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Cutoff parameters in London theory
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~Received 21 November 1997!

The exponential cutoff is used in London theory to calculate the magnetic field inside the vortex. In this
work, using London theory and new numerical solutions of the conventional Ginzburg-Landau equations, we
investigate the behavior of exponential cutoff parametera as a function of the reduced fieldb in the whole
range of magnetic fields. We find a different behavior of this parameter for low and high magnetic fields.
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I. INTRODUCTION

The effect of finite vortex core size in superconductors
very strong. Numerous publications are devoted to the st
of the vortex core since this cutoff effect provides explan
tions for recently published experimental data without ne
to resort to unconventional theories. The vortex structure
type-II superconductors has been studied, using Ginzb
Landau equations, for the cases of low and high magn
fields H, i.e., close toHc1 andHc2 which are the lower and
upper critical fields, respectively. For intermediate fie
London theory has provided the only detailed phenome
logical description for extreme type-II superconductors@the
Ginzburg-Landau~GL! parameterk5l/j obeysk@1, where
l is the penetration depth andj is the coherence length#.
Although London theory gives a good qualitative account
the vortex state in the restricted region (Hc1!H!Hc2), it
suffers from its singular property that the magnetic flux de
sity and the supercurrent density of an isolated vortex
verge at the center of the vortex, because the depressio
the order parameter to zero in this region is not accounted
London theory.

The London equation disregards the effect of the fin
size of the vortex core, which removes the logarithmic infi
ity of B(r ) at r i , where r i is the vortex position. AtH
!Hc2 this effect is accounted for by multiplication of th
London solution by a cutoff factor. Two common cutof
used in reciprocal space are the Bessel and Gaussian cu
The Bessel cutoff is derived from analytical approximatio
to Ginzburg-Landau theory nearHc1. The cutoff factor in the
London equation can be exp(2A2jG), whereG is the vec-
tor of a reciprocal lattice. However, we may use the Gauss
cutoff which is less accurate but more convenient for co
putations, by exp(2jv

2G2), where jv5aj. This factor a
was derived from GL theory nearHc2 as 1/4~Ref. 1! or 1/2
~Ref. 2! instead of 2 as proposed by Brandt at low magne
induction.3 Using London theory and a new precisio
Ginzburg-Landau solution,6 we show the behavior ofa for
all ranges of magnetic induction. We found the cutoff para
etera51 at Hc1 anda' 4

9 at Hc2.
This paper is partitioned as follows. Section II briefly r

views London theory where we show the field at the cen
of a single flux line. Section III describes the iteration pr
cedure to find the precision GL solution. Section IV prese
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the analytical approximation to the GL equations for isot
pic superconductors at low inductions. In Sec. V our res
for the parametera is discussed.

II. LONDON THEORY

The London approximation is frequently used to descr
the low-induction behavior of superconducting materials.
contrast to GL theory, London theory has an advantage
being a linear theory. However, it does have the drawbac
being intrinsically divergent. London theory contains sole
magnetic contributions to the free energy:

FLon5E d3rB ~r !21l2S F0

2p
¹f~r !2A~r ! D 2

, ~1!

where the local magnetic fieldB(r )5¹3A(r ). f is the
phase of an order parameter of constant magnitude, and
presence of the flux lines is controlled by¹f. Minimizing
the free energy with respect to the vector potential, the L
don equation is obtained,

B~r !2l2¹2B~r !25F0(
i

d~r2r i !, ~2!

which enables the free energy~1! to be written as

FLon5(
i
E dr iB~r i !. ~3!

The London equation is easily solved wit
B(r )5F0( iK0@(ur2r i u)/l#. While this models well the flux
line interaction for largek systems, the intrinsic self-field is
logarithmically divergent. The divergences are due to
absence of flux line cores within London theory. One a
proach to these divergences is to replace thed function in
the London equation~2! by a short-ranged function, such a
d(r2r i)→S(r2r i)5exp@(r2r i)

2/jv
2#.

We shall investigate some of the consequences of the
off chosen, and as the London free energy only conta
terms involving the magnetic induction, we chose to fix a
available parameters using known~or calculable! results in-
volving the magnetic induction.

The quantity we investigate is the magnetic induction
the center of straight flux linesB(0), andinvestigate possible
cutoffs within an isotropic system. We use cylindrical coo
7477 © 1998 The American Physical Society



d
n-

ld

n

ff
h

of

f

t
e

g
n

ee

s

rs

pa-
t

nter
e
toff

c-
wo

of
,

ry
lent
ut-
-

ion

f

de
au
n.
m

ob-

d-

7478 57BRIEF REPORTS
dinates (r,u,z), with the average magnetic induction aligne
along theẑ axis. The Fourier transform of the magnetic i
duction associated with a single flux line is

B̃~G!5
1

11l2G2 . ~4!

