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Influence of electron-phonon interaction on plateau widths

D. Bicout
Laboratory of Chemical Physics, NIDDK, Building 5, Room 136, National Institutes of Health, Bethesda, Maryland 20892

i P. Magyar and J. Riess
Centre de Recherches sur les §iBasses Tempatures, associ@ I'Universite Joseph Fourier, Centre National de la Recherche
Scientifique, Bie Postale 166, 38042 Grenoble Cedex 9, France
(Received 26 August 1996; revised manuscript received 26 Novembej 1997

We consider noninteracting electrons in a quasi-two-dimensional (&xiended in thex direction in the
presence of a strong perpendicular magnetic field and a constant electric fieldyiditeetion, and subject to
a model disorder potentidf(x,y) (“toy model”) which allows us to obtain the exact solutions of the time-
dependent Schdinger equation in very good approximation. Further, the electrons are coupled to a heat bath
(accoustic phononsat temperaturd that modifies the coherent Schlinger time evolution induced by the
electric fieldE, . After elimination of macroscopically unobservable fluctuations by averaging over suitable
short time intervals, the time evolution that is relevant for the macroscopic current density can be described by
a Boltzmann-type equation, which is solved numerically. The steady-state solution allows us to calgylate
andoy, as a function of any physical parameter of the system. Here we give resut{g ahd ofo,, for all
filling factors and as a function of temperature. Quantized Hall plateaus are obtained at the correct values with
high precision. Between two plateaus, the Shubnikov—de Haas peak spreads out and its maximum decreases
with increasing temperature in qualitative accordance with typical quantum Hall samples. Further, we obtain
the remarkable result that for temperatures WweboK the plateaus oéfr,, become sensibly larger than those of
oyy. Our analysis shows that this effect results from electron-phonon interac8anh a phenomenon has
been known experimentally for a long time, but it has seemed unexplained s@@mmmethod of calculation
could, in principle, be extended to more complex disorder potenfia#163-182@08)02612-5

[. INTRODUCTION has been made, which has revealed new ashecthe un-
derstanding of the IQHE. These investigations have been
It is generally believed that the integer gquantum Hallcarried out along two line¢l) Some pertinengeneralprop-
effect (IQHE) is due to a localization-delocalization processerties of theexactsolutions of the Schidinger equation of a
caused by disorder in the presence of a high magnetic fieldgjuantum Hall system have been established. This has shown
When the Fermi energy is shifted the two-dimensional electhe importance of the time dependence of the wave functions
tron system changes from insulating behaviwith no dis- in the presence of a disorder potential and of a macroscopic
sipation at quantized Hall conductance plateaus to dissipaelectric fieldE and that the latter is an important parameter,
tive, “metallic” behavior between the plateaus. In recentwhich has to be included properly in the Sciiryer equa-
years considerable experimental and theoretical effort haon (a restriction to terms linear i is not sufficient for
been made to achieve a better understanding of this transitismallE); for a review, see Ref.(§. (2) These general results
between adjacent conductance plateads. have been illustrated and confirmed by explicit calculations
The task for the theory of the IQHE is to give a deductivefor a class of model systefti& %" characterized by simpli-
microscopic explanation of the localization-delocalizationfied disorder potentials, which are chosen such that the solu-
phenomenon and the resulting quantization of the Hall contions of the time-dependent Schlinger equation and the
ductivity. Further, any satisfactory quantitative theory has toparticle velocities can be calculated explicitly in very good
predict the width of the conductivity plateaus as well as theapproximation. For these model systems, the microscopic
detailed form of the conductivities between théams a func- processes behind the occurance of the quantized conductivity
tion of temperature and other physical parametdat such  plateaus can be understood in detail.
a theory is still missingRef. 3, pages 6 and 120rhe aim of In the present paper we will extend the work of Refs.
this paper is to develop such a theory for electrons in a simé(a)—6(f) such that the Hall and dissipative conductivities
plified disorder potentiala class of model disorder potentials can be calculated alsoutside the conductivity plateau$o
to be specified in Sec.)ll this end the interaction with the heat baghonon$ will be
The major difficulty of the theory of the IQHE lies in the included. We will use the same type of disorder potential
fact that thetrue microscopic behaviaof the electrons in the  V(x,y), as previoushf®@=%" since here the Schdinger time
usually rather complex disorder potential is not sufficientlyevolution of the states in the presence of a macroscopic elec-
known. (This is illustrated by the statemé&rhat “the micro- tric field can be calculated in very good approximation. The
scopic nature of the transport remains rather unclear.” aim of our model calculation is first of all conceptional: to
In recent years progress in overcoming these deficienciesnderstand the nature of the microscopic processes in a
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quantum Hall system, in particular, the interplay between they,), which have fixed guiding centers localized in a direction

electron-phonon interaction and the Satinger time evolu-  perpendicular tovg. They describe electrons with a total

tion induced by the macroscopic electric field. Further, in theclassical velocity vy— (c/B?)(1/e)gradVs(x,y)xB. The en-

framework of our model system, to show how a microscopicergetic positionsi(e., in the z direction) of the guiding cen-

theory can be made without major approximations or un+ters remain unchanged in the course of tilite that the

proved assumptions. Finally, we hope to obtain new insight,ebcity components— (c/B2)(1/e)gradVs(x,y)xB do not

into observable effects, which otherwigreviously could  contribute to thenacroscopicurrent. They average to zero,

not have been obtained. since for each slope an opposite exists. What remains are the
The remainder of this paper is Ol’ganized as follows. SeCC|assica| Ve|ocity Componenmd . If a small Vl(X,y) is

tion Il is devoted to the presentation of the model systemadded, this situation does not change appreciably, since the

followed by a short description of the Schiinger dynamics  new solutions become stationary linear combinations of the

of the electl’ons, where reference is made to earlier work Onnperturbed Landau functions on the same S|ope or on Op-

the subject. In Sec. Ill, we consider the interaction ofposite slopes.

phonons with the electrons of Sec. Il, and derive the associ- (b) The basis orbitals are on tangentia| Surfmm”e| to

ated e|ectr0n—ph0n0n tl’anSition probabili’[ies. In Secs. IV anqhe direction OfE: In th|s Casaheir energies go up or down

V, we set up the Boltzmann equation in a form adapted tGyjth time, depending on the sign of grad(X,y). Let us

our model, with the appropriate field and collision termsnow add a smalvi(x,y) and consider two orbitals on op-

taken from the previous two sections. We then show how tgosijte slopes. The total time evolution can then become en-

calculate the dissipative and Hall currents and the corregirely nonclassical in the direction of;, leading to velocities

sponding conductivities, pointing out some peculiarities thagya¢ may be much larger than the classical drift velosigy

differ from the treatment of more conventional situations.|Refs. ga)—6(f)]. This leads to the so-called compensating
Section VI discusses the computer results obtained for thgyrent, which is a key element in the IQHE.

