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Resonant tunneling through a quantum dot weakly coupled to quantum wires
or quantum Hall edge states

A. Furusaki
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

~Received 16 July 1997!

Resonant tunneling through a quantum dot weakly coupled to Tomonaga-Luttinger liquids is discussed. The
linear conductance due to sequential tunneling is calculated by solving a master equation for temperatures
below and above the average level spacing in the dot. When the parameterg characterizing the Tomonaga-
Luttinger liquid is smaller than 1/2, the resonant tunneling process is incoherent down to zero temperature. At
low temperatureT the height and width of the conductance peaks in the Coulomb blockade oscillations are
proportional toT1/g22 and T, respectively. The contribution from tunneling via a virtual intermediate state
~cotunneling! is also included. The resulting conductance formula can be applied for the resonant tunneling
between edge states of fractional quantum Hall liquids with filling factorn51/(2m11)5g.
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I. INTRODUCTION

Advances in nanostructure technology have made it p
sible to fabricate semiconductor devices such as quan
dots,1 small two-dimensional regions in which electrons a
confined. The transport properties of the quantum d
weakly coupled via tunnel barriers to external leads h
recently attracted much attention. At low temperatures
linear conductance exhibits periodic peak structures a
function of a gate voltage, a phenomenon known as C
lomb blockade oscillations. These peaks occur when the
ergy change due to tunneling of one electron into or out
the dot equals the Fermi energy of the leads. Apart fr
these resonance points, tunneling is suppressed due to
Coulomb blockade.2,3 Single-particle energy levels in a sma
quantum dot are discrete with mean level spacingD and
have decay widthGL(R) which is proportional to the tunnel
ing rate to the left~right! lead. In the temperature regim
GL(R)!T!D, the line shape of the conductance peaks is4

G5
e2

\

GLGR

GL1GR
S 2

d

d« D 1

e«/T11
, ~1!

where« is proportional to the gate voltage measured relat
to the resonance point. Equation~1! is valid when the exter-
nal leads are Fermi liquids and has been used to inter
numerous experimental data.

In this paper we discuss a generalization of Eq.~1! to the
case where the external leads are Tomonaga-Luttinger~TL!
liquids. The TL liquids can be realized in very narrow qua
tum wires5 or as edge states of fractional quantum H
liquids.6–8 Figure 1 shows schematic pictures of the syste
of our interest, a quantum dot coupled via tunnel barriers
one-dimensional~1D! quantum wires or to edge states
fractional quantum Hall liquids. In both cases it is assum
that there are small but finite matrix elements for the tunn
ing from the points B and C of the zero-dimensional sta
formed in the quantum dot to the points A and D of the 1
TL liquids. To fully understand the transport in these sy
570163-1829/98/57~12!/7141~8!/$15.00
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tems, it is necessary to take into account both the charg
energy and the discrete energy levels in the dot.

This paper is intended to give a simplified description
the resonant tunneling between TL liquids. We extend
theory of the sequential tunneling developed in Refs. 9 a
10 to derive a generalized formula of the linear conductan
and discuss the validity of the sequential-tunneling pictu
Instead of applying the instanton technique starting from
effective action for bosonic variables,9 we use a master
equation approach to calculate the resonant current throu
quantum dot.11 This method is more direct and transpare
and has been successful in describing the Coulomb block
oscillations in quantum dots coupled to Fermi-liqu
leads.4,12 With this method we can describe in a unified w
the resonant tunneling through a quantum dot which
weakly coupled to TL-liquid reservoirs as well as to ordina
Fermi-liquid reservoirs. We will see that our formula h
even the same form as the conductance of double quan
dots weakly coupled to Fermi-liquid reservoirs.13 Another

FIG. 1. Quantum dot coupled to~a! quantum wires and~b! edge
states in quantum Hall liquids. Dotted lines represent o
dimensional states.
7141 © 1998 The American Physical Society
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7142 57A. FURUSAKI
merit of this approach is that it allows us to easily trea
system with two TL-liquid reservoirs having different inte
action parameters. This situation corresponds to, for
ample, the resonant tunneling from an51/3 edge state to a
n51 edge state.

