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X-ray line broadening due to an inhomogeneous dislocation distribution

I. Groma
Department of General Physics, Eo¨tvös University Budapest, Budapest Mu´zeum krt. 6-8, P.O. Box 323, H-1445 Budapest, Hungary
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A general theory of x-ray line broadening caused by dislocations is presented. It is shown that the leading
terms determining the shape of the broadened line profile are independent of the actual dislocation distribution.
The intensity distribution can be characterized by average parameters of the dislocation configuration, like the
dislocation density, and its fluctuation. For the determination of these parameters a generalized form of
Wilson’s variance method is proposed.@S0163-1829~98!01513-6#
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INTRODUCTION

X-ray line broadening analysis is a frequently appli
method for the investigation of dislocation structures in d
ferent types of crystalline materials. During the last two d
cades several successful measurements were carried o
deformed single-crystalline and polycrystalline materi
~see, e.g., Unga´r et al.,1 Hecker et al.,2 and Klimanek and
Kuzel3! with this technique. More recent developments a
high-resolution x-ray diffraction investigations on the disl
cation structure of nanostructured Cu by Unga´r et al.4 and on
the misfit dislocation density in multilayers by Kagan
et al.,5 opening new perspectives in this field.

The first theory for describing the strain-induced Bra
peak broadening was proposed by Warren and Averbac6,7

By Taylor expansion of the Fourier coefficients of the pe
they have concluded that the strain-induced broaden
scales with the space average of the square of the stra
was pointed out by Krivoglazet al.8–10 that if the strain is
due to dislocations, the Warren-Averbach method canno
applied. For a completely random dislocation distributi
they worked out an analytical expression. A serious prob
with their result is, however, that the Fourier coefficien
diverge logarithmically if the crystal size goes to infinit
This problem was first resolved by Wilkens11–16by introduc-
ing the concept of the restricted random dislocation distri
tion. For small Fourier coefficients the expression derived
Wilkens has the same form as that obtained by Krivog
et al., but the crystal size is replaced by the introduced c
relation length. Besides the somewhat artificial foundation
the restricted random dislocation distribution a significa
shortcoming of the Wilkens theory is that it predicts sy
metrical line profiles in contrast with experiment
evidence.1 Although within the framework of the theory o
Wilkens the observed asymmetric broadening can be un
stood in terms of the quasicomposite model,1 its disadvan-
tage is that it is based on severalad hocassumptions. Fur-
thermore, as was shown by Gaa´l17 a randomly distributed
polarized dislocation dipole assembly also causes an as
metric profile, and so asymmetric broadening can appear
der more general conditions than those considered in
quasicomposite model. Recently, Levine and Thomso18

have proposed an alternative model to overcome the prob
of crystal size dependence by the introduction of finite s
coherent blocks.
570163-1829/98/57~13!/7535~8!/$15.00
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In Refs. 19 and 20 the source of the asymmetry was
vestigated in terms of the dislocation dipole polarization. U
der more general conditions than in the earlier models
asymptotic expression was deduced for the Fourier coe
cients. The mathematical foundation of the theory outlined
this paper is similar to the model published earlier. Howev
it is shown that the result obtained earlier is valid only if t
dislocation-dislocation correlation is weak enough. T
present study is based only on the analytical properties of
displacement field of straight dislocations, and no assum
tion is made on the actual form of the dislocation distrib
tion. As a result of this, it can be applied for the inhomog
neous dislocation distribution frequently observed
experimental investigations.

For the determination of the three parameters characte
ing the inhomogeneous dislocation distribution an evaluat
method is proposed which is a generalization of the varia
method first proposed by Wilson21 ~see also Langford22!.

