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Conductivities of a quantum Hall system with a model disorder potential:
Influence of electron-phonon interaction on plateau widths
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We consider noninteracting electrons in a quasi-two-dimensional strip~extended in thex direction! in the
presence of a strong perpendicular magnetic field and a constant electric field in they direction, and subject to
a model disorder potentialV(x,y) ~‘‘toy model’’ ! which allows us to obtain the exact solutions of the time-
dependent Schro¨dinger equation in very good approximation. Further, the electrons are coupled to a heat bath
~accoustic phonons! at temperatureT that modifies the coherent Schro¨dinger time evolution induced by the
electric fieldEy . After elimination of macroscopically unobservable fluctuations by averaging over suitable
short time intervals, the time evolution that is relevant for the macroscopic current density can be described by
a Boltzmann-type equation, which is solved numerically. The steady-state solution allows us to calculatesyy

andsxy as a function of any physical parameter of the system. Here we give results ofsyy and ofsxy for all
filling factors and as a function of temperature. Quantized Hall plateaus are obtained at the correct values with
high precision. Between two plateaus, the Shubnikov–de Haas peak spreads out and its maximum decreases
with increasing temperature in qualitative accordance with typical quantum Hall samples. Further, we obtain
the remarkable result that for temperatures below 5 K the plateaus ofsxy become sensibly larger than those of
syy . Our analysis shows that this effect results from electron-phonon interaction.~Such a phenomenon has
been known experimentally for a long time, but it has seemed unexplained so far.! Our method of calculation
could, in principle, be extended to more complex disorder potentials.@S0163-1829~98!02612-5#
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I. INTRODUCTION

It is generally believed that the integer quantum H
effect1 ~IQHE! is due to a localization-delocalization proce
caused by disorder in the presence of a high magnetic fi
When the Fermi energy is shifted the two-dimensional el
tron system changes from insulating behavior~with no dis-
sipation! at quantized Hall conductance plateaus to dissi
tive, ‘‘metallic’’ behavior between the plateaus. In rece
years considerable experimental and theoretical effort
been made to achieve a better understanding of this trans
between adjacent conductance plateaus.2–4

The task for the theory of the IQHE is to give a deducti
microscopic explanation of the localization-delocalizati
phenomenon and the resulting quantization of the Hall c
ductivity. Further, any satisfactory quantitative theory has
predict the width of the conductivity plateaus as well as
detailed form of the conductivities between them~as a func-
tion of temperature and other physical parameters!. But such
a theory is still missing~Ref. 3, pages 6 and 120!. The aim of
this paper is to develop such a theory for electrons in a s
plified disorder potential~a class of model disorder potentia
to be specified in Sec. II!.

The major difficulty of the theory of the IQHE lies in th
fact that thetrue microscopic behaviorof the electrons in the
usually rather complex disorder potential is not sufficien
known.~This is illustrated by the statement5 that ‘‘the micro-
scopic nature of the transport remains rather unclear.’’!

In recent years progress in overcoming these deficien
570163-1829/98/57~12!/7228~12!/$15.00
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has been made, which has revealed new aspects6 in the un-
derstanding of the IQHE. These investigations have b
carried out along two lines.~1! Some pertinentgeneralprop-
erties of theexactsolutions of the Schro¨dinger equation of a
quantum Hall system have been established. This has sh
the importance of the time dependence of the wave functi
in the presence of a disorder potential and of a macrosc
electric fieldE and that the latter is an important paramet
which has to be included properly in the Schro¨dinger equa-
tion ~a restriction to terms linear inE is not sufficient for
smallE!; for a review, see Ref. 6~i!. ~2! These general result
have been illustrated and confirmed by explicit calculatio
for a class of model systems6~a!–6~f! characterized by simpli-
fied disorder potentials, which are chosen such that the s
tions of the time-dependent Schro¨dinger equation and the
particle velocities can be calculated explicitly in very go
approximation. For these model systems, the microsco
processes behind the occurance of the quantized conduc
plateaus can be understood in detail.

In the present paper we will extend the work of Re
6~a!–6~f! such that the Hall and dissipative conductiviti
can be calculated alsooutside the conductivity plateaus. To
this end the interaction with the heat bath~phonons! will be
included. We will use the same type of disorder poten
V(x,y), as previously,6~a!–6~f! since here the Schro¨dinger time
evolution of the states in the presence of a macroscopic e
tric field can be calculated in very good approximation. T
aim of our model calculation is first of all conceptional:
understand the nature of the microscopic processes
7228 © 1998 The American Physical Society
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57 7229CONDUCTIVITIES OF A QUANTUM HALL SYSTEM . . .
quantum Hall system, in particular, the interplay between
electron-phonon interaction and the Schro¨dinger time evolu-
tion induced by the macroscopic electric field. Further, in
framework of our model system, to show how a microsco
theory can be made without major approximations or
proved assumptions. Finally, we hope to obtain new insi
into observable effects, which otherwise~previously! could
not have been obtained.

The remainder of this paper is organized as follows. S
tion II is devoted to the presentation of the model syste
followed by a short description of the Schro¨dinger dynamics
of the electrons, where reference is made to earlier work
the subject. In Sec. III, we consider the interaction
phonons with the electrons of Sec. II, and derive the ass
ated electron-phonon transition probabilities. In Secs. IV a
V, we set up the Boltzmann equation in a form adapted
our model, with the appropriate field and collision term
taken from the previous two sections. We then show how
calculate the dissipative and Hall currents and the co
sponding conductivities, pointing out some peculiarities t
differ from the treatment of more conventional situation
Section VI discusses the computer results obtained for
model, and relates the data to available experiments. Fin
in Sec. VII, we conclude by emphasizing the conceptual c
ity and particular aspects of the present theory, and out
some possible extensions.

II. DESCRIPTION OF THE ELECTRON SYSTEM

We consider noninteracting electrons~chargee,0! on a
long strip in thex direction~of width Ly in they direction! in
the presence of a perpendicular strong magnetic fieldB
5(0,0,B), a macroscopic electric fieldE5(0,Ey,0) and a
static disorder potentialV(x,y). We consider the one
electron Hamiltonian,

H5~1/2m!H S \

i

]

]xD 2

1F\i ]

]y
2~e/c!@Bx1f~ t !/Ly#G2J

1V~x,y!, ~1!

with periodic boundary conditions in they direction, where
f(t)52cEyLyt. The Hamiltonian~1! describes a subdo
main in the bulk of a macroscopic sample.

In typical quantum Hall systems the potentialV(x,y) is
thought of as being composed of a smooth partVs(x,y),
which varies slowly over the magnetic lengthlB
5u\c/eBu1/2, and a more rapidly varying part, say,V1(x,y).
In the absence ofV1, the static wave functions in a hig
magnetic field can be approximately described semicla
cally, by wave functions centered on equipotential lines
Vs(x,y). A macroscopic electric fieldE causes the guiding
centers of the approximate, semiclassical orbitals to mov
a direction perpendicular toE with an additional velocity
componentvd5(c/B2)E3B @in addition to the local Hall
velocity arising from the local electric field
2(1/e)gradVs(x,y)#. Now one has to distinguish betwee
two different basic situations, as follows.