The use of the master-equation approach can be just
because the resonant current is mainly carried by seque
tunneling processes down to zero temperature when the
teraction parameterg characterizing TL liquids is smalle
than 1/2.9 Wheng>1/2, on the other hand, there is a cros
over temperature below which the transport becomes co
ent and the line shape of the peak conductance approa
the universal form obtained by Kane and Fisher.14 For the
edge states in the fractional quantum Hall liquid with a fi
ing factor n51/(2m11), the parameterg equalsn.6 This
means that the tunneling between edge states via a qua
dot can be described, down to zero temperature, by
sequential-tunneling picture discussed in this paper, un
the bare tunneling elements are large and/orn51. Finally
we note that our approach is different from the previo
work by Kinaretet al.15 in which the edge states in the qua
tum dot are described as chiral TL liquids but the leads
assumed to be Fermi liquids. In our study, on the other ha
the leads are described as TL liquids and the states in the
are treated as 0D states. Thus we are interested in the ef
coming from anomalous power-law correlations in the
leads.

II. MODEL

In this section we introduce a simple model for a dot a
leads, and calculate propagators in the leads. The Ha
tonian of the system shown in Fig. 1 can be separated
four parts,H5HL1HR1HD1HT , with HL(R) describing
the left ~right! lead, HD the dot, andHT the tunneling be-
tween the leads and the dot. Since the tunneling rate thro
the tunnel barriers is assumed to be very small, the num
of electrons in the dot is a good quantum number. Thus
may write the dot Hamiltonian

HD5(
N

(
i 50

`

E~N,i !uN,i &^N,i u, ~2!

whereN is the number of electrons in the dot andE(N,i ) is
eigenenergy of the many-body stateuN,i & @E(N,0)
,E(N,1),E(N,2),•••#. In this paper we will not try to
calculate the energiesE(N,i ) themselves, but instead we a
sume that they are given, since we are mainly intereste
the line shape of conductance peaks in the Coulomb blo
ade oscillations, not in the position of these peaks. With
loss of generality, we may assume thatE(N0,0) andE(N0
11,0) are the two lowest energies amongE(N,i 50)’s. The
energy differencesE(N021,0)2E(N0,0) and E(N012,0)
2E(N011,0) are of the order of the charging energyEC . A
convenient choice to represent this would be the approxi
tion usually made in studies of the Coulomb blockad2

E(N,0)5(EC/2)(N2N)2, whereN (N0,N,N011) is an
external parameter which can be controlled by changing
gate voltage. Since we are interested in the temperature r
T!EC , we neglect the states in whichNÞN0 ,N011. Then
the current flow is accompanied by the periodic change
x-
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the electron numbers,12 N0→N011→N0→••• . We also
note that the ratioD/EC can be much smaller than 1 for bot
systems shown in Fig. 1.16,17

First we address the situation shown in Fig. 1~a!. The left
(L) and right (R) leads are described as TL liquids who
interaction parameter isKrL(R) for the charge sector an
KsL(R) for the spin sector.18 Due to repulsive electron
electron interactionsKr is less than 1 whileKs is fixed at 1
because of the SU~2! spin symmetry. In the bosonized form
HL is written as

HL5\E
0

`

dk~vcLkak,L
† ak,L1vsLkbk,L

† bk,L!, ~3!

whereak,L (bk,L) is an annihilation operator of bosons d
scribing charge~spin! density fluctuations propagating wit
velocity vc(s)L . The Hamiltonian of the right leadHR can be
written in a similar way. The tunneling Hamiltonian is give
by

HT5tL(
s

@cs
†~A!cs~B!1cs

†~B!cs~A!#

1tR(
s

@cs
†~C!cs~D!1cs

†~D!cs~C!#, ~4!

where cs(X) annihilates an electron with spin u
(s511) or down (s521) at the pointX (X5A, B, C, and
D in Fig. 1!. The electron field operator at the boundary m
be written as19

cs~A!5A 2

pa
expF E

0

`

dk
e2ak/2

A2KrLk
~ak,L2ak,L

† !

