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Point-ion approximation within the March model for the fullerene molecule

F. Despa*
International Centre for Theoretical Physics, Trieste, Italy

~Received 17 September 1997!

We present an approach of the March model@N. H. March, Proc. Cambridge Philos. Soc.48, 665~1952!# for
the fullerene molecule by employing a point-ion approximation. Accordingly, the model with which we shall
be concerned is a high-density gas ofp electrons in its ground state with a discrete positively charged
background disposed in at - icosahedral symmetry. The density ofp electrons is derived within the first-order
approximation of the perturbation theory and then Poisson’s equation is solved analytically by imposing
natural limits for the fullerene molecule. We have found both inside and outside the fullerene cage distinctive
peaks for the electron distribution and a larger fraction of thep electrons contained inside the molecule. We
must stress here that the other results recorded in a continuum positive charge approximation of the March
model for the fullerene molecule predict that only less than half of all thep electrons are inside the shell.
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Progress in the investigations of the Buckmins
fullerene has until recently been largely confined to the m
ecule model within which the positive ions are uniform
smeared over the surface of a sphere and the valence
trons constrained to move on the sphere surface. The m
has successfully been used in describing some electronic
optical properties of C60.1–4 Recent interest centers on th
approach6–9 of the continuum positive charge model, whic
employs the Thomas-Fermi theory in describing the elect
distribution and the stability of the fullerene. The latter mo
ecule model was inspired from March’s one-center mod5

for heavy, almost spherical molecules. The results were
cidedly encouraging, and led them to suggest possible
provements. One of them we attempt to present in this pa
We shall use a point-ion approximation within the Mar
model for the fullerene molecule, and we shall se
consistently derive the electron distribution of a fullere
molecule by a systematic application of the well-known
sults of the many-body perturbation theory.

Previously,5 March’s one-center model was employed
investigate special moleculesXYn , like CH4 or SF6, and it
has been provided with a sound theoretical basis.10 Shortly,
the positive charges of theY nuclei are smoothed out un
formly over the surface of a sphere with theX atom at the
center, and then the essential problem is to apply s
consistent field methods for the delocalized electrons.

As a theory in its own right, the method developed
March has not been without its successes, and it seem
natural step therefore to investigate whether the met
could be extended to the fullerene molecule. The Ma
model strictly corresponds to the endofullerene molecule
it has been explored recently by Clougherty.9 For the
fullerene case, there is no central atom and the bound
conditions imposed in the March model change at
origin.6,7

The molecule model assumes that the valence elect
cover the inner and the outer surfaces of the uniform
charged fullerene cage moving in a common potential g
erated both by the positive charges and by their distribut
One point needs stressing here: Smearing the positive
570163-1829/98/57~12!/7335~5!/$15.00
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into a continuum surface charge distribution, as indica
above, leads to electrons moving in a less rapidly vary
spatial potential than for the point ions in the fullerene m
ecule.~Note that inside a sphere, the electrostatic poten
due to a surface charge distribution is constant.! Mostly, the
inside electron distribution seems to be affected by empl
ing the continuum positive charge approximation; only le
than half of all the valence electrons of the fullerene m
ecule are inside the shell.7,8 Therefore, the fullerene molecul
being too ‘‘rarefied’’ within its natural limits, some objec
tions can be risen on its mechanical stability.6–8

This situation can be overcome in a case that we s
present here by employing a point-ion approximation. In t
case, the valence electrons are found to be confined, for
most part, inside the shell as a consequence of the adeq
changing of the internal electrostatic potential. Moreov
both the inside and the outside electron distributions sh
distinctive peaks near the fullerene cage, a fact that diff
from the other results recorded in the field.6–8

The model with which we shall be concerned is
quantum-mechanical high-density electron gas in its gro
state with a discrete positively charged background dispo
in a t-icosahedral symmetry. Due to the Coulomb intera
tions, the electrons redistribute themselves so as to shield
positive charges at large distances. The whole system m
be neutral.

