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Unrestricted slave-boson mean-field approximation for the two-dimensional Hubbard model
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~Received 18 August 1997!

The Kotliar-Ruckenstein slave-boson scheme is used to allow for an unrestricted variation of the bosonic and
fermionic fields on the saddle-point level. Various inhomogeneous solutions, such as spin polarons and domain
walls, are discussed within the two-dimensional Hubbard model and compared with results of unrestricted
Hartree-Fock~HF! calculations. We find that the present approach drastically reduces the polarization of these
states and leads to increased delocalized wave functions as compared to the HF model. The interaction between
two spin polarons turns out to be attractive over a wide range of the on-site repulsionU. In addition we obtain
the crossover from vertical to diagonal domain walls at a higher value ofU than predicted by HF.
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I. INTRODUCTION

The unrestricted Hartree-Fock~HF! approach has turne
out to be a powerful tool in the calculation of inhomog
neous states in the Hubbard model.1–6 Among them mag-
netic polarons,1,8–11 domain walls,2–5,7,29 and vortex
solutions6 have been extensively studied within the conte
of high-Tc superconductors~HTSC!.

Schrieffer, Wen, and Zhang8 have proposed the so-calle
spin-bag mechanism according to which a hole couples
the spin density of the antiferromagnetically~AF! ordered
background of the CuO2 planes, thus creating a local redu
tion of the AF order parameter. Within this model two hol
are attracted by sharing a common bag. In the simp
model the resulting superconducting order parameter is
the order of the spin-density-wave gap, which is lar
enough to lead to high-temperature superconductivity. T
concept of spin polaron formation is also successful in
plaining the phase diagram in the low and intermediate d
ing regime of the HTSC’s. According to the concept of m
croscopic electronic phase separation,9,10 the doping-induced
spin polarons~or spin clusters! form a conducting subsystem
in a background dominated by strong antiferromagnetic c
relations. Due to the competition between short-range att
tion and the long-range Coulomb repulsion, these polar
do not form a homogeneous sea in an antiferromagn
background. Instead, the holes are confined to a percola
network in which dimensionD is lower than two (1<D
<2). The resulting inhomogeneity in the electronic su
system has also important implications on the pair
mechanism.12

Besides spin polarons, domain-wall solutions presen
also attract a lot of interest in the field of HTSC. Strip
correlations have been observed in La22xSrxCuO4,13–15 in
nickel oxide analogs of the copper oxides16 and in
La1.62xNd0.4SrxCuO4.17,18 In the two latter systems the den
sity fluctuations are pinned by the underlying lattice struct
giving rise to a static charge- and spin-density wave. T
low-temperature orthorhombic phase in the nickel oxides
570163-1829/98/57~12!/6937~6!/$15.00
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bilizes the stripe structure along the diagonals, whereas
low-temperature tetragonal structure in La1.62xNd0.4SrxCuO4

favors the pinning of a horizontal stripe phase. Also in t
CuO2 planes of Bi2212 compounds the existence of cha
stripe order has been demonstrated with extended x-
absorption fine structure~EXAFS! experiments.19

The stripe instability was predicted theoretically in Ref.
within a HF formalism applied to the extended Hubba
model. Also most of the further investigations on the strip
phases2,5,7,29 have been carried out within standard H
theory. However, the solutions obtained with HF are po
variational wave functions since they are much too high
energy. Within HF, the only mechanism avoiding double o
cupancy in order to reduce the Hubbard repulsion is to ren
malize the spin-dependent on-site energye i ,s5U^ni ,2s&.
Therefore the commensurate antiferromagnetic phase
plays as an alternating shift of the spin-up and spin-do
one-particle levels, respectively, which overestimates by
the polarization of the AF order.

It is well known that a part of the correlations betwe
electrons of opposite spins can be accounted for by using
Gutzwiller projector.21,22 For the AF ordered system this ap
proach leads to wave functions that are very close in ene
to the solution obtained by quantum Monte Car
simulations.23,24 In addition, the Gutzwiller wave function
leads to a significantly lower spin polarization in th
intermediate-U regime as compared to the HF result.23 The
Gutzwiller approach has also been used to improve the s
tions of inhomogeneous states such as spin polarons11,25 and
domain walls.25,26However, due to computational limitation
these calculations where done with an ansatz for the cha
and spin-density profile, i.e., the number of variational p
rameters for charge and spin at the different lattice sites
been strongly reduced.

