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Mechanism of the low-ejection-energy„e,2e… reaction on a graphite surface
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We develop a theoretical model to describe a slow electron ejection from a crystal by electron impact at a
moderate incident energy. The electron impact ionization is considered within the first Born approximation.
The projectile is treated as a plane wave whereas the target electron initial and final states are described by the
bulk one-electron wave functions in the momentum space representation. To allow the ionized electron to
escape from the crystal the final state in the bulk of the crystal is matched in energy and a parallel component
of momentum by a plane wave in the vacuum. This theoretical model is used to simulate the binding-energy
spectra obtained by the grazing-angle reflection mode (e,2e) reaction on the surface of highly oriented pyro-
lytic graphite.@S0163-1829~98!03011-2#
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I. INTRODUCTION

Electron momentum spectroscopy based on the (e,2e) re-
action has been introduced recently as a technique to s
the electronic structure of solids.1,2 In the (e,2e) reaction an
incident electron knocks out a target electron, with sub
quent detection of both outgoing electrons in time coin
dence with fully determined kinematics. This allows us
infer the binding energy and momentum of the target el
tron before the collision by using the laws of energy an
momentum conservation.

At present, the (e,2e) reaction on solid targets is pe
formed in two different modes. In the transmission (e,2e)
experiments the incident electron is impinged on an ultrat
target membrane and the two outgoing electrons eme
from the side of the target opposite to the electron gun. In
reflection (e,2e) reaction both the electron gun and the tw
electron detectors are placed at the same side of the tar

The transmission mode (e,2e) experiments are performe
under conditions of a high incident energy and a large m
mentum transfer. This allows us to interpret an (e,2e) event
as a free-electron-like binary collision between the projec
and the target electron. The cross section of such a bin
(e,2e) reaction is directly proportional to the number of ta
get electrons in the given range of binding energy and m
mentum. This transparent physical interpretation of the hi
energy transmission mode (e,2e) makes it very attractive for
studying the electronic structure of solids. However, its pr
tical implementation is hampered by laborious and pains
ing fabrication of ultrathin free-standing membranes.
570163-1829/98/57~12!/7360~9!/$15.00
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To avoid this difficulty there have been experiments s
cessful in using diffracted electron beams in reflection from
solid surface. Two different experimental geometries ha
been used. Kirschner, Artamonov, and Samarin3 reported
backscattering reflected mode (e,2e) on the surface of tung-
sten. Because they employed the time-of-flight detect
technique the incident energy was very low~14–25 eV!. In-
terpretation of this low energy (e,2e) required quite an
elaborate theory that employed LEED-type wave functio
both for the incident and the two outgoing electrons.4 The
calculated cross section contained the target electron w
function in the valence band which, however, could not
easily factored out. So the information about the occup
target states could not be extracted directly from the m
sured (e,2e) cross section.

Another type of reflection mode (e,2e) experiment was
performed by Iacobucciet al.5,6 on the surface of highly ori-
ented pyrolytic graphite~HOPG!. They used a moderate in
cident energy of 300 eV in a grazing-angle reflection geo
etry. An attempt has been made to use this type of (e,2e)
reaction to map energy bands of graphite.7 The peak posi-
tions in the measured binding energy spectra were consis
with theoretical band energies. The peak intensities were
analyzed and at least for the topmostp band were found to
agree rather well with the theoretical density of states.

This gives an indication that the grazing angle (e,2e) at
moderate incident energies can be used to extract electr
structure information about the target. Still, a consist
theory is required to deal with the scattering dynamics a
the ionization mechanism. This theory is outlined in t
7360 © 1998 The American Physical Society
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57 7361MECHANISM OF THE LOW-EJECTION-ENERGY (e,2e) . . .
present paper. Conceptually, it is similar to the three-s
model of volume photoionization from solids.8 We assume
that the ionizing collision takes place in the bulk of the sol
Then the ionized electron propagates to the surface and
capes to the vacuum. The assumption of the volume ion
tion is particularly justified for graphite, which, as a layer
material, retains much of its electronic structure up to
topmost surface layer.