~a! The orbitals are on a tangential surfaceparallel to vd .
In this case they are approximated bystationarysolutions of
the Schro¨dinger equation in the presence of an infinite p
tential slope~with periodic boundary conditions parallel t
e
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vd!, which have fixed guiding centers localized in a directi
perpendicular tovd . They describe electrons with a tota
classical velocity vd2(c/B2)(1/e)gradVs(x,y)3B. The en-
ergetic positions (i.e., in the z direction) of the guiding cen
ters remain unchanged in the course of time. Note that the
velocity components2(c/B2)(1/e)gradVs(x,y)3B do not
contribute to themacroscopiccurrent. They average to zero
since for each slope an opposite exists. What remains are
classical velocity componentsvd . If a small V1(x,y) is
added, this situation does not change appreciably, since
new solutions become stationary linear combinations of
unperturbed Landau functions on the same slope or on
posite slopes.

~b! The basis orbitals are on tangential surfacesparallel to
the direction ofE: In this casetheir energies go up or down
with time, depending on the sign of grad Vs(x,y). Let us
now add a smallV1(x,y) and consider two orbitals on op
posite slopes. The total time evolution can then become
tirely nonclassical in the direction ofvd , leading to velocities
that may be much larger than the classical drift velocityvd
@Refs. 6~a!–6~f!#. This leads to the so-called compensati
current, which is a key element in the IQHE.

Further, because of their different energy changes in
presence ofE, orbitals on opposite slopes parallel toE can
be populated differently~in the steady state!. Therefore, the
velocity components parallel toE are here not necessaril
averaged to zero on a macroscopic level.

For an investigation of this crucial case~b!, we consider
now a simplyfied disorder potential

V~x,y!5V~x!1V1~x,y!. ~2!

HereV(x) is a sequence of slowly varying barriers and we
~obstacles! @Fig. 5; see also Fig. 1 of Refs. 6~b! and 6~f!#, and
V1(x,y) is a more rapidly varying part that has to be cons
ered as a perturbation ofV(x), with Fourier coefficients
@specified in Ref. 6~f!, see below#

dk~x!5~1/Ly!E V1~x,y!exp@ i2pyk/Ly#dy, k integer.

~3!

V(x) simulates long-range fluctuations, which we restr
to thex direction in the present model calculation. This h
the advantage that there exist only tangential planes in
direction parallel toE5(0,Ey,0) and that the solutions in th
absence ofV1 are very well approximated by Landau fun
tions @associated with tangential planes at thestraight, hori-
zontal equipotential lines ofV(x)#, whose guiding centers
move perpendicularly toE, with the classical velocityvd
5(cEy /B,0,0). Further, ifV1 is added~its detailed form is
not important, provided it is sufficiently small, see below!
the time dependent solutions can be obtained in a very g
approximation as well. The form~2! may be called a ‘‘toy
model’’ for the more complex disorder potential in usu
quantum Hall samples.

The solutions of the time-dependent Schro¨dinger equation
will be expanded as

c j~x,y,t !5(
p

cp
j ~ t !cp~x,y,t !, ~4!
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where

cp~x,y,t !5~Ly!21/2 exp~ i2ppy/Ly!up~x,t !, p integer
~5!

are the Landau functions centered at

xp~ t !5chp/~eBLy!2f~ t !/~BLy!2m* c2V8~xp!/~e2B2!,
~6!

andV8 denotesdV(x)/dx. In this article we generally con
sider a single Landau band, associated with the lowest L
dau level (n50); hence the Landau indexn has been droped
in Eq. ~5!.

If f(t) varies slowly, that is to say, if the fieldEy is
sufficiently small, all solutions of the time-dependent Sch¨-
dinger equation with Hamiltonian~1! become adiabatic7 so-
lutions, i.e., eigenfunctions ofH@f(t)#, where the timet is
considered to be a parameter.

In the absence ofV1(x,y) the functionscp(x,y,t) are
approximate adiabatic solutions@if xp is not too close to the
top of a peak or to the bottom of a valley ofV(x)#. The
corresponding energies are

Ep~ t !5\vc~n11/2!1V@xp~ t !#1~m* /2!@cV8~xp!/~eB!#2.
~7!

These energiesEp(t), Ep8(t) increase or decrease, respe
tively, as a function of t, depending on the sign o
V8@xp(t)#. This leads to a spectrum of intersecting ener
levels @see Fig. 1 of Ref. 6~f!#.

In the presence ofV1(x,y) ~the y dependence is impor
tant! the adiabatic energy levels«s(t) of H@f(t)# anticross
and are individually periodic as a function off with period
hc/ueu @see, e.g., Fig. 2 of Ref. 6~b!#. The velocity expecta-
tion values~in both they andx directions! of adiabatic states
are periodic in time with periodt5h/ueEyLyu, and their av-
erage over the periodt is zero.8 Since t is very small for
physically realistic values ofEyLy , this means that adiabati
states do not contribute to the macroscopic current.

In our model the physical parametersV8(x) andV1(x,y)
are now chosen such that all statesin the central range of the
broadened Landau bandcan be described by aweak disor-
der approximation.6~a!–6~c! This leads to adiabatic state
w(x,y,t), which are time-dependent linear combinations
only two Landau functionscp(x,y,t),cp8(x,y,t), which are
situated on opposite slopes ofV(x). The resulting adiabatic
wave functions oscillate between opposite slopes with t
period t @see, e.g., Fig. 3 of Ref. 6~a!#, which corresponds
indeed to a vanishing dc current.

For sufficiently high values ofEy nonadiabatic transi-
tions become possible between certain adiabatic states@see
Fig. 3 of Ref. 6~b!#. In our weak disorder case the probabi
ties for these nonadiabatic transitions take the exp
form6~d!–6~f!

Ppp85exp$2u4p2udp-p8u
2

3exp@22~xp2xp8!
2/~2lB!2#B/@V8~xp!chEy#u%.

~8!
n-

-

y

f

e

it

Here 4p2udp-p8u
2 exp@22(xp2xp8)

2/(2lB)2 is just the matrix
element u^puV1(x,y)up8&u2, where xp5xp(t* ), xp8
5xp8(t* ) are situated onoppositesides of a barrier~well!
such thatEp(t* )5Ep8(t* ). Ppp8 is the probability to go
during the time intervalt/2 from a statecp situated atxp(t)
to a state situated atxp1(xp112xp)/2 ~i.e., on thesame
slope!, and 12Ppp8 is the probability to go to a statecp8
which has the same energy, but whose positionxp8 is on the
nearestoppositeslope. These transition probabilities only d
pend on the energy of intersectionE @5Ep(t* )# of the lev-
els Ep(t),Ep8(t). In Fig. 1 of Ref. 6~f! the energies of inter-
section are denoted byEj , j 50,61,62,... . Hence we can
definePj5P(Ej ).

