar steps as

dislocation under consideration. In order to avoid the singuapp”ed above one arrives at the following structure for
larity in the integrand around,;=0 a circular area with ra- fO(F, 1)

dius € is excluded from the integral. By the 2—r 4 variable

substitution in the second term of the integ(a@0) one ob- fo(r,AM=aY(Fn+a?n?n(n)+C?n?

tains N

+ > [dD(F)niin(n)+cP(F)ni], (39
i=3

€ 27
alq(r) = Iim—f/zdrlfo de2m2wV(F—F;)
€

€0 where for the sake of simplicity only the= |l dependence
Ko (o) of fO(F,A) is indicated. The coefficiens)(F) and C)()
X9|9mM- (31)  depend on different order derivativeswf (). Furthermore,

ri it can be shown that
Since the integral has to be calculated for an area close to the
origin of the coordinate systeru})(F—F;) can be approxi-
mated by its value at;=0, and so

J d¥(F)dr?=0. (39

The contribution of dislocation with negative sign Bur-

2 ) 1) 27 gers vector tA(f) can be given by the same type of expres-
ajx(MN=—2mIn(2)g;gmwy (r)J'0 Kjkim(@)de sion as Eq(38).
=—In(2)®; ;. W (1). (32 TERMS IN A(7) PROPORTIONAL

TO THE SECOND-ORDER DENSITY FUNCTIONS
K k1,m(¢) is a trigonometric polynomial; therefore the value ) i ) )
of ®; 1.m can always be determined analytically. In most_ In this section the analytical behavior of the terms propor-
applications fi is parallel to the diffraction vectorg, tional to the second-order dislocation distribution functions

and so here only the explicit expression foh in Eq. (10) is investigated. Let us introduce the function
=®; 1.mJj0k0i9m/|G]* in case of isotropic media is given

(for more details see Ref. 13 Q(F,ﬁl-ﬁz):J' drfj draw? , (F—Fy,F—F))
- R N N
A:§C|g>|2|b|2 Slnz‘l’, (33) XB(rlanl)B(r21n2)- (40)
It can be seen that the third term in EQ.0) is equal to
in which for screw dislocations g(r,fi,n). Since for both variables, ,f, g(,f;,M) has the
same structure @€(F,R), for obtaining a serial expansion of
C= colV (34) g(r,n;,n,) a procedure similar to that outlined in the previ-
ous section can be applied. Without going into the details of
and for edge dislocations the calculation one gets that the leading terms(andy for
parallel tog)
1 . ~ : . . .
C= sinz‘lfm[1—4v+8v2+4(1—2v)c0§y], g(F,f,/) == k(Nn>+is?(F)n® In(n) +iQ,(F)n*
-V
(35) +A2w, (F,F)n* In?(n) + Q,(F)n* In(n)
wherev is the Poisson ratio}' is the angle betweeg and +Qs(F)n?, (41)

the dislocation line vector, and vy is the angle between the where
vectorsb— [ (I'b) andg—T1(I'g).

The method outlined above can be generalized for the
determination of higher-order terms in the expansion on
fO(F,A). Without going into the details, if we introduce the 2
function series defined by the recursive formula X Br,m(F)dry. (42)

> nm > o> > >
s<2>(r)=wg|7Af (W, (F,F =)+ W (F=F,P)}
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The coefficients<(r), Q(F), Q.(F), andQ5(r) are compli-

cated functions of the two-particle density function. Since IN(1+a;+tax+--)=artaz— 501%' -, (49
they do not have an easily interpretable physical meaning,
their actual values are not given here. we conclude that up to fourth order m

SERIES EXPANSION OF A(fi) UP TO ri* TERMS

From Egs.(10), (38), (39), and(42) the leading terms in
the series expansion &f(i) have the form

n
IN[A(f)]=A{p)n?In =

1
N i<s<2>>n3|n( R%) + S AZ(p?)

A
nR_4, (

whereR;, R,, R;, andR, are parameters with length dimen-
1 sion. Their actual values are complicated functions of the
+i(Qpn3+ §A2<p’(2)>n4ln2(n)+(Q§>n4ln(n) different order dislocation density functions. The advantage
of the logarithmic form is that if the dislocation distribution
+(QLn%, (43 is nearly random, the value ¢p®)—(p)? is smaller than
(p®) and so in Eq. (49 the term proportional to
where(---) indicates the space averageR)f - - - d?r, n“In(n/Ry)In(n/R,) can be neglected besiagIn(n/R;) up to
largern values than in Eq(43).
p(F)=w(F)+w(F) (44) The generalization of the above result for more than one
type of dislocation system is straightforward. It can be ob-
is the dislocation density, tained that in Eq(49) A has to be replaced by the average of
the A values of the different dislocations.

