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Resonant tunneling through a quantum dot weakly coupled to quantum wires
or quantum Hall edge states
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Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
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Resonant tunneling through a quantum dot weakly coupled to Tomonaga-Luttinger liquids is discussed. The
linear conductance due to sequential tunneling is calculated by solving a master equation for temperatures
below and above the average level spacing in the dot. When the parameteracterizing the Tomonaga-
Luttinger liquid is smaller than 1/2, the resonant tunneling process is incoherent down to zero temperature. At
low temperaturel the height and width of the conductance peaks in the Coulomb blockade oscillations are
proportional toT*9~2 and T, respectively. The contribution from tunneling via a virtual intermediate state
(cotunneling is also included. The resulting conductance formula can be applied for the resonant tunneling
between edge states of fractional quantum Hall liquids with filling factes1/(2m+1)=g.
[S0163-182698)01212-Q

[. INTRODUCTION tems, it is necessary to take into account both the charging
energy and the discrete energy levels in the dot.

Advances in nanostructure technology have made it pos- This paper is intended to give a simplified description of
sible to fabricate semiconductor devices such as quantuithe resonant tunneling between TL liquids. We extend the
dots! small two-dimensional regions in which electrons aretheory of the sequential tunneling developed in Refs. 9 and
confined. The transport properties of the quantum dotdO to derive a generalized formula of the linear conductance,
weakly coupled via tunnel barriers to external leads havend discuss the validity of the sequential-tunneling picture.
recently attracted much attention. At low temperatures thénstead of applying the instanton technique starting from an
linear conductance exhibits periodic peak structures as effective action for bosonic variabléswe use a master-
function of a gate voltage, a phenomenon known as Couequation approach to calculate the resonant current through a
lomb blockade oscillations. These peaks occur when the erquantum dot! This method is more direct and transparent,
ergy change due to tunneling of one electron into or out ofand has been successful in describing the Coulomb blockade
the dot equals the Fermi energy of the leads. Apart fronpscillations in quantum dots coupled to Fermi-liquid
these resonance points, tunneling is suppressed due to theads®*2 With this method we can describe in a unified way
Coulomb blockadé? Single-particle energy levels in a small the resonant tunneling through a quantum dot which is
quantum dot are discrete with mean level spacingand  weakly coupled to TL-liquid reservoirs as well as to ordinary
have decay width"| gy which is proportional to the tunnel- Fermi-liquid reservoirs. We will see that our formula has
ing rate to the left(right) lead. In the temperature regime even the same form as the conductance of double quantum
I' (ry<T<A, the line shape of the conductance peaks is dots weakly coupled to Fermi-liquid reservotfsAnother
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wheree is proportional to the gate voltage measured relative d duantum wire

to the resonance point. Equati@h) is valid when the exter-
nal leads are Fermi liquids and has been used to interpret
numerous experimental data.

quantum dot

(b)

In this paper we discuss a generalization of &g.to the T L=
case where the external leads are Tomonaga-Lutti(ger edge state ™" . edge state
liquids. The TL liquids can be realized in very narrow quan-
tum wires or as edge states of fractional quantum Hall quantum A é quantum
liquids 8~8 Figure 1 shows schematic pictures of the systems Hall ' Hall
of our interest, a quantum dot coupled via tunnel barriers to liquid liquid

one-dimensional1D) quantum wires or to edge states in
fractional quantum Hall liquids. In both cases it is assumed
that there are small but finite matrix elements for the tunnel-
ing from the points B and C of the zero-dimensional states FIG. 1. Quantum dot coupled t@) quantum wires an¢b) edge
formed in the quantum dot to the points A and D of the 1Dstates in quantum Hall liquids. Dotted lines represent one-
TL liquids. To fully understand the transport in these sys-dimensional states.