We use the same parameter values as in Ref. 6~f!, except
V851.153103 eV cm21 and udp-p8u

250.631026 (eV)2,
which are slightly different. The resulting probabilitiesPj
remain equal to those in Ref. 6~f!. They decrease fromPj51
in the very band center toPj50 at themobility edges Ej5
6Eb , see Fig. 1 of Ref. 6~f!. In the intermediate energy
zones, where 0,Pj,1, the time evolution of a wave func
tion is the result of successive splittings~described by 2
32 matrices! at the ‘‘anticrossing times’’t5nt/2, n integer,
see Fig. 2 of Ref. 6~d! and Fig. 1 of Ref. 6~f!. Thus any state
with initial condition c(x,y,t50)5ws(x,y,0) with energy
«s in the nonadiabatic, i.e., in theconducting range
@2Eb ,Eb# becomes fort@t/2 a time-dependentlinear com-
bination ~4! with much more than two nonzero coefficien
cp(t) associated with energiesEp(t)P@2Eb ,Eb#. On the
other hand, states with energies outside the conducting ra
@2Eb ,Eb# remain adiabatic~i.e., insulating!, and they do not
mix with the conducting states.

Our model system thus fulfills the basic requirements o
quantum Hall system,9 i.e., there exist conducting states
the center and insulating states in the tails of a broade
Landau band.

For further details the reader is referred to Refs. 6~a!–6~f!.
Note that in Ref. 6~f! ~inset of Fig. 1! the distanceL across a
barrier or well was denoted byLx , and the origin oft was
chosen such that each orbitalws(x,y,t50) @with energy
«s(0)# coincides with an orbitalcp @with energy Ep
5«s(0)# and the notation«p was used for this energyEp .

III. ELECTRON-PHONON SCATTERING

In a heterojunction@or in a metal-oxide-semiconducto
field-effect transistor# ~MOSFET!, the coherent dynamics o
the electron system described in Sec. II is influenced by
interactions with the phonons of the surrounding crystal. B
low, the phonon modes will be taken to be those of bu
GaAs.10 We will mainly focus on the temperature range b
tween ;1 K and liquid He temperature, say, where mo
experiments are done. This allows us to discard piezoac
tic ~PA! scattering~which is known to be significant only a
very low T!11 and scattering with LO phonons~which is only
expected to play a role forT.40 K!. Therefore, we will
specialize to the case of deformation potential scattering

Given that the calculations will be restricted to a regi
around half-integer filling, at the temperatures conside
above, the electrons cannot make inter-Landau-level~LL !
transitions. Further, we do not pursue the investigation of
dependence on theLL index, so in line with Sec. II and
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57 7231CONDUCTIVITIES OF A QUANTUM HALL SYSTEM . . .
many theoretical approaches, we assume that only the lo
LL is occupied, and drop the LL index in our expressions

We multiply the wave functionsC(x,y) of Sec. II by the
Fang-Howard trial wave function12 in the z direction,

C~z!5S 1

2lz
D 1/2

z expS 2z

2lz
D . ~9!

This enables us to include the effect of the finite width of t
2 DEG in our final expressions for the conductivities~al-
though this will not be investigated in detail in the prese
article!.

In general, an electron which initially occupies the sta
cp interacts with the surrounding heat bath~here acoustic
phonons at temperatureT!, and makes a transition to anoth
statecp8 that involves the emission or the absorption of
phonon with energy\vq and wave vectorq. The first-order
probability vnp,np8

(e-p) per unit time for this transition is given
by the Fermi golden rule,13 which contains the correspondin
electron-DA phonon matrix elementM p,p8

q .14,15

There are many possibleq vectors that have the sam
magnitude and the samey component, which scatter th
electron from the initial stateky(p)52pp/Ly to the same
final stateky(p8)52pp8/Ly . Their contributions must be
added together. This gives an additional multiplicative fa
tor, which is calculated in Appendix A. The resulting—
partially summed—transition probabilities can then be w
ten in the form

Wp,p8
~e-p!

5 Ī ~ q̃y ,ap,p8 ,lz!F~ q̃y ,ap,p8!~nq1 1
2 6 1

2 !, ~10!

whereĪ , F, ap,p8 , andq̃y are defined in Appendix A andnq
is the equilibrium ~Bose-Einstein! distribution of the
phonons at temperatureT and the upper~lower! sign stands
for emission~absorption!.

In Ref. 14 electron-phonon interaction in a quantum H
system with a smooth disorder potentialV(x,y) was investi-
gated by replacing the potential by an infinitely extend
tangential surface~a single potential slope with averag
steepness!. The semiclassical wave functions associated w
the potential lines ofV(x,y) were simulated by Landau func
tions. The resulting electron–acoustic-phonon scattering
showed a linear temperature behavior for a wide range
temperatures, corresponding to an effective reduction of
Debye temperature, which was traced back to the wa
function shrinkage due to the high magnetic field~resulting
in the exponentially decaying factor in our Eq.~A6!. Based
on a number of more intuitive arguments, this result was t
used to describe the temperature behavior of the width of
transition region between quantum Hall plateaus.

In contrast to our paper, Ref. 14 does not discuss the t
evolution of the Schro¨dinger solutions induced by a macro
scopic electric fieldE. Further, no slope changing process
are considered. However, for the calculation of a mac
scopic current induced by an electric fieldE slope changing
processes play an important role as our calculations
show. We are not aware of similar calculations perform
elsewhere.
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IV. MACROSCOPIC CURRENTS AND THE BOLTZMANN
EQUATION

For the description of the macroscopic current it is su
cient to know the microscopic properties at the very clos
spaced discrete timesnt. t is the time interval during which
the center of a functioncp(x,y,t) moves fromxp(t) to the
extremely close adjacent positionxp11(t) ~if the centersxp

are numbered consecutively!. We then have xp(t1t)
5xp11(t) andEp(t1t)5Ep11(t). Therefore, in the follow-
ing we use as basis functions the set of time-independ
functionscp(x,y,t50)[cp with their positionsxp and en-
ergies Ep @instead of the time-dependent basis functio
cp(x,y,t5nt)#. This is analogous to the method of quas
classical dynamics for Bloch electrons in an electric field16

where the set of time-independent Bloch functionsck(r )
is used as basis functions, which are just the correspon
time-dependent adiabatic Schro¨dinger functions taken a
t50.17

The total occupation numbers of the basis statescp will
be denoted byf p(t). They result from the~coherent! Schrö-
dinger time evolution induced byEy and the~irreversible!
time evolution caused by the interaction with the phono
The Schro¨dinger evolution alone can be calculated~at the
discrete timesnt! by multiple applications of complex 2
32 matrices~see Sec. II!. However, for the calculation o
themacroscopiccurrent densities~of a macroscopic sample!
the knowledge of the probabilitiesPpp8 and 12Ppp8 , i.e., of
the absolute squares of the matrix elements, is sufficient