ity and particular aspects of the present theory, and outlingg populated differentlyin the steady staje Therefore, the

some possible extensions. velocity components parallel tB are here not necessarily
averaged to zero on a macroscopic level.
Il. DESCRIPTION OF THE ELECTRON SYSTEM For an investigation of this crucial cagle), we consider

We consider noninteracting electrof@argee<0) on a now a simplyfied disorder potential

long strip in thex direction(of width L in they direction) in
the presence of a perpendicular strong magnetic figld
=(0,0B), a macroscopic electric fiel&=(0,E,,0) and a HereV(x) is a sequence of slowly varying barriers and wells
static disorder potentiaM(x,y). We consider the one- (obstacles[Fig. 5; see also Fig. 1 of Refs(§ and &f)], and

V(x,y)=V(x)+Vi(x,y). 2

electron Hamiltonian, V1(x,y) is a more rapidly varying part that has to be consid-
5 a\2 5 3 ) ered as a perturbation of(x), with Fourier coefficients
H=(1/2m){ (i_ = +[__ W—(e/c)[Ber ¢(t)/|_y]} ] [specified in Ref. ), see below
+V(X,y), (1) dk(x)z(llLy)fVl(x,y)exp:i27ryk/Ly]dy, k integer.
with periodic boundary conditions in the direction, where ()
¢(t)=—CcE,Lt. The Hamiltonian(1) describes a subdo- ) i ) .
main in the bulk of a macroscopic sample. V(x) simulates long-range fluctuations, which we restrict

In typical quantum Hall systems the potenti&(x,y) is to thex direction in the presgnt model calcul_ation. This_has
thought of as being composed of a smooth paitx.y), the agivantage that there exist only tangential plane_s in the
which varies slowly over the magnetic lengthg direction parallel tde=(0,E,,0) and _that the solutions in the
—|#c/eB|¥2 and a more rapidly varying part, sayt(x,y). e}bsence ovl are very well ap_proxmated by Landau fgnc—
In the absence o/, the static wave functions in a high fions[associated with tangential planes at gteaight hori-
magnetic field can be approximately described semiclassZontal equipotential lines o¥(x)], whose guiding centers
cally, by wave functions centered on equipotential lines of"0ve perpendicularly tc, 1"V_'th the classical velocity/
VS(x,y). A macroscopic electric fiel causes the guiding = (CEy/B,0,0). Further, iV~ is added(its detailed form is
centers of the approximate, semiclassical orbitals to move iffOt important, provided it is sufficiently small, see bejow
a direction perpendicular t& with an additional velocity the time dependent solutions can be obtained in a very good
componentvy=(c/B2)ExB [in addition to the local Hall ~@PProximation as well. The forrt) may be called a “toy
velocity arising from the local electric field model” for the more complex disorder potential in usual

— (L/e)gradV(x,y)]. Now one has to distinguish between duantum Hall samples. - _

two different basic situations. as follows The solutions of the time-dependent Salinger equation
(a) The orbitals are on a tangential surfgmrallel tov,. Wil be expanded as

In this case they are approximated $tationarysolutions of

the _Schrdmge( equation in the presence_qf an infinite po- tﬂj(x,y,t)=2 ch(t)zpp(x,y,t), (4)

tential slope(with periodic boundary conditions parallel to p
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where

Po(x,y,0)=(L,) ¥ expii2mpy/L,)uy(x,t), p integer

are the Landau functions centered at

Xp(t)=chp/(eBL,)— ¢(t)/(BLy) —m* CZV’(Xp)/(ezBZ)(é)

andV’ denotesdV(x)/dx. In this article we generally con-
sider a single Landau band, associated with the lowest Lal
dau level i=0); hence the Landau indexhas been droped
in Eq. (5).

If ¢(t) varies slowly, that is to say, if the fiel&, is
sufficiently small, all solutions of the time-dependent Sehro
dinger equation with Hamiltoniafil) become adiabaticso-
lutions, i.e., eigenfunctions dfi[ ¢(t)], where the timéd is
considered to be a parameter.

In the absence o¥!(x,y) the functions#,(x,y,t) are
approximate adiabatic solutiofi§ x, is not too close to the
top of a peak or to the bottom of a valley ®{x)]. The
corresponding energies are

Ep(t) =Awe(n+ 1/2) + VX, ]+ (m*12)[ V' (x,)/ (eB) ]2
(7)

These energieg,(t), E/(t) increase or decrease, respec-

tively, as a function oft, depending on the sign of
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Here 4m?|d, ,/|? exd —2(X,—X,)?/(2\g)? is just the matrix
element |(p|V1(x,y)|p’>|g, where  xp=x,(t*), Xy
=Xy (t*) are situated oroppositesides of a barriefwell)
such thatEy(t*)=E,/(t*). P,y is the probability to go
during the time intervak/2 from a stata/, situated ak(t)
to a state situated at,+ (Xp+1—Xp)/2 (i.e., on thesame
slope, and 1- P, is the probability to go to a statg,,
which has the same energy, but whose positignis on the
nearesbppositeslope. These transition probabilities only de-
pend on the energy of intersecti@[ = E(t*)] of the lev-
elsEy(t),Ey (). In Fig. 1 of Ref. &f) the energies of inter-
section are denoted Wy;,j=0,=£1,=£2,.... Hence we can
defineP;=P(E;).

We use the same parameter values as in R&f, éxcept
V'=1.15<10°eVem ! and |d,,[*=0.6x107° (eV)?,
which are slightly different. The resulting probabiliti€y
remain equal to those in Ref(f¢. They decrease from;=1
in the very band center t8;=0 at themobility edges =
+E,, see Fig. 1 of Ref. @). In the intermediate energy
zones, where &P;<1, the time evolution of a wave func-
tion is the result of successive splittingdescribed by 2
X 2 matrice$ at the “anticrossing timest=nr/2, n integer,
see Fig. 2 of Ref. @) and Fig. 1 of Ref. ). Thus any state
with initial condition ¥(x,y,t=0)=wg(X,y,0) with energy
g¢ in the nonadiabatic, i.e., in theonducting range
[ —Ep,Ep] becomes fot> 7/2 atime-dependerinear com-
bination (4) with much more than two nonzero coefficients
Cp(t) associated with energieB,(t) e[ —Ey,Ep]. On the
other hand, states with energies outside the conducting range
[ - Ep,Ep] remain adiabatiéi.e., insulating, and they do not

V'[x,(t)]. This leads to a spectrum of intersecting energymix with the conducting states.

levels[see Fig. 1 of Ref. @)].

