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Magnetic phase transitions in CeRBSi,: Specific heat, susceptibility, and resistance studies
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Two phase transitions near 35 and 24 K can be detected in the specific heat, susceptibility, and resistivity of
CeRNRSi,. We interpret the 35 K transition as magnetic ordering |h%é :-ZL) structure. The much weaker
transition near 24 K corresponds to the development of domains ha\(i%wé @ magnetic structure that grow
spatially at the expense of tlié 3 3) structure. This interpretation of the magnetic phase diagram of §&8#Rh
clarifies a controversy surrounding observations by neutron diffradi®0163-18208)06714-9

The isomorphic system @Ry, _,Rh,),Si, shows a very et allfound only the(} 2 0) structure type, contrary to Grier
rich electronic and magnetic phase diagram as a function oft al. Unfortunately, the temperature dependences of these
the concentratiox and the applied pressuRe It exhibits a  structures were not determined.
variety of behavior, including long-range magnetic ordering Here we report specific heat, resistivity, and magnetic sus-
for x>0.5} heavy-fermion charactér’ metamagnetic and Cceptibility measurements on CejSi, at ambient pressure
spin-density-wave transitioh€® and superconductivity for and discuss their relationship to magnetic properties obtained
x=1 at high pressureA common view is that this broad bY neutron diffraction and quasielastic scattering. Our results

range of phenomena originates from tuning the hybridizatiorf"”ow a new interpretation of the magnetic phase transitions.

between the and conduction electrons by varyingor P, c g g_olycrystallme ds%mple oflt_nommdal st0|ch|omettry
or, expressed in Doniach’s mofdtom the competition be- eRR S, was prepared by arc melting under an argon atmo-

tween Kondo and Ruderman-Kittel-Kasuya-Yosida interac—Sphere' The sample, wrapped in tantalum foil and sealed in
n evacuated quartz tube, was annealed for 10 days at

tions. In a recent study we have compared pressure wit 00°C. Powder x-ray diffraction at room temperature

co_ncentration tuning and demonstrate_d that near the critic howed only peaks corresponding to the expected tetragonal
point at the zero-temperature magnetic-nonmagnetic boun hCr,Si, structure(space groug4/mmm number 139 A
ary (x=1, P.=9 kbar, orx.=0.5,P=0) local ligand disor-  pietveld analysis, with the lattice constants as the only free-
der plays an important role in producing non-Fermi liquid i narameters and Si as an internal standard, gave lattice
—InT behavior in the specific heat and magneticparametersi=4.088 A andc=10.178 A, in agreement with
susceptibility? neutron-diffraction studie¥:'° No secondary phases could
Interestingly, the precise nature of local-moment magnepe detected in optical or scanning electron microscy
tism in the end compound CeBBi, at zero pressure has tection limit ~1% vol). Magnetic susceptibility was deter-
remained unclear in spite of rather thorough study. Fronmined with a commercial superconducting quantum interfer-
analysis of neutron-diffraction measurements on polycrystalence device magnetometer and resistivity data were collected
line CeRBSI,, Grier et al* proposed two antiferromagnetic using a low-frequency 4-lead bridge. Specific heat was mea-
structures with ordering temperaturdg,=39 K and T'N sured on a 2.549 g sample of CeBh by an adiabatic tech-
=27 K. Magnetic peaks fo‘rI"N<T<T‘,i, were indexed to a nique in the temperature range 0.4—45 K. A barely notice-
(3 3 0) magnetic structure; whereas, belo‘l?{\(J additional able peak appeared nea K in the specific-heat data. We
peaks corresponding t6; 3 1) appeared. However, these attribute this feature to antiferromagnetic order in second
authors could not determine unambiguously whether thesphase CeR4Si,, which has ary of 5 K.
two magnetic structures coexisted homogeneously or inho- To confirm this interpretation of th5 K anomaly, we
mogeneously throughout the sample volume. In either casgerformed specific heat and resistance measurements on
the calculated ordered moment was greater than the maxgeparately prepared Cef8b. Results of these measure-
mum of 2.14ug allowed by crystal-field splitting in tetrag- ments are shown in Fig.(d). A comparison of these results
onal symmetry. On the other hand, Queeehl!! observed with the smal 5 K anomaly found in CeRJ8i, implied a
only a single antiferromagnetic transition at 36 K with a concentration of 0.0028 mole Cef8t, impurity per mole
magnetic structure of; 3 0) and an ordered moment of CeRRBSi, in our sample. Figure (b) shows the x-ray-
1.50 g . More recent single-crystal neutron-diffraction mea- diffraction pattern of CeRdbi, at room temperature.
surements by Kawarazakt al! confirmed the existence of CeRRhSi, crystallizes in the LaRJSi, structure (Ref. 12,
the two magnetic-structure types reported by Geeml!® Imma 74). We determined the orthorhombic lattice param-
which, they argued, were consistent with spatially heterogeetersa=7.128 A, b=9.725 A, andc=5.595 A by Rietveld
neous ordering of moments having values of Lug6at analysis. CeRIBi, and CeRbkSi, are two compounds in ther-
(32 0) and 1.69ug at (3 2 ). At 4 K, however, Kawarazaki mal equilibrium according to the phase diagram by Moroskin
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FIG. 1. (a) Specific heaC,, divided by temperaturg (left axis) @ /
and resistancdright axi9 vs the logarithm of temperature for ~ 0.00 . . . ]
CeRhSi, at zero pressuréb) X-ray spectrum of CeR{Si,. Three o 10 20 30 40
peaks of the internal silicon standard are also visible. T®