One reason is that the conductance fluctuations that m
result from the phases of the matrix elements are avera
out when the contributions from different obstacles@hills and
valleys ofV(x)# are summed up. It is like averaging over
number of mesoscopic samples.~The phases of the matrix
elements of the 232 matrices contain the phases of th
Vpp8

1 , which are random6~c! and different at different ob-
stacles of a macroscopic sample.! @Note that already for pro-
cesses within asingleobstacle the phases are irrelevant in t
following important cases:~a! If scattering with phonons oc
curs only after a time interval much longer thant/2, the
possible phase effects are averaged out because of p
randomization6~c! during the Schro¨dinger evolution it-
self. ~b! If scattering occurs within a time intervalt ~two
splittings or less!, the coherent Schro¨dinger time evolution in
this short interval is not affected by phase effects, since
superposition of contributions from different paths in the e
ergy time plane occurs.6~c! This concerns the states near t
Fermi level. ~c! When the Fermi level is contained in
nonconducting range and the temperature is sufficiently
such that the conducting states below the Fermi level are
scattered by the phonons, the Hall current is entirely due
these conducting states. The Hall conductivity is then qu
tized, see Sec. 5 of Ref. 6~i!, where a general proof is given
This proof is~partly! based on charge density invariance
times nt. In our weak disorder case, this invariance resu
already from the absolute values of the 232 splitting ma-
trice elements@as one can see from the splitting scheme, e
Fig. 1 of Ref. 6~f! and hence is independent of the phase#

As a consequence, the occupation numbersf p(t) can be
obtained from the followingBoltzmann rate equation:
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] f p /]t5(
p8

$2 f p~12 f p8!Wp,p8
~e-p!

1 f p8~12 f p!Wp8,p
~e-p!%

1(
p8

$2 f pWp,p8
Sch

1 f p8Wp8,p
Sch %. ~11!

Here Wp,p8
Sch is the transition rate from a basis statecp ~lo-

calized atxp , with energyEp! to a statecp8 ~localized at
xp8 , with energyEp8! due to the Schro¨dinger time evolution.
For the calculation of the macroscopic current it is sufficie
to defineWp,p8

Sch as the average transition probability per u
time, averaged over the small time intervalt. In this way the
possible temporal fluctuations that arise from the admixt
of adiabatic processes~which are periodic within the very
short time intervalt and hence are macroscopically irre
evant! are averaged out. The probabilitiesWp,p8

Sch can be ex-
pressed in terms of the Zener transition probabilitiesPpp8 ,
Eq. ~8!, see Appendix B.

The current in they direction results from the Schro¨-
dinger velocities

vy
j ~ t !5] t^c

j uHuc j&/eEy . ~12!
f

te
ob
t

e

In our weak disorder approximation we have@see also Ref.
6~f!#

(
j

^c j uHuc j&~nt!5(
p

f p~nt!Ep . ~13!

From this and Eq.~12!, expressing the time derivative of th
occupation numbersf p by the Schro¨dinger part of Eq.~12!,
one obtains the macroscopic current density iny direction~at
t5nt, n integer! as

j y~ t !5(
p

f p~ t !(
p8

Wp,p8
Sch

~Ep82Ep!/~2LLyEy!. ~14!

Equation~14! can be written in a different, maybe more fa
miliar way in terms of the velocitiesvy

p associated with the
basis functioncp , see Appendix C.

The macroscopicHall current density jx results from
summing over all single-particle velocities in thex direction,
which can be expressed in terms of the transition ratesWp,p8

Sch

andWp,p8
(e-p) between the positionsxp . One obtains
j x~ t !5@e/~2LLy!# (
p,p8

uxp82xpu,L

f p~ t !@Wp,p8
Sch

1Wp,p8
~e-p!

„12 f p8~ t !…#~xp82xp!

1@e/~2LLy!# (
p,p8

xp82xp.L

f p~ t !@Wp,p8
Sch

1Wp,p8
~e-p!

„12 f p8~ t !…#~xp82xp22L !

1@e/~2LLy!# (
p,p8

xp2xp8.L

f p~ t !@Wp,p8
Sch

1Wp,p8
~e-p!

„12 f p8~ t !…#~xp82xp12L !, ~15!
y
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-
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where the sum runs overxp , xp8P@0,2L#. The terms pro-
portional to 2L in the Eq.~15! take account of the motion o
electrons out of and into the interval@0,2L#. They occur
becausef p @5 f (xp)# is periodic in thex direction with pe-
riod 2L andWp,p8

Sch andWp,p8
(e-p) have been defined for allp, p8

corresponding toxp , xp8P@0,2L#, but such that they also
describe motion~scattering! across the twoboundariesof the
interval @0,2L# wheneveruxp82xpu.L, see Appendix D.

In thesteady state~which is defined by] f p /]t50 for all
p! the Hall current density~15! has the simplified form

j x5@e/~Ly!#S (
p,p8

xp82xp.L

f p~ t !@Wp,p8
Sch

1Wp,p8
~e-p!

„12 f p8~ t !…#

1 (
p,p8

xp2xp8.L

f p~ t !@Wp,p8
Sch

1Wp,p8
~e-p!

„12 f p8~ t !…#D . ~16!

Here two remarks are important. The transition ra
Wp,p8

Sch are expressed in terms of the Zener transition pr

s
-

abilities ~8!, see Appendix B, and thuscontain all orders
with respect to Ey . In particular, those of theWp,p8

Sch which
give a major contribution to ‘‘hoppings’’ from anxp on one
slope of V(x) to an xp8 on the opposite slope are highl
nonlinear inEy . This means that the current across the top
a hill or the bottom of a valley ofV(x) ~i.e., across the
regions of insulating states! is entirely due to such nonclas
sical velocity components. In other words, any nonzero H
current in the steady state contains such nonclassical, no
ear contributions. This is true, in particular, for the macr
scopic Hall current in the quantized plateau regime. T
current is linear inEy . But on a microscopic level the indi
vidual particle velocities of the conducting states are co
posed of linear and nonlinear ~time-dependent!
components6~a!–6~f! ~see also the remark in the second la
paragraph of Sec. VI!.