This shows the logarithmic divergence of the self-fie
Bself(r) when a cutoff is not used. Replacing thed function
in the London equation as described above, the diverge
can be removed,B̃(G)→ S̃(G)B̃(G), and London theory
can be regularized.

We shall initially investigate an exponential cuto
S̃(G)5exp(2jv

2G2), wherejv5aj, j is the coherence lengt
l/k, anda is a constantO(1) to be determined.

The field at the center of a single flux line is then5

Bz~0!5
F0

2pl2E
0

`kdk

2p

exp~2jv
2k2!

11l2k2

5
1

2k2 exp~2a2/k2!E1~a2/k2!, ~5!

where E1(x) is the exponential integral functionE1(x)
5*x

`exp(2u)du/u, and g is the Euler constantg
50.577 21 . . . . Fork@ and a;O(1), then usingE1(x)5
2g2 ln(x)2(n51

` (21)nxn/(n•n!) for x!1 the self-field is

Bz~0!5
1

2
k22@2 ln~a2/k2!1g#. ~6!

Hu4 solved the isotropic GL expressions in the limit
largek. Two constantsc0 andc1 were found as

B~0!5k22~ lnk1c0!Hc2
, ~7!

Hc1
5

1

2
k22~ lnk1c1!Hc2

.

Numerically integrating the GL equations, in the limit o
largek it was found thatc0;20.282 andc1;0.497. Equat-
ing Eqs.~6! and ~7! the parametera can be chosen so tha
London theory mimics well the presence of the core. Giv
that Hc2

5F0 /2pj2, thena5exp2(c01g/2);1.0.

III. ITERATION PROCEDURE

The calculation by Hu involves numerically integratin
the isotropic GL equations for a single flux line. An iteratio
procedure proposed by Brandt6 allows the evaluation of
properties within a spatially periodic structure. The GL fr
energy is written in terms of the densityw5uwu2 and the
supervelocityQ5A2¹f/k. These real invariant function
are expressed as Fourier series

w~r !5(
K

aK@12cos~K•r !#,

B~r !5B̄1(
K

bKcos~K•r !,

Q~r !5QA~r !1(
K

bK

ẑ3K

K2
sin~K•r !,

~8!
ce

n

with r5(x,y); the sums are over all reciprocal lattice vecto
KmnÞ0, B̄ is the average induction, andQA(r ) is the super-
velocity of the Abrikosov solution, correct atHc2

. Rather

than trying to find a solution by minimizingf (B,k,aK ,bK)
with respect to a finite number of Fourier componentsaK
and bK , Brandt proposes an iteration procedure for the
rametersaK andbK . This procedure is very stable with fas
convergence for anyB̄ andk.

We use this procedure to calculate the field at the ce
of a vortex,BGL(0). GL theory models the core well, and w
use the GL result to help us determine the appropriate cu
in a similar manner to the previous section.

Unlike GL theory, London theory is linear, and the indu
tion at the center of a flux line can be separated into t
components

BLon~r i !5Bself~r i !1Bint~r i !, ~9!

where Bself is the self-induction andBint is the interaction
field. The interaction field does not diverge, and is the sum
all the contributions from the flux lines
Bint(r i)5( j Þ iK0(ur j2r i u/l). For simplification we take
r i50.

It was shown in the previous section that London theo
could be regularized in a manner that gave results equiva
to GL expressions. With this motivation we choose the c
off such thatBLon(0)5BGL(0). Using a fast convergent ex
pansion for the interaction field,7 it is found that the self-
induction behaves as

Bself~0!5BGL~0!2Bint~0!5k22Hc2
~ lnk1d! ~10!

for all fields in the limit of largek. The parameterd is a
function of the reduced average magnetic induct
B(r )/Hc2

5b. The exponential cutoffS̃(k) then contains a

parametera that must also depend onb. Comparing Eqs.~6!
and ~10! we chosea(b)5exp2(d(b)1g/2). This parameter
is shown in Fig. 1, and is approximately 1 in the limit o
small b but reduces to' 4

9 asb→1.

