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Theory of friction: Coulomb drag between two closely spaced solids
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We calculate the friction force between two metallic bodies with flat surfaces separated by a vacuum slab of
thicknessd, and moving with a relative velocityv. The separationd is assumed to be so large that the only
interaction between the bodies is via the Coulomb field. The friction force depends linearly on the velocityv
~for small v! and decays rapidly with increasingd. In most practical cases, the Coulomb drag makes a
negligible contribution to the friction force, but it may make an important contribution in some special cases.
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I. INTRODUCTION

The interaction between two stationary bodies is of
dominated by the van der Waals interaction. The van
Waals interaction is long ranged, with the interaction ene
falling off as 1/d2, whered is the separation between two fl
surfaces~we neglect retardation, which is a good approxim
tion for d,100 Å!. The van der Waals interaction energ
~per unit area! between two metallic bodies with flat surfac
separated byd;10 Å is typically of the order of 1 meV/Å2,
which is a factor of;100 smaller than the interaction energ
that occurs when the~clean! surfaces are in direct atomi
contact. For an elastically soft solid, such as rubber, the
der Waals interaction can lead to a large enhancement o
area of real contact when such a solid is in contact wit
substrate.

Because of surface roughness, the area of real~atomic!
contact between two bodies is usually a very small fract
of the apparent area of contact. For example, if a cubic s
block with a side of length 10 cm is placed on a steel s
strate, the area of real contact is of the order;0.001 cm2,
i.e., only a fraction;1025 of the apparent area.@The area of
real contactDA can usually be estimated by assuming t
plastic yielding has occurred in all contact ‘‘points,’’ so th
scDA5L, where sc is the yield stress~indentation hard-
ness! and L the total load.# Thus, if the amplitude of the
surface roughness is small, the van der Waals interac
between the noncontacting surface areas makes an impo
contribution to the overall interaction energy. It is interesti
to ask if the long-range interaction between the noncont
ing surface areas also makes an important contribution to
sliding friction force.

In this paper we will address the fundamental problem
the contribution to the sliding friction from the long-rang
Coulomb interaction between two uncharged bodies.1 We
show that in contrast to the important contribution from t
~conservative! van der Waals interaction to the adhesion e
ergy between two solids, in most cases the dissipative pa
the long-ranged interaction makes a negligible contribut
570163-1829/98/57~12!/7327~8!/$15.00
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to the friction force. That is, the friction force is determine
mainly by the area of real~or atomic! contact; the surfaces
area separated by more than;10 Å makes an extremely
small contribution to the friction force, even if this nonco
tacting surface area is many orders of magnitude larger t
the area of atomic contact.

In two earlier papers Schaich and Harris2 and Levitov3

have estimated the contribution from the long-range C
lomb interaction to the sliding friction when two system
move slowly relative to each other. For the case of two m
tallic bodies with flat surfaces Schaich and Harris found t
the friction force for parallel motion is independent of an
metal property. However, our study shows that this res
needs to be improved, as we find that the metal proper
enter via the surface response functiong(q,v). Neverthe-
less, the dependence of the friction force on the tempera
T and on the separationd between the surfaces is correct
described by the theory of Schaich and Harris. The frict
force obtained by Levitov vanishes when retardation is
glected~i.e., when the light velocityc→`!. This result is
incorrect. @It is not easy to check where the calculation
Levitov is incorrect because he does not present the detai
the calculation.#

In an interesting preprint, Pendry considers the sa
problem as discussed below.4 However, he focusses only o
the zero-temperature limit where the friction force is a no
linear function of the sliding velocityv. This nonlinear con-
tribution is derived from diagram (c) in Fig. 3. The formal-
ism used by Pendry is very similar to ours, and we ag
with the results he derives.