SCATTERED INTENSITY IN TERMS OF DISLOCATION
DENSITY FUNCTIONS

Let us consider a system ofN uniform atoms positioned
at the pointsRW i i 51, . . . ,N. Within the framework of the
kinematic scattering theory, the scattered intensityI (kW ) has
the form

I ~kW !5C (
j ,l 51

N

exp@ ikW ~RW j2RW l !#, ~1!

wherekW is the scattering vector, andC is the atomic scatter-
ing factor, which can be taken as constant in the probl
under consideration. For a deformed single crystal, after
glecting the second-order terms from Eq.~1! one gets that

I ~sW !5
C

VE dn3E dr3exp$2p igW @uW ~rW1nW /2!2uW ~rW2nW /2!#%

3exp~ isWnW !, ~2!

whereuW (rW) is the displacement field,V is the volume of the
crystal, andsW5kW 22pgW . Here the reciprocal lattice vectorgW
was introduced. As can be seenI (sW) is proportional to the
Fourier transform of the function
7535 © 1998 The American Physical Society
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7536 57I. GROMA
A~nW !5
1

VE dr3exp$2p igW @uW ~rW1nW /2!2uW ~rW2nW /2!#%, ~3!

in which nW is the Fourier parameter. First its properties a
investigated.

In order to obtain the form ofA(nW ) due to a dislocation
network, a system ofN parallel straight dislocations is con
sidered with line vectors parallel to thez axis. Denoting the
position of thei th dislocation byrW i in thexy plane, the total
displacement field at the pointrW is

uW ~rW !5(
j 51

N

uW sing~rW2rW j !, ~4!

whereuW sing(rW) is the displacement field of a single disloc
tion. After substituting Eq.~4! into Eq. ~3! we get that

A~nW !5
1

FE )
j 51

N

@12B~rW2rW j ,nW !#dr2, ~5!

whereF is the cross section of the crystal, and the notati

B~rW,nW !512exp$2p igW @uW sing~rW1nW /2!2uW sing~rW2nW /2!#%
~6!

is introduced. Expression~5! can be transformed into a
power series ofB:

A~nW !5
1

FE dr2F12(
j 51

N

B~rW2rW j ,nW !1
1

2(j Þ l

N

B~rW2rW j ,nW !

3B~rW2rW l ,nW !2
1

6 (
j Þ lÞm

N

B~rW2rW j ,nW !B~rW2rW l ,nW !

3B~rW2rWm ,nW !1•••G . ~7!
n

e

n

The above form ofA(nW ) allows the introduction of differ-
ent order density functions frequently used in statistical m
chanics. Taking the statistical average of several disloca
configurations the sums in Eq.~7! can be replaced by
weighted integrals, leading to the formula

A~nW !5
1

FE F12E w~1!~rW1!B~rW2rW1 ,nW !dr1
2

1
1

2E E w~2!~rW1 ,rW2!B~rW2rW1 ,nW !

3B~rW2rW2 ,nW !dr1
2dr2

22
1

6E E E w~3!~rW1 ,rW2 ,rW3!

3B~rW2rW1 ,nW !B~rW2rW2 ,nW !B~rW2rW3 ,nW !dr1
2dr2

2dr3
2

1••• Gdr2, ~8!

where wk(rW1 ,rW2 , . . . ,rWk) stands for thekth-order density
function. It is important that the different order density fun
tions are not independent from each other, namely,

w~k21!~rW1 ,rW2 , . . . ,rWk21!

5
1

N2kE w~k!~rW1 ,rW2 , . . . ,rWk21 ,rWk!drk
2 . ~9!

The expressions obtained above are valid only if all t
dislocations have the same Burgers vectors. In a deform
crystal the net Burgers vector is close to zero, and so di
cations with both positive and negative signs have to be
lowed for. Equation~8! can be easily generalized for thi
case:
A~nW !5
1

FE dr2H 12E dr1
2@w1

~1!~rW1!B~rW2rW1 ,nW !1w2
~1!~rW1!B* ~rW2rW1 ,nW !#1

1

2E dr1
2E dr2

2@w11
~2! ~rW1 ,rW2!B~rW2rW1 ,nW !

3B~rW2rW2 ,nW !1w22
~2! ~rW1 ,rW2!B* ~rW2rW1 ,nW !B* ~rW2rW2 ,nW !1w12

~2! ~rW1 ,rW2!B~rW2rW1 ,nW !B* ~rW2rW2 ,nW !

1w21
~2! ~rW1 ,rW2!B* ~rW2rW1 ,nW !B~rW2rW2 ,nW !#1•••J , ~10!
s

where w1
(1) ,w2

(1) ,w11
(2) (rW1 ,rW2),w22

(2) (rW1 ,rW2), and
w12

(2) (rW1 ,rW2) are the one- and two-particle density functio
with positive and negative signs, respectively, and the as
isk denotes the complex conjugate.

