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Point-ion approximation within the March model for the fullerene molecule
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International Centre for Theoretical Physics, Trieste, Italy
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We present an approach of the March mdéelH. March, Proc. Cambridge Philos. Sd8, 665(1952] for
the fullerene molecule by employing a point-ion approximation. Accordingly, the model with which we shall
be concerned is a high-density gas ®@felectrons in its ground state with a discrete positively charged
background disposed inta icosahedral symmetry. The density@felectrons is derived within the first-order
approximation of the perturbation theory and then Poisson’s equation is solved analytically by imposing
natural limits for the fullerene molecule. We have found both inside and outside the fullerene cage distinctive
peaks for the electron distribution and a larger fraction of #helectrons contained inside the molecule. We
must stress here that the other results recorded in a continuum positive charge approximation of the March
model for the fullerene molecule predict that only less than half of allsthelectrons are inside the shell.
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Progress in the investigations of the Buckminsterinto a continuum surface charge distribution, as indicated
fullerene has until recently been largely confined to the mol-above, leads to electrons moving in a less rapidly varying
ecule model within which the positive ions are uniformly Spatial potential than for the point ions in the fullerene mol-
smeared over the surface of a sphere and the valence elgkeule. (Note that inside a .sphere., thg electrostatic potential
trons constrained to move on the sphere surface. The mod@He to a surface charge distribution is consjaipstly, the
has successfully been used in describing some electronic aiféfide electron distribution seems to be affected by employ-
optical properties of .1~ Recent interest centers on the ing the continuum positive charge approximation; only less

anproach-° of the continuum positive charge model. which than half of all the valence electrons of the fullerene mol-
eﬁwpploys the Thomas-Eermi thpeory in desc?ibing the,electrorECUIe are inside the shélf Therefore, the fullerene molecule
distribution and the stability of the fullerene. The latter mol- eing too "rarefied” within its natural limits, some objec-

| del - enired from March' ter mibde IONS can be risen on its mechanical stabifitf.
ecule modael was inspired from March's one-center € This situation can be overcome in a case that we shall

for heavy, almost spherical molecules. The results were d&;resent here by employing a point-ion approximation. In this
cidedly encouraging, and led them to suggest possible iMgase  the valence electrons are found to be confined, for the
provements. One of them we attempt to present in this papemost part, inside the shell as a consequence of the adequate
We shall use a point-ion approximation within the March changing of the internal electrostatic potential. Moreover,
model for the fullerene molecule, and we shall self-hoth the inside and the outside electron distributions show
consistently derive the electron distribution of a fullerenedistinctive peaks near the fullerene cage, a fact that differs
molecule by a systematic application of the well-known re-from the other results recorded in the fiéfd.
sults of the many-body perturbation theory. The model with which we shall be concerned is a
Previously> March’s one-center model was employed to quantum-mechanical high-density electron gas in its ground
investigate special moleculegy,,, like CH, or SF;, and it  state with a discrete positively charged background disposed
has been provided with a sound theoretical b#sBhortly,  in a t-icosahedral symmetry. Due to the Coulomb interac-
the positive charges of th¥ nuclei are smoothed out uni- tions, the electrons redistribute themselves so as to shield the
formly over the surface of a sphere with tXeatom at the Positive charges at large distances. The whole system must
center, and then the essential problem is to apply selfoe neutral.
consistent field methods for the delocalized electrons. As it is known; ™ the many-body perturbation procedures
As a theory in its own right, the method developed bydo not attempt to solve the quantum-mechanical many-body
March has not been without its successes, and it seemedP4oblem, but instead introduce physically reasonable ap-
natural step therefore to investigate whether the metho8roximations in a self-consistent manner. We are interested
could be extended to the fullerene molecule. The MarcHn & regime where Bohr's Correspondence Principle applies,
model strictly corresponds to the endofullerene molecule angamely, in the limit of large quantum numbers. This limit is
it has been explored recently by Cloughettysor the certainly achieved when the number of electrons becomes
fullerene case, there is no central atom and the boundaiufficiently large, so that one can apply the methods of sta-
conditions imposed in the March model Change at thé|st|cal mechanics. ThUS, let us Suppose that we are dealing
origin 87 with N noninteracting electrons moving in a common po-
The molecule model assumes that the valence electronsntiaIV(F). In our case\/(F) is generated both by the elec-
cover the inner and the outer surfaces of the uniformlytron distribution and by positive charge of the fullerene cage.
charged fullerene cage moving in a common potential genThe density of Fermions within the first-order approximation
erated both by the positive charges and by their distributionof the many-body perturbation theory is given in terms of the
One point needs stressing here: Smearing the positive ionmperturbed density,, as!
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K2 (2Kl —F" Note that, taking into account higher terms in the perturba-