II. THEORY

We consider two semi-infinite metallic bodies with fl
surfaces separated~with vacuum! by a distanced. The upper
body moves parallel to the lower body with the velocityv.
We show below that the friction forceF5gAv, whereA is
the surface area andg the friction factor. Note that the fric-
tion force is proportional to the velocityv ~for small veloci-
7327 © 1998 The American Physical Society
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7328 57B. N. J. PERSSON AND ZHENYU ZHANG
ties!. The origin of this result is that in the present case
rapid motion occurs at the interface at any stage of the s
ing ~as would be the case if, e.g., elastic instabilities wo
occur! and we therefore expectF;v asv→0. We consider
only metallic~or conducting! bodies as the electronic frictio
vanishes for insulating bodies~no low-energy electronic ex
citations are possible for insulators!.

Let us first present a qualitative discussion about the
gin of the friction force. At first it might seem a paradox th
there should be friction forces between perfectly flat me
surfaces separated by vacuum, since on theaveragethere is
no electric field outside such surfaces, which could cou
the surfaces together. However, due tothermal or quantum
fluctuations, local charge imbalance will occurtemporarily
in the metals, which gives rise to electric field patches
tending from one solid into the other solid; see Fig. 1. T
fluctuating electric field will induce electric currents in th
solids, which are damped due to, e.g., normal ‘‘Ohmic’’ pr
cesses such as scattering of conduction electrons agains
perfections. For stationary surfaces~no sliding! such energy
transfer takes place in both directions and there is no
energy transfer from one solid to the other~thermal equilib-
rium!. However, during sliding a net energy and moment
transfer will occur from the sliding body to the stationa
body, leading to a friction force. A detailed study shows th
there is a fundamental difference between quantum and t
mal fluctuations: Thermal fluctuations will make a contrib
tion to the friction force already to the lowest order in t
~electric field! coupling between the solids, while quantu
fluctuations only contribute to the linear~in v! sliding fric-
tion in the second~or higher! order of perturbation theory
Furthermore, within the jellium model there is no contrib
tion to the linear sliding friction from quantum fluctuation
so that the linear sliding friction vanishes at zero tempera
in this model.~Note that in the jellium model the ion cores o
the solid are replaced by a uniform positive background.! For
real ~crystalline! solids the contribution from quantum fluc
tuations is nonzero, but decays extremely rapidly with
creasing separationd between the surfaces,g;exp(22Gd),
whereG52p/a is the~smallest! reciprocal lattice vector of
the surface unit cell~see Appendix B!. The contributions
from thermal fluctuations to the friction force are more lo
ranged, asymptotically falling off as 1/d6 ~or as 1/d4, see
below!. On the other hand, the thermal contribution depe

FIG. 1. Two semi-infinite metals, 1 and 2, separated by
vacuum ‘‘slab’’ of thicknessd. Solid 1 moves with the velocityv
relative to solid 2. The figure illustrates a thermal or a quant
fluctuation, which gives rise to a temporal charge imbalance an
electric field. The electric field penetrates into solid 2 where it c
ates electron-hole pair excitations.
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on temperature as;T2 so that at low enough temperatu
the contribution from quantum fluctuations will dominate f
any fixed separationd. We note that the thermal contributio
to the friction force requires thatboth solids are metallic,
while the contribution from quantum fluctuations only r
quires that at leastoneof the solids is metallic~see Appendix
B!.

Let us define the linear response functiong(q,v), which
is of central importance for a large class of surfa
processes.5 Assume that a semi-infinite metal occupies t
half spacez<0. A charge distribution in the half spacez
.d gives rise to an~external! potential that must satisfy the
Laplace equation forz,d and that therefore can be writte
as a sum of evanescent plane waves of the form

fext5f0eqzeiq•x2 ivt,

whereq5(qx ,qy) is a two-dimensional~2D! wave vector.
This potential will induce a charge distribution in the sol
~occupyingz,0!, which in turn gives rise to an electric po
tential that must satisfy the Laplace equation forz.0, and
that therefore can be expanded into evanescent plane w
that decay with increasingz.0. Thus the total potential for
0,z,d can be expanded in functions of the form6,7

f5f0~eqz2ge2qz!eiq•x2 ivt,

where the reflection factorg5g(q,v).
Theg function introduced above has the same central r

for dynamical processes at surfaces as the dielectric func
e(v,k) has for processes in the bulk. During the last;20
years much effort has been devoted to calculatingg(q,v) for
simple metals. There are several contributions to Img that
can be distinguished by the source of the momentum
volved in the excitation process. For a semi-infinite jelliu
for small frequencies (v!vF) only the surface can suppl
with momentum and6,7