T quantum dot ‘\*\_‘
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merit of this approach is that it allows us to easily treat athe electron number$, Ng—Ny+1—Ny—--- . We also

system with two TL-liquid reservoirs having different inter- note that the ratid\/E. can be much smaller than 1 for both

action parameters. This situation corresponds to, for exsystems shown in Fig. .’

ample, the resonant tunneling fronwas 1/3 edge state to a First we address the situation shown in Figg)1The left

v=1 edge state. (L) and right R) leads are described as TL liquids whose
The use of the master-equation approach can be justifietiteraction parameter i&, ) for the charge sector and

because the resonant current is mainly carried by sequentitl,, gy for the spin sectot® Due to repulsive electron-

tunneling processes down to zero temperature when the irlectron interaction¥ , is less than 1 whil&, is fixed at 1

teraction parameteg characterizing TL liquids is smaller because of the S@) spin symmetry. In the bosonized form

than 1/2? Wheng=1/2, on the other hand, there is a cross-H, is written as

over temperature below which the transport becomes coher-

ent and the line shape of the peak conductance approaches o N ¢

the universal form obtained by Kane and FisHeFor the HL:ﬁfo dk(ve kay LayLtvsikby by), ©)

edge states in the fractional quantum Hall liquid with a fill-

ing factor »=1/(2m+1), the parameteg equalsv.® This  \herea,, (by,) is an annihilation operator of bosons de-
means that the tunneling between edge states via a quantWgribing chargespin) density fluctuations propagating with
dot can be described, down to zero temperature, by th@elocity v, . The Hamiltonian of the right lead r can be

sequential-tunneling picture discussed in this paper, unlesgritten in a similar way. The tunneling Hamiltonian is given
the bare tunneling elements are large and/erl. Finally by

we note that our approach is different from the previous

work by Kinaretet al® in which the edge states in the quan-

tum dot are described as chiral TL liquids but the leads are HT=tL2 [l/lZ_(A)l/IO.(B)‘i‘lpZ_(B)lﬂo.(A)]

assumed to be Fermi liquids. In our study, on the other hand, 7

the leads are described as TL liquids and the states in the dot

are treated as 0D states. Thus we are interested in the effects +tRE [z,hf,( C) ¢y (D)+ z//Z(D) Y(C)], 4)
coming from anomalous power-law correlations in the TL 7

leads. where ¢,(X) annihilates an electron with spin up

(o0=+1) ordown (= —1) at the poiniX (X=A, B, C, and
Il. MODEL D in Fig. 1). The electron field operator at the boundary may

In this section we introduce a simple model for a dot andbe written a8’

leads, and calculate propagators in the leads. The Hamil-

tonian of the system shown in Fig. 1 can be separated into bo(A) = /iex fwdk
four parts,H=H +Hg+Hp+Hy, with H g, describing v Ta 0

the left (right) lead, Hp the dot, andH the tunneling be-

tween the leads and the dot. Since the tunneling rate through g aki2 ;
the tunnel barriers is assumed to be very small, the number +<Tf dk N (by,L—by )
of electrons in the dot is a good quantum number. Thus we 0

may write the dot Hamiltonian wherea is a short-distance cutoff of the order of the recip-
rocal of the Fermi wave numbet:. This leads to local

Ho=2 2 E(NDINI(N, (2 Propagators

(WHAD (A0 = (P, (A D YA

e akl2

W(ak,L_al,L)
pL

: ®)

whereN is the number of electrons in the dot aB(@N,i) is

eigenenergy of the many-body statfN,i) [E(N,0) ca[ iA  [#T(t—id)]| o
<E(N,1)<E(N,2)<---]. In this paper we will not try to T2l " 5 :
calculate the energids(N,i) themselves, but instead we as-

sume that they are given, since we are mainly interested in (©)

the line shape of conductance peaks in the Coulomb block- herec, is a dimensionless constant of order A, is a