1sE
0

`

dk
e2ak/2

A2k
~bk,L2bk,L

† !G , ~5!

wherea is a short-distance cutoff of the order of the reci
rocal of the Fermi wave numberkF . This leads to local
propagators

^cs
†~A, t !cs~A,0!&L5^cs~A, t !cs

†~A,0!&L

5
cA

a H iL

pT
sinhFpT~ t2 id!

\ G J 21/gL

,

~6!

where cA is a dimensionless constant of order 1,L is a
high-energy cutoff or a band width,d is positive infinitesi-
mal, andgL

215 1
2 (1/KrL11). The thermal averages are ca

culated with respect to HL , and cs(A, t)
5exp(iHLt/\)cs(A)exp(2iHLt/\). Similarly, the propagators
at the point D are obtained as

^cs
†~D,t !cs~D,0!&R5^cs~D,t !cs

†~D,0!&R

5
cD

a H iL

pT
sinhFpT~ t2 id!

\ G J 21/gR

,

~7!
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where cD is a dimensionless constant,gR
215 1

2 (1/KrR11)
and the averages are taken with respect toHR . Note thatgL
and gR are smaller than 1 because bothKrL and KrR are
smaller than 1.

Although we have considered the system shown in F
1~a!, both Eqs.~6! and ~7! also hold for the quantum Hal
edge states in Fig. 1~b!. Suppose that the left lead and th
right lead are in the quantum Hall regime with filling facto
nL51/(2l 11) and nR51/(2m11) (l ,m: integers!,
respectively.20 In this case the Hamiltonian for the left edg
states is

HL5
v

4pE dxS dw~x!

dx D 2

, ~8!

where x is the coordinate along the edge and the boso
field w(x) obeys @w(x),w(y)#5 ipsgn(x2y).6 Since the
electron field operator at the point A is given byc(A, t)
}exp@iw(A, t)/AnL#,6,21 we find the correlation function in
the left edge is also given by Eq.~6! with gL5nL . The same
derivation also holds for the right edge:gR5nR . In the fol-
lowing sections, we shall use the parametersgL andgR with-
out distinguishing the two systems. Since the electron spi
not important in the following discussion, we will suppre
the spin indices in the electron field operator.

III. LOW-TEMPERATURE REGIME „G!T<D…

In this section we calculate the linear conductance
T&D within the master-equation approach.12 In this ap-
proach we assume that the energy is conserved in each
neling process, and neglect the contributions from tunne
via virtual intermediate states. We will see later that t
assumption is valid near the conductance peaks in the w
tunneling limit. In the following calculation we include onl
low-energy statesuN,i & with N5N0 or N011 which are
major contributors in the conduction process at tempera
T&D!EC , a situation often satisfied in experiments usi
semiconductor quantum dots.22,23 A schematic energy dia
gram is shown in Fig. 2.

In lowest order inHT the transition rates from the sta
uN0 ,i & to the stateuN011,j & due to the tunneling of an elec
tron into the dot through the left or right tunnel barrier a
calculated from the golden rule:

FIG. 2. Schematic picture of energy diagrams. Horizontal lin
in the leads represent Fermi levels. There are four tunneling
cesses.
.

ic

is

r

un-
g

s
k-

re

PL~N0 ,i ;N011,j !5S tL

\ D 2E
2`

`

dt e2 i« i j t/\

3 z^N011,j uc†~B!uN0 ,i & z2

3^c†~A, t !c~A,0!&L , ~9a!

PR~N0 ,i ;N011,j !5S tR

\ D 2E
2`

`

dt e2 i ~« i j 2eV!t/\

3 z^N011,j uc†~C!uN0 ,i & z2

3^c†~D,t !c~D,0!&R , ~9b!

where« i j 5E(N011,j )2E(N0 ,i ) and eV is the difference
between the chemical potentials of the left and the ri
leads. The transition rates for the inverse processes are s
larly given by

PL~N011,j ;N0 ,i !5S tL

\ D 2E
2`

`

dt ei« i j t/\

3 z^N0 ,i uc~B!uN011,j & z2

3^c~A, t !c†~A,0!&L , ~9c!

