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Cutoff parameters in London theory

Isaas G. de Oliveira and A. M. Thompson
Theory Group, Department of Physics, University of Manchester, Manchester, M13 9PL, United Kingdom
(Received 21 November 1997

The exponential cutoff is used in London theory to calculate the magnetic field inside the vortex. In this
work, using London theory and new numerical solutions of the conventional Ginzburg-Landau equations, we
investigate the behavior of exponential cutoff parametexs a function of the reduced fieldin the whole
range of magnetic fields. We find a different behavior of this parameter for low and high magnetic fields.
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[. INTRODUCTION the analytical approximation to the GL equations for isotro-
pic superconductors at low inductions. In Sec. V our result
The effect of finite vortex core size in superconductors isfor the parametew is discussed.
very strong. Numerous publications are devoted to the study
of the vortex core since this cutoff effect provides explana- Il. LONDON THEORY
tions for recently published experimental data without need

to resort to unconventional theories. The vortex structure O{he low-induction behavior of superconducting materials. In

type-Il superconductors has been studied, using Gianurq{ontrast to GL theory, London theory has an advantage in

Landau equations, for the cases of low and high magnetiB : : ;
. . . eing a linear theory. However, it does have the drawback of
fieldsH, i.e., close taH.; andH ., which are the lower and g 4

» _ . . _ : being intrinsically divergent. London theory contains solely
upper critical fields, respectively. For intermediate fields

> - magnetic contributions to the free energy:
London theory has provided the only detailed phenomeno-

logical description for extreme type-ll superconductate 3 5 o
Ginzburg-LandayGL) parameteik=\/¢ obeysk>1, where I:Lon:f d*rB(r)“+x
\ is the penetration depth anflis the coherence length
Although London theory gives a good qualitative account ofwhere the local magnetic fiel@(r)=VxXA(r). ¢ is the
the vortex state in the restricted regioH §<H<Hcy), it phase of an order parameter of constant magmt_udgz and the
suffers from its singular property that the magnetic flux den-Presence of the flux lines is controlled Byb. Minimizing
sity and the supercurrent density of an isolated vortex difn€ free energy with respect to the vector potential, the Lon-
verge at the center of the vortex, because the depression §P" eduation is obtained,
the order parameter to zero in this region is not accounted by
London theory. B(r)—A\2V2B(r)2=®q>, 8(r—r)), i)
The London equation disregards the effect of the finite !
;ize of the vortex core, whic_h removes the Ioggrithmic infin-\yhich enables the free energy) to be written as
ity of B(r) atr;, wherer; is the vortex position. AtH
<H,, this effect is accounted for by multiplication of the
London solution by a cutoff factor. Two common cutoffs Flon= 2> fdfiB(fi)- (©)
used in reciprocal space are the Bessel and Gaussian cutoffs. '
The Bessel cutoff is derived from analytical approximationsThe London equation is easily solved with
to Ginzburg-Landau theory nehir;;. The cutoff factor inthe  B(r)=®,=;Ko[(|r —r;|)/\]. While this models well the flux
London equation can be exp(y2£G), whereG is the vec-  line interaction for largec systems, the intrinsic self-field is
tor of a reciprocal lattice. However, we may use the Gaussiaftogarithmically divergent. The divergences are due to the
cutoff which is less accurate but more convenient for com-absence of flux line cores within London theory. One ap-
putations, by expf 5362), where &, = a¢. This factor a proach to these divergences is to replace dhinction in
was derived from GL theory ne&t., as 1/4(Ref. 1) or 1/2  the London equatioK2) by a short-ranged function, such as
(Ref. 2 instead of 2 as proposed by Brandt at low magneticS(r —r;)— S(r— ri)=exp[(r—ri)2/§§].
induction® Using London theory and a new precision We shall investigate some of the consequences of the cut-
Ginzburg-Landau solutiohwe show the behavior of for off chosen, and as the London free energy only contains
all ranges of magnetic induction. We found the cutoff param+erms involving the magnetic induction, we chose to fix any
etera=1 atH.; anda~3 atH,. available parameters using knowaor calculable results in-
This paper is partitioned as follows. Section Il briefly re- volving the magnetic induction.
views London theory where we show the field at the center The quantity we investigate is the magnetic induction at
of a single flux line. Section Ill describes the iteration pro-the center of straight flux lineB(0), andinvestigate possible
cedure to find the precision GL solution. Section IV presentutoffs within an isotropic system. We use cylindrical coor-