In the presence o¥(x,y) (they dependence is impor-
tany) the adiabatic energy levels(t) of H[ ¢(t)] anticross
and are individually periodic as a function gfwith period
hc/|e| [see, e.g., Fig. 2 of Ref.(B)]. The velocity expecta-
tion values(in both they andx directiong of adiabatic states
are periodic in time with period=h/|eEL,|, and their av-
erage over the period is zero® Since 7 is very small for
physically realistic values d&,L, this means that adiabatic
states do not contribute to the macroscopic current.

In our model the physical parametars(x) andVi(x,y)
are now chosen such that all stateshe central range of the
broadened Landau banchn be described by weak disor-
der approximatio?® %9 This leads to adiabatic states

Our model system thus fulfills the basic requirements of a
quantum Hall syster,i.e., there exist conducting states in
the center and insulating states in the tails of a broadened
Landau band.

For further details the reader is referred to Refa)-66(f).

Note that in Ref. &) (inset of Fig. } the distancé. across a
barrier or well was denoted hly,, and the origin oft was
chosen such that each orbital,(x,y,t=0) [with energy
£4(0)] coincides with an orbitaly, [with energy E,

=g4(0)] and the notatior:, was used for this enerdy,, .

IIl. ELECTRON-PHONON SCATTERING

In a heterojunctionor in a metal-oxide-semiconductor

w(Xx,y,t), which are time-dependent linear combinations offield-effect transistdr(MOSFET), the coherent dynamics of

only two Landau functions/,(X,y,t), ¥,/ (X,y,t), which are
situated on opposite slopes ¥{x). The resulting adiabatic

the electron system described in Sec. Il is influenced by the
interactions with the phonons of the surrounding crystal. Be-

wave functions oscillate between opposite slopes with timdéow, the phonon modes will be taken to be those of bulk

period 7 [see, e.g., Fig. 3 of Ref.(8], which corresponds
indeed to a vanishing dc current.

For sufficiently high values oE, nonadiabatic transi-
tions become possible between certain adiabatic sfates
Fig. 3 of Ref. @b)]. In our weak disorder case the probabili-

GaAs® We will mainly focus on the temperature range be-
tween ~1 K and liquid He temperature, say, where most
experiments are done. This allows us to discard piezoacous-
tic (PA) scattering(which is known to be significant only at
very low T)!! and scattering with LO phonorighich is only

ties for these nonadiabatic transitions take the expliciexpected to play a role fof >40 K). Therefore, we will

form®@-60

Pppr = eXp[— |47T2|dp_pl|2
X exd —2(x,—Xp)2/(2Ng)?1BI[V' (xp)chE ]|}
)

specialize to the case of deformation potential scattering.
Given that the calculations will be restricted to a region
around half-integer filling, at the temperatures considered
above, the electrons cannot make inter-Landau-lékgl)
transitions. Further, we do not pursue the investigation of the
dependence on theL index, so in line with Sec. Il and
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many theoretical approaches, we assume that only the lowe${. MACROSCOPIC CURRENTS AND THE BOLTZMANN
LL is occupied, and drop the LL index in our expressions. EQUATION

We multiply the wave function® (x,y) of Sec. Il by the

Fang-Howard trial wave functidin the z direction, For the description of the macroscopic current it is suffi-

cient to know the microscopic properties at the very closely
spaced discrete timesr. 7is the time interval during which
1 \12 -z the center of a functionyy(x,y,t) moves fromx,(t) to the
(2)\ ) z ex;{ K) (9)  extremely close adjacent positioq, 4(t) (if the centersx,
z z are numbered consecutively We then havexy(t+7)

This enables us to include the effect of the finite width of the = Xp+1(t) @ndEy(t+7)=E.4(t). Therefore, in the follow-

2 DEG in our final expressions for the conductivitigs- "9 W€ use as basis functions the set of time-independent

though this will not be investigated in detail in the present/UNctions¥,(X,y,t=0)= 4, with their positionsx, and en-
article). ergies E, [instead of the time-dependent basis functions
In general, an electron which initially occupies the state¥’p(X,y,t=n7)]. This is analogous to the method of quasi-
¥, interacts with the surrounding heat baftiere acoustic classical dynamics for Bloch electrons in an electric fiéld,
phonons at temperatuf®, and makes a transition to another where the set of time-independent Bloch functiongr)
statey,, that involves the emission or the absorption of ais used as basis functions, which are just the corresponding
phonon with energyi wq and wave vectog. The first-order time-dependent adiabatic ScHioger functions taken at

probability wﬁ‘:’ﬂ)p, per unit time for this transition is given t=0."

by the Fermi golden rul& which contains the corresponding ~ The total occupation numbers of the basis statgswill
electron-DA phonon matrix elemeM? , 1415 be denoted by ,(t). They result from thécoherent Schre

There are many possiblg vectors that have the same djnger time_ evolution induced.bt;‘r:y an_d the_(irreversible)
magnitude and the samg component, which scatter the time evolllut.lon caused _by the interaction with the phonons.
electron from the initial staté,(p)=2mp/L, to the same The Schrdinger evolution alone can be calculatat the
final statek,(p')=2wp’/L,. Their contributions must be discrete timesn7) by multiple applications of complex 2
added together. This gives an additional multiplicative fac-<2 matrices(see Sec. )l However, for the calculation of
tor, which is calculated in Appendix A. The resulting— the macroscopiaurrent densitiesof a macroscopic sample
partially summed—transition probabilities can then be writ-the knowledge of the probabilitie#3,,, and 1- P, i.e., of
ten in the form the absolute squares of the matrix elements, is sufficient.

One reason is that the conductance fluctuations that might
. result from the phases of the matrix elements are averaged
Wif;ﬁ)z 1(Qy,oppr A)F(Qy,pp)(Ng+3%3), (100  outwhen the contributions from different obstadlbais and
valleys of V(x)] are summed up. It is like averaging over a
wherel, F, a,, , andd, are defined in Appendix A and, number of mesoscopic sample@.he phases of the matrix
is the equilibrium (Bose-Einstein distribution of the ~€lements of the 22 matrices contain the phases of the
phonons at temperatufeand the uppeflowen sign stands ~ V;,» Which are randoff’ and different at different ob-
for emission(absorption. stacles of a macroscopic sampleNote that already for pro-

In Ref. 14 electron-phonon interaction in a quantum Hallcesses within gingleobstacle the phases are irrelevant in the
system with a smooth disorder potentiglx,y) was investi-  following important casega) If scattering with phonons oc-
gated by replacing the potential by an infinitely extendedcurs only after a time interval much longer thaf2, the
tangential surfacga single potential slope with average possible phase effects are averaged out because of phase
steepnegs The semiclassical wave functions associated witirandomizatioff® during the Schidinger evolution it-
the potential lines o¥/(x,y) were simulated by Landau func- self. (b) If scattering occurs within a time interval (two
tions. The resulting electron—acoustic-phonon scattering rateplittings or lesy the coherent Schdinger time evolution in
showed a linear temperature behavior for a wide range othis short interval is not affected by phase effects, since no
temperatures, corresponding to an effective reduction of theuperposition of contributions from different paths in the en-
Debye temperature, which was traced back to the waveergy time plane occu®? This concerns the states near the
function shrinkage due to the high magnetic fiéldsulting  Fermi level. (c) When the Fermi level is contained in a
in the exponentially decaying factor in our E@6). Based nonconducting range and the temperature is sufficiently low
on a number of more intuitive arguments, this result was theisuch that the conducting states below the Fermi level are not
used to describe the temperature behavior of the width of thecattered by the phonons, the Hall current is entirely due to
transition region between quantum Hall plateaus. these conducting states. The Hall conductivity is then quan-