TERMS IN A„n¢ … PROPORTIONAL
TO THE FIRST-ORDER DENSITY FUNCTIONS

As a first step the leading term of expression~10!,

f 0~rW,nW !5E w1
~1!~rW1!B~rW2rW1 ,nW !dr1

2 , ~11!
s
ter-

is investigated. By the variable substitutionrW1→rW2rW1 one
obtains

f 0~rW,nW !5E w1
~1!~rW2rW1!B~rW1 ,nW !dr1

2 . ~12!

As it was proposed by Warren and Averbach6 one can try
to approximatef 0(rW,nW ) with a power series. However, a
was first pointed out by Krivoglaz and Ryboshapka8 at nW
50 the second derivative off 0(rW,nW ),
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]2

]ni]nj
f 0~rW,nW !unW 50

52E w1
~1!~rW2rW1!4p2glb l i ~rW1!gmbm j~rW1!dr1

2 ,

~13!

is infinite. In the above expression the distortion tensor

b i , j5
]~uW sing! i~rW !

]r j
~14!

is introduced. The divergence in expression~13! is due to the
fact that the distortion created by a dislocation at the dista
urW1u is inversely proportional tourW1u, and so the integrand in
Eq. ~13! has a 1/urW1u2-type singularity at the vicinity ofrW1
50. ~For avoiding divergence atrW1→` it is assumed tha
w1

(1) goes to zero at infinity. This restriction will be lifte
later.!

The calculation method proposed here is based on
realization of the fact that if the coefficient beforeB(rW1 ,nW ) in
the integral of expression~12! was zero atrW150, the diver-
gence in Eq.~13! would not appear. So if instead off 0(rW,nW )
the expression

f 1~rW,nW !5E $w1
~1!~rW2rW1!2w1

~1!~rW22rW1!%B~rW1 ,nW !dr1
2

~15!

is considered, the above singularity in the second deriva
of f 1(rW,nW ) does not appear. The newly definedf 1(rW,nW ) and
f 0(rW,nW ) are not independent from each other. In order to
their relation let us rewrite expression~15! in the form

f 1~rW,nW !5E w1
~1!~rW2rW1!B~rW1 ,nW !dr1

22E w1
~1!~rW22rW1!

3B~rW1 ,nW !dr1
2 . ~16!

With the variable substitution 2rW1→rW1 in the second term o
Eq. ~16! one gets

f 1~rW,nW !5E w1
~1!~rW2rW1!B~rW1 ,nW !dr1

22
1

4E w1
~1!~rW2rW1!

3B~rW1,2nW !dr1
2 , ~17!

where the relation

B~rW1/2,nW !5B~rW1,2nW ! ~18!

is applied. Equation~18! is a consequence of the fact that t
displacement field of any type of straight dislocation in
elastic medium fulfills the relation

uW disl~rW2!2uW disl~rW1!5uW disl~krW2!2uW disl~krW1!, ~19!

wherek is an arbitrary constant~for verification see the dis
location displacement field in an anisotropic media in R
23!. From the comparison of Eqs.~12! and~17! we arrive at

f 1~rW,nW !5 f 0~rW,nW !2
1

4
f 0~rW,2nW !. ~20!
ce

e

e

e

f.

Since the first two derivatives off 1(rW,nW ) are finite for small
nW ’s, it can be approximated by a second-order polynomia

f 1~rW,nW !5
]

]ni
f 1~rW,nW !U

nW 50

ni1
1

2

]2

]ni]nj
f 1~rW,nW !U

nW 50

ninj

5ai
~1!ni1ai , j

~2!ninj . ~21!

Equations~20! and ~21! lead to the function equation

f 0~rW,nW !2
1

4
f 0~rW,2nW !5ai

~1!~rW !ni1ai , j
~2!~rW !ninj . ~22!

Its general solution has the form

f 0~rW,nW !52ai
~1!~rW !ni2

1

ln~2!
ai , j

~2!~rW !ninj ln~Anlnl !

1Ci , j~rW !ninj , ~23!

where the termCi , j (rW)ninj is the solution of the homoge
neous equation

f 0~rW,nW !2
1

4
f 0~rW,2nW !50. ~24!

