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Unrestricted slave-boson mean-field approximation for the two-dimensional Hubbard model
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The Kotliar-Ruckenstein slave-boson scheme is used to allow for an unrestricted variation of the bosonic and
fermionic fields on the saddle-point level. Various inhomogeneous solutions, such as spin polarons and domain
walls, are discussed within the two-dimensional Hubbard model and compared with results of unrestricted
Hartree-FockHF) calculations. We find that the present approach drastically reduces the polarization of these
states and leads to increased delocalized wave functions as compared to the HF model. The interaction between
two spin polarons turns out to be attractive over a wide range of the on-site repulsioraddition we obtain
the crossover from vertical to diagonal domain walls at a higher valudJ ofhan predicted by HF.
[S0163-182698)05807-X

I. INTRODUCTION bilizes the stripe structure along the diagonals, whereas the
low-temperature tetragonal structure in lsa,Nd, »Sr,CuQ,

The unrestricted Hartree-FodkiF) approach has turned favors the pinning of a horizontal stripe phase. Also in the
out to be a powerful tool in the calculation of inhomoge- CuO, planes of Bi2212 compounds the existence of charge
neous states in the Hubbard mod&.Among them mag- stripe order has been demonstrated with extended x-ray-
netic polarond;®* domain wall$>"2° and vortex absorption fine structur€EXAFS) experiments?
solution§ have been extensively studied within the context The stripe instability was predicted theoretically in Ref. 4
of high-T; superconductoréHTSO). within a HF formalism applied to the extended Hubbard

Schrieffer, Wen, and Zhafidiave proposed the so-called model. Also most of the further investigations on the striped
spin-bag mechanism according to which a hole couples tphase$®’?° have been carried out within standard HF
the spin density of the antiferromagneticall§F) ordered theory. However, the solutions obtained with HF are poor
background of the Cu@planes, thus creating a local reduc- variational wave functions since they are much too high in
tion of the AF order parameter. Within this model two holesenergy. Within HF, the only mechanism avoiding double oc-
are attracted by sharing a common bag. In the simplestupancy in order to reduce the Hubbard repulsion is to renor-
model the resulting superconducting order parameter is afalize the spin-dependent on-site energy,=U(n; _,).
the order of the spin-density-wave gap, which is largeTherefore the commensurate antiferromagnetic phase dis-
enough to lead to high-temperature superconductivity. Th@lays as an alternating shift of the spin-up and spin-down
concept of spin polaron formation is also successful in exone-particle levels, respectively, which overestimates by far
plaining the phase diagram in the low and intermediate dopthe polarization of the AF order.
ing regime of the HTSC's. According to the concept of mi- It is well known that a part of the correlations between
croscopic electronic phase separatlidfthe doping-induced electrons of opposite spins can be accounted for by using the
spin polarongor spin clustersform a conducting subsystem Gutzwiller projecto??? For the AF ordered system this ap-
in a background dominated by strong antiferromagnetic corproach leads to wave functions that are very close in energy
relations. Due to the competition between short-range attrade the solution obtained by quantum Monte Carlo
tion and the long-range Coulomb repulsion, these polaronsimulations’®?* In addition, the Gutzwiller wave function
do not form a homogeneous sea in an antiferromagnetiteads to a significantly lower spin polarization in the
background. Instead, the holes are confined to a percolativietermediatel regime as compared to the HF restlThe
network in which dimensiorD is lower than two (:D Gutzwiller approach has also been used to improve the solu-
<2). The resulting inhomogeneity in the electronic sub-tions of inhomogeneous states such as spin polahéhand
system has also important implications on the pairingdomain walls>>?°However, due to computational limitations
mechanisnt? these calculations where done with an ansatz for the charge-

Besides spin polarons, domain-wall solutions presenthand spin-density profile, i.e., the number of variational pa-
also attract a lot of interest in the field of HTSC. Stripe rameters for charge and spin at the different lattice sites has
correlations have been observed in,LgSr,Cu0,,***®in  been strongly reduced.
nickel oxide analogs of the copper oxid®sand in In this paper we overcome the limitations discussed above
La; g ¢Ndy 4Sr,Cu0,.1"181n the two latter systems the den- and present results for unrestricted spin-polaronic and kink-
sity fluctuations are pinned by the underlying lattice structurgype Gutzwiller wave functions. Our approach is based on
giving rise to a static charge- and spin-density wave. Thehe representation of the Hubbard model in terms of fermions
low-temperature orthorhombic phase in the nickel oxides staand slave bosons due to Kotliar and RuckenstR).?” The
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KR formulation is a functional integral method that repro- 1 1

duces the Gutzwiller solution at the saddle-point level. The z ,=—— (efsi o +s _ d)——-r—or
advantage of this method is that it provides a systematic way vele+ Si,—6Si,~o ' vdidi+si ,Si 5
to improve the solution by expanding the fields around the )

saddle point. The KR approach is a good starting point fong has the same matrix elements as those calculated for Eq.
our purposes, since at the saddle-point level we can immedjq) in the original Hilbert space.