The London approximation is frequently used to describe
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dinates p, 6,z), with the average magnetic induction aligned with r =(x,y); the sums are over all reciprocal lattice vectors

along thez axis. The Fourier transform of the magnetic in-

duction associated with a single flux line is

BO) -1z @

Kmn# 0, B is the average induction, ar@@,(r) is the super-
velocity of the Abrikosov solution, correct &, . Rather
than trying to find a solution by minimizin§i(B, «,ax ,bk)
with respect to a finite number of Fourier componeags
andby , Brandt proposes an iteration procedure for the pa-

This shows the logarithmic divergence of the self-fieldrametersax andby . This procedure is very stable with fast

B.ai(p) When a cutoff is not used. Replacing thdunction

in the London equation as described above, the divergen

can be removedB(G)— S(G)B(G), and London theory
can be regularized.
We shall initially investigate an exponential cutoff

S(G)=exp(—£G?), where¢, =af, ¢ is the coherence length
Mk, anda is a constanOD(1) to be determined.

The field at the center of a single flux line is then
@ J'OOkdk expl( — £2k?)
T 2m\%)o 2m 1+

1
:2_;<2qu —a?Ik?)E (a?lk?),

B,(0)

)

where E{(x) is the exponential integral functioft,(x)
=[yexp(-u)du/u, and y is the Euler constanty
=0.57724 .... Fork> and a~0O(1), then usingE;(x) =
—y=In(¥)—=,_1(—1)XY(n-n!) for x<1 the self-field is

B,(0) %Kfz[—ln(azlkz)-i- v]. (6)

convergence for an and «.
€€ We use this procedure to calculate the field at the center
of a vortex,B¢  (0). GL theory models the core well, and we
use the GL result to help us determine the appropriate cutoff
in a similar manner to the previous section.

Unlike GL theory, London theory is linear, and the induc-
tion at the center of a flux line can be separated into two
components

BLon(ri) = Bsei(I'i) + Bint(r), 9
where Bg; is the self-induction and;,, is the interaction
field. The interaction field does not diverge, and is the sum of
all  the contributions from the flux lines,
Bint(ri) ==;.iKo(|r;—ril/\). For simplification we take

ri= 0.

It was shown in the previous section that London theory
could be regularized in a manner that gave results equivalent
to GL expressions. With this motivation we choose the cut-
off such thatB,,,(0)=B¢. (0). Using a fast convergent ex-
pansion for the interaction fieldjt is found that the self-

Hu* solved the isotropic GL expressions in the limit of induction behaves as

large k. Two constants, andc,; were found as

B(0)=«"*(Ink+co)H,,, )

1
oK (|nK+C1)HC2.

Hc

Numerically integrating the GL equations, in the limit of

large « it was found thaty~ —0.282 andc;~0.497. Equat-
ing Egs.(6) and(7) the parameter can be chosen so that

London theory mimics well the presence of the core. Give

thatH,,=®o/2m¢?, thena=exp—(co+¥/2)~1.0.

IIl. ITERATION PROCEDURE

The calculation by Hu involves numerically integrating

Bser( 0)=BgL(0) — Bin(0)= k" ?Hc,(Ink+6)  (10)

for all fields in the limit of largex. The paramete®d is a
function of the reduced average magnetic induction

B(r)/HC2=b. The exponential cutofS(k) then contains a

parametew that must also depend dn Comparing Eqs(6)
and (10) we chosea(b)=exp—(8(b)+/2). This parameter

ris shown in Fig. 1, and is approximately 1 in the limit of

smallb but reduces to=§ asb—1.

IV. ANALYTICAL GL EQUATION

Clem has used a variational trial wave function to provide

the iSOtl’OpiC GL equations for a Single flux line. An iteration a good analytica' approximation to the Ginzburg_l_andau

procedure proposed by Brafidallows the evaluation of

equations for isotropic superconductors at low inducfion.

properties within a spatially periodic structure. The GL ffeeWriting the normalized order parameter in the form

energy is written in terms of the density=|¢|? and the
supervelocityQ=A—V ¢/ k. These real invariant functions
are expressed as Fourier series

W(r)zzK: ak[1—cogK-r)],
B(r)=§+; bcogK-r),

7%
K

K
QN =Qa(r)+ 2 b= 5-sin(K-1),

)

V¥ (p)="f(p)exp(—ip) wheref(p)=p/R=pl/(p?+£2)*2 an
inhomogeneous equation for the vector potential can be ob-
tained, whose solution is

®o[,  RKy(RN)
2mp|~ EKy(E,IN)]

A¢(P): (11)

whereK,(x) is a modified Bessel function. The correspond-
ing magnetic field is then