~ Img!surf52j~q!
v

vp

q

kF
, ~1!

wherevp , vF , andkF are the plasma frequency, the Ferm
frequency, and the Fermi wave vector, respectively, a
wherej(q) depends on the electron density parameterr s but
typically j(0);1. For real metals, in addition to thissurface
contribution there will be abulk contribution to Img derived
from ‘‘normal’’ Ohmic processes~e.g., scattering of the con
duction electrons from imperfections!, as characterized by a
bulk mean free pathl , and given by6,7

~ Img!bulk54
vF

vp

1

kFl

v

vp
. ~2!

Let g1 andg2 be theg functions of the two solids in Fig.
1. Using first-order perturbation theory, and taking into a
count screening, one can show that the thermal fluctuat
make the following contribution to the friction paramet
~see Appendix A!:
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g50.167
~kBT!2

\ E
0

`

dq q3
e22qd

u12g1~q,0!g2~q,0!e22qdu2

3 lim
v→0

S Img1~q,v!Img2~q,v!

v2 D , ~3!

which is symmetric ing1 andg2 . If Img1 and Img2 are of the
form ~1! and if we approximateg1(q,0)5g2(q,0)51, which
are good approximations for separationsd beyond a few ang-
stroms, then the surface contribution tog is obtained from
Eqs.~1! and ~3!;

gsurf51.298S kBT

\vp
D 2 \j2~0!

kF
2d6 . ~4!

Similarly, using Eqs.~2! and ~3! gives the bulk contribution

gbulk51.204S kBT

\vp
D 2S vF

vp
D 2 \

~kFl !2d4 . ~5!

Note that for large enoughd, the bulk contribution domi-
nates over the surface contribution, but ford, l the surface
contribution dominates.

III. APPLICATIONS

Consider two silver bodies, treated as semi-infinite jelliu
bodies. In this case ford510 Å Eq. ~4! gives g
;1027 Ns/m3, which at the sliding velocityv51 m/s corre-
sponds to a frictional stressF/A;1027 N/m2. This stress is
extremely small compared with the frictional stre
;108 N/m2 occurring in the areas of atomic contact even
~boundary! lubricated surfaces. Furthermore, while the Co
lomb drag force is proportional to the sliding velocity, th
friction force when a block is slid on a substrate is nea
velocity independent at low velocities as indeed expecte
the main part of the friction force is generated in the area
real contact~where, e.g., elastic instabilities may occur!.

In spite of its small magnitude, the friction force asso
ated with thermal fluctuations has been observed in sev
elegant experiments.8 The samples used for these expe
ments are modulation-doped semiconductor heterostruct
grown by molecular beam epitaxy. The experiments con
of two thin slabs of electron~or hole! gases separated by
barrier that is high and wide~typically d;100 Å! enough to
prevent tunneling of electrons, while thin enough to allo
for strong Coulomb interaction between carriers on the
posite sides of the barrier. In the experiments the frictio
drag of one electron-gas layer~layer 1! on another~layer 2!
was probed by studying how an electric current in one la
induces a current in the other layer. If no current is allow
to flow in layer 2~open circuit! an electric fieldE2 develops
whose influence cancels the frictional force between the
ers. If the current in layer 1 is denoted byJ15n1ev, where
v is the drift velocity andn1 the carrier concentration~per
unit area!, then the friction forceF5gAv will act on layer 2.
This must equal the forceF5An2eE2 , whereE2 is the elec-
tric field in layer 2 induced by layer 1. Thusg5n2eE2 /v
5n1n2e2E2 /J1 . The experiments showed thatE2 /J1 is in-
dependent ofJ1 , i.e., the friction force depends linearly o
the sliding velocityv. Furthermore,g was found to be nearly
r
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proportional toT2 as expected based on Eq.~3!. In Appendix
C we show how the present theory reproduces the result
Gramilaet al.8 when theg functions of 2D electron gas lay
ers are substituted in Eq.~3!.