We describe the ionizing collision in the first Born a
proximation, i.e., we assume that the projectile interacts w
the target electron only once. Thus we neglect multiple s
tering processes, both elastic and inelastic. We also ass
in accordance with Iacobucciet al.,5 that the ionizing colli-
sion is caused by the projectile that is specularly reflec
from the target. Berakdar and Das9 explored other mecha
nisms of the reflection mode (e,2e) in which one or both of
the outgoing electrons are reflected. However, for the pre
grazing-angle geometry, the ionization caused by the sp
larly reflected incident electron is strongly dominant since
is kinematically possible with the smallest amount of t
momentum transfer. Thus the Born ionization amplitu
which is inversely proportional to the squared moment
transfer, is largest. Interestingly enough, Artamonov,
marin, and Kirschner10 have demonstrated that the same
true for the reflection mode (e,2e) in the backscattering ge
ometry. Their measured (e,2e) intensity showed clear sym
metry with respect to the direction of the specularly reflec
incident beam.

To calculate the Born ionization amplitude we employ t
bulk target electron wave functions in the momentum sp
representation. We use the extended zone scheme in w
every momentum space wave function has a domina
presence in only one particular Brillouin zone. In the m
mentum space representation the Born transition amplitud
equal to the product of the wave functions of the initial st
in the occupied valence band and the final empty state in
conduction band. In the limit of high-energy transfer the fin
state becomes a plane wave and has the momentum s
wave function equal to unity. Thus we arrive at the us
high-energy (e,2e) formalism in which the measured (e,2e)
intensity is proportional to the squared momentum sp
wave function of the occupied target state.

To allow the ejected electron to escape from the crysta
the vacuum we require that the energy and the parallel c
ponent of the momentum in the bulk should be matched
those of a plane wave in the vacuum. In a three-dimensio
~3D! crystal with a strong dispersion of the energy ban
with respect to the perpendicular component of the mom
tum this can be achieved by adjusting this component, wh
is not bound by the law of momentum conservation.
graphite, because of its quasi-2D structure, the band en
in the valence band and low conduction band depends
weakly on the perpendicular component of the momentu
This makes the matching very restrictive, especially a
small ejected electron energy. However, as the energy o
ejected electron increases its wave function gradually
quires the 3D character and the matching is easily achie

At a small momentum transfer the electron impact cau
nearly vertical transitions in the target momentum spa
This projects the kinematically determined ejected elect
state in the vacuum onto a well-defined compact region
p
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the valence electron momentum space. However, this di
mapping of the valence band can be modified by a surf
reciprocal lattice vector acquired when the ejected elect
propagates through the crystal. The kinematics of
grazing-angle reflection mode (e,2e) experiments on
graphite5,6 is such that the vertical transitions at a small eje
tion energy originate in the first Brillouin zone where on
two bandss1 andp have significant presence. However,
the momentum balance is modified by a surface recipro
lattice vector the same ejected electron state can origi
from the second or third Brillouin zones where the others2
ands3 bands are populated. This explains why the bind
energy spectra of graphite observed by the grazing-angle
flection mode (e,2e) reaction contain the signature of a
four valence bands.7

The rest of the paper is organized according to the follo
ing plan. In Sec. II we present the momentum density f
malism and apply it to describe various types of ionizati
processes~electron impact ionization and photoionization! in
the bulk of a solid. In Sec. III we present our numeric
results for the reflection (e,2e) reaction on the surface o
highly oriented pyrolytic graphite~HOPG! and compare our
calculation with the experimental data of Iacobucciet al.5,6

Conclusions and possible extension of the present theory
made in Sec. IV.

II. MOMENTUM SPACE WAVE-FUNCTION FORMALISM

In a crystal the electron wave function can be written
the sum of the Bloch waves:

c j k~r !5V21/2(
G

Cj~k1G!ei ~k1G!•r, ~1!

where k is the crystal momentum,G the reciprocal lattice
vector. The band indexj labels different bands with gener
ally different energiesEj k . The wave function~1! is normal-
ized in the unit cell of the volumeV. The coefficients
Cj (k1G) give the momentum space representation of
wave functionc j k :11

c j k~q!5~2p!23/2E
V

e2 iqrc j k~r !dr

5A V

~2p!3(G Cj~k1G!dk1G,q . ~2!