- f - = da(2kr=r"]) - : ; ; ;

p(r)=po— — dr'v(r") ——, (1) tion series for the density matrix, which leads to more terms
2m Ir—r’| in the density formula 2, one can straightforwardly rederive

wherek; is the Fermi wave vector arig(x) is the first-order e Well-known Thomas-Fermi theoty.
Note that, further on, we will refer only to the elec-

spherical Bessel function. Within primary form 1, the elec- X ,
tron densit (F) makes very difficult further mathematical trons; the charge of an electron is taken to-be and atomic
yp y units will be used. Here it is convenient to exploit the fact

computations and, therefore, we need a linearization forfhat 4 separates in spherical polar coordinat@se. Then,

mula. Usually, the linearization proceeds by assumiifit)  the solution of Poisson’s equation may be written in the form
as having a slow variation in spa¢éhomas-Fermi approxi-
mation. Accordingly, V(r’) is replaced in 1 by/(r).

At this point it is useful to recall that by involving a V(r,9,0)=> Fim(r)Yim(6,¢), 5
point-ion approximation, the electrostatic potential achieves I,m
a more rapid spatial variation than for the continuum d|str|b—Where Y,.(6,¢) are the spherical harmonics,, satisfies
uted surface charge, as we stressed above. Here, one c}%% : .
. . : . A radial equation
raise a very important question as to whether linearization
is possible. In the present context, let us emphasize first that
in a high-density electron gas a point charge is screened out 1 d? [(1+1)
very rapidly!! namely, at distances beyond a characteristic T dr? re)— 2
screening length, saxq,al (which is in inverse proportion to
Jki). Also, we notice that, as usual in an electron gas, thérhe functionF is, of course, independent af. Terms cor-
slow variation ofV(r) is supposed to be over a de Broglie responding td =0 have been considered separately in solv-
wavelength for an electron at the Fermi surface, which igng the above equation. After some convenient substitutions,
27/ks . In this view, as an answer to the above question, wéve have obtained the general solution for the radial equation
may say that a conflict with the use of the Thomas-FermiS
approximation occurs only close to the point charges of the

F=05F —4mpo. (6)

fullerene cage, beyond a distance ranging betv\léeﬂq(;1 (4m)¥2%p, A B
1 . . _ 0 00 _. 00
andR+qq ~, whereR is the radius of the fullerene molecule, Fi(r)=———+ TSIHWQOY)JF TCOSKQOF)
R=6.73a, .%2 Crudely, we shall disregard this limitation and Yo
doing so, we replac¥(r') in 1 with V(r) to obtain after a ! — 1A exn(dar) + Brextl — dar
straightforward integration +2 Cj (1) A p(% ) ImEXH ~ o ),
= ot
2
- Qo ., - (7)
p(r)=po= 7 _V(r), )
where
where
[(T+2)(1+j)!
4k N° ¢y - LT UATIE ®)
Go=——~ 3 b2
O wa, Ray’ ' '

with a,, standing for the Bohr radius an, being the num- andA andB are constants that will be determined. Introduc-

ber of the electrons. Errors due to the approximation made if'd Fi(r) in Eq. (5) it then follows that
the above would be expected when we check the conserva-

tion of the electron number, but, as we shall see, there is 4mpy B Ago
good confidence within the natural limits of the fullerene V(r,9,¢)=— +Tcosf(q0r)+ Tsinf(qor)
molecule. Ao
At the same time we may see that the density follows the [
potential closely, which means that the validity of the theory + 2' 2 C
is ensured, as we already stipulated above, by the number of Lm j=0
electrons being much greater than unity. Of course, at large _
distances from the outer surface of the fullerene cage, the X(—1)JA,mexp(q0r)+B|mexp(—q0r)
theory is not valid because the electron density vanishes, nor qngl
at very short distances, towards the molecule center, where
the electron density vanishes also. XYim(0,¢), 9

With these in mind, and combining 2 with Poisson’s

equation to yield where the prime in the right-hand side of the equation means

that the summation ovdrbegins froml=1.