As it is known,11 the many-body perturbation procedur
do not attempt to solve the quantum-mechanical many-b
problem, but instead introduce physically reasonable
proximations in a self-consistent manner. We are interes
in a regime where Bohr’s Correspondence Principle appl
namely, in the limit of large quantum numbers. This limit
certainly achieved when the number of electrons becom
sufficiently large, so that one can apply the methods of s
tistical mechanics. Thus, let us suppose that we are dea
with Ne noninteracting electrons moving in a common p
tential V(rW). In our caseV(rW) is generated both by the elec
tron distribution and by positive charge of the fullerene ca
The density of Fermions within the first-order approximati
of the many-body perturbation theory is given in terms of t
unperturbed densityr0, as11
7335 © 1998 The American Physical Society
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r~rW !5r02
kf

2

2p3E drW8V~rW8!
j 1~2kf urW2rW8u!

urW2rW8u2
, ~1!

wherekF is the Fermi wave vector andj 1(x) is the first-order
spherical Bessel function. Within primary form 1, the ele
tron densityr(rW) makes very difficult further mathematica
computations and, therefore, we need a linearization
mula. Usually, the linearization proceeds by assumingV(rW)
as having a slow variation in space~Thomas-Fermi approxi-
mation!. Accordingly,V(rW8) is replaced in 1 byV(rW).

At this point it is useful to recall that by involving a
point-ion approximation, the electrostatic potential achie
a more rapid spatial variation than for the continuum distr
uted surface charge, as we stressed above. Here, one
raise a very important question as to whether linearizatio
is possible. In the present context, let us emphasize first
in a high-density electron gas a point charge is screened
very rapidly,11 namely, at distances beyond a characteris
screening length, say,q0

21 ~which is in inverse proportion to
Akf). Also, we notice that, as usual in an electron gas,
slow variation ofV(rW) is supposed to be over a de Brogl
wavelength for an electron at the Fermi surface, which
2p/kf . In this view, as an answer to the above question,
may say that a conflict with the use of the Thomas-Fe
approximation occurs only close to the point charges of
fullerene cage, beyond a distance ranging betweenR2q0

21

andR1q0
21, whereR is the radius of the fullerene molecule

R.6.73aH .12 Crudely, we shall disregard this limitation an
doing so, we replaceV(rW8) in 1 with V(rW) to obtain after a
straightforward integration

r~rW !5r02
q0

2

4p
V~rW !, ~2!

where

q0
25

4kf

paH
;

Ne
1/3

RaH
, ~3!

with aH standing for the Bohr radius andNe being the num-
ber of the electrons. Errors due to the approximation mad
the above would be expected when we check the conse
tion of the electron number, but, as we shall see, ther
good confidence within the natural limits of the fullere
molecule.

At the same time we may see that the density follows
potential closely, which means that the validity of the theo
is ensured, as we already stipulated above, by the numb
electrons being much greater than unity. Of course, at la
distances from the outer surface of the fullerene cage,
theory is not valid because the electron density vanishes,
at very short distances, towards the molecule center, w
the electron density vanishes also.

With these in mind, and combining 2 with Poisson
equation to yield

DV524pr01q0
2V~r ,u,w!, ~4!

we have a self-consistent field problem that accounts for
electron distribution profile in both the density and potent
-
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Note that, taking into account higher terms in the pertur
tion series for the density matrix, which leads to more ter
in the density formula 2, one can straightforwardly reder
the well-known Thomas-Fermi theory.11

Note that, further on, we will refer only to thep elec-
trons; the charge of an electron is taken to be2e and atomic
units will be used. Here it is convenient to exploit the fa
that 4 separates in spherical polar coordinatesr ,u,w. Then,
the solution of Poisson’s equation may be written in the fo

V~r ,q,w!5(
l ,m

Flm~r !Ylm~u,w!, ~5!

where Ylm(u,w) are the spherical harmonics.Flm satisfies
the radial equation

1

r

d2

dr2
~rF !2

l ~ l 11!

r 2
F5q0

2F24pr0 . ~6!

The functionF is, of course, independent ofm. Terms cor-
responding tol 50 have been considered separately in so
ing the above equation. After some convenient substitutio
we have obtained the general solution for the radial equa
as

Fl~r !5
~4p!3/2r0

q0
2

1
A00

r
sinh~q0r !1

B00

r
cosh~q0r !

1(
j 50

l

Cl j

~21! jAlmexp~q0r !1Blmexp~2q0r !

q0
j r j 11

,

~7!

where

Cl j 5
l ~ l 11!~ l 1 j !!

2 j j ! ~ l 2 j !!
, ~8!

andA andB are constants that will be determined. Introdu
ing Fl(r ) in Eq. ~5! it then follows that

V~r ,q,w!5
4pr0

q0
2

1
B00

r
cosh~q0r !1

A00

r
sinh~q0r !