ade oscillations, not in the position of these peaks. Witho“high-energy cutoff or a band widtts is positive infinitesi-
loss of generality, we may assume tfiiNo,0) andE(Ng mal, andg, *=3(1/K, +1). The thermal averages are cal-
+1,0) are the two lowest energies amdaN,i =0)’s. The cula{ted I_withz repstect to H, and ¢,(Al)
energy differenced(No—1,0)~E(No,0) and E(No+2,0) =exp(H t/h)y,(A)exp(—iH t/4). Similarly, the propagators
—E(Np+1,0) are of the order of the charging enefgy. A at the point D are obtained as

convenient choice to represent this would be the approxima-
tion usually made in studies of the Coulomb blocKade

t _ i
E(N,0)=(Ec/2)(N— )2, where A (Ng<A'<Ng+1) is an (#6(D.)¥5(D,0)r=(¥(D.1) #5(D.0))r
external parameter which can be con_trolled by changing the col iA  [aT(t—i8)]) Yor
gate voltage. Since we are interested in the temperature range T s :

T<Ec, we neglect the states in whidt# Ngy,Ng+ 1. Then
the current flow is accompanied by the periodic change of (7)
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_ _ t \2 (> .
PL(Ng,i;No+1j)= %L) f dt e ieiit%
a X (No L,i[#7(B) N,y
X (YT (A P(A0)), (9a)
P Sl NN PR N
_—\—-_7 81“-_—/ . ieV t 2 0 .
Pr(Ng,i;Ng+1,j)= f) f dt e i(eij—eVh
left lead dot right lead % |<NO+ l,j|l/lT(C)|No,i>|2

+
FIG. 2. Schematic picture of energy diagrams. Horizontal lines X{¢"(D,1) (D,0))r, (9b)
in the leads represent Fermi levels. There are four tunneling Prowhere e;; =E(No+1,j) —E(Np,i) andeV is the difference
cesses. between the chemical potentials of the left and the right
leads. The transition rates for the inverse processes are simi-
where cp is a dimensionless constargF}l:%(lleRJr 1)  larly given by
and the averages are taken with respediifo Note thatg,

and gg are smaller than 1 because b andK r are t,\2 [ .
Smaller than 1. Y ot PL(No+1§iNo,i)= i) | avenn
Although we have considered the system shown in Fig. -
1(a), both Egs.(6) and (7) also hold for the quantum Hall X |(Ng,i|(B)|Ng+1,j)|?
edge states in Fig.(h). Suppose that the left lead and the N
right lead are in the quantum Hall regime with filling factors X(P(A DY (A0))L, (90

v =1/(21+1) and vg=1/(2m+1) (I,m: integers,

. 0 . . . 2 .
respectively’’ In this case the Hamiltonian for the left edge t_R) f dt e —evh

Pr(No+1,j;Ng,i)=

states is A .
v de(x))? X|(No,i[¢(C)[No+1,j)[?
"an ( dx ) ' ® X(p(D,1)§"(D,0))r. (9d)

wherex is the coordinate along the edge and the bosoni¢Jsing the propagatort6) and(7), we evaluate the integrals
field @(x) obeys[¢(X),¢o(y)]=imsgnk—y).® Since the (93—(9d),

electron field operator at the point A is given k}A,t)
sexdie(A,t)/\r 1,%% we find the correlation function in
the left edge is also given by E¢p) with g, = v, . The same
derivation also holds for the right edggz=vg. In the fol- (10a
lowing sections, we shall use the parametgrandgg with-

out distinguishing the two systems. Since the electron spin is Ny . (s —eV)i2T Ny .

not important in the following discussion, we will suppress ~ Pr(No.1iNo+1.j) =€ Yr(No,i;No+ 1)),
the spin indices in the electron field operator. (10b)

) . T e . .
PL(No-liNo‘Fl,J):ge "7y (Ng,i;No+1,j),

Ill. LOW-TEMPERATURE REGIME (I'<T<A) P_(No+1,j:Ng i)=Ie£iJ/2T'y|_(N0 i:Ng+1,))
Jy ) ﬁ 14 1 1