ately id(_antify the vgriational parameters with the boson_ic and |n the saddle-point approximation, all bosonic operators
fermionic fields. Since we do not make any assumption oryre treated as numbers. The resulting effective one-particle
the spatial symmetry of these fields we therefore obtain varigamiltonian describes the dynamics of particles with modu-

ous inhomogeneous textures in which stability depends opyted hopping amplitude and can be diagonalized by the
doping and the value of the Hubbard repulsion In the  ransformation

present paper we will concentrate on the stability and shape
of spin-polaronic and domain-wall solutions, respectively. It
turns out that for commensurate filliige., one hole along Ci,o= ; D; H(K)ay, (6)
the wal) the parameter range for the occurrence of stripes is
significantly enlarged in comparison to the HF calculation.where the orthogonality of the transformation requires
Within the investigated range &f (4t<U<10t) we do not
observe a crossover to a polaronic Wigner crystal for com- 2 OF (K)D; ,(q) = diq- 7)
mensurate doping, which means that the interaction between o
the holes keeps attractive up to very large valuebl of ) ) , i i

The rest of the paper is organized as follows: In Sec. [lwe GIVen a system witiN particles we finally obtain for the
give a detailed description of the formalism, in Sec. Il we otal energy
present the results for spin polaronic and domain-wall solu- N,
tions, respectively, and in Sec. IV we summarize our conclu- o= —t Zt .2 D F (KD, ,(K)+ u> d?,
sions. (Yo ' k=1 " ' i

®

Il. MODEL AND FORMALISM which has to be evaluated within the constrai@s (3), and

) ) ) (7). This is achieved by adding these constraints quadrati-
We consider the two-dimensional Hubbard model on acgjly to Eq.(8)

square lattice, with hopping restricted to nearest neighbors

(indicated by the brackei,j))
E01:)\12

2
e+ Si2,0+di2—l> , (93)

H=—t > ¢ ¢ ,+UX nini |, (1) 2
(. | Eco=ho2 (; @t(,(k)@i,g(k)—sﬁg—d?) . (9b)
whereci(,? destroygcreateyan electron with spirr at sitei,
and ni,g=cﬁgciyg. U is the on-site Hubbard repulsion ahd
the transfer parameter. For the calculations in Sec. Il we
take t=1. Following KR we enlarge the origggl I-:iTI?ert
space by introducing four subsidiary boson fi VS _ N 2
s("), andd{" for each sitei. These operators stand for the EC“'_)\“( ; cDivT(k)q)i'T(k)_NT) ’ (99
annihilation(creation) of empty, singly occupied states with
spin up or down, and doubly occupied sites, respectively. 2
Since there are only four possible states per site, these boson Ecs=)\5< kE OF (K)D; | (k)— Nl) : (9¢)
projection operators must satisfy the completeness condition !
We have added the last two conditions that turn out to be
very convenient because they allow one to define the total
ele+X sl 5 ,+dld=1. (20 number of spin-up and -down particlés +N;=Ng. The
7 energy functional E{®; ,(k),e;,s; ,,di}=Et+ EcitEca
+Ec3+Ecst+ Ecs how has to be minimized with respect to
the fermionic and bosonic fields. Since the KR theory does
not preserve the spin-rotation invariance of the original
n; U=sﬁgsiyg+ di*di. (3 Hamiltonian all variational parameters can be taken as real
numbers?® For the minimization procedure we have used a
standard conjugate gradient algorithm. The gradients of the
functional E{®; ,(k),e;,s; ,,d;} can be calculated analyti-
cally and convergence is checked by evaluating the norm of
the gradient. The accuracy of the solution can be controlled
Tt Tt A o Ty, by calculating the value OE-;+Ecs+Ecz+Ecs+Ecs at
H t<%a Z.0C10Ch 020 UEi did @ the end of the iteration procedure. We generally have set the