1(
l ,m

8 (
j 50

l

Cl j

3
~21! jAlmexp~q0r !1Blmexp~2q0r !

q0
j r j 11

3Ylm~u,w!, ~9!

where the prime in the right-hand side of the equation me
that the summation overl begins froml 51.

As for our case the electrostatic potential must be finite
origin, we have imposed in Eq.~9! the conditionsB0050 and
Blm5(21)l 11Alm . Thus, inside the fullerene cage, the ele
trostatic potential has the explicit form
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Vint~r ,q,w!5
4pr0

q0
2

1
A00

r
sinh~q0r !1(

l ,m
8 (

j 50

l

Cl j

~21! jAlm@exp~q0r !1~21! l 2 jexp~2q0r !#

q0
j r j 11

Ylm~u,w!. ~10!

At infinitely long distances the potential vanishes and, accordingly,A0050 andAlm50 in 9. We get outside the fullerene cag

Vout~r ,q,w!5
4pr0

q0
2

1
B00

r
exp~2q0r !1(

l ,m
8 (

j 50

l

Cl j

Blmexp~2q0r !

q0
j r j 11

Ylm~u,w!. ~11!

According with 2, the inner electron density is

r int~r ,q,w!5
q0

2A00

4pr
sinh~q0r !1(

l ,m
8 (

j 50

l

Cl j

~21! jAlm@exp~q0r !1~21! l 2 jexp~2q0r !#

4pq0
j 22r j 11

Ylm~u,w!, ~12!
te
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and, similarly, for the outer electrons, one gets

rout~r ,q,w!5
q0

2
•B00

4pr
exp~2q0r !

1(
l ,m

8 (
j 50

l

Cl j

Blmexp~2q0r !

4pq0
j 22r j 11

Ylm~u,w!.

~13!

As it is known, the carbon ions have at-icosahedral dis-
posal within the fullerene molecule that closely assimila
with the spherical one. Consequently, by considering a s
tem of N carbon ions located on the vertices of a trunca
icosahedron of radiusR the positive charge density ma
readily be written as

s~u,w!5
z

R2(i 51

N

d~w2w i !d~cosu2cosu i !, ~14!

where the chargez51, and thei is an index running over the
carbon ions (N560 for the fullerene molecule!. The expan-
sion of s(u,w) in spherical harmonicsYlm(u,w) reads

s~u,w!5
z

R2(i
(
lm

Ylm* ~u i ,w i !Ylm~u,w!. ~15!

Turning our attention now to the corresponding electrost
potentials for the inner and outer regions of the fullere
molecule, we impose the appropriate boundary conditi
and get, after some manipulations, the constants enterin
Eqs.~10! and ~11! as follows:

A005
zN

q0R
exp~2q0R!, ~16!

B005
zN

2q0R
exp~q0R!, ~17!

Alm5(
t50

l
Clt

~q0R! t
exp~q0R!4pz(

i
Ylm* ~u i ,w i !

3H (
j ,k50

l
Cl j Clk~21! j 11~ j 11!

~q0R! j 1k
@exp~2q0R!
s
s-
d

ic
e
s
in

2~21! l 2 j #F12
q0R

j 11
coth~21! l 2 j

~q0R!G
1 (

p,s50

l
ClpCls~21!p~s11!

~q0R!p1s
@exp~2q0R!2~21! l 2p#

3S 12
q0R

s11D J 21

, ~18!

Blm5(
t50

l
Clt~21! t

~q0R! t
exp~q0R!@exp~2q0R!2~21! l 2t#

34pz(
i

Ylm* ~u i ,w i !

3H (
j ,k50

l
Cl j Clk~21! j 11~ j 11!

~q0R! j 1k
@exp~2q0R!

2~21! l 2 j #F12
q0R

j 11
coth~21! l 2 j

~q0R!G
1 (

p,s50

l
ClpCls~21!p~s11!

~q0R!p1s
@exp~2q0R!2~21! l 2p#

3S 12
q0R

s11D J 21

. ~19!

Conservation of electron number requires that the follo
ing identity be satisfied:

E
0

R

r 2 drE
0

p

dusinuE
0

2p

dwr int~r ,q,w!

1E
R

`

r 2 drE
0

p

dusinuE
0

2p

dwrout~r ,q,w!5Ne .

~20!