In contrast to our paper, Ref. 14 does not discuss the timtized, see Sec. 5 of Ref(i§, where a general proof is given.
evolution of the Schidinger solutions induced by a macro- This proof is(partly) based on charge density invariance at
scopic electric fielcE. Further, no slope changing processestimesnr. In our weak disorder case, this invariance results
are considered. However, for the calculation of a macroalready from the absolute values of the2 splitting ma-
scopic current induced by an electric fidkdslope changing trice element$as one can see from the splitting scheme, e.g.,
processes play an important role as our calculations wilFig. 1 of Ref. &) and hence is independent of the phalses.
show. We are not aware of similar calculations performed As a consequence, the occupation numbg(s) can be
elsewhere. obtained from the followindBoltzmann rate equation:
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o plot=2 {=fp(1=fo ) WD+ 5, (1= f) W B
p

Sch Sch
+2 {— F WS, + o W) (12)
Here Wﬁcp, is the transition rate from a basis stag (lo-
calized atx,, with energyE) to a stateir, (localized at
Xp' , With energyE /) due to the Schidinger time evolution.

For the calculation of the macroscopic current it is sufficien

to defmeWSCh

time, averaged over the small time intervaln this way the

possible temporal fluctuations that arise from the admixture

of adiabatic processesvhich are periodic within the very
short time intervalr and hence are macroscopically irrel-
evanj are averaged out. The probabiliti%ﬁfg‘, can be ex-
pressed in terms of the Zener transition probabilifies, ,
Eq. (8), see Appendix B.

The current in they direction results from the Schro
dinger velocities

v} ()= yl|H|yl)/eE, . (12

jx()=[e/(2LL,)]

EV
+[e/(2LL,)]

>

+[e/(2LL,)]

where the sum runs oveg,, X, €[0,2]. The terms pro-
portional to 4 in the Eq.(15) take account of the motion of
electrons out of and into the interv@0,2.]. They occur
becausd , [ = f(xp)] is perlod|c in thex direction with pe-
riod 2L andWSCp, andW epp have been defined for gil, p’
corresponding tox,, X, €[0,2 ], but such that they also
describe motioriscattering across the twtdoundariesof the
interval[0,2L] wheneverix, —x,|>L, see Appendix D.

In the steady statéwhich is defined byf,/dt=0 for all
p) the Hall current densityl5) has the simplified form

>

p.p’
Xpr—Xp>L

ix=[el(Ly)] Fp(DIWSS, + WP (1~ (1))]

+ E

Xp—Xpr>L

Fo(OIWS S+ W (@~ ()] ] (1)
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, as the average transition probability per unit

Fp(DIWSS, + WP (1 — 0 (1))](Xpr —

Fp(DIWSS, + WP (1= 0 (1) ](Xp =X+ 2L),

In our weak disorder approximation we hajsee also Ref.

6(f)]

2 <¢J’|H|¢ﬂ><nr>=§ fo(n7)E (13

From this and Eq(12), expressing the time derivative of the
occupation number§, by the Schrdinger part of Eq(12),
one obtains the macroscoplc current density lirection(at

Y=nr, n intege)y as

iy(t) Efp(t)Z Woo (Ep —Ep)/(2LLyE,). (14)

Equation(14) can be written in a different, maybe more fa-
miliar way in terms of the veIocitiea)‘? associated with the
basis functiony,, see Appendix C.

The macroscopidHall current density § results from

summing over all single-particle velocities in thealirection,
which can be expressed in terms of the transition rw§‘§

andW(e P) between the positions,. One obtains

Fp(DLWSS, + WP (1= £ (1) 1(Xp —Xp)

-2L)

(15

abilities (8), see Appendix B, and thusontain all orders
with respect to E. In particular, those of thWSCh, which
give a major contribution to “hoppings” from an on one
slope of V(x) to anx, on the opposite slope are highly
nonlinear inE, . This means that the current across the top of
a hill or the bottom of a valley oV (x) (i.e., across the
regions of insulating statg$s entirely due to such nonclas-
sical velocity components. In other words, any nonzero Hall
current in the steady state contains such nonclassical, nonlin-
ear contributions. This is true, in particular, for the macro-
scopic Hall current in the quantized plateau regime. This
current is linear inE, . But on a microscopic level the indi-
vidual particle velocities of the conducting states are com-
posed of linear and nonlinear (time-dependent
component&?-8" (see also the remark in the second last
paragraph of Sec. VI

The other possible contribution §q due to “hoppings”
between the localized statef, arises from the transition

ratestJepp) In Sec. VI we will see that these phonon in-

Here two remarks are important. The transition ratesduced contributions increase the plateau widtlrgf at low
WS are expressed in terms of the Zener transition probtemperatures.

p.p
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V. CONDUCTIVITIES

13

The experimentally relevant current densities are obtained '
from thesteady-state solutioaf Eq. (11). The conductivities 0.8
are then given byo,,=j (steady statE, and o,y C
=jx (steady statéE, . 0.6

As a result of the form o¥(x), the k dependence of the f ‘ ‘
energies of the two-dimensional electrong[ky(p)] 0.4F .
=V(x,) +const, is analogous to the dispersion relatigk) r : 1
of one-dimensional Bloch electrons. Therefore, E®) re- 02f X 3
sembles the Boltzmann equation of Bloch electrons interact- : ]

ing with acoustic phonons, which is a standard model for the 0 ; R N T
dissipative electric  conductivity = of metals or 62 81 100 119 138 157 176 195 214 233
semiconductor$? However, in those derivations the Schro Energy Index

dinger time evolution is supposed to be either unperturbed

classical(or quasiclassical if a periodic substrate potential is FIG. 1. The steady state distributidn=f,=f(E,) at T=1K
present [which in our model corresponds #®=1 for all  for filing factors »=0.413 (squares »=0.5 (circles, »=0.587
energiest; in the broadened Landau bandr the effect of (diamonds, and the corresponding distributions in the absence of
the disorder potential is assumed to be sufficiently sifoal the electric fieldE, (solid lines, which are Fermi distributions. S(_ee
equivalently,|E| sufficiently high, such that the Schdinger also text, Sec. VI. The band contains 276 states, symmetrically
time evolution is not very far from the unperturbed classicaldistributed with respect to the band center, which is situated beween
or quasiclassical motion in an electric figldhich in our ~ €nergy indexes 138 and 13®ote that in Figs 1-4y denotes the
case would meaﬁjzl for all j]. If then only terms linear in filling factor within the highest partially occupied Landau band.