PR~N011,j ;N0 ,i !5S tR

\ D 2E
2`

`

dt ei ~« i j 2eV!t/\

3 z^N0 ,i uc~C!uN011,j & z2

3^c~D,t !c†~D,0!&R . ~9d!

Using the propagators~6! and ~7!, we evaluate the integral
~9a!–~9d!,

PL~N0 ,i ;N011,j !5
T

\
e2« i j /2TgL~N0 ,i ;N011,j !,

~10a!

PR~N0 ,i ;N011,j !5
T

\
e2~« i j 2eV!/2TgR~N0 ,i ;N011,j !,

~10b!

PL~N011,j ;N0 ,i !5
T

\
e« i j /2TgL~N0 ,i ;N011,j !,

~10c!

PR~N011,j ;N0 ,i !5
T

\
e~« i j 2eV!/2TgR~N0 ,i ;N011,j !,

~10d!

where gL(N0 ,i ;N011,j ) and gR(N0 ,i ;N011,j ) are ex-
pressed using theG function as

gL~N0 ,i ;N011,j !5
GLi j

2pTS pT

L D 1/gL21

3
uG„1/2gL1 i ~« i j /2pT!…u2

G~1/gL!
,

~11a!

s
o-
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7144 57A. FURUSAKI
gR~N0 ,i ;N011,j !5
GRi j

2pTS pT

L D 1/gR21

3
uG„1/2gR1 i ~« i j 2eV/2pT!…u2

G~1/gR!
.

~11b!

We have defined GLi j 5(2pcAtL
2/aL) z^N0 ,i uc(B)uN0

11,j & z2 and GRi j5(2pcDtR
2/aL) z^N0 ,i uc(C)uN011,j & z2.

The time evolution ofP(N0 ,i ), the probability that the state
uN0 ,i & is occupied, obeys the master equation

]

]t
P~N0 ,i !5(

j
$P~N011,j !@PL~N011,j ;N0 ,i !1PR~N0

11,j ;N0 ,i !#2P~N0 ,i !@PL~N0 ,i ;N011,j !

1PR~N0 ,i ;N011,j !#%. ~12!

In the steady state where (]/]t)P(N0 ,i )50, we need to
solve a set of detailed balance relations

P~N0 ,i !@PL~N0 ,i ;N011,j !1PR~N0 ,i ;N011,j !#

5P~N011,j !@PL~N011,j ;N0 ,i !1PR~N011,j ;N0 ,i !#.

~13!

In equilibrium whereV50, P(N0 ,i ) is given by

Peq~N0 ,i !5
exp@2E~N0 ,i !/T#

(
N0

(
i

exp@2E~N0 ,i !/T#

, ~14!

so that from Eqs.~10a!–~10d! we can easily see that Eq.~13!
is satisfied. Following Ref. 4, we solve Eq.~13! to the first
order in V. We first substituteP(N0 ,i )5Peq(N0 ,i )@1
1(eV/T)p(N0 ,i )] into Eq. ~13! and linearize it with respec
to V. We find

p~N011,j !2p~N0 ,i !

5
gR~N0 ,i ;N011,j !

gL~N0 ,i ;N011,j !1gR~N0 ,i ;N011,j !
. ~15!

The current through the quantum dot is then given, up to fi
order inV, by

I 52e(
i , j

@P~N0 ,i !PL~N0 ,i ;N011,j !

2P~N011,j !PL~N011,j ;N0 ,i !#

5
e2V

\ (
i , j

e2« i j /2TPeq~N0 ,i !gL~N0 ,i ;N011,j !

3@p~N011,j !2p~N0 ,i !# ~16!

from which we get the linear conductance

G5
e2

\ (
i , j

e2« i j /2TPeq~N0 ,i !