In this section we calculate the linear conductance for (100
T=<A within the master-equation approathin this ap-
proach we assume that the energy is conserved in each tun- T
neling process, and neglect the contributions from tunneling  P5(Ng+1,j;Ng,i)=-ei V2T (Ng,i;No+1,j),
via virtual intermediate states. We will see later that this h
assumption is valid near the conductance peaks in the weak- (10d
tunneling limit. In the following calculation we include only i i i i :
low-energy stategN,i) with N=Ngy or Ng+1 which are \évrgi;eegﬁggél ’twé?uﬁ{:)tioingsmmo’l'N0+1'J) are e
major contributors in the conduction process at temperature

T<A<E(, a situation often satisfied in experiments using T 7T\ o1
semiconductor quantum ddt$?® A schematic energy dia- Y.(Ng,i;Ng+ 1,j)=ﬂ( —)
gram is shown in Fig. 2. 27T\ A

In lowest order inHy the transition rates from the state T (1/2g, +i(s;;/27mT))|2

[Ng,i) to the statdNy+1,j) due to the tunneling of an elec- T (1) :
tron into the dot through the left or right tunnel barrier are 9
calculated from the golden rule: (11a
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J’R(No,l;No+1J)=m A

I (1/2gr+i(ei; —eVI2nT))|?
I'(1/9g) '

FRij ( WT)llgR_l

(11b

We have defined I'j;=(2mcat?/aA)[(No,i|#(B)|Ng
+1,)) and Tgy=(2mcpta/aA)|(No,i[¢(C)No+ 1)

The time evolution ofP(Ng,i), the probability that the state

INg,i) is occupied, obeys the master equation
d . . . .
3t P(Nou) =2 {P(No+ 1))[PL(No+L;No.i) + Pr(No

+1,j:No,i)]=P(Ng,i)[P_(Ng,i;No+1,)
+ Pr(Ng,i;Ng+1,j)1}. (12

In the steady state where)/@t)P(Ng,i)=0, we need to
solve a set of detailed balance relations

P(No,i)[PL(Ng,i;No+1,j)+Pgr(Ng,i;No+1,j)]
=P(No+1,j)[PL(Ng+1,j;Ng,i) + Pr(Ng+1,j;Ng,i)].
(13

In equilibrium whereV=0, P(Ng,i) is given by

P Nowi) = exd —E(Ng,i)/T] ,

> > ex —E(Ng,i)/T]

No i

(14)

so that from Eqs(109—(10d) we can easily see that EAQ.3)
is satisfied. Following Ref. 4, we solve E(.3) to the first
order in V. We first substitute P(Ng,i)=Pg¢(No,i)[1

+(eVIT)p(Ng,i)] into Eg. (13) and linearize it with respect

to V. We find
P(No+1,j) —p(Ng,i)

_ Yr(Ng,i;No+1,j)
YL(Ng,i;No+1,j)+ yr(Ng,i;Ng+1,j) "

(19
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For the rest of this section, let us concentrate on the tem-
perature regimd <A. In this regime we may assume that
the dot is always in the lowest energy state with a given
electron number, so that we may setj=0 in Eq.(17). We
can thus writeP.{(No,0) as

PedNo,0)= 1 (18

+ e_S/T,

where e =E(Ny+1,0)— E(Ng,0). From Eqgs.(17) and (18)
we find the linear conductantefor T<A

G_ eZ YL(S’T)YR(S!T)
- 2hcosiel2T) y (e, T)+ yr(e,T)’

(19

wherey_ r(e,T)= 7L r(Ng,0;Ng+1,0). This is the generali-
zation of Eq.(1) to the case where the leads are TL liquids.
When g[(lR) is an integer,y (ry(e,T) has a simple expres-
sion. For example,