As a consequence of this the coefficientCi , j (rW) is not deter-
mined by Eq.~22!. In order to obtain its value the expressio
of f 0(rW,nW ) in Eq. ~12! has to be analyzed. Since the seco
derivative of

t0~rW,nW !5 f 0~rW,nW !2
1

ln~2!
ai , j

~2!~rW !ninj ln~Anlnl ! ~25!

is already finite atnW 50,

Ci , j~rW !5
]2

]ni]nj
t0~rW,nW !unW 50 . ~26!

It is important to note that as has been obtained by Krivog
and Ryboshapka8 Ci , j (rW) is proportional to the logarithm o
the crystal size. However, as will be shown later the high
order terms in expression~10! can cancel this logarithmic
divergence. In the expression off 1(rW,nW ) in Eq. ~21! only the
formal values of the coefficientsai

(1)(rW) and ai , j
(2)(rW) are

given. The actual expression forai
(1)(rW) can be obtained by

calculating the first derivative off 0(rW,nW ):

aj
~1!~rW !5 ipglE w1

~1!~rW2rW1!b l , j~rW1!dr1
2 , ~27!

which can be interpreted as

aj
~1!~rW !5 ipglb l , j

tot 1~rW !, ~28!

whereb(rW) l , j
tot 1 is the total distortion at the pointrW created by

all the positive sign dislocations.
For determining the coefficientai , j

(2)(rW) on the basis of Eq.
~16! the expression

aj ,k
~2!~rW !52E 2p2$w1

~1!~rW2rW1!2w1
~1!~rW22rW1!%

3glb l , j~rW1!gmbm,k~rW1!dr1
2 ~29!
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has to be analyzed. Introducing the polar coordinates (r 1 ,w)
for the variablerW1, Eq. ~29! gets the form

aj ,k
~2!~rW !5 lim

e→0
2E

e

`

dr1E
0

2p

dw2p2$w1
~1!~rW2rW1!

2w1
~1!~rW22rW1!%glgm

K j ,k,l ,m~w!

r 1
, ~30!

whereK j ,k,l ,m(w) is a trigonometric polynomial ofw deter-
mined by the actual form of the displacement field of t
dislocation under consideration. In order to avoid the sin
larity in the integrand aroundr 150 a circular area with ra-
diuse is excluded from the integral. By the 2r 1→r 1 variable
substitution in the second term of the integral~30! one ob-
tains

aj ,k
~2!~rW !5 lim

e→0
2E

e/2

e

dr1E
0

2p

dw2p2w1
~1!~rW2rW1!

3glgm

K j ,k,l ,m~w!

r 1
. ~31!

Since the integral has to be calculated for an area close to
origin of the coordinate system,w1

(1)(rW2rW1) can be approxi-
mated by its value atrW150, and so

aj ,k
~2!~rW !522p2ln~2!glgmw1

~1!~rW !E
0

2p

K j ,k,l ,m~w!dw

52 ln~2!F j ,k,l ,mw1
~1!~rW !. ~32!

K j ,k,l ,m(w) is a trigonometric polynomial; therefore the valu
of F j ,k,l ,m can always be determined analytically. In mo
applications nW is parallel to the diffraction vectorgW ,
and so here only the explicit expression forL
5F j ,k,l ,mgjgkglgm /ugW u4 in case of isotropic media is give
~for more details see Ref. 13!:

L5
p

2
CugW u2ubW u2 sin2C, ~33!

in which for screw dislocations

C5 cos2C ~34!

and for edge dislocations

C5 sin2C
1

8~12n!2
@124n18n214~122n!cos2g#,

~35!

wheren is the Poisson ratio,C is the angle betweengW and
the dislocation line vectorlW, andg is the angle between th
vectorsbW 2 lW( lWbW ) andgW 2 lW( lWgW ).