2
Ecg:)\gkzq (% (I)Ek’,)—(k)q)i,o'(Q)_gkq) ’ (gc)

Furthermore

Then, in the physical subspace defined by EBsand(3)
the Hamiltonian(1) takes the form
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FIG. 1. Charge-(n;)) and spin- @is) density profiles for a spin polaron on &® lattice.(a) HF approximationf{b) SB approximation.
The Hubbard on-site repulsion $= 6t.

values of the Lagrange parametexs---\s to 10°—1C°, A. Spin polarons

which leads to an estimated error-a0.0002. The formation of spin polarons in the 2D Hubbard model
In principle one could start the calculation with a random egits from the competition between kinetic energy gain and
configuration of the fermionic and bosonic fields. Howe"er’magnetic energy loss when doping the system away from
for a doped system there exist different self-consistent solug s filling. Let us first consider the case where a particle
tions that are close in energy and determining the most fayith spin down has been removed from the half-filled, anti-
vorable can be difficult. Therefore, we have generally starteqeromagnetically ordered lattice. If the vacancy is immobile,
from .the unrestricted HF solutions for spin polaronlc.orthe cost in the magnetic energy i§4t%/U in the larged
domain-wall phases. The order of magnitude of the tim§jnit However, this vacancy can gain kinetic energy via vir-
needed to get convergence is half an hour on a SGI Indy,5| hopping processes to the nearest-neighbor sites, thus
workstation. mixing some probability of spin-up occupation to the site
from where the particle has been removed. Therefore, the
resulting spin-density profile therefore has an inverted order
Ill. RESULTS parameter at the site where the charge is located. According

In a first step we consider a single spin polaron and comto Nagaoka's theoreffithe size of this ferromagnetic core is

pare the spin and charge profiles obtained within the HF angXPected to be very large for large valueslof .
unrestricted slave-boso(SB) approximation, respectively. Figure 1 shows the charge- and spin-density profile of
We then extend the calculations to domain-wall-type SO|U_SL_Jch a polaron obtained by unres_trlcted HF calculatl_ons and
tions and study the stability of these textures as a function ofvith the present method, respectively. The calculation was
U. Before this, we evaluate the ground-state energy and ABone on an &8 lattice with on-site repulsiot)=6t. In
polarization for the half-filled system and compare our cal-Poth methods, the doped hole is mainly localized at site
culations with the results of Yokoyama and ShiBsince (4.9, but, whereas the charge at this site is reduce¢hjo

for this case their AF Gutzwiller variational approach =0.53 within the HF approach, the unrestricted SB method
(AFGF) is equivalent to the saddle-point approximation ofdives a value of{n)=0.73 only. Moreover, the AF order
our slave-boson method we find perfect agreement within thearameterA 5= (—1)’x*'vS} at the polaron center is much
numerical error. In contrast to the HF scheme, the AFGHess affected in the SB mean-fieldMF) treatment Ais
leads to a significant reduction of the magnetization in the=—0.07) than in the case of unrestricted HE & —0.21).
intermediated regime. On the other hand, both methodsThis discrepancy can be understood as follows. The HF
converge rapidly to fully polarizeds, components in the theory only renormalizes the spin dependent on-site energies.
largeU limit. One should note that quantum Monte Carlo The removal of a spin-down particle at sitdeads to a re-
simulationg* still lead to much smaller values in the larfe- laxation of the spin-up on-site level at this site. As a conse-
limit. quence the alternating on-site level shift, describing the AF
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FIG. 2. Spin-density order paramet} at the center of the spin o . . . .
polaron(two lower curvesand at maximum distance from the po-  FIG. 3. Binding energy of a pair of polarons with opposite spins

laron (two upper curves Solid line: SB approximation; dashed Placed at neighboring sites on arx8 lattice. Dashed line: HF
line: HF approximation. approximation; Solid line: SB approximation