The other possible contribution toj x due to ‘‘hoppings’’
between the localized statescp arises from the transition
ratesWp,p8

(e-p) . In Sec. VI we will see that these phonon in
duced contributions increase the plateau width ofsxy at low
temperatures.
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V. CONDUCTIVITIES

The experimentally relevant current densities are obtai
from thesteady-state solutionof Eq. ~11!. The conductivities
are then given by syy5 j y~steady state!/Ey and sxy

5 j x ~steady state!/Ey .
As a result of the form ofV(x), thek dependence of the

energies of the two-dimensional electrons,E@ky(p)#
5V(xp)1const, is analogous to the dispersion relation«(k)
of one-dimensional Bloch electrons. Therefore, Eq.~12! re-
sembles the Boltzmann equation of Bloch electrons inter
ing with acoustic phonons, which is a standard model for
dissipative electric conductivity of metals o
semiconductors.16 However, in those derivations the Schr¨-
dinger time evolution is supposed to be either unpertur
classical~or quasiclassical if a periodic substrate potentia
present! @which in our model corresponds toPj51 for all
energiesEj in the broadened Landau band#, or the effect of
the disorder potential is assumed to be sufficiently small~or,
equivalently,uEu sufficiently high!, such that the Schro¨dinger
time evolution is not very far from the unperturbed classi
or quasiclassical motion in an electric field@which in our
case would meanPj.1 for all j #. If then only terms linear in
E are considered in the Boltzmann equation, and furthe
the deviationf 1 of the steady state from the Fermi distrib
tion f 0 is small (f 1!1), an approximate solution for th
steady state can be obtained~using, e.g., a relaxation tim
approximation!.16 This leads to a Drude-type relation for th
dissipative conductivity~Ohm’s law!.

In our case we cannot make analogous approximatio
First of all, for the considered value ofEy , the nonadiabatic
transition probabilitiesPj @which depend onEy , see Eq.~8!#
are equal or close to one only in the very center of the c
ducting range. Only here can the influence of the disor
potential termV1(x,y) on the Schro¨dinger time evolution be
approximately neglected. This means that only around h
integer filling factors may one expectj y to be approximately
linear in Ey ~provided f 1 is linear!, see Eq.~C4!.

Secondly, in our systemf p is quite different fromf p
0 when

the Fermi energy is in the range of conducting states.
biggest deviation is of order 1 and occurs for half-integ
filling of the band, see Fig. 1. The two underlying reaso
are the following: First of all, in our system the velocitie
parallel to the macroscopic electric field are quite high
states near the band center, much higher than in typical
perimental quantum Hall systems~as a consequence of th
big value ofuV8(xp)u!. This rapidly pushes these states~for
which Pj is equal or close to 1! out of their energetic equi
librium position, towards higher~lower! energies on a posi
tive ~negative! slope@cf. Eqs.~11!–~13! and the equations o
Appendix C#. Further, as a consequence of the conditionqy
<q ~see Sec. III! elastic and quasielastic scattering wi
phonons from one slope to the opposite one are totally s
pressed~the energy range of such forbidden slope chang
processes starting from a given energyEj increases towards
the band center!. These processes—which would interru
most effectively the evolution away fromf (0) caused by the
field Ey and, therefore, would lead to a quick relaxation
wards the equilibrium distributionf 0 if Ey was switched off,
as in metals—are absent in our system.18

For these reasons the usual methods for finding an
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proximate analytical solution of the steady-state equation
not applicable in our case. Therefore Eq.~11! was solved
numerically without approximations. This means that our
sults contain all orders with respect to the electric fieldEy
and are not restricted to a linear approximation~see also the
remark in the second to the last paragraph of Sec. IV!.

Note that if we did not couple the electronic system to
heat bath and if we considered the steady state of the Sc¨-
dinger time evolution in the presence ofEy in this case, we
would obtainsyy50 even for half-filling of the band, be
cause in this case the Schro¨dinger time evolution is not in-
terrupted by electron-phonon interactions and then leads
steady state with equal occupation of all energies of the c
ducting states.6~f!

VI. NUMERICAL RESULTS AND DISCUSSION

For the numerical calculation of the present article
used the same labeling of thecp as in Fig. 1 of Ref. 6~f!, but
we slightly shifted the origin of time by1t/4 keeping«p as
the unperturbed energyEp . This shift does not change an
of the formulas derived in the present article, it only mak
Ep ~p odd! coincide withEp11 . This means that now to eac
basis functioncp, p odd, with energyEp , situated on a
positive slope ofV(x) there exists another basis functio
cp11 situated on the opposite slope, which has thesame
energyEp115Ep ~p odd!. This energetic symmetry has th
advantage that the energiesEp of states on opposite slope
have exactly the same equilibrium~Fermi! distribution f p

0 on
each of the slopes separately.

If Ey is zero, allWp,p8
Sch (pÞp8) are zero as well~hence

j x50!, and the numerical solution of Eq.~11! becomes the
corresponding Fermi distributionf p

0(T) as it should~see Fig.
1!. Note that f p

0(T) is the same on each slope separatel@

f p
0(T)5 f p8

0 (T) for Ep5Ep8 with xp , xp8 on opposite slopes
of V(x)#, whencej y50.

After switching on Ey , the Fermi distribution rapidly

FIG. 1. The steady state distributionf 5 f p5 f (Ep) at T51 K
for filling factors n50.413 ~squares!, n50.5 ~circles!, n50.587
~diamonds!, and the corresponding distributions in the absence
the electric fieldEy ~solid lines!, which are Fermi distributions. Se
also text, Sec. VI. The band contains 276 states, symmetric
distributed with respect to the band center, which is situated bew
energy indexes 138 and 139.~Note that in Figs 1–4,n denotes the
filling factor within the highest partially occupied Landau band.!
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7234 57D. BICOUT, P. MAGYAR, AND J. RIESS
goes over into the steady-state distributionf (Ep). Figure 1
illustrates this forT51 K. For each filling factor in the con
ducting range,f (Ep) is composed of two branches, each
which is approximately a shifted Fermi distribution@shifted
to higher ~lower! energies forp odd, i.e., for states on a
positive slope ofV(x) ~for p even, i.e., for states on a neg
tive slope!#. This shift is the highest forn51/2 and tends to
zero asn approaches the mobility edges@to avoid confusion
we note that in Figs. 1–4n denotes the filling factor only
within the highest partially occupied band#. j y is different
from zero if the steady state distribution is different on tw
opposite slopes. This is the case, if«F is in the conducting
range ~where Pp.0!. On the other hand, if«F lies suffi-
ciently within the range of nonconducting states~wherePp
50!, one obtains again the same Fermi distribution on b
slopes, whencej y50.

The numerical results for the dissipative conductivitysyy
are shown in Fig. 2. In order to appreciate these results,
first recapitulate some known features concerning the p
values observed in conventional MOSFET’s and hetero ju
tions. Experiments performed over a wide range of tempe
tures down to 50 mK reveal a rather complex pattern.19 For
instance, below 10 K, the peak valuesyy

max ~i! first increases
as the temperature is lowered, then~ii ! around 1 K this ten-
dency is reversed and the maximum value ofsyy decreases
as T goes down, until~iii ! at the lowest temperatures th
downwards slope levels out and the conductivity saturate20

Our results can directly be compared to~i!, since the pho-
non scattering mechanism employed in our paper is adeq
at temperatures around 1–5 K. Although in our model s
tem the density of states~a rectangular step function! and the
disorder potentialV(x,y) are different from those in ordinar
quantum Hall samples~and, in addition, we have neglecte
screening!, we may take the results obtained as guidelines
an analysis. Oursyy

max goes down approximately linearl
whenT is increased, in qualitative accordance with~i!. Fur-
ther, the half-width of thesyy peak increases roughly asT2

whenT increases.
These two effects can be seen simply as a consequen

the broadening of] f 0(E)/]E with increasingT @since the
curvesf (E) of Fig. 1 turned out to be approximately ‘‘split’

FIG. 2. Dissipative conductivitysyy at six different tempera-
tures, as the function of the filling factorn. Here s
5uvye/(2LLyEy)u5uV8c/2LLyEyBu; compare Eqs.~14!, ~C2!–
~C4!.
f
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Fermi distributions#, which leads to a larger contribution o
the nonconducting states when«F is in the band center~i.e.,
to a decrease of the weight of the states withP'1, which are
in the band center!. Hencesyy

max is reduced. On the othe
hand, if«F is near a mobility edge, more and more condu
ing states are included asT goes up, leading to the broaden
ing of thesyy curve.