The method outlined above can be generalized for
determination of higher-order terms in the expansion
f 0(rW,nW ). Without going into the details, if we introduce th
function series defined by the recursive formula
-

he

t

e
n

nk~rW,rW1!5nk21~rW,rW1!2
1

2k21
nk21~rW,2rW1!,

n0~rW,rW1!5w1
~1!~rW2rW1!, ~36!

the function

f k~rW,nW !5E nk~rW,rW1!B~rW1 ,nW !dr1
2 ~37!

can be approximated by akth-order polynomial ofnW since its
first k derivatives are finite atnW 50. After similar steps as
applied above one arrives at the following structure
f 0(rW,nW ):

f 0~rW,nW !5a~1!~rW !n1a~2!n2ln~n!1C~2!n2

1(
j 53

N

@d~ j !~rW !nj ln~n!1C~ j !~rW !nj #, ~38!

where for the sake of simplicity only then5unW u dependence
of f 0(rW,nW ) is indicated. The coefficientsd( j )(rW) andC( j )(rW)
depend on different order derivatives ofw1(rW). Furthermore,
it can be shown that

E d~ j !~rW !dr250. ~39!

The contribution of dislocation with negative sign Bu
gers vector toA(nW ) can be given by the same type of expre
sion as Eq.~38!.

TERMS IN A„n¢ … PROPORTIONAL
TO THE SECOND-ORDER DENSITY FUNCTIONS

In this section the analytical behavior of the terms prop
tional to the second-order dislocation distribution functio
in Eq. ~10! is investigated. Let us introduce the function

g~rW,nW 1 ,nW 2!5E dr1
2E dr2

2w11
2 ~rW2rW1 ,rW2rW2!

3B~rW1 ,nW 1!B~rW2 ,nW 2!. ~40!

It can be seen that the third term in Eq.~10! is equal to
g(rW,nW ,nW ). Since for both variablesnW 1 ,nW 2 g(rW,nW 1 ,nW 2) has the
same structure asf 0(rW,nW ), for obtaining a serial expansion o
g(rW,nW 1 ,nW 2) a procedure similar to that outlined in the prev
ous section can be applied. Without going into the details
the calculation one gets that the leading terms are~only for nW
parallel togW )

g~rW,nW ,nW !52k~rW !n21 is~2!~rW !n3 ln~n!1 iQ1~rW !n3

1L2w11~rW,rW !n4 ln2~n!1Q2~rW !n4 ln~n!

1Q3~rW !n4, ~41!

where

s~2!~rW !5pgl

nm

n
LE $w11

~2! ~rW,rW2rW1!1w11
~2! ~rW2rW1 ,rW !%

3b l ,m~rW1!dr1
2 . ~42!
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The coefficientsk(rW), Q1(rW), Q2(rW), andQ3(rW) are compli-
cated functions of the two-particle density function. Sin
they do not have an easily interpretable physical mean
their actual values are not given here.

SERIES EXPANSION OF A„n¢ … UP TO n¢ 4 TERMS

From Eqs.~10!, ~38!, ~39!, and~42! the leading terms in
the series expansion ofA(nW ) have the form

A~nW !511L^r&n2ln~n!2^C~2!2k8&n21
i

2
^s8~2!&n3ln~n!

1 i ^Q18&n
31

1

2
L2^r8~2!&n4ln2~n!1^Q28&n

4ln~n!

1^Q38&n
4, ~43!

where^•••& indicates the space average (1/F)*•••d2r ,

r~rW !5w1
~1!~rW !1w2

~1!~rW ! ~44!

is the dislocation density,

r~2!~rW !5w1,1
~2! ~rW,rW !1w2,2

~2! ~rW,rW !1w1,2
~2! ~rW,rW !1w2,1

~2! ~rW,rW !
~45!

is the two-particle total dislocation density, and

s8~2!~rW !5 ipgl

nm

unW u
LE k~2!~rW,rW2rW1!b l ,m~rW1!dr1

2 , ~46!

in which the notation

k~2!~rW1 ,rW2!5w1,1
~2! ~rW1 ,rW2!1w1,1

~2! ~rW2 ,rW1!2w2,2
~2! ~rW1 ,rW2!

2w2,2
~2! ~rW2 ,rW1!1w2,1

~2! ~rW1 ,rW2!2w2,1
~2! ~rW2 ,rW1!