FIG. 2. (a) Magnetic specific heaE,, of CeRhSi, divided by
and Seropegil"ﬁ It is, therefore, not surprising to find temperaturéleft axis) as a function of temperature. The solid curve
CeRhSi, as a minor impurity in CeRI$i, samples. Having is the magnetic entrop$,, divided byR In 2 (right axi9 as a func-
prepared a nominally stoichiometric sample and detecte#ion of temperature(b) Temperature-dependent derivative of the
such a small amount of impurity suggests that C&Rkis an magnetic susceptlblllt)dX/dT_ as a function pf temperaturéc)
ordered line compound with no homogeneity range. This iSTemperature-dependent derlvat_lve of the resistalR@ T vs tem-
not in contradiction with the investigation by Ishikawa and PErature. The data are normalized Rg=R(294 K). (The weak
co-workerd4 who found a narrow solid solution @1 at. % should_er and data scatter near 15 K are not intrinsic to tht_a_sample
. . L . : but arise from an established temperature-control instability that
in the isostructural compound Ce£3i, via the rapid varia- e ; .

. - - . .. . occurs only over a limited temperature interval around }5lKset:
tionof T; as a fgnctlon of Copcentratlon. The at'omlc radii of Logarithm of normalized resistance vs temperature.
Ce, Rh, and Si are very different and site disorder and a
corresponding solid solution seem rather unlikely, in agree-
ment with site occupation refinements by Graral!® and heat C,=C;—C_. The low-temperature behavior of
Quezelet al! in CeRRBSi,. No traces of superconductivity La(RupsRhy5),Si; is that of a normal metal with a rather
at ambient or at high pressure have been found in purtarge, intrinsicy=6 mJ/mole K.*'
CeRhSi, down to 40 mK. Consequently, this compound Figure 2a shows C, divided by temperaturel for
does not account for “dirt effects” that seem necessary toC€RRSI,. Also plotted are the temperature-dependent de-
explain the appearance or absence of superconductivity ifivatives of the magnetic susceptibilityd¢/dT) and resis-
CeRhSi, near 9 kbat® Such dirt effects must arise from tance @R/dT) [Figs. 2b) and Zc)]. The sharp anomaly in
very subtle differences among samples and equally wefdll three curves neafy=35 K signals the onset of magnetic
could be expected to influence details of the magnetic interorder. The solid line in Fig. @) is the integralf {C ,(7)/ 7d+
actions. These differences have not been detected by convemnd gives the magnetic entro in units of RIn2 as a
tional metallurgical methods and probably have short-rangéunction of temperatureS(T) reaches the valuR In 2 at a
character. Indications for subtle crystallographic disparitiesemperature just aboviy . This clearly rules out ordering of
in CeRRBSi, are suggested by the rather largevalue ob-  free-ion moments since this would generate magnetic en-
tained from neutron-diffraction refinements of the nucleartropy of R In 6=14.9 J/mole K. Further, neutron scattering
peaks:® There also exist hints for a correlation between re-on isostructural Celsi, compounds findé that the splitting
sidual resistivity and the appearance of superconductivity ifetween thd™; crystal-field groundstate doublet and the first
CeRhSi,. 1 excited state ranges from about 100 to over 200 K, tempera-
Specific-heat data on CepSBi, presented below have tures much larger thaify in CeRhSi,, consistent with a
been corrected for the contribution from the small amount ofecent estimafé of 300 K for this splitting in CeR}Si,. The
second phase CeR®i,. To obtain the magnetic contribution curvesC,,/T anddy/dT in Fig. 2 exhibit a second, much
to the specific heat of CeR%i,, we subtracted the specific weaker feature near 24 K. This is not an artifact of the pho-
heatC_ of nonmagnetic L&Ru, sRhy),Si, (Ref. 19 from  non subtraction as similar behavior is found @y /T. A
the total specific heaE of CeRbSi,, with the assumption weak shoulder above 20 K can also be distinguished in
thatC, allowed a reasonable estimate of the phonon contriC(T) in Fig. 1 of Ref. 17. The feature near 24 K is clearly
bution toCt at high temperature, i.e., the magnetic specificvisible indR/dT vs T [Fig. 2(c)], but can already be detected
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in the resistance cunfénset of Fig. Zc)]. suggest, we would not expect a jump@,/T, i.e., a dis-