Figure 3 shows the calculated Hall conductivitysxy as a
function of n andT. One sees that on the left/right there a
plateaus with the correct quantized values~0 and 1 in units of
e2/h!. The transition region between the plateaus becom
narrower asT decreases, in qualitative agreement with t
experimental situation. The main reason for this is the sa
as for the narrowing of thesyy curve.

In recent years considerable effort has been made to
scribe the temperature behavior of the conductivities
tween the plateaus by scaling laws.2 Although most of the
thus-far-investigated samples seem to follow these laws th
are quite a few samples where a different behavior has b
observed~see, e.g., Sec. II A of Refs. 2, 21, and 22!. This
sample dependence indicates that the temperature beh
may depend on the nature of the disorder potential, see
particular, Refs. 21 and 22!.

An important and perhaps more surprising result of o
calculations is the following. We found that the plateau
sxy is larger than the plateau ofsyy , especially at tempera
tures below 5 K~Figs. 2 and 3!. This difference originates
from the electron-phonon contribution to the Hall curre
~16!, as can be seen from Fig. 4, where the Schro¨dinger
contributions tosxy(n) @containing the termsWp,p8

Sch in Eq.
~16!# and the electron-phonon contributions~containing the
termsWp,p8

(e-p)! are shown separately. Note that a difference
the width of thesyy andsxy plateaus is possible because,
contrast to the dissipative current~14!, the Hall current~16!
contains also terms that explicitly involve the electro
phonon transition ratesWp,p8

(e-p) .
This effect that the plateau of the Hall conductivity

somewhat larger than the plateau of the dissipative cond
tivity has also been observed in experiments~where usually
the resistivities are measured!. Indeed, since the early days o
the IQHE many resistivity curves quite clearly show a larg

FIG. 3. Hall conductivitysxy at six different temperatures, a
the function of the filling factorn. Note that the plateaus are large
than those ofsyy in Fig. 2.
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57 7235CONDUCTIVITIES OF A QUANTUM HALL SYSTEM . . .
plateau for the Hall resistivity.23 In conventional quantum
Hall systems@where (syy)

2!(sxy)
2 for all filling factors#

this is equivalent to a larger plateau of the Hall conductiv
compared to the dissipative conductivity~see Fig. 1 of Ref.
24!.

It seems that our microscopic calculation has revealed
physical origin behind this effect. We are not aware of a
explanation given elsewhere in the literature.

Further, it appears that the Shubnikov–de Haas pea
our model does not tend to an exactd function atT50. This
is in qualitative agreement with recent measurements
high- and low-mobility samples,21 for which a finitewidth of
the Shubnikov–de Haas peak was found at zero tempera
showing that more than one populated state is extende
T50, which is also the case in our model system.

On the other hand it seems that oursxy(n) curves do tend
to a step function in the zero-temperature limit, as is usu
expected. But in order to achieve this, the localizatio
delocalization properties of the Schro¨dinger functions, which
are usually made responsible for this, seem not to be s
cient here but have to be complemented by phonon-ass
hopping between localized states.

When «F lies within the range of nonconducting stat
@condition ~1! of Ref. 6~i!#, i.e., when the steady state
again described by a Fermi distribution~see above and Fig
1! and hence the dissipative currentj y is zero, the Hall cur-
rent densityj x is entirely given by the Schro¨dinger part of
Eq. ~16!, which in this case has the valuej x5Ey(e

2/h)3 i
~wherei is the number of upper mobility edges of spin-sp
broadened Landau bands below«F!.

Let us recall here that it has been shown analytically6~i!

that, quite generally, the quantizationsxy5(e2/h)3 i occurs
whenever a disorder potentialV(x,y) combined with Ey
gives rise to solutions of the time dependent Schro¨dinger
equation, such that conditions~1! and ~2! of Ref. 6~i! @con-
ditions~a! and~b! of Ref. 6~j!# are fulfilled. These conditions
are particularly transparent in our model system. Here
second condition is fulfilled due to the existence of anxp
across which the Schro¨dinger motion is entirely classica
~i.e., for which the corresponding Zener probabilityPp is
equal to 1!. For further details we refer to Refs. 6~i!, 6~j!,

FIG. 4. Different contributions to the Hall currentj x , Eq. ~16!.
Dashed line, terms containing the Schro¨dinger transition rates
Wp,p8

Sch ; broken line, terms containing the electron-phonon transit
ratesWp,p8

(e-p) ; solid line total.
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and, in particular, to Ref. 6~f!, where the Schro¨dinger time
evolution of the present model system and the resulting H
current have been analyzed in detail. Reference 6~f! also con-
tains a particularly detailed microscopic explanation of t
key features of the IQHE in the framework of this model.

We emphasize that Eqs.~14! and ~16! continuously de-
scribesyy and sxy of our system over the whole range o
filling factors from one quantized plateau through the dis
pative range to the adjacent quantized plateau. It seems
such a consistent description of Hall conductance plate
and dissipative region by a single theoretical prescripti
based on the essentially exact time-dependent microsc
processes, has not been achieved elsewhere.

VII. CONCLUSIONS

We have investigated a system of electrons in a mo
disorder potentialV(x,y) ~‘‘toy model’’ !, which interacts
with the phonons of a heat bath. In this model system
basic processes involved in the transport properties o
quantum Hall system are illustrated in a transparent way.
believe that these processes qualitatively also represent t
in the usual experimental systems~MOSFET’s and hetero-
junctions!, where the disorder potential is more complex.

We have provided the basic Eqs.~11!, ~14!, and ~16!,
which enable us to explicitly calculate the dissipative a
Hall conductivities, starting from the Schro¨dinger equation
and the electron-phonon interaction. These equations con
all the physical parameters of the system~filling factor, tem-
perature, macroscopic electric fieldEy , disorder potential,
etc.!. By solving the corresponding quantum Boltzma
equation~11! we obtained the conductivity plateaus with th
correct quantized values and the conductivities between
plateaux consistently, i.e., with a single theoretical meth
and without introducing unproved assumptions. The phys
parameters of the system that enter the expressions o
current densities are contained in the transition rates betw
the basis statesWp,p8

(e-p) andWp,p8
Sch . The Schro¨dinger time evo-

lution is described by the ratesWp,p8
Sch , which depend not

only on the disorder potentialV(x,y) but also on the macro
scopic electric fieldEy . All orders of the electric-field de-
pendence are contained in our calculations~i.e., no linear
approximation is made!. The temperature dependence of t
conductivities results from the temperature dependence
the transition ratesWp,p8

(e-p) , which describe the electronic mo
tion induced by the electron-phonon interaction.