@y Ko(RIN)
C2mNE, Ky(&, /)

B.(p) (12)
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X [ Again, using Hu's expression f@&,(0) we can determine
T4 r the appropriate value of the variational constgntA single
flux line then require = exp—(y+Cy—In2)~3/2.
12 L This variational calculation indicates a possible improve-

ment for the cutoff function used within London theory. The
Fourier transform of the magnetic fie(d?2) is

= DoK(GE,)
BZ(G)—W- (14
In the limit £,<<\ this expression resembles London theory
as
BAG)= g 12gz: 9= BEGC AT (19
0.2 — This is the London expression with the cutoff function

S(k)=gK,(g) and shows for large that the divergent Lon-
don expression can be regularized using a “Bessel function”

0 -....I..

sl by b b by a b an o bon v a baaay
o 01020304 0506 07 0809 1 cutoff. However, we now have the situation were the varia-
@ b tional GL parameter is exactly the same as the London
o theory cutoff parameter. We follow the same method as the
14 L previous section to determine the cutoff parameter. The cut-

off parameter is chosen so that the correct magnetic field at
the center of the flux line is obtained within London theory.
12 Therefore, using similar methods to the previous section,
London theory can be made to mimic GL theory using a

Bessel function cutoff S(G)=gK;(g) when B(b)
=exp—[y+8b)—In2]. This is related to the cutoff parameter
used with the exponential cutoff3(b)=2exp-y/2)a(b).
For small fields 8(b) ~3/2 but smoothly varies unt~ 2/3
for b—1.

The calculation by Clem determines by ensuring the
correct critical fieldH ;. We have calculated the total field at
the center of a vortex, and then calculated exactly the non-
divergent contribution within London theory. As the London
[ theory free energy only contains terms containing the mag-
02 | netic field, the London theory cutoff parameterare chosen
I to obtain the correct magnetic field. To make the London
L L L free energy more like the GL free energy, extra terms can be

1072 1072 107" 1 added'® whose parameters are determined by the required
() b energy of a flux line, and hends, :

FIG. 1. The cutoff parameter as a function of the reduced field

b=B(r)/HC2 for the Ginzburg-Landau constant= 70, on(a) lin- FLon:z f dr,- B(ri)+2 Cf eo|dri| (16)
ear scale andb) logarithmic scale. i i

This method has been extended to larger fields and anisc\)'\-'hereEO is the line energy O.f the flux line.
. 9 The two parameters in this free energy are related to the
tropic superconductors by Haat al. two parameters calculated by Hulhe cutoff parameter is
Here, we initially investigate Clem's expression for the calculated above and is obtained by calculating the field at

magnetic field. The magnetic field at the center of a vortex i%he center of the flux lines. The other parametés obtained

Just by calculatingHCl and is the difference between the two
Dy Ko(£,/N) parameters calculated by Hu:
B,(0)= . (13
z 27N, Ki(&,/N) c=C;,—Co=0.497- (—0.282~0.78. 17
Using Ko(x)~—In(X)—y+In(2) and Ky(x)~1/x when x To calculate the explicit divergent terms we have used a

<1, for largex systems the magnetic field at the center ofcytoff function within London theory(previous sectionor

the vortex becomesB,(0)=x"*Hc[—In(a/)—y+IN2].  ysed a simple variational wave function within GL theory
The variational parametef, is written in the form§,=a¢  that can be solved. These are both self-consistent, and show
and v is the Euler constant. that the cutoff or variation GL parameters must contain an
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element of just being a fitting parameter. The correct low-netic induction theb dependence is not strong and nekpb
field cutoff'! yields a stronger field dependence, which is inthe cutoff parametes~ &. For sufficiently low values of the

agreement with our result. magnetic induction we find=1.0. In summary, our system-
atic method gives results at variance with the normal as-
V. CONCLUSION sumption of a fixed cutoff parameter and thus calls into ques-

) ) . tion much of the earlier work on this problem.
In this paper the parameter of the Gaussian cutoff is

studied. Using London theory and a precision Ginzburg-
Landau solution we analyzed the behavior of this parameter
as a function of reduced field. Here we have analyzed the 1.G.O. acknowledges financial support by the Conselho
isotropic extreme type-Il superconductoks; 1. We found a  Nacional de Desenvolvimento Ciéiito e Tecnolgico
sensibleb dependence of this parameter bbbelow 0.3. Itis  (CNPg-Brazi). We thank Professor M. A. Moore for useful
shown in Fig. 1. We find that for a large value of the mag-suggestions and comments about this work.
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