In view of the various neutron-diffraction results and our continuity of the temperature-dependent derivative of the
measurements, we suggest the following interpretation: Magmagnetic entropy. However, for a crystallographically per-
netic ordering occurs initially belowy in the (3 3 3) struc-  fect sample, a small latent heat should be observed. More
ture with an ordered moment (1.68;) less than expected detailed temperature-dependent specific-heat data on high
for aT'; crystal-field ground state. The reduced moment isduality samples are required to address this issue.
consistent with partial Kondo-like spin compensation of the A Second-order antiferromagnetic transitiofy(;) fol-

Ce** moment, as suggested from quasielastic neutron scatgWed at lower temperatures by a first-order moment-
tering on CeRbBi,, which gives a spin-fluctuation tempera- reorientation transitionTy, ) has been reported recerflyn

ture Tc=33 K at T=T.%° The quasielastic linewidtfi'/2 isostructural CECu; —xNix);Ge, for x=0.02. Forx=0, only

= ; . . . weak anomalies in thermal expansion and specific heat ap-
=Tk decreases approximately linearly with decreasing tem ar afTy, . Therefore, in contrast to CeBi,, it seems that

erature and extrapolates to zero near 25 K. Near the terr%e
b rature wherd/2 po regions of th mol b in to ord ri this systerf? a very small amount of disorder is required
pera ulel € —%, regions orthe sample begin 10 order , jnqyce a first-order transition. Interestingly, the ratio
n the z 3 0) structure with larger moment (1.865), which [TnL~1.67 in CéCu,_,Ni,),Gse, is similar to the ratio
is favored by the substantially suppressed spin ﬂucmat'on%fNrmagNnLetic transition telr;?)ergtzures in CoSh
Regions of(3 ; 0) structulrelgrow W.'th decreasing tempera- In summary, we have distinguished two magnetic phase
ture at the expense df ; 3) domains. The heterogeneous transitions in CeRJ8i, at 35 and 24 K by specific heat
nature of this ordering arises from small spatial variations in 2 '

the exchanae parametdr the maanitude of which depends susceptibility, and resistance measurements. We attribute the
nge p 4 9 . P high temperature transition to magnetic ordering that occurs
very sensitively on details of the local environment around

i 111 i
each Ce ion. Such subtle crystallographic effects may alsbeIOW 35 K in the(; 3 3) structure with an ordered moment

account for the occasional appearance of superconductivit8f 1.695. Below 24 K, phase separation sets in. Domains

8 . .
in CeRhSi, at pressures near and above 9 kbhr.the ab- df the (7 2 0) structure with a magnetic moment of 1/36

. : _grow at the expense of thg 3 3) structure without disrupt-
sence of heterogeneity, we speculate that this magnetic: . 22 i
magnetic transition near 24 K should be first order. Indeed??1g the evolution of the overall magnetic order parameter.

strain measurements on a single crystal of G&Rfshow a The small entropy associated with the transition near 24 K
9 y suggests that the free-energy difference between these two

ﬁ'ezxr'szgn'glgqs\llitgfstgsng?g?{ﬁ;fT;;V'rtgs?sg\rlzt']?e rgtirrg?gﬂtr']?;magnetic states also is very small; therefore, the balance be-
hase traﬁsition apoears to depend stronalv on re%éuretween them is susceptible to very minor perturbations and
P PP P gly P could be expected to be strongly sample dependent. An in-

gllmh rbﬁh?\?oﬁr :OI;JIS,] bletu:tdﬁrst?od froimt gh\e;vit(ﬁlau?i'ru?feresting possibility is that the “inhomogeneity” is to a large
aperon relatio € late eal associate a lStaxtent intrinsic to the microscopic competition among elec-
order transition were very small.

Inspection of Fig. 2) shows clearly that most of the tronic, _magngtic, and _structur.al degrees—of—freedomn in
magnetic entropy is .associate d with ordering of therdo- CeRf_}SIZ. The interpretation provided by_ our d_ata reconciles
ments at the upper transition. This transition at 35 K show conf||ct|lr(1)gll observat!qns of neutron-dlffrac_non measure-
behavior typical of a second.-order phase transition in spe- ents%'_ o in .addmon, the orthorhomblc_ compound.
cific heat, susceptibility and resistang® hysteresismea- .CeRh‘.SIZ. was dlsc_erned as a possm_)le and likely magnetic
surement's As indicated above, the situation is less clear fdmpu_rlty in CeRPSh, samples. CeRfSI, or.ders neas K at
the anoma.ly near 24 K According to our interpretation theo{mblent pressure and does not show signs of superconduc-

" ' 'L tivity to 40 mK and at pressures to 15 kbar.
24 K transition marks the appearance of a two-phase mixture
of the magnetic order parameter. If this first-order transition Work at Los Alamos was performed under the auspices of

were spatially smeared by subtle inhomogeneity, as our dathe U.S. Department of Energy.
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