2w1,2
~2! ~rW1 ,rW2!1w1,2

~2! ~rW2 ,rW1! ~47!

is introduced. The coefficientsk8(rW), Q18(rW), Q28(rW), and
Q38(rW) have the same meaning as the corresponding co
cients without a prime in Eq.~42!, but they contain the con
tributions of each type of two-particle density function. It
important to note that the first term in Eq.~38! proportional
to n does not have a contribution toA(nW ) because the spac
average of the distortion created by a dislocation is ze
Another important feature of expression~43! is that the co-
efficient of the termn2 is the difference of̂ C(2)& and^k8&.
As it was mentioned earlier̂C(2)& diverges logarithmically
with the crystal size. However, if it is assumed that due
the correlation between the dislocations^k8& shows the same
type of divergence, it can cancel the crystal size depende
which appears without taking into account the higher-or
distribution functions. A similar result has been obtained fi
by Wilkens13 for the restricted random dislocation distrib
tion and by Gaa´l17 for dislocation dipoles. The advantage
the analysis outlined above is that the result is obtained
dependently from the actual form of the dislocation corre
tion function.

It is useful to rewrite expression~42! in logarithmic form.
By applying the identity:
g,

fi-

o.

o

ce
r
t

-
-

ln~11a11a21••• !5a11a22
1

2
a1

2
•••, ~48!

we conclude that up to fourth order inn

ln@A~nW !#5L^r&n2lnS n

R1
D 1 i ^s~2!&n3lnS n

R2
D 1

1

2
L2@^r~2!&

2^r&2#n4lnS n

R3
D lnS n

R4
D , ~49!

whereR1, R2, R3, andR4 are parameters with length dimen
sion. Their actual values are complicated functions of
different order dislocation density functions. The advanta
of the logarithmic form is that if the dislocation distributio
is nearly random, the value of^r (2)&2^r&2 is smaller than
^r (2)& and so in Eq. ~49! the term proportional to
n4ln(n/R3)ln(n/R4) can be neglected besiden2ln(n/R1) up to
largern values than in Eq.~43!.

The generalization of the above result for more than o
type of dislocation system is straightforward. It can be o
tained that in Eq.~49! L has to be replaced by the average
the L values of the different dislocations.

WEAK CORRELATION

It is useful to investigate the values of the parameters
Eq. ~49! if the correlations are weak in the dislocation sy
tem. A weak correlation means that the contributions of c
relation functions

Ti , j~rW1 ,rW2!5wi , j
~2!~rW1 ,rW2!2wi

~1!~rW1!wj
~1!~rW2!,

i , j 51,2, ~50!

to the values of̂ r (2)& and ^s(2)& are small; i.e., from this
point of view the two-particle distribution functions can b
approximated by the product of two one-particle distributi
functions. The correlations, however, can never be co
pletely negligible, because it would result in a crystal s
dependence as was discussed earlier.

If Ti , j (rW1 ,rW2) is neglected in Eqs.~44! and ~45!, we find
that

r~2!~rW1 ,rW2!5r~rW1!r~rW2!, ~51!

and so

^r~2!&2^r&25^~r!2&2^r&25Š~r2^r&!2
‹. ~52!

This means that in the case of a weak correlation in Eq.~49!
the coefficient of the termn4ln2(n) is proportional to the
scatter of the dislocation distribution. In a similar way for
weak correlation from Eqs.~46! and ~47!,

^s8~2!&52Lpgl

nm

n E dr2E dr1
2r~rW !$w1~rW2rW1!

2w2~rW2rW1!%b l ,m~rW1!

52Lpgl

nm

n
^b totr&. ~53!
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BEHAVIOR OF THE DIFFERENT ORDER MOMENTS
OF THE INTENSITY DISTRIBUTION

In the previous sections the analytical behavior of
Fourier transform of the Bragg peak was investigated. In
section the connection between the obtained analytical
pression~43! and the different order moments of the sc
tered intensity distributionI (sW) is established. As will be
demonstrated later this leads to an evaluation method w
makes it possible to determine the characteristic parame
of the dislocation distribution with less scatter than the e
lier applied ones.

Since in most investigations only the dependence of
completeI (sW) on the diffraction angleu is determined, in the
following only the reduced intensity distribution

I ~q!5E I ~qgW /ugu1sW'!d2s' ~54!

will be considered. In the above expression the integra
has to be carried out for a plane perpendicular to the diffr
tion vectorgW , andq54p/l@sin(u)2sin(u0)# whereu0 is the
Bragg angle.