3
gL~N0 ,i ;N011,j !gR~N0 ,i ;N011,j !

gL~N0 ,i ;N011,j !1gR~N0 ,i ;N011,j !
, ~17!

which is a generalization of Eq.~3.14! of Ref. 4.
st

For the rest of this section, let us concentrate on the te
perature regimeT!D. In this regime we may assume th
the dot is always in the lowest energy state with a giv
electron number, so that we may seti 5 j 50 in Eq.~17!. We
can thus writePeq(N0,0) as

Peq~N0,0!5
1

11e2«/T
, ~18!

where «5E(N011,0)2E(N0,0). From Eqs.~17! and ~18!
we find the linear conductance24 for T!D

G5
e2

2\cosh~«/2T!

gL~«,T!gR~«,T!

gL~«,T!1gR~«,T!
, ~19!

wheregL,R(«,T)5gL,R(N0,0;N011,0). This is the generali-
zation of Eq.~1! to the case where the leads are TL liquid
When gL(R)

21 is an integer,gL(R)(«,T) has a simple expres
sion. For example,

gL~«,T!5

¦

GL

2Tcosh~«/2T!
, gL51

«GL

4LTsinh~«/2T!
, gL5 1

2

GL~p2T21«2!

16L2Tcosh~«/2T!
, gL5 1

3 ,

~20!

where we have used the simplified notationGL5GL00. Thus,
Eq. ~19! reduces to Eq.~1! whengL5gR51. It is interesting
to observe that whengL5gR51/2 Eq.~19! reduces to

G5
e2

4\L

GLGR

GL1GR

«/T

sinh~«/T!
, ~21!

which has the same« andT dependence as the conductan
of a quantum dot coupled to Fermi-liquid leads (g51) at
D!T!EC obtained by Glazman and Shekhter.12 This coin-
cidence occurred because of the effective halving ofg in this
temperature regime,9 which we will discuss in the next sec
tion. It is also interesting to see that Matveevet al.13 have
derived a formula similar to Eq.~19! for the conductance o
double quantum dots, although the parameterg has com-
pletely different physical meaning in their case. Figure
shows the line shape of the linear conductance Eq.~19! for
the symmetric caseGL5GR and gL5gR51, 1/2, and 1/3.
The conductance is normalized by the peak conductanc
the g51 case,Gmax5e2G/8\T. For fixed G and «, G be-
comes smaller with decreasingg. If scaled properly, how-
ever, the three curves in Fig. 3 can be made very simila
each other. This is because for anyg the width of the peaks
is proportional toT and the conductance decays expone
tially for large u«u. For example, the conductance of theg5
1
2 case~21! is almost proportional to that of theg51 case~1!
with T→1.25T.4 It is the temperature dependence of t
peak conductance,G(«50)}T1/g22, that differs qualita-
tively. We hope this can be tested experimentally in the n
future. The anomalous temperature dependence of the
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57 7145RESONANT TUNNELING THROUGH A QUANTUM DOT . . .
conductance is a signature of the power-law decay of
propagators in the TL liquids, Eqs.~6! and ~7!.

When the left and right leads are different TL liquid
(gLÞgR), the peak conductance is roughly given
$max@T/GL(T/L)121/gL,T/GR(T/L)121/gR#%21. If gL,1/2 and
gR.1/2, and gR(0,T)!gL(0,T)!1 at some temperatur
(T,D), then the conductance may have a nonmonoto
temperature dependence. With lowering temperature,
peak conductance first increases asG}T1/gR22 and then de-
creases asG}T1/gL22. This nonmonotonic temperature d
pendence would be observed, for example, for the seque
tunneling between then51 edge state and then51/3 edge
state. When bothgL andgR are larger~smaller! than 1/2, on
the other hand, the conductance should monotonically
crease~decrease! with decreasing temperature.

Next we examine when the sequential-tunneling appro
mation is valid for temperaturesT!D. We find two condi-
tions to be satisfied. First, the conductance calculated pe
batively in the tunneling matrix elements must be mu
smaller than the conductance quantume2/h. This leads to the
conditiongL(0,T)!1 andgR(0,T)!1, or equivalently,

T!LS L

GL,R
D gL,R /~122gL,R!