E are considered in the Boltzmann equation, and further, if . . . .
the deviationf! of the steady state from the Fermi distribu- proximate analyﬂcal solution of the steady-state equation are
tion f0 is small (f'<1), an approximate solution for the not ap_pllcablg In our case. Th.erefore .E"ql) was solved
steady state can be ot;tainamtsing e.g., a relaxation time numerically without approximations. This means that our re-

approximation.*® This leads to a Drude-type relation for the sults contain all orders with respect to the electric fitld
N e , and are not restricted to a linear approximat{eee also the
dissipative conductivitfOhm'’s law). Kin th d to the last h of Se. IV
In our case we cannot make analogous approximationgfemar In the second to the fast paragrapn of Sef.

; : - : Note that if we did not couple the electronic system to a
First of all, for the considered value &, the nonadiabatic . . .
transition probabilities?; [which depend ofE, , see Eq(8)] heat bath and if we considered the steady state of the Schro

: dinger time evolution in the presence 6§ in this case, we
are equal or close to one only in the very center of the con- . i~ '
9 y Y ould obtainoy,=0 even for half-filling of the band, be-

ducting range. Only here can the influence of the disordel

potentl trm/ (1) on he Seidinger time evolton e (3452 1, s ece (e Sctiogertme evoiton s ot -
approximately neglected. This means that only around half: P y €l P X X
steady state with equal occupation of all energies of the con-

integer filling factors may one expegt to be approximately . f
linear inE, (providedf? is lineay, sé%é Eq(C4). ducting states"”
Secondly, in our systerf, is quite different fromfg when
the Fermi energy is in the range of conducting states. The VI NUMERICAL RESULTS AND DISCUSSION
biggest deviation is of order 1 and occurs for half-integer pFor the numerical calculation of the present article we
filling of the band, see Fig. 1. The two underlying reasons;ged the same labeling of thie, as in Fig. 1 of Ref. ), but
are the following: First of all, in our system the velocities ¢ slightly shifted the origin of time by- 7/4 keepings,, as
parallel to the macroscopic electric field are quite high fory,e unperturbed energg, . This shift does not change any

states near the band center, much higher than in typical exs5 the formulas derived in the present article, it only makes
perimental quantum Hall systentas a consequence of the E, (p odd) coincide withE,,. ; . This means that now to each

big. value of|V'(xp)|). This rapidly pushes these stalésr  pisis functiony,, p odd, with energyE,, situated on a
which P; is equal or close to)lout of their energetic equi- qsitive slope ofV(x) there exists another basis function
I|_br|um position, towards higheflower) energies on aposi- . sjituated on the opposite slope, which has taene
tive (negaﬂve} slope[cf. Egs.(11)—(13) and the equatlon_s of ergergyEpH:Ep (p odd). This energetic symmetry has the
Appendix 4. Further, as a consequence of the condition  ,qyantage that the energiEs of states on opposite slopes

$hq (see fSec. 1 e|¢|':lStIC tantﬂ qua&elilstlc scattetrlr;gnwnh have exactly the same equilibriugRermi distributionfg on
phonons from one slope to the opposite one are totally SUps, .1 of the slopes separately.

pressedthe energy range of such forbidden slope changing . Sch ,
processes starting from a given enefgyincreases towards If Ey is zero, allW,,(p#p’) are zero as wellhence

the band centgr These processes—which would interrupt1x=0). @nd the numerical solution of E¢L1) becomes the

most effectively the evolution away frofi® caused by the correspondingOFermi distributioff(T) as it shouldsee Fig.
field E, and, therefore, would lead to a quick relaxation to- D). Noteothatfp(T) is the same on each slope separafely
wards the equilibrium distributiof® if E, was switched off, fp(T)="f,(T) for E;=E, with x;, X, on opposite slopes
as in metals—are absent in our system. of V(x)], whencej,=0.

For these reasons the usual methods for finding an ap- After switching onE,, the Fermi distribution rapidly
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FIG. 2. Dissipative conductivityr,, at six different tempera-
tures, as the function of the filing factorv. Here s
=|vye/(2LL,E,)|=|V'c/2LL,E,B|; compare Egs.(14), (C2)—
(Ca).

FIG. 3. Hall conductivityo,, at six different temperatures, as
the function of the filling factorn. Note that the plateaus are larger
than those obr,, in Fig. 2.

. o . Fermi distribution$ which leads to a larger contribution of
goes over into the steady-state distributiiie,). Figure 1 the nonconducting states whea is in the band centeii.e.,

glscs:i;atersa:]hlz ;‘ ?ET ): éib;oroesighcﬂ"tlyv% fgf;g;;}l;hzgga -of to a decrease of the weight of the states MAta 1, which are
g 9 P b ! i M is reduced. On the other

which is approximately a shifted Fermi distributipshifted n the_banq center Hen(_:(_e Tyy
to higher (lower energies forp odd, i.e., for states on a hand, ifeg is near a mobility edge, more and more conduct-

positive slope ol/(x) (for p even, i.e., for states on a nega- ?ng states are included dsgoes up, leading to the broaden-

tive slope]. This shift is the highest for=1/2 and tends to ing of the oy curve.

zero asv approaches the mobility edgf® avoid confusion ¢ F|gure ? sho(\j/v_? tge calculatﬁd Hall ﬁor;de:ICF'ngVhaS a
we note that in Figs. 1-4 denotes the filling factor only Tunction ofvandT. One sees that on the leftright there are

within the highest partially occupied bahd, is different plateaus with the correct quantized valg@snd 1 in units of
: PR e?/h). The transition region between the plateaus becomes
from zero if the steady state distribution is different on two '

opposite slopes. This is the casegff is in the conducting narrower asT Qecrgases, in qu_alitative agreement with the
range (where P_>0). On the other hand, it lies suffi- experimental situation. The main reason for this is the same
p~ V) '

ciently within the range of nonconducting stateghere P as Ifor the rlarrowmg of _tlgeyybtlzurvf?. t has b de 1o d