The periodicity in the reciprocal space makes it sufficient
define the crystal momentumk within the first Brillouin zone
~first BZ!. However, the completeness of the Fourier tra
formation ~2! requiresq to be defined in the whole momen
tum space. To ensure the orthonormality of the wave fu
tion ~1! the momentum space coefficients should satisfy
following sum rule:

(
G

Cj~k1G!Cj 8
* ~k81G!5dkk8d j j 8. ~3!

We note the following property of the momentum spa
coefficientsCj (q). The lowest~in energy! band has the larg-
est value ofuCj (q)u at qPfirst BZ. The second-lowest ban
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7362 57A. S. KHEIFETSet al.
has the largest presence atqPsecond BZ, etc. Although we
do not produce a rigorous proof of this statement, we ill
trate it in the case of a weak periodic potential imposed o
free-electron gas. In this case the one-electron energy plo
in the extended zone scheme follows a free-electron para
except for the discontinuity near the BZ boundaries. T
one-electron wave functions are plane waves and have th
fore only one momentum space coefficientCj (k1G) ap-
proximately equal to unity with exception of the values ne
the BZ boundaries where reflection from the periodic pot

FIG. 1. Top: unfolding of the free-electron parabola into r
peated energy bands. Bottom: free-electron momentum density
-
a
ed
la

e
re-

r
-

tial becomes significant. In the repeated zone scheme e
section of the parabola corresponding to a given BZ unfo
into a separate energy band as shown in Fig. 1. Each baj
can be assigned with the momentum space coefficientCj (q)
formally defined forq in the whole momentum space. How
ever, it is obvious from the way we extended the on
electron parabola into repeating bands thatCj (q) is only
significant in one particular BZ whereas it is nearly zero
all other sections of the extended momentum space as i
trated in Fig. 1.

In a real crystal this selective population of the mome
tum space by various bands will depend very much on h
well this crystal can be described by a free-electron mod
In a complex solid with more than two spin-degenerate
lence electrons per unit cell the band index should also
sorb the one-electron quantum numbers that distinguish
equivalent electrons. So there might be more than one b
occupied in the given section of the BZ. In the case of gra
ite, the one-electron quantum numbers indicate the symm
with respect to the reflection in the basal plane. According
the energy bands in graphite are classified ass andp.

The selectivity of the momentum space wave functions
graphite is illustrated in Fig. 2 in which we plot the energ
bands and the band resolved momentum densities,

r j~q!5V~2p!23U(
G

Cj~k1G!dq,k1GU2

, ~4!

along the HCP symmetry lines. For the two basal plane
rectionsGK andGM only variouss bands contribute to the
electron momentum density. In the first BZ the lowests1
band is most intense whereas in the second and third BZ
population switches to the highers2 ands3 bands~see Fig.
3!. Thep band has no contribution to the momentum dens
in the basal plane. This is so because the symmetry of thp
orbitals requires the Fourier integral~2! to reverse its sign
when theq vector is reflected with respect to the basal pla
Obviously this reflection does not changeq for the in-plane
FIG. 2. Band energies~top panel! and momentum densities~bottom panel! in graphite along three symmetry linesGK, GM , andGA.
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57 7363MECHANISM OF THE LOW-EJECTION-ENERGY (e,2e) . . .
directions. Hence thep momentum density is zero. Thep
band has nonzero intensity for the out-of-planeGA direction.
This direction is somewhat abnormal since it correspond
the electron motion between the distant and weakly bon
sheets of carbon atoms. Hence the electron energy sh
very little dispersion and only the lowests1 band is popu-
lated.

Let us now apply the formalism of the momentum spa
wave functions to the ionization process. We consider a
electron inelastic collision with the bulk of a solid, whic
results in the ejection of a slow ionized electron into t
vacuum. We adopt the following notations. We label t
incident, the fast~scattered!, and the slow~ejected! electrons
by the indicesi 50, 1, and 2, respectively. The electron m
menta and the energies in the vacuum are correspondingpi
andEi . The fast electrons~incitent and scattered! are repre-
sented by the plane wavesupi&5(2p)23/2exp(ipir ), i
50,1. Hereafter we use the atomic units in which\5e
5m51 and the unit of momentum isa0

2151.89 Å21.
The electron momenta in the bulk are modified by t

refraction on the crystal surface:

qi i5pi i ,

qi'5Api'
2 12V. ~5!