~22!

whengL,R,1/2 and

T@LS GL,R

L D gL,R /~2gL,R21!

~23!

whengL,R.1/2. For the Fermi-liquid leads (g51) this con-
dition reduces toT@G. Note that, wheng,1/2, the condi-
tion ~22! is satisfied down to zero temperature, once it
valid at some high temperature. Second, the current car
by virtual tunneling processes must be negligibly small co
pared with the contribution from the sequential tunneli
processes we have calculated. For«@T the second-orde
perturbation inHT yields the operator for the virtual tunne
ing

FIG. 3. The linear conductance due to the sequential tunne
Eq. ~19! for gL5gR5g51, 1/2, and 1/3. The conductance is no
malized by the peak value of theg51 caseGmax5e2G/8\T. We
have setT/L50.25.
e
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Hvt5
tLtR

«
@c†~A!c~B!c†~C!c~D!1H.c.#. ~24!

In lowest order, the probability that an electron virtually tu
nels from the left lead to the right lead is

Pvt~L→R!5S tLtR

\« D 2E
2`

`

dt e2 ieVt/\^c†~A, t !c~A,0!&L

3^c~B,t !c†~C,t !c†~B,0!c~C,0!&D

3^c~D,t !c†~D,0!&R . ~25!

We may neglect the time-dependence of the two-part
propagator in the dot for T!D, and write
^c†(B,t)c(C,t)c(B,0)c†(C,0)&D5c2. Herec2 is a constant
which may depend on the geometry and the mean free
of the dot.25 From Eqs.~6!, ~7!, and~25!, we get

Pvt~L→R!5
c3GLGRL

4p2\«2
e2eV/2TS pT

L D 1/gL11/gR21

3
uG„1/2gL11/2gR1 i ~eV/2pT!…u2

G~1/gL11/gR!
, ~26!

wherec3 is a dimensionless constant. The probability of t
reverse process isPvt(R→L)5eeV/TPvt(L→R). Hence the
linear conductance due to the virtual tunneling is

Gvt5 lim
V→0

2e

V
@Pvt~L→R!2Pvt~R→L !#

5
c3e2GLGR

4p\«2

uG~1/2gL11/2gR!u2

G~1/gL11/gR! S pT

L D 1/gL11/gR22

.

~27!

This contribution has the same temperature depende
T1/gL11/gR22 as that of the tunneling between TL liquid
coupled by a single tunnel barrier.14 In the case of Fermi-
liquid leads (gL5gR51), Gvt is independent of temperature
and the virtual tunneling process contributing toGvt is called
the elastic cotunneling.25 When «&T, the temperatureT
serves as a lower cutoff so that«2 in the denominator of the
right-hand side of Eq.~27! should be replaced with
(u«u12pT)2. Whenu«u!T, the conductanceG, Eq. ~19!, is
much larger thanGvt if Eq. ~22! or ~23! is satisfied. On the
other hand, using the relationuG@1/2g1 i («/2pT)#u2

'2p(«/2pT)1/g21e2«/2T for «@T, we find that the condi-
tion for G@Gvt at «@T is equivalent to

e2«/T

T F 1

GL
S «

L D 121/gL

1
1

GR
S «

L D 121/gRG21

@
GLGR

«2 S pT

L D 1/gL11/gR22

. ~28!

For gL5gR5g this condition is simplified to

g
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7146 57A. FURUSAKI
«&TlnF T

GL,R
S L

T D 1/g21G , ~29!

in which the argument of logarithm is much larger than 1
the conditiongL,R(0,T)!1 is satisfied.

From these considerations we conclude that, when
~22! or ~23! is satisfied, the line shape of conductance pe
is described by Eq.~19! around a peak and by Eq.~27! away
from the peak, see Fig. 4.