=0), one obtains again the same Fermi distribution on both n recent years considerable efiort has been made 1o de-

slopes, whencg, = 0. scribe the temperature behaworevof the conductivities be-
The numerical results for the dissipative conductivity, tween the pla'geaus by scaling lawsithough most of the

are shown in Fig. 2. In order to appreciate these resullts, Wg]us-far-lnvestlgated samples seem to follow these laws there

first recapitulate some known features concerning the peaﬁre quite a few samples where a different behavior has been

values observed in conventional MOSFET's and heterojunc(-)bserved(see' €.9., S.ec.. Il A of Refs. 2, 21, and)2Zhis .
tions. Experiments performed over a wide range of temperag'ample dependence indicates that the temperature behavior

tures down to 50 mK reveal a rather complex pattdrfior may depend on the nature of the disorder potential, see, in
) ax o e particular, Refs. 21 and 22

instance, below 10 K, the peak valu-é}‘y (i) first increases An important and perhaps more Surprisi It of

as the temperature is lowered, th@n arourd 1 K this ten- NPOTte perhap PrISING resutt ot our

dency is reversed and the maximum valuergf decreases calcglatlons is the following. We found that the plateau of

as T goes down, until(iii) at the lowest t?ﬁ?peratures the 7 'S larger than t'he plateau 0fyy,_ espemally at tempera-

q ds s| ’ level t and the conductivity satutes tures below 5 K(Figs. 2 and R 'I_'hls_ difference originates
ownwards Siope [evels ou uvity “from the electron-phonon contribution to the Hall current
Our resu_lts can dlre(_:tly be compar_ed(t)) since the pho- {16), as can be seen from Fig. 4, where the Sdinger

non scattering mechanism employed in our paper is adequate "' .~ . - Sch

at temperatures around 1-5 K. Although in our model Sys_contrlbutlons toay,(v) [containing the tgrmiw p N Eq.

tem the density of statda rectangular step functipand the ~ (16)] ang_t?e electron-phonon contributiofentaining the

disorder potentiaV/(x,y) are different from those in ordinary termsw’ ") are shown separately. Note that a difference in

quantum Hall sample&nd, in addition, we have neglected the width of theayy andoxy plateaus is possible because, in

screening, we may take the results obtained as guidelines focontrast to the dissipative currefit4), the Hall current16)

an analysis. Ouroymfx goes down approximately linearly contains also terms that explicitly involve the electron-

whenT is increased, in qualitative accordance w(ith Fur-  phonon transition ratewtf;ﬁ).

ther, the half-width of ther,, peak increases roughly ag This effect that the plateau of the Hall conductivity is

whenT increases. somewhat larger than the plateau of the dissipative conduc-
These two effects can be seen simply as a consequence ity has also been observed in experimefvere usually

the broadening obf°(E)/JE with increasingT [since the the resistivities are measudethdeed, since the early days of

curvesf(E) of Fig. 1 turned out to be approximately “split” the IQHE many resistivity curves quite clearly show a larger
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1 - . . and, in particular, to Ref.(6), where the Schringer time
C 1 evolution of the present model system and the resulting Hall
0.8 F E current have been analyzed in detail. Referen€eabso con-
F . tains a particularly detailed microscopic explanation of the
o 06F 3 key features of the IQHE in the framework of this model.
2 - ] We emphasize that Eq$l4) and (16) continuously de-
<, 04F scribe oy, and oy, of our system over the whole range of
0" : filling factors from one quantized plateau through the dissi-
0.2 - pative range to the adjacent quantized plateau. It seems that
: such a consistent description of Hall conductance plateaus
OF - Tt and dissipative region by a single theoretical prescription,
_0.23 N based on the essentially exact time-dependent microscopic
0.25 0.5 0.75 processes, has not been achieved elsewhere.

FIG. 4. Different contributions to the Hall currept, Eq. (16). Vil. CONCLUSIONS

Dashed line, terms containing the Satirger transition rates We have investigated a system of electrons in a model
W;C;,; broken line, terms containing the electron-phonon transitiongijsorder potentiaM(x,y) (“toy model”), which interacts
ratesW(’ ; solid line total. with the phonons of a heat bath. In this model system the
basic processes involved in the transport properties of a
quantum Hall system are illustrated in a transparent way. We
believe that these processes qualitatively also represent those
in the usual experimental systerffdOSFET’s and hetero-
junctiong, where the disorder potential is more complex.

We have provided the basic Egdll), (14), and (16),

hich enable us to explicitly calculate the dissipative and

plateau for the Hall resistivit§® In conventional quantum
Hall systems[where (ayy)2<(axy)2 for all filling factors]
this is equivalent to a larger plateau of the Hall conductivity
compared to the dissipative conductivigee Fig. 1 of Ref.
24).

It seems that our microscopic calculation has revealed thﬁ/
physical origin behind this effect. We are not aware of any i conductivities, starting from the Scidinger equation

ex;'):Iarlﬁtlon"[glven else\t/\r/]h?rtehlng;]e tl)ltgliaturz. H K iand the electron-phonon interaction. These equations contain
ur derI, dl appe?is detl N ﬁlimm t(')v_ a?T—%aSTEZa il the physical parameters of the systéitling factor, tem-
our mode’ does not tend fo an exadlinction =5 erature, macroscopic electric fiekl,, disorder potential,

is in qualitative agreement with recent measurements 05 . :
. = : U tc). By solving the corresponding quantum Boltzmann
high- and low-mobility samples, for which a finite width of equation(11) we obtained the conductivity plateaus with the

the S_hubmkov—de Haas peak was found at Zero temperatur rrect quantized values and the conductivities between the
showing .that. more than one.populated state is extended BFateaux consistently, i.e., with a single theoretical method
T=0, which is also the case in our model system. and without introducing unproved assumptions. The physical
On the other hand it seems that atg () curves do tend )parameters of the system that enter the expressions of the
(o

to a step funct|o_n in the zero—tenjperature limit, as |s_usga|| urrent densities are contained in the transition rates between
expected. But in order to achieve this, the localization- Sch

. e
delocalization properties of the Schiinger functions, which the_ bagls state\é/é’p?) andwp o, - Seh _
are usually made responsible for this, seem not to be suffition is described by the rated&/ ., , which depend not
cient here but have to be complemented by phonon-assistéily on the disorder potentid(x,y) but also on the macro-
hopping between localized states. scopic electric fielde, . All orders of the electric-field de-
When ¢ lies within the range of nonconducting states pendence are contained in our calculatigns., no linear
[condition (1) of Ref. @i)], i.e., when the steady state is approximation is made The temperature dependence of the
again described by a Fermi distributi¢see above and Fig. conductivities results from the temperature dependence of

1) and hence the dissipative currgytis zero, the Hall cur-  the transition rateWée;ﬁ) , Which describe the electronic mo-

The Schrdinger time evo-

rent densityj, is entirely given by the Schdinger part of tion induced by the electron-phonon interaction.