T, .
2Tcoshe/2T)’ 9
SFL 1
n(e. D=\ ZATsinnerzn)’ 972 (20
FL(WZTZ-I— g?) .
16A2TcoshezT)’ O-

where we have used the simplified notatlon=1"| . Thus,
Eqg. (19 reduces to Eql) wheng, =gr=1. It is interesting
to observe that wheg, =gr=1/2 Eq.(19) reduces to

oo e T\.I'rx &l
" 4hA T +Tgsinhe/T)’

21

which has the same andT dependence as the conductance
of a quantum dot coupled to Fermi-liquid leadg=(1) at
A<T<E_ obtained by Glazman and ShekhtéiThis coin-

The current through the quantum dot is then given, up to firstidence occurred because of the effective halving iof this

order inV, by
I=—e>, [P(Ng,i)P.(No,i;Ng+1,;)
|
—P(No+1,j))P_(No+1,j;No,i)]

eZV —gi; 2T i i H
= 2 & TPeNo.) 7 (No.iiNo+ 1))

X[P(Ng+1,j)—p(No,i)] (16)
from which we get the linear conductance
ez 12T i
ng%‘, e #i2TP o Ng,i)
¥L(No,i;Ng+1,)) ¥r(Ng,i;No+1,)) 17

YL(No,i;No+1,j) + yr(No,i;No+1,j)
which is a generalization of E¢3.14) of Ref. 4.

temperature regiméwhich we will discuss in the next sec-
tion. It is also interesting to see that Matveeval!® have
derived a formula similar to Eq19) for the conductance of
double quantum dots, although the parametelhas com-
pletely different physical meaning in their case. Figure 3
shows the line shape of the linear conductance (E§). for

the symmetric casé€' | =I'g andg, =gr=1, 1/2, and 1/3.
The conductance is normalized by the peak conductance of
the g=1 case,G=€T/8:T. For fixedI" and e, G be-
comes smaller with decreasing If scaled properly, how-
ever, the three curves in Fig. 3 can be made very similar to
each other. This is because for amyhe width of the peaks

is proportional toT and the conductance decays exponen-
tially for large |¢|. For example, the conductance of e

1 case(21) is almost proportional to that of trg=1 case(1)

with T—1.25T.% It is the temperature dependence of the
peak conductanceG(e=0)xTY972 that differs qualita-
tively. We hope this can be tested experimentally in the near
future. The anomalous temperature dependence of the peak
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_UWlro s t
Hu=——[¢ (A¢B)J (C¢(D)+Hc]. (24

In lowest order, the probability that an electron virtually tun-
nels from the left lead to the right lead is

G/G,,,

2 oo
% f_ocdt e*iGVUﬁ(wT(A’t)d/(A,O)>L

Pu(L—R)=

X($(D,)¥(D,0))r. (25

We may neglect the time-dependence of the two-particle
propagator in the dot for T<A, and write

FIG. 3. The linear conductance due to the sequential tunneling¢T(B,t) H(C,t) lﬂ(B,O)lﬂT(C,O»D:Cz- Herec, is a constant
Eq. (19 for g, =gr=g=1, 1/2, and 1/3. The conductance is nor- which may depend on the geometry and the mean free path

malized by the peak value of th=1 caseG,=eT/8AT. We of the dot?® Erom Eqs.(6), (7), and(25), we get
have seff/A=0.25.

conductance is a signature of the power-law decay of the PW(LHR):CJLFRA —eV/2T(
A

propagators in the TL liquids, Eq&) and (7). Amlhe?
When the left and right leads are different TL liquids _ 5

(g #9r), the peak conductance is roughly given by ><|F(1/29L1L 1/29g+i(eVi2aT))|

{ma{T/T (TIA)Y Y00 T/T o(T/A)Y9R]} 2 If g, <1/2 and I'(1/g,+1/gr)