Finally we briefly comment on the Kondo effect in th
resonant tunneling through a very small quantum dot or
impurity level. In the Fermi-liquid case (gL5gR51) it has
been shown26,27 using the Anderson model that the condu
tance due to tunneling processes via a virtual intermed
state logarithmically increases with lowering temperat
and eventually approaches 2e2/h in the zero-temperature
limit. In the TL-liquid case (gL ,gR,1) this kind of Kondo
effect does not happen foru«u*T, because Gvt
}T1/gL11/gR22. In other words the virtual tunneling is irrel
evant in the renormalization-group sense, in contrast to
Fermi-liquid case where the virtual tunneling is margina
relevant. Nevertheless there exists an analog of the Ko
effect in the TL liquid case whengL5gR51/2. In this case,
as we saw in Eq.~21!, the peak conductanceG(«50) is
independent of temperature in the lowest-order calculat
In fact, one can show14,28 that on resonance («50) the tun-
neling is marginally relevant so that the peak conducta
increases logarithmically with lowering temperature wh
higher-order terms are included. It is, however, importan
note that our problem is not exactly the same as the~multi-
channel! Kondo effect due to the interference between
tunneling processes through the left and right barriers, un
the situation (D!T!EC) discussed by Matveev.28

IV. HIGH-TEMPERATURE REGIME „D!T!EC…

Let us next consider the high-temperature case wherD
!T!EC . We note that, although we can only expectD
&EC in general, the conditionD!EC can be satisfied in
some relatively large quantum dots. In this temperature

FIG. 4. Line shape of a conductance peak. Both the contribu
from the sequential tunneling Eq.~19! and that of the virtual tun-
neling process Eq.~27! are shown forgL5gR5g51 and 1/3. The
conductance is normalized by the peak value of theg51 case
Gmax5e2G/8\T. We have setT/L50.25,G/T50.2, andc351.
f
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gime we may still assume that the number of electrons in
dot is eitherN0 or N011. However, the electrons in the do
no longer stay in the lowest-energy state but occupy exc
states. This gives time dependence to the propagators in
dot. At T@D we can regard the discrete energy levels
continuum,12 and the propagators in the dot may be writt
as

^c†~B,t !c~B,0!&D5^c~B,t !c†~B,0!&D

5rBH iD

pT
sinhFpT~ t2 id!

\ G J 21/gD

,

~30a!

^c†~C,t !c~C,0!&D5^c~C,t !c†~C,0!&D

5rCH iD

pT
sinhFpT~ t2 id!

\ G J 21/gD

,

~30b!

whererB andrC are electron densities at the point B and
Without a magnetic field@Fig. 1~a!# the exponentgD is 1
~Fermi liquid!, whereasgD equals the filling factornD
51/(2n11) if the dot is in the fractional quantum Hall re
gime @Fig. 1~b!#. Using Eqs.~6!, ~7!, ~30a!, and ~30b!, we
can repeat the calculation in the previous section to de
the linear conductance in the sequential tunneling appr
mation. Since the excited states are already taken into
count in Eqs.~30a! and ~30b!, we can simply use the resu
for the single-level case (T!D), Eq. ~19!, with appropriate
modification. We thus find that the conductance is given

G5
e2

2\cosh~«/2T!

g̃L~«,T! g̃R~«,T!

g̃L~«,T!1 g̃R~«,T!
~31!

with

g̃L~R!~«,T!5
G̃L~R!

2pT S pT

L D 1/gL~R!21S pT

D D 1/gD

3
uG„1/2gL~R!11/2gD1 i ~«/2pT!…u2

G~1/gL~R!11/gD!
.

~32!

HereG̃L52pcAtL
2rB /aL andG̃R52pcDtR

2rC /aL. The pa-

rametersgL and gR are effectively changed intogL→ g̃L

[gLgD /(gL1gD) and gR→ g̃R[gRgD /(gR1gD). Note
that, whengL(R)5gD , the parametergL(R) is effectively
halved:9 g̃L(R)5gL(R)/2. This is the reason why Eq.~19! with
gL5gR51/2 reproduced the high-temperature conducta
of a quantum dot coupled to Fermi-liquid lead
(gL5gR51!.12

The same exponentg̃L(R) also appears in the conductan
due to the virtual tunneling process. This virtual tunneling
known as the inelastic cotunneling in the Fermi-liquid case25