HereV is the inner crystal potential acting upon the electro
When interpreting the photoemission experiments on sim
metals this potential is usually set to the sum of the muf
tin zero potentialV0 and the work functionF.8 By doing so
one assumes that the unoccupied~conduction! and occupied
~valence! energy bands can be derived from the same fr
electron-like parabola in extended momentum space.
conduction band of graphite is derived from different on
electron states and unfolds into separatep ands* parabolas.
The bottom of these parabolas is closer to the Fermi le
rather than the muffin-tin zero~see Fig. 6 and correspondin
discussion in Sec. III!. Therefore we set hereV5F.

The target electron states before and after the collision
denoted asu j k& andu j 2k2& and represented by the bulk wav
functions~1!. The slow ejected electron energy and the p
allel component of the momentum are required to ma
those of a plane wave in the vacuum:

q2i5p2i2g,

FIG. 3. Basal plane projections of different Brillouin zones
graphite. Different BZ are shown in different shades of gray. T
shortest reciprocal vectors of the surface are indicated asg1 andg2.
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Ej 2k2
5E21F. ~6!

Hereg is a 2D reciprocal lattice vector parallel to the crys
surface.

The fully resolved cross section of the electron impa
ionization can be presented in the form13

ds

d3p1d3p2

5
~2p!4N

p0
(
j j 2

3E E d3kd3k2z^q1 j 2k2uUu j kq0& z2

3d~E02E12Ej 2k2
1Ej k!d~E21F2Ej 2k2

!

3d~p2i2q2i2g!. ~7!

Since the target wave functions are normalized to the u
cell Eq.~7! contains the number of the unit cells in the targ
N. The matrix element of the Coulomb interaction betwe
the plane-wave projectile and the target electron can be
duced to the Born transition amplitude:

^q1 j 2k2uUu j kq0&5
^ j 2k2ue2 iQru j k&

2p2Q2e~Q,v!
, ~8!

where Q5q02q1 and v5E02E1 are the momentum and
energy transfer from the projectile to the target electron. T
dielectric functione(Q,v) describes the screening of th
pair Coulomb interaction between the projectile and the
get electron by the rest of the many-electron ensemble
Eq. ~8! we neglect the exchange between the fast scatte
electron and the excited target electron.

The Born transition amplitude between the target state
Eq. ~8! is easily calculated using the momentum space r
resentation~1!:

^ j 2k2ue2 iQru j k&5 (
G,G2

Cj 2* ~k21G2!Cj~k1G!

3dk1G1Q,k21G2
. ~9!

Upon substituting Eqs.~8! and~9! into Eq.~7! we obtain the
following expression:

ds

d3p1d3p2

5
~2p!4

p0

f eeN

e~Q,v!(j j 2

E E d3kd3k2U (
G,G2

Cj 2* ~k2

1G2!Cj~k1G!dk1G1Q,k21G2U2

d~E02E1

2Ej 2k2
1Ej k!d~E21F2Ej 2k2

!d~p2i2q2i1g!.

~10!

Here f ee5(2p2Q2)22 is the Mott cross section of the
electron-electron scattering in which we neglect excha
between the slow ejected and fast scattered electrons.
integration overk2 and the summation overG2 is eliminated
by thed functions, which ensure the matching condition
Eq. ~6!. Finally we arrive at the following expression:

e
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ds

dV1dV2dE1dE2
5~2p!4

p1p2

p0

f eeN

e~Q,v!

3E d3k(
j j 2g

U(
G

Cj 2
* ~p2i2g,q2'!

3Cj~k1G!dk1G1Q,q2U2

3d~E02E12E21Ej k2F!. ~11!

Here the perpendicular momentum component of the ta
electronq2' is fixed by the energy conservation~6!. By in-
troducing the spectral momentum density~SMD! of the tar-
get electrons

r~q,«!5(
j
E d3k(

G
uCj~k1G!u2dk1G,qd~«2Ej k!,

~12!