Eqg. (16), which in this case has the valyg=E,(e*/h) Xi We believe that our calculation is of considerable didac-
(wherei is the number of upper mobility edges of spin-split tical value for understanding what really goes on microscopi-
broadened Landau bands belew). cally. In particular, our model illustrates the interplay be-

Let us recall here that it has been shown analyti€dlly tween the full Schrdinger time evolution, which the electric
that, quite generally, the quantizatioqy=(e2/h)><i occurs field induces to the electron states in the broadened Landau
whenever a disorder potential(x,y) combined withE, band, and the time evolution resulting from the interaction
gives rise to solutions of the time dependent Sdimger  with the phonons of a heat bath. This leads to an improved
equation, such that conditiori$) and (2) of Ref. §i) [con-  understanding of the region near the edges of the conductiv-
ditions (a) and(b) of Ref. )] are fulfilled. These conditions ity plateaus. Here crucial physics for the IQHE occurs, which
are particularly transparent in our model system. Here theletermines the widths of the plateaus. Our analysis leads to
second condition is fulfilled due to the existence ofxan  an explanation of the difference in the plateau width of the
across which the Schdinger motion is entirely classical Hall conductivity and of the dissipative conductivity. It
(i.e., for which the corresponding Zener probabilRy, is  seems that this widely observed phenomenon has not been
equal to ). For further details we refer to Refs(i§ 6(j), explained before.
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(1 0-3eV) - E(ky) —E(ky) =hvy(ky)[ky—ky], (A1)
21 Ep . wherev (k) is —v(v,) on the left(right) slope. Together
0 Ep = ; Vix) with Eqg. (A1), the two conservation laws yield the following
2] \/ \<~/ simple relation betweeq, andq:
5 ; ¥ cL
=*x—4d. A2
0 Xp XpLl Xpxpr 2L X Gy vy a (A2)

This means that the phase space available to the phonons is

FIG. 5. Smooth disorder potentigl(x) with spatial period 2 oqricted to the lateral surface of a cone with opening angle
=1753 A. Solid arrow, slope conserving scattering process; dash 6, where C099=C_|_/vy. It will be convenient to express all

arrow, slope changing scattering process involving the same ener s i
transfer; dotted arrow, its associated effective slope conserving prg}(]e g-dependent quantities in terms qf. For a givengy

cess(see Appendix A all theg-s the end points of which lie along the perimeter of
a circle of radiusr =qy(v5/c{—1)"? in the gy-q, plane
around theg, axis are allowed, and their different contribu-

X ; 10WNions to the transition probability must be summed up. We
how a microscopic theory of the IQHE can be obtained,, ite the g-space volume element in the forndg

where all physical parameters are included consistently:dq rdrdé. For simplicity we take now the dimensions of
Such a theory has been missing so far, even for a modef,, ybulk crystal to belL,=L,=L,. Then dg,~Aq
X y z: y y

system. =(2m/L,) and we ma i =1
. - x y write dr=3(Ag,+AQ,)
Odur rrr:ethlo'd OI calcullatllcon may Iserve azla'guugﬁlme to%z(er/LX). The § function in the Fermi golden rule result
wards the ultimate goal of a complete predictive theory of, ;¢ replaced by the inverse density of statdAs; !, a

the IQHE. Future work along this line will have to extend constant in our systerfie is the energy difference between

our method to disorder potentials that are closer to thos:tnWO states with adjacent positions on a slopEhe inplane
present in usual quantum Hall samples. Further, electron;

electron interaction(screening will have to be included, S?éiséecgrgsonent of the phonon wave vectprean be ex-
which, once done, will immediately lend itself to a more
2
—( —1)sin2<;/>}, q§=q§(c%—1)sin2¢.
L
(A3)

elaborate treatment of both DA and PA interactions, too. The
The ¢-dependent terms can then be lumped together in one

latter, in turn, would allow one to attain lowdr [caseslii)
integral I (q,) (the bar denotes the summation ovg and

and (i) of Sec. VI, where the finite width of the Fermi qf=q
distribution no longer masks the effects that manifest them-

APPENDIX A the rest of the(partially summegl transition probability can
be incorporated into a prefactor that will be callett),) (see

selves in the scaling behavior of the conductivities.
below).

c;al? (XS c;§t=te|(r ta(.)n theelefr;‘;t]rgln stgtoerl? ( tf);e _ i|(n|(t)|(al ),Szt?:(,%’(a (b) A somewhat different scenario arises when the final
yrople oy y\P LA N state is on the opposit@ipper righy half-slope. Let us first

“unit cell” of length 2L of the smooth potential/(x) is . . :
depicted in Fig. 5. The repetition of this segment gives the|00k at the site opposite to the previogs , marked by the

potential in the whole sampl¢For the numerical calcula- dashed arrow in Fig. 5. For this neq,, the energy change

tions we will use a constant slop¥’ (x)| from top to bottom (<a) IS tTe Tame ﬁsb."(a)’ bFUt the hmcimentuhm change
of the hills (valleys of V(x), as shown by the broken line in (e<gy) is clearly much bigger. For such slope changing pro-

. NTTTEIS X cesses, it proves to be advantageous to define an effective
Fig. 5.] This simplifies the calculations and the formulas, bUtscatterin roces&lotted arrow in Fig. Bwith the sam
does not affect the results of this paper since in our model thrs t gpt. = the sl fthg-f' | stat .
states outside the central, conducting region remain nonco ut an efiectiveny on the slope ot the final state
ducting, independent of the particular form\#fx) near the
top of a hill or bottom of a well. Further, we are mainly Xpr—%p| @y
interested in a narrow region around the band ce(itez = ==
conducting states but sinceT is very low, the conducting
states cannot be excited to the very band edge. _ ;

As an example, we will consider the situation where thethigloéz t(gzg)aigpr'e;;ggé Xbpy Xpr on the same slope. With

electron is initially on the upper left half-slope at position T
Xp, with the corresponding momentuiky,=2mp/Ly and
emits (absorbg a phonon of wave vectog and energy cL
hwg =fic q (c_ is the average sound velodityuch that(a) Qy=*pp =0 (A5)
the final positionx is still on the sameslope. The total y
energy and they component of the momentum are con- As a consequence;, in Eq. (A3) must be replaced by
served. Sincdx)’,—ky:27r(p’—p)/Lyz(xp,—xp)/)\é, using a’p,p’c_l_- Finally, replacingq, by G, using Eq.(A4), the ¢
Egs.(6), (7), and(C3) we obtain integral takes the form

<

2

NS

Let us determine the possible phonon wave veayadtsat

App =T = =. (A4)
P.p |Xpn_xpr| qy
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I(ay,ap,p/ A7) =28. Hencewﬁf;,(pa& p’)=0 for p<—28 or p>28. This
1 means that the lower and uppapbility edgesre situated at
=4 exp{ -5 NG| 5{; 2) thg chanergieE_zg andE,g, respectively. The transition rates
Wpcp, (which are determined by the nonadiabatic transition