In this paper we overcome the limitations discussed ab
and present results for unrestricted spin-polaronic and k
type Gutzwiller wave functions. Our approach is based
the representation of the Hubbard model in terms of fermi
and slave bosons due to Kotliar and Ruckenstein~KR!.27 The
6937 © 1998 The American Physical Society
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KR formulation is a functional integral method that repr
duces the Gutzwiller solution at the saddle-point level. T
advantage of this method is that it provides a systematic
to improve the solution by expanding the fields around
saddle point. The KR approach is a good starting point
our purposes, since at the saddle-point level we can imm
ately identify the variational parameters with the bosonic a
fermionic fields. Since we do not make any assumption
the spatial symmetry of these fields we therefore obtain v
ous inhomogeneous textures in which stability depends
doping and the value of the Hubbard repulsionU. In the
present paper we will concentrate on the stability and sh
of spin-polaronic and domain-wall solutions, respectively
turns out that for commensurate filling~i.e., one hole along
the wall! the parameter range for the occurrence of stripe
significantly enlarged in comparison to the HF calculatio
Within the investigated range ofU (4t<U<10t) we do not
observe a crossover to a polaronic Wigner crystal for co
mensurate doping, which means that the interaction betw
the holes keeps attractive up to very large values ofU.

The rest of the paper is organized as follows: In Sec. II
give a detailed description of the formalism, in Sec. III w
present the results for spin polaronic and domain-wall so
tions, respectively, and in Sec. IV we summarize our conc
sions.

II. MODEL AND FORMALISM

We consider the two-dimensional Hubbard model on
square lattice, with hopping restricted to nearest neighb
~indicated by the bracket̂i , j &)

H52t (
^ i j &,s

ci ,s
† cj ,s1U(

i
ni ,↑ni ,↓ , ~1!

whereci ,s
(†) destroys~creates! an electron with spins at sitei ,

andni ,s5ci ,s
† ci ,s . U is the on-site Hubbard repulsion andt

the transfer parameter. For the calculations in Sec. III
take t51. Following KR we enlarge the original Hilber
space by introducing four subsidiary boson fieldsei

(†) , si ,↑
(†) ,

si ,↓
(†) , anddi

(†) for each sitei . These operators stand for th
annihilation~creation! of empty, singly occupied states wit
spin up or down, and doubly occupied sites, respectiv
Since there are only four possible states per site, these b
projection operators must satisfy the completeness cond

ei
†ei1(

s
si ,s

† si ,s1di
†di51. ~2!

Furthermore

ni ,s5si ,s
† si ,s1di

†di . ~3!

Then, in the physical subspace defined by Eqs.~2! and~3!
the Hamiltonian~1! takes the form

H̃52t (
^ i j &,s

zi ,s
† ci ,s

† cj ,szj ,s1U(
i

di
†di , ~4!
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zi ,s5
1

Aei
†ei1si ,2s

† si ,2s

~ei
†si ,s1si ,2s

† di !
1

Adi
†di1si ,s

† si ,s
~5!

and has the same matrix elements as those calculated fo
~1! in the original Hilbert space.

In the saddle-point approximation, all bosonic operat
are treated as numbers. The resulting effective one-par
Hamiltonian describes the dynamics of particles with mod
lated hopping amplitude and can be diagonalized by
transformation

ci ,s5(
k

F i ,s~k!ak , ~6!

where the orthogonality of the transformation requires

(
i ,s

F i ,s* ~k!F i ,s~q!5dkq . ~7!

Given a system withNel particles we finally obtain for the
total energy

Etot52t (
^ i j &,s

zi ,s* zj ,s(
k51

Nel

F i ,s* ~k!F j ,s~k!1U(
i

di
2 ,

~8!

which has to be evaluated within the constraints~2!, ~3!, and
~7!. This is achieved by adding these constraints quadr
cally to Eq.~8!

EC15l1(
i

S ei
21(

s
si ,s

2 1di
221D 2

, ~9a!

EC25l2(
i ,s

S (
k

F i ,s* ~k!F i ,s~k!2si ,s
2 2di

2D 2

, ~9b!

EC35l3(
k,q

S (
i ,s

F i ,s* ~k!F i ,s~q!2dkqD 2

, ~9c!

EC45l4S (
k,i

F i ,↑* ~k!F i ,↑~k!2N↑D 2

, ~9d!

EC55l5S (
k,i

F i ,↓* ~k!F i ,↓~k!2N↓D 2

. ~9e!