order, is changed at sitewhere 5 neighboring spin-up states high-T, superconductors. To calculate the binding energy we
have now acquired nearly the same energy. Thus there is@nsider two holes with opposite spins placed at two neigh-
strong hybridization between the spin-up states and one olporing sites and compare the energy of this configuration
tains a large value for the reversed spin order parameter afith the energy of two infinitely separated spin polarons. It
the central site. By contrast the kinetic energy in the spin- should be noted that a positive binding energy means attrac-
down channel between siteind its nearest neighbors is very tion. The results are plotted in Fig. 3. Within the HF ap-
much reduced since the corresponding spin-down on-sitproach we obtain an interaction between the two polarons
level is pushed to a high energy. Note that the HF methodhat is attractive up t& ~6.5, in agreement with the results
always leads to a very large spin polarization, since this isf Ref. 1. The binding energy displays a maximumuat
the only way within this approximation to minimize the on- ~4.5:. However, within the SB approximation the parameter
site repulsion. space of attraction is considerably enlarged. The maximum
Let us now consider the removal of a spin-down particleof the binding energy, which is approximately twice the
at sitei when calculated within the SB aproximation. Then value of the HF calculation, now occurs @t=8.5. Unfor-
the spin-up hopping channel allows for the hybridization oftunately, convergence of our variational approach becomes
neighboring spin up states with sitewhich is comparable to  very slow in the very largés regime. In this limit one has to
the HF approach. However, since we now have an additionajreatly increase the parametarsin Eq. (9) in order to keep
variational parameter per sité.e., the boson fieldd;})  the constraint-induced error within the desired limits. This
double occupancy can be minimized at sitevithout greatly  fact causes the difficulty in exploring the whole parameter
reducing the kinetic energy in the spin-down channel berange of attraction in Fig. 3.
tween sitei and its nearest neighbors. In fact the reason the
Gutzwiller wave function leads to a lower energy than HF
theory is that there one can minimize double occupancy
while keeping the kinetic energy at a higher value as com- For intermediate values of the on-site Hubbard repulsion
pared to the HF approach. In other words, the localizatiory Hartree-Fock theory predicts the existence of domain-wall
behavior is much more pronounced in the HF treatment thagolutions, where the doped charged carriers are localized
within the SB formalism. within a stripe in horizontal or diagonal direction. This stripe
The energy difference of the solutions in Fig. W€ 6t) separates two AF ordered regions with opposite sign in the
is of the same order of magnitude than for the homogeneou&F order parameter. Within the HF approximation it was
AF solutions of Ref. 23. The total energy per site calculatecshowr that there is a transition from horizontal to diagonal
within the HF approximation i€"F=—0.607% and for the  stripes when the ratio between on-site repuldiband trans-
SB method we geESB= —0.645. Figure 2 shows the order fer integralt exceeds the critical value &f/t~3.6. From a
parameted > as a function ofJ at the perturbed sites and far constrained Gutzwiller variation of hyperbolic-type domain
from the spin polaron, evaluated with HF and SB approxi-walls it was concluded in Ref. 26 that this limit probably is
mations, respectively. It turns out that the SB method drasshifted to much lower values.
tically reduces the polarization at the center of the polaron as In the following we will compare energies for diagonal
compared to HF. As can be further seen on Fig. 2, this reand horizontal stripes with the energy of isolated spin po-
duction of polarization is much stronger than in the residualarons using the unrestricted SB scheme. The calculations are
AF ordered plane. Within the SB scheme the spin polarormade for different lattice sizesypically 17x4, 13x6, 9X 8)
acquires a ferromagnetic core for valugs- 5t whereas this by applying appropriate boundary conditions for each do-
limit in HF is already achieved fo ~3.3. main wall type(see Fig. 4. The choice of the supercell is, of
Finally we evaluate the static interaction between twocourse, a delicate issue since periodic boundary conditions in
spin polarons, which is of special importance with regard tgprinciple require an “uneverx uneven” lattice for a diag-
the spin-bag mod@land phase separation scenatiosthe onal wall and an “unevenx even” lattice for a vertical

B. Domain-wall solutions
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FIG. 4. Sketch showing the boundary conditions in yheirec- g _105
tion, which have been applied to describe vertigland diagonal -1.1
(b) domain walls, respectively. In the direction we have taken -1.15
periodic conditions. The line crossings correspond to the lattice 1.9
sites and the dashed lattices mark the chosen periodicity iy the
direction. (a)
stripe. To avoid the comparison between different lattice
sizes for different domain wall types we have chosen the
“shifted boundaries” shown in Fig. @). This means that .
along they direction the supercells are shifted by the extent
of the diagonal domain wall ix direction. Consider, for g
example, a diagonal domain wall on aX8 lattice. Then %
the site (N,,1) is connected with siteN,+ 6,6) for N,<8 g
and with site N,+6-13,6 for N,=8. Calculating the en- N
ergy per site for the half-filled AF ordered system, we find
that the two kinds of boundary conditions in Fig. 4 differ in