1,y ) _ prdbabilitiest) are an important element in the determina-
o exp{z Agq y(v 2— ap’p,)SInzqﬁ tion of the velocitieg14) parallel to the macroscopic electric
xf —— . : do, field Ey, and of the Schringer contribution to the veloci-
0 (14250 y(v °—ay ,)sing)® ties perpendicular t&, [see Eqgs(11) and (16)].
(A6) We recall that through th®,, which are given by Eq.
_ _ ] (8), the transition ratewﬁc;, explicitly depend on the physi-
whereuv denoteyy /¢ (=4.15 atB=6T in our mode). cal parameters of the system, in particular, on the disorder
Further, the prefactor becomes potential V(x,y) and on the absolute value of the macro-
R e B scopic electric fielcg, . This means that the mobility edges
@y o) = SdVv 2_“p,p’a 2 (A7) are determined by t%e form a&f(x,y) and by the absolute
yrrep 2pCZLyh y? value of E, .
where p (5.31x10° kgm3) is the volume density of the APPENDIX C

crystal and=Z 4 (7 eV) is the bulk deformation potential cou-
pling constant® In the denominator we used thateL, Expression(14) for the current density in thg direction
=V'(X)|xp—Xp-1/Ly=hvy, with h being Planck’'s con- can be expressed in terms of the individual velocities injthe
stant. For simplicity onIyasin_gIe_IongitudinaI acoustic modedirection of the basis stateg,. We take again the same
and an average sound velocity of (4.03x10° ms™!) has  numbering of the basis statgs, as in Ref. 6f). Let us con-
been considered. sider p odd. In this caseN‘S'Cg’, differs from zero only for

The calculation is similar ik, is on the other three half- ., _ L ; :
p : p'=p+2,p—1, andp+1; see Appendix B. For instance,
slopes, and the form of EqeA6) and(A7) remains the same. for p'=p+2 we havewﬁcglrz: PoPp.1/7. Further,E,. ,

We remark that the probability of scattering along a distance_ " _, . g

2L or beyond is negligible and the corresponding transition Ep=V'(xp)CE,7/B; hence in the sunil4) we have
HES ep) ; H ’

probabﬂmes are set equal to zero. Furtk_wﬁ,]p, is zero if Wrs>,cr[>1+2(Ep+2_Ep)/(qu):[V (Xp)cl(eB) PPy 1,

a, »>v. This latter inequality is equivalent tg,>q, (C)

which is physically not possible. where

APPENDIX B [V'(xp)c/(eB)]=v} (C2

TheWﬁ‘%’, are the Schrdinger transition probabilities per s just the velocity in they direction of an unperturbed Lan-
unit time to go from a basis statg, to a statej,,, during the  dau functiony, at the positiorx, (i.e., of a basis functiop,
time interval 7. Such a time evolution is described by the in the absence dE,). In our model system the velocities
multiplication of two 2<x2 matrices corresponding to two have all the same absolute value,
consecutive splittings. Therefore, t S can be expressed
in terms of the Zener probabilitig®) associated with these Uy= |[V’(Xp)C/(eB)]|* (C3
splittings. For instance, using the same labeling of the basi
functions ¢, as in Fig. 1 of Ref. ) [wherep odd (even
belong tox, on positive (negativg slopes ofV(x)], it is
straightforward to obtain the following values fprodd,

and their sign is negative K, is on a slope with positivy/’
and vice versdnote that the electronic chargds negative.

By analogous considerations for the remainm@’, ex-
pression(14) can be written as

WES o= PPy /T, (Bla) '
Jy:[e/(ZLLy)] 2 Ugfp[PpPerl"'Ppprl_prl]
W3S, =Py(1=Pp 1)/ T, (B1b) P odd
W =(1-Pp)Py_1/7 (Blo +p§venv$fp[prlefz+ Po-1Pp=Pply- (CH
df , . . - . .
and forp even Equation(C4) is an explicit sum over all conducting states in
Wﬁfﬁ_zz Pp_1Pp_2/, (B2a)  our quel systerr_]._These states are characterize@,0.
Since in our explicit exampl®,=0 for |p|>28°, the sum
WSChil:p _(1-P,_,)IT, (B2b) (C4) is therefore restricted to-27<p<27 (p odd), —26
p.p P P <p=<28 (p even. We recall that the mobility edge at
WSChH:(l—Pp DP,IT (B20) |p|=28 is determined by the form d¥(x,y) and by the
p.p - ’

absolute value oE, . The mobility edges can be shifted by
The diagonal elemenmslsvCh are irrelevant, since they do not changing at least one of these physical parameters. For in-
appear in(or fall out of) any of the relevant Eqgl11), (14—  stance, increasing, in Eq. (8) shifts the mobility edges
(16). Note that in our explicit calculatio®,=0 for [p|  towards the band tails. This is a general phenomenon in
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FIG. 6. Schematic illustration to Appendix D. Shown are two
localization centerg, X,/ , both contained in the unit cell of(x)
of length 2 (full line), and for which|x,, —x,|=L. Hence the two
corresponding scattering processieslicated by arrowsare negli-
gible in our system. The correspondifi@nishing matrix elements
W,y andW,,, are then replaced by the transition rates correspon
ing to the scattering betweedq, x* ol andxp, ,xp , respectively.
guantum Hall systems and lies at the origin of the high cur-
rent breakdown of the IQHERefs. §h) and Gi)].

APPENDIX D

Figure 6 schematically shows the energles and the
associated localization centexg of the orbitals#,. The
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d—Xp'|=L, the real matrix elementd/,, ,,

57

system is infinitely long in thex direction and periodic with

a period 2. The W, ,» are the transition rates among the
basis functions),, each of which is localized at its site, .
The total occupation probabilitief, of the sitesx,, are peri-
odic as well. They are determined from the Boltzmann equa-
tion (12) through the transition ratea/,, (WSCh, or \/\I(e p))
which decrease exponentially with the dlstavfocp— Xpr |

our system thew, ,, can be neglected for d|stanc¢=>sp
—Xpr|=L. Then the Boltzman equation can be written in a
periodic form by restricting it to th&l (=276) basis states
¥, with positionsx,, in the unit cell[ Xy, Xo+ 2L ]. TheW,

are then the elements of amXxX N matrix, which formally
describe the transitions among théséasis functions. They
describe the real transitions among two positirgsx,, only

if [Xp—xp/|<L, whereas for positions, ,x,, with 2L>|x,

o (which are zero,
see aboveare replaced by the matrix elements for the cor-
responding processes involving the same energy change
acrossthe pointx, (or equivalentlyacross x+2L) see Fig.

6. This means that in ouNX N matrix, the elemenW, .,
=WI(X,,Xp) is replaced by W(xp,xp ), and W, ,
=WI(X, ,Xp) is replaced byW(x: ,x;), where the points
Xps Xpr, x; and x;, are shown in Fig. 6. The resulting
NXN matrix describes the evolution in the infinitely ex-
tended system.
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