After a straightforward integration we obtain an equation
terms of the electron numberNe given by

12
1

exp~q0R!
5

Ne

zN
, ~21!
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where q0 must be replaced by 3. TakingN560, R
56.73aH , z51 and solving numerically, we getNe560
with very good accuracy. As we have expected, the numb
of electrons covering the inner and outer surfaces of t
fullerene cage is equal to that of the carbon ions. Thus,
whole system remains neutral. In fact, this is the main phy
cal requirement that must be satisfied in applying here t
many-body perturbation theory.

Turning our attention now to the electron densities give
by 12 and 13 we must note that, by embodying the over
point-group symmetry of C60,13 the summation over elec-
tron orbital numberl must be made for even values only
Also, the elements corresponding tol 52,4,8 vanish identi-
cally, so that the first nonvanishing terms remain forl
50,6,10 and form50,65. In Fig. 1 we have shown the
radial profile of the electron density both inside and outsi
the fullerene cage. The numerical integration was carried o
inside a large sphere of radius 10aH , greater than the radius
of the molecule. As we may see, the outer electron distrib
tion decreases very rapidly from the fullerene cage vanish
around 10aH . In fact, except for the region of short dis-
tances, towards the molecule center where the electron d
sity vanishes also, the super sphere of radius 10aH coincides
with the domain of validity of the present theory, as we hav
established in the introductory text. We must also notice tw
main aspects concerning the point-ion approximation with
the March model for the fullerene molecule. The first is th
the electron distribution shows two peaks slightly displac
from the interface, the separation length being arou
1.25aH . The second is that, in this case, a larger fraction
the p electrons is contained inside the molecule. This fra
tion is equal to 78 percent but, actually, it could be les
because the model does not include properly thepz character
of the p electrons. However, as we have said above, t

FIG. 1. Electron charge densityr vs r for R56.73aH , z
51, N560, u50, andw5p.
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other results recorded in the field6–8 predict that only less
than half of all thep electrons are inside the shell. In th
view, we may conclude that the errors arising from the c
tinuum approximation of the positive charge are twofold.
one hand, the continuum approximation overestimates
shell self-force7 and, on the other, it underestimates the nu
ber of the inner electrons.

As we know, the effective forces operating in an electr
gas are of much shorter range than the bare Coulomb in
action. The Coulomb interaction is seen, in practice, to
screened out very rapidly, beyond a characteristic scree
length,;q0

21 .
With this in mind, we are thus in a position to understa

the features of the fullerene electron density shown in Fig
The electrons move in the field of the positively charg
carbon ions tending, naturally enough, to contract the cha
cloud into the fullerene cage. At the same time, the electr
near the surface electrostatically repel other electrons f
their immediate vicinity. This leads to a diminuition of neg
tive charge around the fullerene cage. The net effect of p
tive point charges, together with the inside and outside e
tron distributions, diminished somewhat into their interfa
is a much reduced force of screened Coulomb type. T
removes the electron distribution peaks from the positiv
charged shell. On the other hand, due to their fermionic
ture, the electrons prefer to go towards regions where
kinetic energy is lower. Consequently, both the inside a
the outside electron distributions have a diffusive trend.

To this end, we must note that there was another rela
method for including the effects of the discreteness of
positive charges presented by Clougherty9 but numerical re-
sults were not given. Although Eq.~4! in this paper and
Clougherty’s Eq.~15! in Ref. 9 are very similar, their metho
of deduction is different. In Clougherty’s paper,9 the non-
spherical corrections to the potential, originated from the d
creteness of the positive charges, are included by cons
ation of the higher-order multipole moments in the gene
Thomas-Fermi equation. In further research, it has been
sumed that these corrections are much smaller than
spherically averaged solution and, by an adequate app
mation, this has led to a linearized equation like Eq.~4!. By
comparison, in the present study, we have used a d
method to obtain a linearized equation of type~4!. Thus, we
have derived the density of electrons within the first-or
approximation of the many-body perturbation theory a
then, we have solved the appropriate Poisson’s equation
lytically, by imposing natural limits for the fullerene mo
ecule. As in the above-cited work,9 the discreteness of th
positive charges intervenes in the boundary conditions.

Another problem that can be handled directly by t
method is the endohedrally doped fullerenes, but the res
are more complicated and will not, therefore, be recor
here.

The author thanks Professor N. H. March for useful d
cussions.
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