The friction derived from quantum fluctuations~van der
Waals friction! gives a very important contribution to th
sliding friction force of physisorbed adsorbate layers
metal surfaces. As an example,9 the friction force observed
when an incommensurate Xe monolayer~or bilayer! film is
sliding on a flat Ag~111! surface was found to be propo
tional to the sliding velocity, with the friction factorg
'1000 Ns/m3. This is of the same order of magnitude as t
friction factor calculated by assuming that quantum fluctu
tions make the dominating contribution to the friction for
@the contribution from quantum fluctuations decay very ra
idly with the distanced, but for the shortd relevant for a
physisorbed monolayer film, the contribution from quantu
fluctuations is very important; note that thermal fluctuatio
cannot contribute tog in this case because one ‘‘solid’’~the
Xe film! is insulating#.

In the discussions above we have assumed perfect~single
crystal! solids. Most real solids consist of grains that m
expose different facets with different work functions. Th
gives rise to a~static! inhomogeneous electric field distribu
tion in the vicinity of the surfaces. Similarly, adsorbed atom
~e.g., alkali atoms! may give rise to strong local electri
fields at the surfaces. It is clear that when two macrosco
bodies~with static inhomogeneous electric field distributio
at their surfaces! are slid relative to each other without dire
contact, a finite contribution to the friction force will aris
from surface imperfections. However, even in these cases
contribution to the friction force from the noncontacting su
face area is negligible compared to the contribution from
area of atomic contact.

IV. SUMMARY AND CONCLUSION

We have calculated the friction force between two met
lic bodies with flat surfaces separated by a vacuum slab
thicknessd, and moving with a relative velocityv. The
separationd is assumed to be so large that the only inter
tion between the bodies is via the Coulomb field, but sm
enough to allow negligence of retardation effects. The c
pling between the solids occurs via the electric field fro
thermal or quantum fluctuationsin the solids. The friction
force is proportional to the velocityv ~for small v! and de-
cays rapidly with increasingd. Thus, quantum fluctuation
make a contribution;exp(22Gd) ~whereG52p/a is the
smallest reciprocal lattice vector! to the friction force, which
is negligibly small already ford510 Å @note that witha
53 Å andd510 Å one gets exp(22Gd);10210#. The con-
tribution from thermal excitations is proportional toT2, and
decays with increasingd as 1/d4 ~for the bulk contribution!
or 1/d6 ~for the surface contribution!. In most practical cases
involving sliding of a block on a substrate, the Coulomb dr
makes a negligible contribution to the friction force~the
main part of the friction arises from the regions of real co
tact between the solids!. However, in some special cases t
Coulomb drag force is very important. For example, the fr
tion force from vacuum fluctuations contributes in an impo
tant manner to the sliding friction acting on thin physisorb
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7330 57B. N. J. PERSSON AND ZHENYU ZHANG
layers of atoms sliding on metallic surfaces, and the con
bution from thermal fluctuations gives the dominating dr
force in some experiments involving parallel 2D electr
systems.
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APPENDIX A

In this Appendix we derive Eq.~3!. Instead of considering
two bodies with the relative velocityv, it is easier to assume
that one body oscillates with the frequencyv relative to the
second body. The friction force calculated for this case w
reduce to that for the former case asv→0. Thus, we con-
sider the sliding configuration shown in Fig. 2. To the blo
~massM ! is connected a spring~spring constantk! attached
to a rigid fixed stage. The block-spring system forms a h
monic oscillator with the resonance frequencyv
5(k/M )1/2. Assume that this~quantum! oscillator is in its
first vibrational exited staten51. The vibrational coordinate
can be written as

u5u0~be2 ivt1b1eivt!.

We show below that the friction forceF depends linearly on
the sliding velocity of the block so that we can wri
F52Agu̇ and the power absorptionP52^Fu̇&5Ag^u̇2&,
where ^¯& stands for time averaging. Since we treat t
oscillator quantum mechanically we must interpret

^u̇2&5^1uu̇2u1&2^0uu̇2u0&52v2u0
2.