1

| ~(p)Intin| =
A(R7)=1+A{p)n2n(n)—(C®— k" )n?+ IE(s’(2)>n3ln(n) 3

p@()=w?, (7,1 +w?_(F,7) +w?_(F,F)+w?, (F,F)
(45 WEAK CORRELATION

is the two-particle total dislocation density, and It is useful to investigate the values of the parameters in
Eq. (49 if the correlations are weak in the dislocation sys-

N(2) o Nm I . tem. A weak correlation means that the contributions of cor-
S (2)(r) =1 7Tg| |F|A f k(Z)(rar - rl)BI,m(rl)driv (46) re'ation functions

. . . > 2\ 2) 7 2 1)/ > 1)/ >
in which the notation Ti,j(rlarz)_Wi(,j)(rlarZ)_Wi( )(rl)W]( '(Fy),

K7y, Fo) =W (1, Fo) + W (F,F) w2 _(F1,F) Lj=+.-, (50

—wW@_(F,F) W2 (Fy,F)—w 2, (F,F,)  to the values ofp!?) and(s®)) are small; i.e., from this
’ ’ ’ point of view the two-particle distribution functions can be
— W& (Fp, )+ WP (7, 7) (470  approximated by the product of two one-particle distribution
functions. The correlations, however, can never be com-

is introduced. The coefficients’ (1), Qi(F), Qx(F), and  pletely negligible, because it would result in a crystal size
Q4(F) have the same meaning as the corresponding coeffdependence as was discussed earlier.
cients without a prime in Eq42), but they contain the con- If T j(1,7) is neglected in Eqg44) and (45), we find
tributions of each type of two-particle density function. It is that
important to note that the first term in E(R8) proportional
to n does not have a contribution &(fi) because the space pD(F1,Fp)=p(F1)p(F>), (51)
average of the distortion created by a dislocation is zero.
Another important fezature of expressio4d) i(sz)that the co- andso
efficient of the terrm< is the difference of C'“’) and(«"). 2 9 2 5 2
As it was mentioned earligfC?) diverges logarithmically (P®)=(p)*=((P))~(p)*=L(p=(p))?). (62

with the Crystal size. HOWEV.er, if |t is assumed that due tOTh|S means that in the case of a weak correlation |n(Eg)
the correlation between the d|S|0C3t|qﬂS> shows the same the coefficient of the ternn4|n2(n) is proportional to the

type of divergence, it can cancel the crystal size dependencgatter of the dislocation distribution. In a similar way for a
which appears without taking into account the higher-ordefyeak correlation from Eqg46) and (47),

distribution functions. A similar result has been obtained first

by Wilkens' for the restricted random dislocation distribu- N

tion and by Gag’ for dislocation dipoles. The advantage of (S'(2)>=2A7Tg|7f erJ' drip(F){w (F—Fy)

the analysis outlined above is that the result is obtained in-

dependently from the actual form of the dislocation correla- —W_(F—T1)} B m(F1)
tion function.
It is useful to rewrite expressio@?2) in logarithmic form. _ Mmoot
By applying the identity: 2Amg, n (B%0). (53
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(58)

BEHAVIOR OF THE DIFFERENT ORDER MOMENTS , ”
OF THE INTENSITY DISTRIBUTION vi(q )—J gl (g)dq f I(q)dq

In the previous sections the analytical behavior of the
Fourier transform of the Bragg peak was investigated. In thid
section the connection between the obtained analytical e
pression(43) and the different order moments of the scat-

tered intensity distribution(§) is established. As will be
demonstrated later this leads to an evaluation method which 1
makes it possible to determine the characteristic parameters A;(n)=A(n)— —=A(2n) (59)
of the dislocation distribution with less scatter than the ear- 22

lier applied ones. and its Fourier transform
Since in most investigations only the dependence of the