Eq. ~11! can be rewritten in the compact form

ds

dV1dV2dE1dE2
5~2p!4

p1p2

p0

f eeN

e~Q,v!

3(
j 2g

uCj 2
~q2!u2r~q,«!dq1Q,q2

,

~13!

whereq5q11q22q0 and«5E11E22E01F.
In the regime of a high-energy (e,2e) Eq. ~13! can be

further simplified. We can neglect refraction and setqi
5pi . The momentum space coefficientCj 2

(q2) becomes

unity for the single bandj 2 , which corresponds to the sec
tion of the one-electron parabola with the given moment
q2 ~see Fig. 1!. In the binary regime one can neglect th
response of the other electrons in the solid and discard
dielectric function. Thus we finally arrive at the expressi
that is traditionally used to analyze the high-energy (e,2e)
reaction:1

ds

dV1dV2dE1dE2
5~2p!4

p1p2

p0
f eeNr~q,«!. ~14!

Comparing Eq.~13! and Eq.~14! we see that the low-energ
(e,2e) cross section contains the momentum space w
function in the final state above the vacuum level and he
can be used to study unoccupied states in solids. In this
spect it is complementary to the high-energy (e,2e) reaction,
which probes the valence states only.

III. NUMERICAL RESULTS

We apply the momentum space formalism derived in
previous section to simulate the experimentally obser
binding-energy spectra from the surface of HOPG.5–7 These
spectra were obtained by the grazing-angle reflection m
(e,2e) reaction with the following kinematical parameter
The scattered electron energyE1 were maintained constant a
300 eV while the incident energyE0 was adjusted to spa
the range of binding energies of the valence band of grap
~approximately 20 eV!. There were three sets of measur
et

he

e
e
e-

e
d

e

te
-

ments taken at the ejected electron energiesE25 3.7, 8.0,
and 14.2 eV. The incident and scattered electrons were in
same plane with the azimuthal anglesu05u156°. The slow
ejected electrons were collected within a cone formed by
azimuthal angleu2542.363° and the polar anglef252p.
This kinematical arrangement is illustrated in Fig. 4.

Of the various dynamical models suggested for the refl
tion mode (e,2e) by Berakdar and Das9 we accept the
mechanism suggested by Iacobucciet al.5 as the dominating
one. In this mechanism the projectile reflects specularly fr
the target and then scatters inelastically from the bound e
tron as illustrated in Fig. 5. This mechanism is strong
dominant because it is kinematically possible with the sm
est amount of momentum transferQ5p02p1.e/A2E0!1.
Other mechanisms in which the (e,2e) event is caused di-
rectly by the incident electron have much larger moment
transferQ52p0sinu0;1. They are strongly suppressed b
the dynamical factorf ee of Eq. ~13!, which is proportional to
Q24. The conjugant process, in which the inelastic scatter
takes place first and then the two outgoing electrons are
flected specularly from the crystal, is not considered se
rately here since it is described by the same formulas as
main mechanism within the present theory.

The binding-energy spectra obtained from the experim
can be simulated by the following theoretical expression:

I ~«!5E
DV2

ds

dV1dV2dE1dE2
dV2

} f eeE
DV2

dV2(
j 2g

uC j2~p2i2g,q2'!u2r~q,«!dq1Q,q2
.

~15!

Here the solid angle integration is performed over the acc
tance angle of the slow ejected electron detector. We omi

FIG. 4. Geometry of a grazing-angle reflection (e,2e) experi-
ment. Arrows indicate incidentp0, scatteredp1, and ejectedp2 elec-
trons. The shaded area shows the acceptance range of the e
electron momenta.

FIG. 5. Left: Dominant mechanism of the grazing-angle refle
tion mode (e,2e) reaction. Specular reflection is followed by inela
tic scattering. Right: Conjugate process in which inelastic scatte
is followed by specular reflection.
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the dielectric function from Eq.~13! and thus neglected th
screening of the Coulomb potential, which is a justified
sumption for such a poor metal as graphite.14 However, by
discarding the dielectric function we also neglected the c
lective excitations which can strongly modify the bindin
energy spectra in the region of plasmon satellites.