We believe that our calculation is of considerable dida
tical value for understanding what really goes on microsco
cally. In particular, our model illustrates the interplay b
tween the full Schro¨dinger time evolution, which the electri
field induces to the electron states in the broadened Lan
band, and the time evolution resulting from the interacti
with the phonons of a heat bath. This leads to an impro
understanding of the region near the edges of the condu
ity plateaus. Here crucial physics for the IQHE occurs, wh
determines the widths of the plateaus. Our analysis lead
an explanation of the difference in the plateau width of t
Hall conductivity and of the dissipative conductivity.
seems that this widely observed phenomenon has not b
explained before.

n
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7236 57D. BICOUT, P. MAGYAR, AND J. RIESS
In the framework of our model system, we have sho
how a microscopic theory of the IQHE can be obtaine
where all physical parameters are included consisten
Such a theory has been missing so far, even for a mo
system.

Our method of calculation may serve as a guideline
wards the ultimate goal of a complete predictive theory
the IQHE. Future work along this line will have to exten
our method to disorder potentials that are closer to th
present in usual quantum Hall samples. Further, elect
electron interaction~screening! will have to be included,
which, once done, will immediately lend itself to a mo
elaborate treatment of both DA and PA interactions, too. T
latter, in turn, would allow one to attain lowerT @cases~ii !
and ~iii ! of Sec. VI#, where the finite width of the Ferm
distribution no longer masks the effects that manifest the
selves in the scaling behavior of the conductivities.2

APPENDIX A

Let us determine the possible phonon wave vectorsq that
can scatter an electron from the initial stateky(p)
5ky(xp):5ky to the final stateky(p8)5ky(xp8):5ky8 . A
‘‘unit cell’’ of length 2L of the smooth potentialV(x) is
depicted in Fig. 5. The repetition of this segment gives
potential in the whole sample.@For the numerical calcula
tions we will use a constant slopeuV8(x)u from top to bottom
of the hills ~valleys! of V(x), as shown by the broken line i
Fig. 5.# This simplifies the calculations and the formulas, b
does not affect the results of this paper since in our model
states outside the central, conducting region remain non
ducting, independent of the particular form ofV(x) near the
top of a hill or bottom of a well. Further, we are main
interested in a narrow region around the band center~the
conducting states!, but sinceT is very low, the conducting
states cannot be excited to the very band edge.

As an example, we will consider the situation where t
electron is initially on the upper left half-slope at positio
xp , with the corresponding momentumky52pp/Ly and
emits ~absorbs! a phonon of wave vectorq and energy
\vq85\ c̄Lq ~c̄L is the average sound velocity! such that~a!
the final positionxp8 is still on the sameslope. The total
energy and they component of the momentum are co
served. Sinceky82ky52p(p82p)/Ly5(xp82xp)/lB

2, using
Eqs.~6!, ~7!, and~C3! we obtain

FIG. 5. Smooth disorder potentialV(x) with spatial period 2L
51753 Å. Solid arrow, slope conserving scattering process; das
arrow, slope changing scattering process involving the same en
transfer; dotted arrow, its associated effective slope conserving
cess~see Appendix A!.
n
,
y.
el

-
f

e
n-

e

-

e

t
e
n-

e

E~ky8!2E~ky!5\vy~ky!@ky82ky#, ~A1!

wherevy(ky) is 2vy(vy) on the left~right! slope. Together
with Eq. ~A1!, the two conservation laws yield the followin
simple relation betweenqy andq:

qy56
c̄L

vy
q. ~A2!

This means that the phase space available to the phono
restricted to the lateral surface of a cone with opening an
2u, where cosu5c̄L /vy . It will be convenient to express al
the q-dependent quantities in terms ofqy . For a givenqy ,
all theq-s the end points of which lie along the perimeter
a circle of radiusr 5qy(vy

2/ c̄L
221)1/2 in the qx-qz plane

around theqy axis are allowed, and their different contribu
tions to the transition probability must be summed up. W
write the q-space volume element in the formdq
5dqyrdrdf. For simplicity we take now the dimensions o
the bulk crystal to be Lx5Ly5Lz . Then dqy'Dqy
5(2p/Lx) and we may write dr. 1

2 (Dqx1Dqz)
5(2p/Lx). The d function in the Fermi golden rule resu
will be replaced by the inverse density of states,D«21, a
constant in our system~D« is the energy difference betwee
two states with adjacent positions on a slope!. The inplane
and z component of the phonon wave vectorq can be ex-
pressed as

q'
2 5qy

2Fvy
2

c̄L
22S vy

2

c̄L
221D sin2fG , qz

25qy
2S vy

2

c̄L
221D sin2f.

~A3!

The f-dependent terms can then be lumped together in
integral Ī (qy) ~the bar denotes the summation overf!, and
the rest of the~partially summed! transition probability can
be incorporated into a prefactor that will be calledF(qy) ~see
below!.

~b! A somewhat different scenario arises when the fi
state is on the opposite~upper right! half-slope. Let us first
look at the site opposite to the previousxp8 , marked by the
dashed arrow in Fig. 5. For this newxp8 , the energy change
(}q) is the same as in~a!, but the momentum chang
(}qy) is clearly much bigger. For such slope changing p
cesses, it proves to be advantageous to define an effe
scattering process~dotted arrow in Fig. 5! with the sameq,
but an effectiveq̃y on the slope of the final state

ap,p85
uxp82xpu
uxp92xp8u

5
qy

q̃y
. ~A4!

Note thatap,p851 for xp , xp8 on the same slope. With
this, Eq.~A2! is replaced by

qy56ap,p8

c̄L

vy
q. ~A5!

As a consequence,c̄L in Eq. ~A3! must be replaced by
ap,p8c̄L . Finally, replacingqy by q̃y using Eq.~A4!, the f
integral takes the form

ed
gy
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Ī ~ q̃y ,ap,p8 ,lz!

54 expS 2
1

2
lB

2 q̃ y
2ṽ 2D

3E
0

p/2
expS 1

2
lB

2 q̃ y
2~ ṽ 22ap,p8

2
!sin2f D

~11lz
2q̃ y

2~ ṽ 22ap,p8
2

!sin2f!3 df ,

~A6!

whereṽ denotesvy / c̄L ~54.15 atB56T in our model!.
Further, the prefactor becomes

F~ q̃y ,ap,p8!5
Jd

2Aṽ 22ap,p8
2

2r c̄L
2Lxh

q̃ y
2 , ~A7!

where r (5.313103 kgm23) is the volume density of the
crystal andJd ~7 eV! is the bulk deformation potential cou
pling constant.25 In the denominator we used thatD«Ly
5V8(x)uxp2xp21uLy5hvy , with h being Planck’s con-
stant. For simplicity only a single longitudinal acoustic mo
and an average sound velocity ofc̄L (4.033103 ms21) has
been considered.