as to be investigateflv,(q’) is referred to as thkth-order
sariance} As a first step the properties of,(q') are ana-
yzed. For overcoming the singularities mentioned above let
us introduce the function

completel (s) on the diffraction angl® is determined, in the o )
following only the reduced intensity distribution l1(q)= fﬁwAl(n)exp(lnq)dn. (60)
_ = 2 The second derivative ofA;(n) at n=0 is already finite.
= + 2 1
'@ j '(g/lgl+s)d%, 9 Applying the corresponding E@56) type formula and using

will be considered. In the above expression the integratiorﬁhe expressioit43) we obtain that
has to be carried out for a plane perpendicular to the diffrac- im )

. N . . . ’ d
tion vectord, andq=4w/\[sin(d)—sin(6,)] where 6, is the " Jq 2 da=— 27 ——A.(n
Bragg angle. e fq’q H@da " dn? 1(n) o
As is known thekth-order moment of the scattered inten- N
Sity =47A{p)In(2). (61)
® * On the other hand, from the definitig60) of 1,(q) one can
me= | gl(a)dq __Na)dg (55 find that
can also be determined from the Fourier transform (af).
amely (o f q?4(@)da= f | a (A(n)— —A<2n>)
k Xexping)dndg (62)
i —A(n . 56
= A(O) dnk (n) o (58 Splitting the integral on the right-hand side of the above
. equation into two integrals and introducingna 2n variable
which can be proved as follows: substitution in the second one we get
f_ a“l(@)dg=| | g*A(n)exp(ing)dndq f ?l1(q)dg= f 21(q)— —|<g”dq
in q’ q'/2
- A R g = [* dtc@da- "7 i@

~[va(@) 0021 | 1ada

exp(mq)dndq

[0

(63
[ d¥A()
:27T(|)kf s(n)dn From Egs.(61) and(63) one can conclude that faf’ values
» dnk large enough the quantity,(q’) fulfills the equation
d N —vy(q'12)=2A{p)In(2). 64
=2m(i)*— A(n) (57) v2(q") —v2(q'/2) (p)In(2) (64)
dn n=0 Its general solution has the form

Since the second and higher derivative#\¢h) given by q’
the expressior43) have infinite values an=0, in case of vz(q’)=2A<p>In(q—>, (65
line broadening due to dislocations the second- and higher- 0
order moments of the scattered intensity are also infinite. Asvhereqq is a constant the value of which is not determined
a result of this the moments cannot be directly used for théy Eg.(64). This means that the second-order moment of the
determination of the characteristic parameters of the dislocdine profile obtained on a dislocated crystal diverges logarith-
tion configuration. In order to obtain applicable results themically with q’. Consequently the asymptotic behavior of
behavior of the quantities the intensity distribution has the form
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1 I{q)
m'ﬁ"" (66) 1r (a)

A similar result was obtained for a single screw dislocation
by Wilsorf! and for a restricted random dislocation distribu-
tion by Wilkens!* The present analysis shows, however, that
the Eq.(66) type decay of the scattered intensity is indepen-
dent of the actual form of the dislocation distribution.
The asymptotic properties of(q’) can be obtained by a

similar method outlined above. The only difference is that in
this case the behavior of the function

1(q)=A(p)

0.01 -

0.001

0.0001

va(g) x 10714 [m2]

14

1
Ax(n)=Aq(n)— §A1(2n) (67)

10

has to be analyzed in which the functign(n) is defined by
Eq. (59). It leads to the result that for largg values

2 1 1 1

(6 8) 0.5 1
v3(q) ><010_22 [m?]

()

v3(q')= —6<s’<2>>ln<q— :
Q1

whereq is a constant the value of which cannot be deter-
mined from Eq.(68). It follows that beside the tern66)
there is ag/|q|® antisymmetric term in the decay of the in-
tensity distribution, i.e.,
5
1

l(Q):A<P>|q|3—3<3'(2)>#+... (69)

a5+ C

0.5 1
'U4fq! x 10—14 [,m2]
g

(@

In order to determine the contribution of the fourth-order
term in A(n) to the intensity distribution the function

1
As(2n)— §A2(4n)>

(70

and its Fourier transforriz(q) have to be introduced. Since
the first four derivatives ofA;(n) are finite atn=0, the
fourth-order moment of 3(q) can be determined from the 2
relation (56):

1 1
As(n)=A~Ay(n)— §Az(20)— >

g x 107 8[m™!]