To simulate the finite experimental energy resolutiond«
we substitute thed function in the definition of the SMD~12!
by a normalized GaussianG@(«2Ej k)/d«)]. We exploit the
fact that the energy of the ejected electron in the bulk is fix
and add the corresponding Gaussian function to the left-h
side of Eq.~15!. We combine it with the squared momentu
space coefficient to produce the SMD of the unoccupied fi
states:

I ~«!} f eeE
DV2

dV2(
g

r~p2i2g,q2' ;E21F!r~q,«!

3dq1Q,q2
. ~16!

We notice that the polar angle integration has a differ
effect on the SMD of the initial and final target states in E
~16!. The SMD of the final states varies slightly as we rota
p2i . This is so because of a relatively small anisotropy
energy bands and momentum densities of graphite in
basal plane~see, for instance, Fig. 2!. In contrast, the SMD
of the initial stater(q,«) changes significantly since the ro
tation in the surface plane changes alignment of the vec
q2 and Q, the latter being bound to the scattering plan
Therefore we can take the spherically averaged SMD of
final states out of the integral and present Eq.~16! in the
form

I ~«!} f ee(
g

r~p2i2g,q2' ;E21F!

3E
qi

min

qi
max

dqi E
q'

min

q'
max

dq'E
0

p/6

dwqr~q,«!dq1Q,q2
.

~17!

Here the polar angle integration simulates the rotational
order of HOPG, which is only aligned in the direction alon
the rotational axisĉ.

The integration boundaries in Eq.~17! calculated atg50
are given in Table I. The range ofq' is very small for the
grazing-angle geometry. Projection of the integration reg
on the basal plane is contained within the first BZ except
the ejection energy of 14.2 eV for which it slightly overlap

TABLE I. Boundaries of the valence electron momentu
probed by the grazing-angle (e,2e) reaction with the assumption o
the direct escape of the ionized electrom into the vacuum.

Ejected electron Target electron momentum~a.u.!
energyEe ~eV! qi

min qi
max q'

min q'
max

3.7 0.35 0.57 0.67 0.68
8.0 0.35 0.67 0.83 0.86
14.2 0.47 0.90 0.95 1.00
-
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al
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e
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rs
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e
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r

with the second BZ in theGM direction. The size of the firs
BZ of graphite is 0.78 and 0.90 a.u. in theGM and GK
directions, respectively.

Reciprocal vector translation moves the integration a
in Eq. ~17! beyond the first BZ. In practice we found it su
ficient to include only two shortestg vectors,

g15~1,1/A3!32p/a,

g25~0,2/A3!32p/a, ~18!

wherea54.65 a.u. is the lattice parameter of graphite. The
vectors translate the integration area into the second
third BZ’s as shown in Fig. 3. We found that further tran
lations with larger reciprocal vectors have little contributio
to the sum in Eq.~17! since the SMD is very small in this
region.

To calculate numerical values of the SMD in Eq.~17! we
employed the linear muffin-tin orbital~LMTO! method in
the atomic sphere approximation, as described by Skrive15

We used the von Barth–Hedin parameterization for
exchange-correlation potential.16 Momentum density calcu-
lation on graphite within the LMTO formalism was de
scribed in Ref. 17. As compared to this earlier work w
employ here a larger set of the fictitious empty muffin-
spheres~eight instead of two! to have a better representatio
of the electron potential inside a loosely packed graphite u
cell. The momentum space coefficients of the unoccup
electron states are also obtained from the same LMTO
culation. However, presently we use the single set of
energy-independent LMTO orbitals optimized to give t
best representation of the valence band. To get an accu
description of the conduction band this set should be at le
doubled as was demonstrated by Ahujaet al.18 So the accu-
racy of our description of the conduction band is diminishi
as the energy of the final electron state increases.