As is known thekth-order moment of the scattered inte
sity

mk5E
2`

`

qkI ~q!dqY E
2`

`

I ~q!dq ~55!

can also be determined from the Fourier transform ofI (q).
Namely,

mk5~ i !k
1

A~0!

dk

dnk
A~n!U

n50

, ~56!

which can be proved as follows:

E
2`

`

qkI ~q!dq5E
2`

` E
2`

`

qkA~n!exp~ inq!dndq

5E
2`

` E
2`

`

A~n!~2 i !k
dkexp~ inq!

dnk
dndq

5E
2`

` E
2`

`

~ i !k
dkA~n!

dnk
exp~ inq!dndq

52p~ i !kE
2`

` dkA~n!

dnk
d~n!dn

52p~ i !k
dk

dnk
A~n!U

n50

. ~57!

Since the second and higher derivatives ofA(n) given by
the expression~43! have infinite values atn50, in case of
line broadening due to dislocations the second- and hig
order moments of the scattered intensity are also infinite.
a result of this the moments cannot be directly used for
determination of the characteristic parameters of the dislo
tion configuration. In order to obtain applicable results t
behavior of the quantities
e
is
x-
-

ch
rs

r-

e

n
c-

r-
s
e
a-
e

vk~q8!5E
2q8

q8
qkI ~q!dqY E

2`

`

I ~q!dq ~58!

has to be investigated.@vk(q8) is referred to as thekth-order
variance.# As a first step the properties ofv2(q8) are ana-
lyzed. For overcoming the singularities mentioned above
us introduce the function

A1~n!5A~n!2
1

22
A~2n! ~59!

and its Fourier transform

I 1~q!5E
2`

`

A1~n!exp~ inq!dn. ~60!

The second derivative ofA1(n) at n50 is already finite.
Applying the corresponding Eq.~56! type formula and using
the expression~43! we obtain that

q8→`
lim E

2q8

q8
q2I 1~q!dq522p

d2

dn2
A1~n!U

n50

54pL^r& ln~2!. ~61!

On the other hand, from the definition~60! of I 1(q) one can
find that

E
2q8

q8
q2I 1~q!dq5E

2q8

q8 E
2`

`

q2S A~n!2
1

4
A~2n! D

3exp~ inq!dndq. ~62!

Splitting the integral on the right-hand side of the abo
equation into two integrals and introducing an→2n variable
substitution in the second one we get

E
2q8

q8
q2I 1~q!dq5E

2q8

q8
q2F I ~q!2

1

8
I S q

2D Gdq

5E
2q8

q8
q2I ~q!dq2E

2q8/2

q8/2
q2I ~q!dq

5@v2~q8!2v2~q8/2!#E
2`

`

I ~q!dq.

~63!

From Eqs.~61! and~63! one can conclude that forq8 values
large enough the quantityv2(q8) fulfills the equation

v2~q8!2v2~q8/2!52L^r& ln~2!. ~64!

Its general solution has the form

v2~q8!52L^r& lnS q8

q0
D , ~65!

whereq0 is a constant the value of which is not determin
by Eq.~64!. This means that the second-order moment of
line profile obtained on a dislocated crystal diverges logar
mically with q8. Consequently the asymptotic behavior
the intensity distribution has the form
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I ~q!5L^r&
1

uqu3
1•••. ~66!

A similar result was obtained for a single screw dislocat
by Wilson21 and for a restricted random dislocation distrib
tion by Wilkens.14 The present analysis shows, however, t
the Eq.~66! type decay of the scattered intensity is indepe
dent of the actual form of the dislocation distribution.

The asymptotic properties ofv3(q8) can be obtained by a
similar method outlined above. The only difference is that
this case the behavior of the function

A2~n!5A1~n!2
1

23
A1~2n! ~67!

has to be analyzed in which the functionA1(n) is defined by
Eq. ~59!. It leads to the result that for largeq8 values

v3~q8!526^s8~2!& lnS q8

q1
D , ~68!

whereq1 is a constant the value of which cannot be det
mined from Eq.~68!. It follows that beside the term~66!
there is aq/uqu5 antisymmetric term in the decay of the in
tensity distribution, i.e.,

I ~q!5L^r&
1

uqu3
23^s8~2!&

q

uqu5
1••• . ~69!