As for our case the electrostatic potential must be finite in
origin, we have imposed in EQ) the conditionBy,=0 and
we have a self-consistent field problem that accounts for th&,,=(—1)'**A,,. Thus, inside the fullerene cage, the elec-
electron distribution profile in both the density and potential.trostatic potential has the explicit form

AV=—4mpo+agV(r,0,0), (4)
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4mpg
Vint(r 11&1 @) =

7337

—1)IA;[exp(dor) +(—1)' Texp(—qgor)]

[

Ago . ' (
> +—S|nr(qor)+2 2 Cj
do r I'm j=0

qg)rj+1 Y|m(01(p)' (10)

At infinitely long distances the potential vanishes and, accordifglys- 0 andA,,=0 in 9. We get outside the fullerene cage

4mpg B
Voull, 9, ¢) = 2
Yo

r

According with 2, the inner electron density is

+—exp(—qor)+ > X C
Im =0

B|meXp( - CI0|’)

Gt Ym0, (n

—1)IA[expder) +(—1) Jexp(—qor)]

qZA | (
07700 . ’
pint(r1ﬁ1(p): Slnr(qor)‘l'g:n JZO C”

47r

4mqly 2t Yim(0,9), (12)

and, similarly, for the outer electrons, one gets

2
do-Boo
pout(rvﬁvgo): At eXF(_QO")
I
/ BimeXp(—dor)
+ Ci—————Ym(0,9).
%:1 JZO UV 4mgl it im( . )

13

As it is known, the carbon ions havetacosahedral dis-

posal within the fullerene molecule that closely assimilatesBIm

with the spherical one. Consequently, by considering a sys-
tem of N carbon ions located on the vertices of a truncated
icosahedron of radiuRk the positive charge density may
readily be written as

7 N
o(o,qo):%; 8(¢—¢;) 8(cosfh—cosh;),  (14)

where the charge=1, and the is an index running over the
carbon ions =60 for the fullerene moleculeThe expan-
sion of o(6,¢) in spherical harmonic¥,(0,¢) reads

a(e,¢>=§2 S V(660 Vin(6.6). (19

Turning our attention now to the corresponding electrostatic
potentials for the inner and outer regions of the fullerene
molecule, we impose the appropriate boundary conditions

—(—1>'11[1‘%""‘””""<qu>

L CpCis(—1)P(s+1)

s LOR2AR)I~(~ 1))
0

ps=0

doR
X(l_ s+1

-1
] , (18)

I Ci(—1) y
& (qoRy. P AoRILexA200R) ~(— 1) ]

X47722i: Yim(6i,00)

X{ k Oc”cm( 1) (J+1)[exp(2qu)
P

(GoR) ¥

—(—1>"i][1‘?%Ficm”‘”'_"(qom

| CpCis(—1)P(s+1)

(qoR)P*®

-1
] : 19

[exp(20oR) — (—1)'7P]

p,s=0

R
P

X
s+1

and get, after some manipulations, the constants entering in Conservation of electron number requires that the follow-

Egs.(10) and(11) as follows:

Aog= - exp( — GoR) (16)
=——exp— ,
00 GoR o

zN R 1
5o A AR, (17)

Boo=

|
C
A= 2, ——exp(qoR)4TZ, Yin(6i ;)
=0 (qoR) '
I CiiCi(— 1)1 (j+1)

(QOR)j+k

, [exp(2q0R)
j,k=0

ing identity be satisfied:

R L 2
f r2 drf desinaf depindr, 9, @)
0 0 0

[ee] ks 27T
+f r2 er’ dasinef depoulr, ¥, ¢)=Ne.
R 0 0

(20

After a straightforward integration we obtain an equation in
terms of the electron numbé\t, given by

1 N

L xR 2N 0
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other results recorded in the fiéid predict that only less
than half of all therr electrons are inside the shell. In this
view, we may conclude that the errors arising from the con-
tinuum approximation of the positive charge are twofold. On
one hand, the continuum approximation overestimates the
shell self-forcé and, on the other, it underestimates the num-
ber of the inner electrons.