Convenient graphical analysis of Eq.~17! can be per-
formed by using the plot of Fig. 6 in which the SMDr(q,«)
is plotted versusqi ~horizontal scale! and« ~vertical scale! at
a givenq' . The value of the momentum density is indicat
by various shades of gray, the darker areas represen
larger density. The plot of Fig. 6 corresponds to the smal
ejection energyE253.7 eV. Usuallyr(q,«) is defined for
the occupied states only. Here we extend it above the Fe
level and include the unoccupied states as well. For
grazing-angle geometryQ' is negligible and thereforeq2'

.q' . So we can use the same plot to visualize the SMD
both the occupied and empty states in Eq.~17!.

In Fig. 6 we see the occupieds and p bands, which
constitute the valence band of graphite. We note that
threes bands indicated as separate bands in Fig. 2 join e
other smoothly and form a single parabola in the exten
momentum space. Thep band continues above the Ferm
level. Here also starts the unoccupieds* band which is
formed from the empty 3s orbital of the carbon atom.

The ejected electron state in the solid is represented
Fig. 6 by the points with the abscissaup2i2gu and the ordi-
nateE21F. These points atg50 are indicated by the inter
section of straight lines in Fig. 6. Another set of points whi
corresponds to theg vectors of Eq.~18! is shifted outwards
along the horizontal line by 0.78 a.u. We see from the p
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that the momentum density is approximately equal for
direct (g50) andg-assisted escape of the ejected elect
into the vacuum.

The d-function dq1Q,q2
projects the fixedq2i final state

into the finite qi-size initial state because of the variab
angle betweenq2 andQ. The range ofqi for the direct es-
cape is highlighted on thex axis in the SMD plot of Fig. 6.
The transition that leads to the direct escape originates in
first BZ where onlys1 andp bands have siginificant pres
ence~see Fig. 2!. Integrated over the range ofqi these bands
give two well-separated peaks in the binding-energy sp
trum as indicated on the right side of Fig. 6. The region
the initial-state momentum that gives rise to theg-assisted
escape is populated by thes2 ands3 bands and gives rise t
the peak in the binding-energy spectrum in between thes1
and p. When added up with an equal weighting factor t
direct andg-assisted binding-energy spectra span nearly c
tinuously the whole valence band.

The similar SMD plots can be produced for the high
ejected electron energiesE258.0 and 14.2 eV. With these
energies, however, we encounter considerable difficulty
ing to represent the final state of the ejected electron in
bulk. Both the directly escaped electron and that assis
with the g vectors fall into the region of a very small mo
mentum density of the final states. This can be interprete
the following way. In derivation of our formalism we assum
that the perpendicular component of the ejected electronq'

is determined through the energy conservation~6!. The band
energies of graphiteEj k , at least in the valence region, d
pend very weakly onk' . The first unoccupieds* band
shows a small dispersion of about 2 eV with respect tok' .19

This, however, might not be sufficient to match an arbitra
combination ofp2 and E2 in the vacuum, which is deter
mined solely by the experimental kinematics. If matching

FIG. 6. The spectral momentum density of HOPG extended
the unoccupied states. Ejected electron energyE253.7 eV andq'

5 0.67 a.u. Straight lines indicate the final state of the ionniz
electron. Highlighted is the area of the valence electron momen
which gives rise to the direct escape of the ionized electron into
vacuum~See Table I!. On the right are the binding-energy spect
corresponding to the direct andg-assisted escape of the ionize
electron as well as the total spectrum.
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not possible through the bulk states it occurs only throu
the surface states. This is accompanied by a significant
duction in the ejected electron current even in the nonco
cident mode. This effect was detected experimentally. As
energy of the ejected electron increases it falls into the reg
of the higher unoccupied bands, which acquire gradually

o

d
,

e

FIG. 7. Measured and calculated (e,2e) intensity at various
ejection energies. The experiment~error bars! is deconvoluted with
respect to the multiple scattering of the fast incident electron
shown as the solid line. The calculated spectrum is shown as
dashed line.
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3D character and a free-electron-like dispersion. Then
matching becomes possible for any values ofp2 and E2,
which is the situation of the high-energy (e,2e).

In order to overcome this difficulty and proceed any fu
ther we simply assume that the intensity of the direct a
g-assisted processes are the same. This might not be a
justified assumption. Nevertheless it allows us to make
portant observations about the mechanism of the pre
(e,2e) reaction.