The calculation is similar ifxp is on the other three half
slopes, and the form of Eqs.~A6! and~A7! remains the same
We remark that the probability of scattering along a dista
2L or beyond is negligible and the corresponding transit
probabilities are set equal to zero. Further,Wp,p8

(e-p) is zero if
ap,p8. ṽ. This latter inequality is equivalent toqy.q,
which is physically not possible.

APPENDIX B

TheWp,p8
Sch are the Schro¨dinger transition probabilities pe

unit time to go from a basis statecp to a statecp8 during the
time interval t. Such a time evolution is described by th
multiplication of two 232 matrices corresponding to tw
consecutive splittings. Therefore, theWp,p8

Sch can be expresse
in terms of the Zener probabilities~8! associated with thes
splittings. For instance, using the same labeling of the b
functionscp as in Fig. 1 of Ref. 6~f! @wherep odd ~even!
belong toxp on positive ~negative! slopes ofV(x)#, it is
straightforward to obtain the following values forp odd,

Wp,p12
Sch 5PpPp11/t , ~B1a!

Wp,p11
Sch 5Pp~12Pp11!/t, ~B1b!

Wp,p21
Sch 5~12Pp!Pp21 /t ~B1c!

and forp even,

Wp,p22
Sch 5Pp21Pp22 /t, ~B2a!

Wp,p21
Sch 5Pp21~12Pp22!/t, ~B2b!

Wp,p11
Sch 5~12Pp21!Pp /t. ~B2c!

The diagonal elementsWp,p
Sch are irrelevant, since they do no

appear in~or fall out of! any of the relevant Eqs.~11!, ~14!–
~16!. Note that in our explicit calculationPp50 for upu
e
n

is

>28. HenceWp,p8
Sch (pÞp8)50 for p<228 or p.28. This

means that the lower and uppermobility edgesare situated at
the energiesE228 andE28, respectively. The transition rate
Wp,p8

Sch ~which are determined by the nonadiabatic transit
probabilitiesPp! are an important element in the determin
tion of the velocities~14! parallel to the macroscopic electri
field Ey , and of the Schro¨dinger contribution to the veloci-
ties perpendicular toEy @see Eqs.~11! and ~16!#.

We recall that through thePp , which are given by Eq.
~8!, the transition ratesWp,p8

Sch explicitly depend on the physi
cal parameters of the system, in particular, on the disor
potential V(x,y) and on the absolute value of the macr
scopic electric fieldEy . This means that the mobility edge
are determined by the form ofV(x,y) and by the absolute
value ofEy .

APPENDIX C

Expression~14! for the current density in they direction
can be expressed in terms of the individual velocities in thy
direction of the basis statescp . We take again the sam
numbering of the basis statescp as in Ref. 6~f!. Let us con-
sider p odd. In this caseWp,p8

Sch differs from zero only for
p85p12, p21, andp11; see Appendix B. For instance
for p85p12 we haveWp,p12

Sch 5PpPp11 /t. Further,Ep12

2Ep5V8(xp)cEyt/B; hence in the sum~14! we have

Wp,p12
Sch ~Ep122Ep!/~qEy!5@V8~xp!c/~eB!#PpPp11 ,

~C1!

where

@V8~xp!c/~eB!#5vy
p ~C2!

is just the velocity in they direction of an unperturbed Lan
dau functioncp at the positionxp ~i.e., of a basis functioncp

in the absence ofEy!. In our model system the velocitiesvy
p

have all the same absolute value,

vy5u@V8~xp!c/~eB!#u, ~C3!

and their sign is negative ifxp is on a slope with positiveV8
and vice versa~note that the electronic chargee is negative!.

By analogous considerations for the remainingp,p8, ex-
pression~14! can be written as

j y5@e/~2LLy!#H (
p odd

vy
pf p@PpPp111PpPp212Pp21#

1 (
p even

vy
pf p@Pp21Pp221Pp21Pp2Pp#J . ~C4!

Equation~C4! is an explicit sum over all conducting states
our model system. These states are characterized byPpÞ0.
Since in our explicit examplePp50 for upu>28°, the sum
~C4! is therefore restricted to227<p<27 ~p odd!, 226
<p<28 ~p even!. We recall that the mobility edge a
upu528 is determined by the form ofV(x,y) and by the
absolute value ofEy . The mobility edges can be shifted b
changing at least one of these physical parameters. Fo
stance, increasingEy in Eq. ~8! shifts the mobility edges
towards the band tails. This is a general phenomenon
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quantum Hall systems and lies at the origin of the high c
rent breakdown of the IQHE@Refs. 6~h! and 6~i!#.

APPENDIX D

Figure 6 schematically shows the energiesEp and the
associated localization centersxp of the orbitalscp . The

FIG. 6. Schematic illustration to Appendix D. Shown are tw
localization centersxp ,xp8 , both contained in the unit cell ofV(x)
of length 2L ~full line!, and for whichuxp82xpu>L. Hence the two
corresponding scattering processes~indicated by arrows! are negli-
gible in our system. The corresponding~vanishing! matrix elements
Wpp8 andWp8p are then replaced by the transition rates correspo
ing to the scattering betweenxp ,xp8

* , andxp8 ,xp* , respectively.
.

e

n

-

system is infinitely long in thex direction and periodic with
a period 2L. The Wp,p8 are the transition rates among th
basis functionscp , each of which is localized at its sitexp .
The total occupation probabilitiesf p of the sitesxp are peri-
odic as well. They are determined from the Boltzmann eq
tion ~12! through the transition ratesWp,p8 ~Wp,p8

Sch or Wp,p8
(e-p)!

which decrease exponentially with the distanceuxp2xp8u. In
our system theWp,p8 can be neglected for distancesuxp
2xp8u>L. Then the Boltzman equation can be written in
periodic form by restricting it to theN (5276) basis states
cp with positionsxp in the unit cell@x0 ,x012L#. TheWp,p8
are then the elements of anN3N matrix, which formally
describe the transitions among theseN basis functions. They
describe the real transitions among two positionsxp ,xp8 only
if uxp2xp8u,L, whereas for positionsxp ,xp8 with 2L.uxp
2xp8u>L, the real matrix elementsWp,p8 ~which are zero,
see above! are replaced by the matrix elements for the c
responding processes involving the same energy cha
acrossthe pointx0 ~or equivalently,across x012L! see Fig.
6. This means that in ourN3N matrix, the elementWp,p8
5W(xp ,xp8) is replaced by W(xp ,xp8

* ), and Wp8,p

5W(xp8 ,xp) is replaced byW(xp8 ,xp* ), where the points
xp , xp8 , xp* and xp8

* are shown in Fig. 6. The resultin
N3N matrix describes the evolution in the infinitely ex
tended system.
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