the result by 0.1% fotJ~3t. This difference rapidly van-
ishes with increasingy.
In Fig. 5 we show the charge- and spin-density profile of
FIG. 6. Binding energy per hole for vertical stripgsall lines),
and diagonal stripe@ashed lingswith one hole per site along the
wall, vertical half-filled walls(dotted line$ and isolated spin po-
larons (dashed-dotted lingsThe binding energy is defined as the
difference in energy between a given texture and the homogeneous
AF ordered lattice with the same doping. The domain wall solutions
have been calculated on &® lattice, polarons on a’88 lattice.
(a) HF approach{b) SB approximation.

(n:)

a vertical domain wall calculated with unrestricted HF and

0.75 1 SB approximations, respectively. The doping corresponds to

07 L . . L . . . . one hole per site in the domain wall. As for the spin polarons
2 4 6 8§ 10 12 14 16 studied in the previous section the SB result displays a

(a) L, charge- and spin profile that is considerably enlarged com-

pared to the HF solution. This is in agreement with the cal-

04 T T ! ' T ' J culations of Ref. 26. The dip in the HF charge profile is
0.3 nearly twice the value of the SB approximation.
02 Figure 6 shows the energy per hole as a functiok) dér
o1 various textures such as domain walls and spin polarons. We
' also have investigated the half-filled wall with the on-wall
o 0 quadrupling of the period, which has been intensively dis-
0.1 cussed by Zaanen and OliesRef. 29. The energy has been
02 calculated in a standard w&yby comparing the energy of
' each texture with the energy of the homogeneous AF ordered
0.3 state with the same number of hol@ompared to half fill-
0.4 L L L L L L L ing). In the case of the diagonal wall we additionally have
b 2 4 6 § 1012116 chosen the same shift of the boundaries for the reference AF
(b) L. lattice.
FIG. 5. Charge{a) and spinb) density profiles in the direc- Within the HF approximation we obtain a crossover from

tion for a vertical domain wall on a 274 lattice. The number of Vertical to diagonal domain walls fdd~3.8 and a cross-
holes is 4 since the best energy is obtained when there is one hoRver to isolated spin polarons @t=8t. The energy for half-
per site in the wall. Solid lines: SB approximation; dashed lines: HFfilled walls is always higher than for isolated polarons. These
approximation; short dashed: coéfor charge and tanh(for spin) results are in complete agreement with earlier HF studies of
functional fit to the SB solution. the two-dimensional Hubbard mod&? However, the range
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of stability for the vertical stripe solution is considerably polarization of these inhomogeneities in the intermediate-
enlarged in the unrestricted SB approximation where we obregime. The most relevant feature of the SB approximation,
tain the crossover at)~5.7. This result is supported by however, is the considerably enlarged range of attraction be-
Lancos diagonalization studies of thd modef® and Monte  tween spin polarons in comparison with the HF method. This
Carlo methods of the one-band Hubbard modef® These result has also a strong impact on the spin-bag model of
works report a shift of the static spin structure factor peak irhigh-T. superconductivity, since HF theory has restricted the
the vertical direction when the charge density is reducedalidity of this model to small values of the Hubbard repul-
away from half filling in agreement with our findings. Also sionU.

recent studies of the 2B-J model within a density-matrix Regarding the domain-wall phases, we find that the cross-
renormalization-group approathare in agreement with a over from vertical to horizontal stripes is shifted to higher
vertical striped phase. In addition we do not observe a crossralues of the on-site repulsiob than predicted by HF
over to a spin-polaronic Wigner crystal for the consideredtheory. Moreover we do not observe a crossover to isolated
range ofU (U=<10Qt). Instead the energy of half-filled walls polarons forU=<10t. This result supports the description of
turns out to be lower than the energy of spin polarons. Irdomain-wall structures in the LAiO, compound® where it
fact, since in the SB approach the range of attraction betweeis generally argued that the occurrence of diagonal walls is a
the holes is considerably enhanced, these textures are enegsult of mean-field theory. Within the present approach the
getically favored, which has the holes placed nearby eachange of stability of diagonal walls is considerably enhanced
other. However, for very large values Of we again expect in comparison to the HF approximation, where b 8t the

a decay of the stripe into isolated polarons. walls decay into isolated polarons.

IV. CONCLUSIONS
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