If w↓ andw↑ denote the~quantum mechanical! rates for the
transitionn51→0 andn50→1, respectively, then we hav

P5~w↓2w↑!\v.

Thus we get

g5
\~w↓2w↑!

2vAu0
2 . ~A1!

FIG. 2. A block ~massM ! separated by a distanced to a sub-
strate. The block is connected by a spring~spring constantk! to a
rigid fixed stage. The block-spring system forms a quantum os
lator with the resonance frequencyv5(k/M )1/2.
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We will now calculate the ratesw↓ andw↑ . Let us first focus
on w↓ . The coupling between the two bodies occurs via
electric field associated with the quantized excitations~e.g.,
surface plasmons and electron-hole pairs!. To lowest order in
the coupling between two solids, the three processes i
cated in Fig. 3 may occur. In~a! a thermally excited electron
hole pair recombines in solid 1 while simultaneously t
oscillator goes fromn51→0 and an electron-hole pair i
excited in solid 2. This process gives rise to energy a
momentum transfer from solid 1 to solid 2 and will contri
ute to the sliding friction. For the present purposes, we
treat the electron-hole pair excitations as bosons. As sh
in Ref. 10, the Hamiltonian for the total system can be w
ten as

H5(
qa1

\vqa1
bqa1

† bqa1
1(

qa2

\vqa2
bqa2

† bqa2
1\vb†b

1 (
qa1n

Cqa1
e2qzn~bqa1

eiq•~xn1u!1H.c.!. ~A2!

Here vqa1
, bqa1

† , and bqa1
are the angular frequency an

creation and annihilation operators for the bosons~of solid 1!
with the quantum numbers (q,a1), andCqa1

parameters de-
termining the coupling between the boson excitations
solid 1 with the electrons in solid 2. Similarly,bqa2

† andbqa2

are creation and annihilation operators for bosons in solid
and (xn ,zn) is the position operator of electronn in solid 2,
which in principle could be expressed in terms of the ope
tors bqa2

† and bqa2
, but for the present purpose this is n

necessary. As shown in Ref. 9,Cqa1
can be related to

Img1(q,v) via

(
a1

uCqa1
u2d~v2vqa1

!5
2e2\

Aq
Img1~q,v!. ~A3!

We expand

eiq•u'11 iq•u511 iqxu0~b1b†!,

where we have taken the direction ofu as thex axis. Sub-
stituting this in Eq.~A2! gives

H5H01V01V1 , ~A4!

where

l-

FIG. 3. First-order processes that contribute to the sliding f
tion. Black dots denote electrons above the Fermi surface
circles denote holes below the Fermi surface.
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V05 (
qa1n

Cqa1
e2qzn~bqa1

eiq•xn1H.c.!, ~A5!

V15 (
qa1n

Cqa1
e2qzniq•u0~b1b†!~bqa1

eiq•xn2H.c.!. ~A6!

We can now calculate the decay raten51→0 using lowest-order perturbation theory inV1 , with H01V0 as the zero-order
Hamiltonian. For the moment we will neglect theV0 term, which describes screening, and return to this term later. Now, t
are two possible decay channels:n51→0 while (nqa1

,nqa2
)→(nqa1

11,nqa2
21) or→(nqa1

21,nqa2
11), corresponding to

Figs. 3~b! and 3~a!, respectively. Let us first consider the first process. Using the ‘‘golden rule’’ formula for the transition
gives

w↓5
2p

\2 (
qa1a2

(
nqa1

(
nqa2

P1~nqa1
!P2~nqa2

!d~v1vqa2
2vqa1

!~q•u0!2uCqa1
u2e22qdu^nqa1

11, nqa2
21u(

n
e2q~zn2d!