0r>1/2, and yg(0,T)<vy, (0,T)<1 at some temperature

(T<A), then the conductance may have a nonmonotonigvherec, is a dimensionless constant. The probability of the

temperature dependence. With lowering temperature, theeverse process iB,(R—L)=e*VTP (L—R). Hence the

peak conductance first increases@s TR~ 2 and then de- linear conductance due to the virtual tunneling is

creases a&>«TYL~2 This nonmonotonic temperature de-

pendence would be observed, for example, for the sequential

WT) 1/g, +1/gg—1

. (26)

tunneling between the=1 edge state and the=1/3 edge Gy= lim _e[Pvt(L*)R)_ Puw(R—L)]
state. When botly, andgg are larger(smalley than 1/2, on v—o V
the other hand, the conductance should monotonically in- ) 5 Vg, +Lige—2
crease(decreasewith decreasing temperature. _CseT g |[T(1/29, +1/2gg) |*( wT | HOL 7 H0R

Next we examine when the sequential-tunneling approxi- dhe? I'(lg +1lgr) | A '
mation is valid for temperatureB<A. We find two condi-
tions to be satisfied. First, the conductance calculated pertur- (27

batively in the tunneling matrix elements must be much
smaller than the conductance quantefth. This leads to the
condition y, (0,T)<1 andyg(0,T)<<1, or equivalently,

This contribution has the same temperature dependence
TY9L+10r~2 35 that of the tunneling between TL liquids
coupled by a single tunnel barri&t.n the case of Fermi-
liquid leads g, =ggr=1), G; is independent of temperature,

Ter L)QL,R/(]- 29. R) 22) and the virtual tunneling process contributing@g is called
LR the elastic cotunnelinf,. When e<T, the temperaturel
serves as a lower cutoff so that in the denominator of the
wheng, g<1/2 and right-hand side of Eq.(27) should be replaced with
' (le|+27T)2 When|e|<T, the conductance, Eq.(19), is
I \9LR/I20LR-D) much larger tharG\,t if Eq. (22) or (23) is sati;fied. On the
T>A(ﬂ) (23)  other hand, using the relatiofT'[1/2g9+i(s/27T)]|?
A ~2m(el2aT) Y9~ 1e*/2T for £>T, we find that the condi-

tion for G>G,; at e>T is equivalent to

1/e 1-1/g, 1/e 1-1gr1—1
F_L<K) +F—R<K) }

wheng, g>1/2. For the Fermi-liquid leadgg& 1) this con-
dition reduces tar>1I". Note that, wherg<1/2, the condi- eelT
tion (22) is satisfied down to zero temperature, once it is

valid at some high temperature. Second, the current carried T

by virtual tunneling processes must be negligibly small com- ' T 7T\ oL+ Lor—2

pared with the contribution from the sequential tunneling st R(_) (28)
processes we have calculated. For T the second-order g2 | A

perturbation inH+ yields the operator for the virtual tunnel-
ing For g, =gr=g this condition is simplified to
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10° : . gime we may still assume that the number of electrons in the
dot is eitherN, or Ng+ 1. However, the electrons in the dot
no longer stay in the lowest-energy state but occupy excited
1072 states. This gives time dependence to the propagators in the
dot. At T>A we can regard the discrete energy levels as
5 continuum*? and the propagators in the dot may be written
2.0 as
Q
© <¢T(Brt)l//(B!O)>D:<¢(B!t)wT(B!O)>D
107 iA [aT(t—i8)]] Yoo
=ps| 7SN ———— ,
-8 N N
10 -20 -10 0 10 20 (309
e/T t - t
FIG. 4. Line shape of a conductance peak. Both the contribution iA T(t—i8)]] Yoo
from the sequential tunneling E¢L9) and that of the virtual tun- :Pc{_ in?‘{ 7T ”
neling process Eq27) are shown folg, =gg=g=1 and 1/3. The mT h '
conductance is normalized by the peak value of gel case (30b)

Gma=€T/84T. We have sefl/A=0.25,T/T=0.2, andc;=1.

wherepg andpc are electron densities at the point B and C.