The final results of our computations are shown in Fig
for ejected electron energiesE253.7, 8, and 14.2 eV. As
compared with the binding-energy spectra shown on
right side of Fig. 6 they also include the dynamical fac
f ee}Q24, which decreases rapidly from the top to the b
tom of the valence band. The experiment is normalized to
maximum calculated intensity. Since the binding energy
measured relative to the vacuum level but calculated w
respect to the Fermi level, the experimental curve is shif
horizontally by the amount ofEF55.5 eV. This value was
found by an independent measurement.

The experimentally observed (e,2e) intensity was de-
convoluted with respect to the energy losses of the fast i
dent electron. No similar deconvolution was made for
slow ejected electron since its mean free path is of the o
of a magnitude larger. The deconvoluted (e,2e) intensity
was fitted with four Gaussian peaks of equal width cor
sponding to the experimental energy resolution of 1.2 eV
representing threes andp bands of graphite.

The agreement between the calculation and measure
is rather satisfactory, especially if we recall that we us
very crude approximation by assumingad hocthe equal in-
tensities of the direct andg-assisted escape of the eject
electron into the vacuum. There might be also additio
factors that worsen agreement between the measured an
culated spectra. In the experimental spectra there is a l
background intensity at energies well below the bottom
the valence band (e.20 eV!. This might be due to the in
trinsic loss events associated with collective response of
valence electrons and not describable within the indepen
particle approximation. These processes are related to
dielectric function appearing in Eq.~13! but not properly
evaluated in the present study.

IV. CONCLUSION

We develop the momentum space wave function form
ism to describe the process of a slow electron ejection fro
crystal by electron impact at a high or moderate incid
energy. The amplitude of the slow electron ejection is p
sented as a product of the momentum space wave func
of the target electron in the initial state in the valence ba
and the final state in the conduction band. Because of
selective population of the target electron momentum sp
the largest contribution to the transition amplitude com
from the transition between the states with a well-defin
real momentum corresponding to a particular section of
BZ. In the limit of the large energy transfer the transitio
e
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amplitude contains only the target electron momentum sp
wave function in the valence band.

The bulk transition that leads to the electron escape
the vacuum can be depicted graphically on the plot of
SMD r(q,«) displayed as a function ofqi and« at the fixed
q' . The initial state of the transition is represented by t
SMD of the valence band in the finite interval ofqi . The
final state of the ionized electron in the bulk is restricted
the several points on the SMD diagram that correspond
the direct (g50) andg-assisted escape of the ionized ele
tron into the vacuum. This final state should be matched i«
andqi by the plane wave in the vacuum. This is achieved
adjustingq' which is not bound by the law of momentum
conservation because of the termination of the surface of
crystal. In the case of graphite, because of its laye
quasi-2D structure, this matching is not always possible
the final ionized state falls into the region of a very sm
SMD. This causes a strong reduction of the ejected elec
current even in a noncoincident mode.

The processes of the direct andg-assisted escape of th
ionized electron into the vacuum take their origin in differe
and nonoverlapping areas of the valence electron momen
space. The direct process can only start from the two oc
pied bands,s1 and p, whereas theg-assisted process in
volves thes2 and s3 bands. We were able to make th
conclusion because the dynamics of the present (e,2e) reac-
tion is reduced to just a single mechanism of the reflect
followed by the inelastic scattering. This mechanism
dominant since it allows for the smallest amount of the m
mentum transfer and therefore the largest Mott cross sec
Although the kinematics of the slow ejected electron is n
fully determined in the present experiment, the boundarie
the target electron momentum were narrow enough to
clude the contribution from the second and third BZ in t
direct process.

The complete theoretical description of the low ejecti
energy (e,2e) experiments on the surface of graphite r
quires an accurate band-structure calculation in the cond
tion band. This, in principle, is possible within the LMTO
method but requires a substantial enlargement of the basi
of energy-independent orbitals. Experimentally, it would
more advantageous to resolve fully the ejected electron
mentum and perform an (e,2e) reaction on the surface o
crystalline rather than rotationally disordered graphite. Th
developments in theory and experiment are currently und
way and make us hopeful to achieve a better understan
of the physics of the electron-impact ionization of solids.
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