3e2 iq•xnbqa1

† unqa1
,nqa2

&u2

or

w↓5
2p

\2 (
qa1a2

(
nqa1

(
nqa2

P1~nqa1
!P2~nqa2

!d~v1vqa2
2vqa1

!~q•u0!2uCqa1
u2e22qd~nqa1

11!u^nqa2
21u(

n

3e2q~zn2d!e2 iq•xnunqa2
&u2, ~A7!

whereP1(nqa1
) is the probability that solid 1 hasnqa1

thermally excited quanta in boson modeqa1 , i.e.,

P1~nqa1
!5

e2b\vqa1
nqa1

Z1
,

where

Z15 (
nqa1

e2b\vqa1
nqa1.

To simplify Eq. ~A7!, let us write

d~v1vqa2
2vqa1

!5E dv8d~v82vqa1
!d~v2v81vqa2

!. ~A8!

Substituting Eq.~A8! in Eq. ~A7! and using Eq.~A3! gives

w↓5
u0

2e2

p\ E d2q
qx

2

q
e22qdE dv8@n~v8!11#Img1~q,v8!Mq~v82v!, ~A9!

where

Mq~v!5(
a2

(
nqa2

P2~nqa2
!d~v2vqa2

!u^nqa2
21u(

n
e2q~zn2d!e2 iq•xnunqa2

&u25(
a2

n~v!d~v2vqa2
!

3u^0u(
n

e2q~zn2d!e2 iq•xnu1&u2. ~A10!

But it has been shown elsewhere that6,7

\Aq

2p2e2 Img2~q,v!5(
a2

d~v2vqa2
!u^0u(

n
e2q~zn2d!e2 iq•xnu1&u2

so that

Mq~v!5
Aqn~v!

2p2e2 Img2~q,v!. ~A11!

Substituting this result in Eq.~A9! gives
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w↓5
Au0

2

2p2 E
0

`

dq q3e22dqE dv8@n~v8!11#n~v82v!Img1~q,v8!Img2~q,v82v!. ~A12!

It is clear by symmetry that process~a! in Fig. 3 will give an identical contribution to the decay rate so that we must mult
Eq. ~A12! with an extra factor of 2.

Let us now consider the effect ofV0 . This term gives rise to screening. It can be taken into account as follows: First
that Eq.~A10! contains the electrostatic interaction energy;(nf(xn) where

f5e2qze2 iq•x

is ~proportional to! the electric potential~for z.0! from the boson excitationuaq& in solid 1. This electric potential will induce
~via theV0 term! a ~screening! charge density in solid 2 that will give rise to an electric potential that in turn will polarize s
1. The electric potential from this induced charge density in solid 1 will give an additional electrostatic potential thaz
.0 is of the form

@g1~q,0!g2~q,0!e22qd#f,

where we have assumed that the screening is essentially statistical, as the real excitations involved have very low en~see
below!. The argument above can now be repeated so that after infinitely many reflections the effective~or mean! field takes the
form

f1@g1~q,0!g2~q,0!e22qd#f1@g1~q,0!g2~q,0!e22qd#2f1¯5
f

12g1~q,0!g2~q,0!e22qd .

Substituting this result in Eq.~A10! gives the final result

w↓5
Au0

2

p2 E
0

`

dq q3e22dqE dv8@n~v8!11#n~v82v!
Img1~q,v8!Img2~q,v82v!

u12g1~q,0!g2~q,0!e22qdu2 . ~A13!

Let us now consider the rate for the oscillator to become thermally excited fromn50→1. This rate is given by the sam
formula as above withv→2v, i.e.,

w↑5
Au0

2

p2 E
0

`

dq q3e22dqE dv8@n~v8!11#n~v81v!
Img1~q,v8!Img2~q,v81v!

u12g1~q,0!g2~q,0!e22qdu2 . ~A14!

Let us changev8→v81v in the integral~A13!. Next, if we note that for smallv, Img1(q,v);v and similarly for Img2, and
if we use that

@n~v81v!11#n~v8!2@n~v8!11#n~v81v!5n~v8!2n~v81v!→2
dn~v8!

dv8
v

asv→0, we get

w↓2w↑5
Au0

2v

p2 E
0

`

dq q3
e22dq

u12g1~q,0!g2~q,0!e22qdu2 E
0

`

dv8S 2
dn~v8!

dv8 D Img1~q,v8!Img2~q,v8!. ~A15!