As we know, the effective forces operating in an electron
gas are of much shorter range than the bare Coulomb inter-
action. The Coulomb interaction is seen, in practice, to be
screened out very rapidly, beyond a characteristic screening
length, ~qq*.

With this in mind, we are thus in a position to understand
the features of the fullerene electron density shown in Fig. 1.
The electrons move in the field of the positively charged
r @u) carbon ions tending, naturally enough, to contract the charge
cloud into the fullerene cage. At the same time, the electrons
near the surface electrostatically repel other electrons from
their immediate vicinity. This leads to a diminuition of nega-
tive charge around the fullerene cage. The net effect of posi-
tive point charges, together with the inside and outside elec-
where q, must be replaced by 3. TakingfN=60, R  tron distributions, diminished somewhat into their interface,
=6.73,, z=1 and solving numerically, we getl.=60 is a much reduced force of screened Coulomb type. This
with very good accuracy. As we have expected, the numbeiemoves the electron distribution peaks from the positively
of electrons covering the inner and outer surfaces of théharged shell. On the other hand, due to their fermionic na-
fullerene cage is equal to that of the carbon ions. Thus, thédre, the electrons prefer to go towards regions where the
whole system remains neutral. In fact, this is the main physikinetic energy is lower. Consequently, both the inside and
cal requirement that must be satisfied in applying here théhe outside electron distributions have a diffusive trend.
many-body perturbation theory. To this er_ld, we must note that there was another related

Turning our attention now to the electron densities givenmet_h_Od for including the effects of the dlscreten_ess of the
by 12 and 13 we must note that, by embodying the overalPOSitive charges presented by Clough%.uyt numerical re-
point-group symmetry of .23 the summation over elec- SUlts were not given. Although Ed4) in this paper and
tron orbital numbel must be made for even values only. Clougherty’s Eq(15) in Ref. 9 are very similar, their method
Also, the elements corresponding Ite 2,4,8 vanish identi- ©f deduction is different. In Clougherty’s papethe non-
cally, so that the first nonvanishing terms remain for spherical corrections _t(_) the potentlal,ongmated from the (_1|s-
~0,6,10 and form=0,%5. In Fig. 1 we have shown the creteness of the positive charges, are included by consider-

radial profile of the electron density both inside and outsid trl]on of tltzwe hlgher-order Imufltlpr?le momenths n ;he general

the fullerene cage. The numerical integration was carried ou omgsgh etrrrt}l] equation. ? urther resea:]c It ”as ﬂ;aen 3]5'
inside a large sphere of radiusaf), greater than the radius sumed tnat these corrections are much smalfler than the
of the molecule. As we may see, the outer electron distribu—Sphe”Cally averaged solution and, by an adequate approxi-

tion decreases very rapidly from the fullerene cage vanishin atlon,_thls h_as led to a linearized equation like E). By .
around 1@y . In fact, except for the region of short dis- omparison, in the present study, we have used a direct

tances, towards the molecule center where the electron de 1ethod to obtain a linearized equation of ty@é Thus, we

sity vanishes also, the super sphere of radius,bincides ave derived the density of electrons within the first-order
with the domain of validity of the present theory, as we haveapprOXImatlon of the many-body_ pertur_batlop theory and,
hen, we have solved the appropriate Poisson’s equation ana-

established in the introductory text. We must also notice twq . : T
ytically, by imposing natural limits for the fullerene mol-

main aspects concerning the point-ion approximation withi 4 ) .
the March model for the fullerene molecule. The first is thatecu!e.' As in the gbove—cneq wofkihe d|scretenes.s. of the
ositive charges intervenes in the boundary conditions.

the electron distribution shows two peaks slightly dlsplaceaD Another problem that can be handled directly by this

from the interface, the separation length being around .

1.25.. . The second is that i?] this case glarger f?action 01method is the endohedrally doped fullerenes, but the results
. H- ) ’ H :

the 7r electrons is contained inside the molecule. This frac-ﬁ;eremore complicated and will not, therefore, be recorded

tion is equal to 78 percent but, actually, it could be less, ’

because the model does not include properlypheharacter The author thanks Professor N. H. March for useful dis-
of the = electrons. However, as we have said above, theussions.
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FIG. 1. Electron charge density vs r for R=6.73,, z
=1, N=60, =0, andp= .
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