In order to determine the contribution of the fourth-ord
term in A(n) to the intensity distribution the function

A3~n!5A2~n!2
1

24
A2~2n!2

1

24S A2~2n!2
1

28
A2~4n!D

~70!

and its Fourier transformI 3(q) have to be introduced. Sinc
the first four derivatives ofA3(n) are finite atn50, the
fourth-order moment ofI 3(q) can be determined from th
relation ~56!:

m4
~3!~q8!5E

2q8

q8
q4I 3~q!dqY E

2`

`

I ~q!dq596L2^r8~2!&.

~71!

which is certainly valid only for largeq8 values. On the othe
hand,m4

(3)(q) can be given withv4(q) as follows:

m4
~3!~q8!5v4~q!28v4~q/2!121v4~q/4!222v4~q/8!

18v4~q/16!. ~72!

For largeq values Eqs.~71! and~72! define a function equa
tion for v4(q), the general solution of which is

v4~q!5c1q1c2q2112L2^r8~2!& ln~q/q2!ln~q/q3!,
~73!

where c1, c2, q2, and q3 are parameters which cannot b
determined from Eqs.~71! and~72!. However, from Eq.~69!
one can find thatc150 andc25L^r&, i.e., for large enough
q values,

v4~q!5L^r&q2112L2^r8~2!& ln~q/q2!ln~q/q3!. ~74!
t
-

-

r

EVALUATION PROCEDURE

On the basis of the theoretical results obtained above
line profile analysis of the measured intensity distributi
can be carried out either on the measured profile itself or
its Fourier transform. The fitting of the expression~49! to the
Fourier transform of the profile, however, leads often to la
scatters in the parameters. This is due to the fact that exp
sion ~49! contains seven free parameters and it is valid o
for a few Fourier coefficients. Better results can be obtain
by the evaluation of the different order variances.

The method proposed here is based on the asymp
expressions~65!, ~68!, and~74!. By fitting the corresponding

FIG. 1. ~a! Line profile measured on a tensile deformed C
single crystal,t537 MPa~Ref. 20!. ~b! Second-order variance vsq
and the fitted expression~65!. ~c! Third-order variance vsq and the
fitted expression~68!. ~d! Fourth-order variance vsq and the fitted
expression~74!.
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expressions to the different order variances of the meas
profile for largeq values one can determine the dislocati
density, the average dislocation density fluctuation, a
^s8(2)&. The method is demonstrated on a line profile@see
Fig. 1~a!# measured on a Cu single crystal which was ten
deformed in the@100# direction up to 37 MPa stress. Th
diffraction vectorgW 5(200). ~The profile has been publishe
earlier by Unga´r et al.20! Figures 1~b!, 1~c!, and 1~d! show
the second-, third-, and fourth-order variances versusq with
the fitted functions~65!, ~68!, and~74! ~dotted lines!, respec-
tively. It can be seen that for about 100 data points the m
sured data are very accurately described by the asymp
formulas. Consequently the scatter in the parameters is
nificantly smaller compared to the determination through
Fourier coefficients. Another advantage of this method is t
it contains the possibility of an internal checking; name
the dislocation density can be determined from both
second- and fourth-order variances.

CONCLUSIONS

The theory developed in the present work gives
asymptotic analytical expression for the Fourier transform
the broadened x-ray diffraction peak of crystalline materi
containing dislocations. It is shown that for a small Four
parameter the line profile can be characterized by three
rameters: the average dislocation density, the average d
cation density fluctuation, and the average of the produc
,
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the dislocation density and the total distortion created by
dislocationŝ b totr&. Since the third parameter appears in t
leading term in the imaginary part of the Fourier transfo
of the profile, it accounts for the asymmetric broadening a
through the distortion it also reflects the internal stresses
veloped in the crystal. On the basis of the result obtained
the Fourier transform of the broadened profile the asympt
properties of the scattered intensity are also determined.

The theory outlined gives only the first three terms in t
series expansion of the Fourier transform of the Bragg p
and the behavior of the scattered intensity for largeq values.
Consequently, in contrast to the theories of Krivoglazet al.
and Wilkens developed for certain specific dislocation dis
butions, the entire measured profile cannot be recovered
its basis. A significant advantage of the present descrip
method is that its results are not restricted by any assump
on the form of the dislocation distribution. The obtained r
sults follow directly from the expansion invariance of th
displacement fields of straight dislocations expressed by
~19!.
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