Now,

E
0

`

dv8S 2
dn~v8!

dv8 Dv825
~kBT!2

\2 E
0

`

dx
ex

~ex21!2 x2 ~A16!

and combining Eqs.~A1!, ~A15!, and~A16! gives

g5I
~kBT!2

\ E
0

`

dq q3
e22qd

u12g1~q,0!g2~q,0!e22qdu2 lim
v→0

S Img1~q,v!Img2~q,v!

v2 D , ~A17!

where
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1

2p2 E
0

`

dx
x2ex

~ex21!2 '0.167. ~A18!

Finally, it is easy to show that process~c! in Fig. 3 gives
w↓2w↑;v2 so that, asv→0, this process gives a vanishin
contribution to the friction coefficientg. This result is physi-
cally plausible, since in this case no thermally excit
electron-hole pair is involved before the decayn51→0. But
only if a thermally excited electron-hole pair is involved b
fore the decay would one expect a frictional coupling b
tween the solids to occur to linear order inv.

APPENDIX B

We present a brief discussion about the contribution fr
quantum fluctuations~zero temperature! to the friction force.
Schaich and Harris2 have argued that, within the jellium
model description of the metals,g50 atT50, i.e., the linear
~in the sliding velocity! friction vanishes at zero temperatur
The arguments given by Schaich and Harris are not fu
transparent to us, so we have considered the problem in s
detail. Figure 4 shows four different second-order proces
which we now discuss.@The first-order process~c! in Fig. 3
gives a decay rate proportional tov2 and will therefore not
contribute to the linear~in v! friction force asv→0. This
result is, in fact, true not only within the jellium model bu
also when the lattice structure of real solids is taken i
account. Thus, quantum fluctuations can only contribute
second order.# Now, it is immediately clear that the secon
order processes~a! and~b! cannot, within the jellium model
give a contribution to the sliding friction, since no mome
tum transfer between the two solids are involved in either
these processes. For a real solid the lattice ions break
parallel translational invariance, and processes~a! and ~b!
could in principle contribute to the friction force by transfe
ring momentum in units of the reciprocal lattice vectorG
52p/a. However, it is easy to show that even for real sol
process~b! does not contribute to the friction force since th
process givesw↓;v2. As shown in Ref. 11~see also Ref. 12
and below!, for real solids process~a! contributes. Finally,
let us consider processes~c! and~d!. We have not evaluated
these diagrams but we suspect that, because of the s
phase space for the final states, they gives decay ratesw↓ that
vanish faster than linear withv asv→0, so that this diagram
too will not contribute within the jellium model.

When the lattice structure of the solids is taken into
count, the linear sliding friction is nonzero even atT50 K,
and can be estimated as follows. In a simple description

FIG. 4. Second-order processes that contribute to the slid
friction.
-
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treat the metal conduction band as free-electron-like and
sociate with the ion cores the atomic polarizabilitya~v!. The
polarizability a is assumed to be due to atomiclike tran
tions between the ground stateA and an exited stateB. A
quantum fluctuationA→B→A associated with an atom in
say, solid 1, will give rise to a fluctuating electric field th
couples to solid 2. This process is described by the diag
shown in Fig. 4~a!. If we neglect the interaction between th
transition dipoles on the different atoms, it is easy to exte
the study in Ref. 10 to a periodic lattice of atoms. For
simple cubic lattice~lattice constanta! we obtain the friction
coefficient

g5
e2n2

2pv (
G

uVGu2G Img2~G,v!, ~B1!

wheren51/a2 is the number of atoms per unit surface are
and where

VG52ia~0!GE d2q8
qx9~q8•q92q8q9!

q8q9~G1q81q9!

e2~q81q9!d

12e2~q81q9!a
,

~B2!

with q95G2q8. Substituting Eqs.~1! and ~B2! in Eq. ~B1!
gives

g5
4e2a2~0!n2

pkFvp
(
G

G4j~G!