IV. ANALYTICAL GL EQUATION

Clem has used a variational trial wave function to provi
a good analytical approximation to the Ginzburg-Land
equations for isotropic superconductors at low inductio8

Writing the normalized order parameter in the for
C(r)5 f (r)exp(2if) where f (r)5r/R5r/(r21jv

2)1/2, an
inhomogeneous equation for the vector potential can be
tained, whose solution is

Af~r!5
F0

2prF12
RK1~R/l!

jvK1~jv /l!G , ~11!

whereKn(x) is a modified Bessel function. The correspon
ing magnetic field is then

Bz~r!5
F0

2pljv

K0~R/l!

K1~jv /l!
. ~12!
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This method has been extended to larger fields and an
tropic superconductors by Haoet al.9.

Here, we initially investigate Clem’s expression for th
magnetic field. The magnetic field at the center of a vorte
just

Bz~0!5
F0

2pljv

K0~jv /l!

K1~jv /l!
. ~13!

Using K0(x);2 ln(x)2g1ln(2) and K1(x);1/x when x
!1, for largek systems the magnetic field at the center
the vortex becomesBz(0)5k22Hc2

@2 ln(a/k)2g1ln2#.

The variational parameterjv is written in the formjv5aj
andg is the Euler constant.

FIG. 1. The cutoff parametera as a function of the reduced fiel
b5B(r )/Hc2

for the Ginzburg-Landau constant,k570, on~a! lin-
ear scale and~b! logarithmic scale.
o-

is

f

Again, using Hu’s expression forBz(0) we can determine
the appropriate value of the variational constantb. A single
flux line then requiresb5exp2(g1C02ln2);3/2.

This variational calculation indicates a possible improv
ment for the cutoff function used within London theory. Th
Fourier transform of the magnetic field~12! is

B̃z~G!5
F0K1~Gjv!

klK1~jx /l!
. ~14!

In the limit jv!l this expression resembles London theo
as

Bz~G!5
F0

S

gK1~g!

11l2G2 , g5bj~G21l22!1/2. ~15!

This is the London expression with the cutoff functio
S̃(k)5gK1(g) and shows for largek that the divergent Lon-
don expression can be regularized using a ‘‘Bessel functio
cutoff. However, we now have the situation were the var
tional GL parameter is exactly the same as the Lond
theory cutoff parameter. We follow the same method as
previous section to determine the cutoff parameter. The
off parameter is chosen so that the correct magnetic fiel
the center of the flux line is obtained within London theor
Therefore, using similar methods to the previous secti
London theory can be made to mimic GL theory using
Bessel function cutoff S̃(G)5gK1(g) when b(b)
5exp2@g1d(b)2ln2#. This is related to the cutoff paramete
used with the exponential cutoff,b(b)52exp(2g/2)a(b).
For small fields,b(b);3/2 but smoothly varies untilb;2/3
for b→1.

The calculation by Clem determinesa by ensuring the
correct critical fieldHc1. We have calculated the total field a
the center of a vortex, and then calculated exactly the n
divergent contribution within London theory. As the Londo
theory free energy only contains terms containing the m
netic field, the London theory cutoff parametersa are chosen
to obtain the correct magnetic field. To make the Lond
free energy more like the GL free energy, extra terms can
added,10 whose parameters are determined by the requ
energy of a flux line, and henceHc1

:

FLon5(
i
E dr i•B~r i !1(

i
cE e0udr i u, ~16!

wheree0 is the line energy of the flux line.
The two parameters in this free energy are related to

two parameters calculated by Hu.4 The cutoff parameter is
calculated above and is obtained by calculating the field
the center of the flux lines. The other parameterc is obtained
by calculatingHc1

and is the difference between the tw
parameters calculated by Hu:

c5c12c050.4972~20.282!;0.78. ~17!

To calculate the explicit divergent terms we have use
cutoff function within London theory~previous section! or
used a simple variational wave function within GL theo
that can be solved. These are both self-consistent, and s
that the cutoff or variation GL parameters must contain
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element of just being a fitting parameter. The correct lo
field cutoff11 yields a stronger field dependence, which is
agreement with our result.

V. CONCLUSION

In this paper the parametera of the Gaussian cutoff is
studied. Using London theory and a precision Ginzbu
Landau solution we analyzed the behavior of this param
as a function of reduced field. Here we have analyzed
isotropic extreme type-II superconductors,k@1. We found a
sensibleb dependence of this parameter forb below 0.3. It is
shown in Fig. 1. We find that for a large value of the ma
,

-

-
er
e

-

netic induction theb dependence is not strong and nearHc2
the cutoff parametera' 4

9. For sufficiently low values of the
magnetic induction we finda51.0. In summary, our system
atic method gives results at variance with the normal
sumption of a fixed cutoff parameter and thus calls into qu
tion much of the earlier work on this problem.
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