Without a magnetic fieldFig. 1(a)] the exponengp is 1

(Fermi liquid, whereasgp equals the filling factoryvp

in which th £l ithm i hi h .f=1/(2n+1) if the dot is in the fractional quantum Hall re-

e 7L] QST e e 1 1 g P, 1), Usg Egs(6) (7 G0a, and G0, we
L,RAM, : can repeat the calculation in the previous section to derive

From these considerations we conclude that, when Eqyq jinear conductance in the sequential tunneling approxi-
(22) or (23) is satisfied, the line shape of conductance peakgyation. Since the excited states are already taken into ac-

is described by Eq(19) around a peak and by EQ7) away  ¢ount in Egs (308 and (30b), we can simply use the result
from the peak, see Fig. 4. for the single-level caseT(<A), Eq. (19), with appropriate

Finally we briefly comment on the Kondo effect in the qification. We thus find that the conductance is given by
resonant tunneling through a very small quantum dot or an

1-‘L,R

e<TIn T

A 1/g—-1
) ; (29)

impurity level. In the Fermi-liquid caseg{ =gg=1) it has 2 ~ ~
been showtf?” using the Anderson model that the conduc- G= e yu(e, T ye(e,T) 31)
tance due to tunneling processes via a virtual intermediate 2hicostel2T) 7y (&, T)+ yr(e,T)
state logarithmically increases with lowering temperature
and eventually approacheseZh in the zero-temperature With
limit. In the TL-liquid case §, ,gr<<1) this kind of Kondo
effect does not happen for|e|=T, because G _ 'fL(R) 7T\ YoLr~1/ 7T\ Yoo
«THYOL+19R=2 |n other words the virtual tunneling is irrel- Yr(eT)=5 (—) (—)
. L . 7T\ A A
evant in the renormalization-group sense, in contrast to the
Fermi-liquid case where the virtual tunneling is marginally |F(1/29L(R)+1/29D+i(8/27TT))|2
relevant. Nevertheless there exists an analog of the Kondo T(1g,  + 1/g5)
effect in the TL liquid case wheg, = gg= 1/2. In this case, LR) b
as we saw in Eq(21), the peak conductanc&(s=0) is (32

independent of temperature in the lowest-order calculation. -

In fact, one can shotf?®that on resonances0) the tun- Herel'| =2mct?pg/aA andl g=27cptipc/aA. The pa-
neling is marginally relevant so that the peak conductancgametersg, and gr are effectively changed intg, —g,
increases logarithmically with lowering temperature when_ /(0 + and - _ /(Qe+ Note
higher-order terms are included. It is, however, important tochgtLg\I/Dvh(Sﬁg,_?;)z " tr?:zgrgmg?gg,_((:)mis ggfz‘éctively

note that our problem is not exactly the same as(thelti- 9~ . .
channel Kondo effect due to the interference between thehalved' 91 = 9u(r)/2. This is the reason why EGL9) with

tunneling processes through the left and right barriers, unliké;"-:ngll2 reproduced the h|gh-temperatu_re_ C(_)nductance
the situation A <T<E.) discussed by Matve€?. ((); ag q‘i’;“’l‘g“m dot coupled to Fermi-liquid leads
L™ YR /-

The same expone@L(R) also appears in the conductance
due to the virtual tunneling process. This virtual tunneling is
Let us next consider the high-temperature case where known as the inelastic cotunneling in the Fermi-liquid cZse.
<T<E;. We note that, although we can only expect For T>A an electron tunneling through the left tunnel bar-
=<E¢ in general, the conditiod<E. can be satisfied in rier may be different from an electron tunneling through
some relatively large quantum dots. In this temperature rethe right barrier, so that we may approximate the two-