For T@D an electron tunneling through the left tunnel ba
rier may be different from an electron tunneling throu
the right barrier, so that we may approximate the tw

n



lin
k
un
te

n

it

id

kl
t

em

he
e

um

ar
de-

tial-
un-

ght
ans
rent

at
t
m

l-
c-

y
-
tates
the
c-
this
w-

.
ful

57 7147RESONANT TUNNELING THROUGH A QUANTUM DOT . . .
particle propagator aŝ c(B,t)c†(C,t)c†(B,0)c(C,0)&D
'^c(B,t)c†(B,0)&D^c†(C,t)c(C,0)&D . From Eqs.~6!, ~7!,
~25!, ~30a!, and~30b!, we get

Gvt5
e2G̃LG̃R

8p\«

uG~1/2gL11/2gR11/gD!u2

G~1/gL11/gR12/gD!

3S pT

L D 1/gL11/gR22S pT

D D 2/gD

. ~33!

The conductance is proportional toT1/gL11/gR12/gD22. For
the Fermi-liquid case (gL5gR5gD51) this reduces toGvt
}T2, in agreement with the inelastic cotunneling theory.25

V. CONCLUSIONS

In this paper we have studied the resonant tunne
through a quantum dot coupled to TL liquids in the wea
tunneling limit. We have considered both the sequential t
neling process and the tunneling process via a virtual in
mediate state ~cotunneling! to calculate the linear
conductance at temperaturesT!EC . Within this approxima-
tion we have determined the line shape of the conducta
peaks as a function of a gate voltage. AtT&D the peak
height and width are proportional toT1/g22 and T, respec-
tively. This approach is justified in the weak-tunneling lim
where the conductance is much smaller thane2/h. In contrast
to the Fermi-liquid case (g51) where the approximation
breaks down atT,G, our result@Eqs.~19! and~27!# is valid
down to zero temperature when the TL-liquid parametersgL
andgR are smaller than 1/2.

The edge states of the fractional quantum Hall liqu
with filling factor n51/(2m11) correspond to the caseg
5n. Hence the tunneling through a quantum dot wea
coupled to the edge states is described by our theory in
whole temperature range. We hope that the theory can
tested experimentally in the near future. The anomalous t
perature dependence of the peak heightT1/n22 and careful
fitting of the line shape to Eq.~19! will give another firm
n
b
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m

g
-
-
r-

ce

s

y
he
be

-

evidence for the TL-liquid behavior of the edge states. T
anomalous exponent 1/n22 is a direct consequence of th
power-law tunnel density of statesr(E)}E1/n21 in TL leads
and of the discrete energy spectrumr(E)}d(E) in a quan-
tum dot. It is also interesting to note that, when a quant
dot is weakly coupled to then51 edge at one tunneling
contact and to then51/3 edge states at the other, the line
conductance may exhibit a nonmonotonic temperature
pendence.

We note that there are some cases in which the sequen
tunneling picture is not applicable even when the bare t
neling matrix elements are small. For example, ifgL andgR
are larger 1/2, the tunneling rates through the left and ri
tunnel barrier grow with decreasing temperature. This me
that the transport through a quantum dot becomes cohe
and the sequential-tunneling approximation breaks down
low temperature whereg(0,T)*1. This coherent transpor
in the low-temperature limit is described better starting fro
the small-barrier~strong-tunneling! limit. In this limit it was
shown by Kane and Fisher14 that in the symmetric case (gL
5gR.1/2 andtL5tR) the backward scattering is renorma
ized to zero when«50 and that the line shape of condu
tance peaks approaches a universal form14,29–31 below a
crossover temperature at whichg(0,T)'1. This is also the
case for systems withgL5gR51/2, in which the tunneling at
«50 is marginally relevant14 and increases logarithmicall
with decreasing temperature.28 We emphasize again, how
ever, that for the resonant tunneling between the edge s
in the fractional quantum Hall liquids as well as between
1D quantum wires with sufficiently strong repulsive intera
tions, the sequential-tunneling approach developed in
paper gives the correct description even in the lo
temperature limit.
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