3U E d2q8
qx9~q8•q92q8q9!

q8q9~G1q81q9!

e2~q81q9!d

12e2~q81q9!aU2

.

In most cases it is enough to includeG56Gx̂, whereG
52p/a in the sum over reciprocal lattice vectors. Afte
some simplifications we get

g5J~Gd!
e2a2~0!n2

kFvp
G4j~G!

e22Gd

d4 , ~B3!

whereJ(Gd) is a relatively slowly varying function ofGd.

APPENDIX C

In this appendix we show how Eq.~3! reduces to the
result of Sivanet al.13 and Gramilaet al.9 for parallel 2D
electronic systems. Electron gas layers can be treated a
electronic systems for which14

g512
1

12xvq
, ~C1!

wherex5x(q,v) is the density-density correlation functio
for a 2D electron gas and wherevq52pe2/eq ~e is the di-
electric function of the surrounding material!. Substituting
Eq. ~C1! in Eq. ~3! gives

g
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g50.167
~kBT!2

\ E
0

`

dq q3
vq

2e22qd

u@12vqx1~q,0!#@12vqx2~q,0!#2vq
2x1~q,0!x2~q,0!e22qdu2

lim
v→0

S Imx1~q,v!Imx2~q,v!

v2 D .

~C2!
-

h

e

ross

(
m

tri-

rated
he
y

he
nce

ion
g

This result agrees with Sivanet al.13 Next, note that the
density-density correlation functionx for the 2D electron gas
has been calculated~within the random phase approxima
tion! by Stern. For the caseq!kF , wherekF is the Fermi
wave vector of the degenerate electron gas system, one

x~q,v!5
n

eF
@h~h221!21/221#, ~C3!

whereh5(kF /q)(v/2vF). At low enough temperatures, w
can take thev→0 limit in Eq. ~C3! to get

x~q,v!5
n

eF
~2 ih21!.

Substituting this in Eq.~C1! and assuming 2pe2n/(eFq)
@1 gives

g'11 i
e\kF

4pne2 v.

Substituting this in Eq.~3! gives

g50.167
~kBT!2

\d4 S e\kF

4pne2D 2

, ~C4!
rs
s

tti

er
as

which agrees with the result of Gramilaet al.8

Equation~C4! is strictly valid only for 3D electronic sys-
tems. For 2D systems the electron-electron scattering c
section15 and the friction factorg have logarithmic correc-
tions, e.g.,g;T2@a1b ln(T/TF)#. However, the logarithmic
correction arises from backscattering contributionsq
'2kF), i.e., from processes involving a large momentu
transfer, and because of the factor exp(22qd) in the Cou-
lomb coupling between the layers, the backscattering con
bution is strongly suppressed@b;exp(22kFd)#, leading to a
nearly;T2 dependence of the friction parameterg. Finally,
let us note that since the two electron-gas slabs are sepa
by asolid layer rather than vacuum, it is also possible for t
conduction electrons in the two layers to ‘‘communicate’’ b
emission and absorption of phonons. It has been shown16 that
exchange ofvirtual phononsgives a small contribution to the
coupling of the two conducting layers, which can explain t
~small! deviation of the observed temperature depende
from the expected;T2 dependence. For large separationd
between the conducting layers, the phononic contribut
will dominate, since it falls off much slower with increasin
d as compared with the electronic contribution~which is
proportional to 1/d4 for 2D systems!.
r,
1For general information about sliding friction, see B. N. J. Pe
son, Sliding Friction, Physical Principles and Application
~Springer, Berlin, 1998!; Micro/Nanotribology and its Applica-
tions, edited by B. Bhushan~Kluwer, Dordrecht, 1997!; Physics
of Sliding Friction, edited by B. N. J. Persson and T. Tosa
~Kluwer, Dordrecht, 1996!; F. P. Bowden and D. Tabor,Fric-
tion and Lubrication~Methuen, 1967!; E. Rabinowicz,Friction
and Wear of Materials~John Wiley and Sons, New York, 1965!.
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