IV. HIGH-TEMPERATURE REGIME (A<T<E()
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particle propagator as{(B,t)¢"(C,t)4"(B,0)¢(C,0))p
~(¢(B,1)¥'(B,0))n(¢"(C.t) ¥(C,0))p . From Egs.(6), (7),
(25), (30a, and(30b), we get
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evidence for the TL-liquid behavior of the edge states. The
anomalous exponent i+ 2 is a direct consequence of the
power-law tunnel density of statp§E)<EY* " in TL leads

and of the discrete energy spectrytE) = §(E) in a quan-

e’T T |I(1/29, + 1/2gr+ 1/gp) |2 tum dot. It is also interesting to note that, when a quantum

W 8mhe  T(Lig,+ Llgn+ 2/gp) dot is weakly coupled to thee=1 edge at one tunneling
contact and to the=1/3 edge states at the other, the linear
T\ Yot ¥r=2/ 7T 200 conductance may exhibit a nonmonotonic temperature de-
A al (33 pendence.

We note that there are some cases in which the sequential-
tunneling picture is not applicable even when the bare tun-
neling matrix elements are small. For examplag,ifandgg
are larger 1/2, the tunneling rates through the left and right
tunnel barrier grow with decreasing temperature. This means
that the transport through a quantum dot becomes coherent
. . ._and the sequential-tunneling approximation breaks down at
In this paper we have studied the resonant tunnelmq .

L ow temperature wherg/(0,T)=1. This coherent transport
through a quantum dot coupled to TL liquids in the Weal('in the low-temperature limit is described better starting from
tunneling limit. We have considered both the sequential tun: b 9

neling process and the tunneling process via a virtual interthe small-barriefstrong-tunnelinglimit. In this limit it was

mediate state (cotunneling to calculate the linear s_how>n 1% gggf Ert]d) ifﬁgﬁi&vgréh:c?{::ﬁet?sc rC eisc?r}r(n al-
conductance at temperaturB&E . Within this approxima- —Or LR g

tion we have determined the line shape of the conductancgiigo Ze(;rESW:enr:;ghzgd;hiait\?;sl;}efggg-%? t?(falgevniuc-
peaks as a function of a gate voltage. P£A the peak P PP

height and width are proportional %2 and T, respec- crossover temperature at whigh{0,T)~1. This is also the

tively. This approach is justified in the weak-tunneling limit C2S€ fOr Systems withy =gg=1/2, in which the tunneling at

where the conductance is much smaller te3. In contrast -0 1S marginally relevar’lljf%%and increases logarithmically
to the Fermi-liquid caseg=1) where the approximation with decreasing temperature.We emphasize again, how-

breaks down aT<T", our resul{Egs. (19) and(27)] is valid ever, that for the resonant tunneling between the edge states

i in the fractional quantum Hall liquids as well as between the
down to zero temperature when the TL-liquid parametgrs . . - L
1D quantum wires with sufficiently strong repulsive interac-
andgg are smaller than 1/2.

The edge states of the fractional quantum Hall quuidstlons’ th? sequential-tunneling a_pp_roach deve_loped in this
paper gives the correct description even in the low-

with filling factor v=1/(2m+1) correspond to the case i

=v. Hence the tunneling through a quantum dot Weaklytemperature limit.
coupled to the edge states is described by our theory in the
whole temperature range. We hope that the theory can be
tested experimentally in the near future. The anomalous tem- The author would like to thank A. MacDonald and N.

perature dependence of the peak heifHt 2 and careful Nagaosa for useful discussions and M. Sigrist for helpful
fitting of the line shape to Eq19) will give another firm  comments on the manuscript.

The conductance is proportional B9t Y9=r*268p0=2  For
the Fermi-liquid casedq, =ggr=0p=1) this reduces t&,;
«T2, in agreement with the inelastic cotunneling thedty.

V. CONCLUSIONS
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