FIG. 1. (a) Line profile measured on a tensile deformed Cu

m(q’) = f:,q“ls(q)dq/ f:cl(q)dq=96A2<p’(2)>,
(71

which is certainly valid only for largg’ values. On the other
hand,m{?)(q) can be given with,(q) as follows:

M (q")=v4(q) —8v4(q/2) + 21 4(q/4) — 220 4(q/8)
+8v4(0/16). (72

For largeq values Eqs(71) and(72) define a function equa-
tion for v4(q), the general solution of which is

v4(Q) = C1q+C,q%+ 12A%(p’ @)In(q/g,)In(q/gs), )
73

single crystaly=37 MPa(Ref. 20. (b) Second-order variance s
and the fitted expressid®5). (c) Third-order variance vg and the
fitted expressior68). (d) Fourth-order variance wg and the fitted
expression74).

EVALUATION PROCEDURE

On the basis of the theoretical results obtained above the
line profile analysis of the measured intensity distribution
can be carried out either on the measured profile itself or on
its Fourier transform. The fitting of the expressi@®9) to the
Fourier transform of the profile, however, leads often to large

wherec,, ¢, 0,, andqs are parameters which cannot be Scatters in the parameters. This is due to the fact that expres-

determined from Eqg71) and(72). However, from Eq(69)
one can find that,=0 andc,= A(p), i.e., for large enough
g values,

v4(9)=A{p)g®+12A%p' @) In(a/a,)In(a/qs). (74)

sion (49) contains seven free parameters and it is valid only
for a few Fourier coefficients. Better results can be obtained
by the evaluation of the different order variances.

The method proposed here is based on the asymptotic
expression$65), (68), and(74). By fitting the corresponding
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expressions to the different order variances of the measurdtie dislocation density and the total distortion created by the
profile for largeq values one can determine the dislocationdislocations/ 8°p). Since the third parameter appears in the
density, the average dislocation density fluctuation, andeading term in the imaginary part of the Fourier transform
(s’?)y. The method is demonstrated on a line proféee  of the profile, it accounts for the asymmetric broadening and
Fig. 1(a)] measured on a Cu single crystal which was tensilehrough the distortion it also reflects the internal stresses de-
deformed in thg 100] direction up to 37 MPa stress. The veloped in the crystal. On the basis of the result obtained for
diffraction vectorg=(200).(The profile has been published the Fourier transform of the broadened profile the asymptotic
earlier by Unga et al?® Figures 1b), 1(c), and 1d) show  properties of the scattered intensity are also determined.
the second-, third-, and fourth-order variances verpusth The theory outlined gives only the first three terms in the
the fitted functiong65), (68), and(74) (dotted liney, respec-  series expansion of the Fourier transform of the Bragg peak
tively. It can be seen that for about 100 data points the meaand the behavior of the scattered intensity for laggealues.
sured data are very accurately described by the asymptoticonsequently, in contrast to the theories of Krivogtazl.
formulas. Consequently the scatter in the parameters is sigtnd Wilkens developed for certain specific dislocation distri-
nificantly smaller compared to the determination through théutions, the entire measured profile cannot be recovered on
Fourier coefficients. Another advantage of this method is thaits basis. A significant advantage of the present description
it contains the possibility of an internal checking; namely, method is that its results are not restricted by any assumption
the dislocation density can be determined from both theon the form of the dislocation distribution. The obtained re-

second- and fourth-order variances. sults follow directly from the expansion invariance of the
displacement fields of straight dislocations expressed by Eq.
CONCLUSIONS (19).

The theory developed in the present work gives an
asymptotic analytical expression for the Fourier transform of
the broadened x-ray diffraction peak of crystalline materials The author is grateful to Professor J. Lendvai, Professor
containing dislocations. It is shown that for a small FourierT. Unga, and Dr. L. Zsoldos for discussions and for their
parameter the line profile can be characterized by three patimulating support of this work. The financial support of
rameters: the average dislocation density, the average disI®TKA under Contract Nos. T 022968 and T 022976 is also
cation density fluctuation, and the average of the product odcknowledged.
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