We have added the last two conditions that turn out to
very convenient because they allow one to define the t
number of spin-up and -down particlesN↑1N↓5Nel . The
energy functionalE$F i ,s(k),ei ,si ,s ,di%5Etot1EC11EC2
1EC31EC41EC5 now has to be minimized with respect t
the fermionic and bosonic fields. Since the KR theory do
not preserve the spin-rotation invariance of the origin
Hamiltonian all variational parameters can be taken as
numbers.28 For the minimization procedure we have used
standard conjugate gradient algorithm. The gradients of
functional E$F i ,s(k),ei ,si ,s ,di% can be calculated analyti
cally and convergence is checked by evaluating the norm
the gradient. The accuracy of the solution can be contro
by calculating the value ofEC11EC21EC31EC41EC5 at
the end of the iteration procedure. We generally have set
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FIG. 1. Charge- (̂ni&) and spin- (D i
S) density profiles for a spin polaron on a 838 lattice.~a! HF approximation;~b! SB approximation.

The Hubbard on-site repulsion isU56t.
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values of the Lagrange parametersl1•••l5 to 1042105,
which leads to an estimated error at'0.0002.

In principle one could start the calculation with a rando
configuration of the fermionic and bosonic fields. Howev
for a doped system there exist different self-consistent s
tions that are close in energy and determining the most
vorable can be difficult. Therefore, we have generally star
from the unrestricted HF solutions for spin polaronic
domain-wall phases. The order of magnitude of the ti
needed to get convergence is half an hour on a SGI I
workstation.

III. RESULTS

In a first step we consider a single spin polaron and co
pare the spin and charge profiles obtained within the HF
unrestricted slave-boson~SB! approximation, respectively
We then extend the calculations to domain-wall-type so
tions and study the stability of these textures as a functio
U. Before this, we evaluate the ground-state energy and
polarization for the half-filled system and compare our c
culations with the results of Yokoyama and Shiba.23 Since
for this case their AF Gutzwiller variational approac
~AFGF! is equivalent to the saddle-point approximation
our slave-boson method we find perfect agreement within
numerical error. In contrast to the HF scheme, the AF
leads to a significant reduction of the magnetization in
intermediate-U regime. On the other hand, both metho
converge rapidly to fully polarizedSz components in the
large-U limit. One should note that quantum Monte Car
simulations24 still lead to much smaller values in the large-U
limit.
,
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A. Spin polarons

The formation of spin polarons in the 2D Hubbard mod
results from the competition between kinetic energy gain a
magnetic energy loss when doping the system away fr
half filling. Let us first consider the case where a partic
with spin down has been removed from the half-filled, an
ferromagnetically ordered lattice. If the vacancy is immobi
the cost in the magnetic energy is 4J;t2/U in the large-U
limit. However, this vacancy can gain kinetic energy via v
tual hopping processes to the nearest-neighbor sites,
mixing some probability of spin-up occupation to the s
from where the particle has been removed. Therefore,
resulting spin-density profile therefore has an inverted or
parameter at the site where the charge is located. Accor
to Nagaoka’s theorem20 the size of this ferromagnetic core
expected to be very large for large values ofU.

Figure 1 shows the charge- and spin-density profile
such a polaron obtained by unrestricted HF calculations
with the present method, respectively. The calculation w
done on an 838 lattice with on-site repulsionU56t. In
both methods, the doped hole is mainly localized at s
~4,5!, but, whereas the charge at this site is reduced to^n&
50.53 within the HF approach, the unrestricted SB meth
gives a value of̂ n&50.73 only. Moreover, the AF orde
parameterD i

S5(21)i x1 i ySi
z at the polaron center is muc

less affected in the SB mean-field~MF! treatment (D i
S

520.07) than in the case of unrestricted HF (D i
S520.21).

This discrepancy can be understood as follows. The
theory only renormalizes the spin dependent on-site energ
The removal of a spin-down particle at sitei leads to a re-
laxation of the spin-up on-site level at this site. As a con
quence the alternating on-site level shift, describing the
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order, is changed at sitei where 5 neighboring spin-up state
have now acquired nearly the same energy. Thus there
strong hybridization between the spin-up states and one
tains a large value for the reversed spin order paramete
the central sitei . By contrast the kinetic energy in the spin
down channel between sitei and its nearest neighbors is ve
much reduced since the corresponding spin-down on-
level is pushed to a high energy. Note that the HF meth
always leads to a very large spin polarization, since this
the only way within this approximation to minimize the o
site repulsion.

Let us now consider the removal of a spin-down parti
at site i when calculated within the SB aproximation. The
the spin-up hopping channel allows for the hybridization
neighboring spin up states with sitei , which is comparable to
the HF approach. However, since we now have an additio
variational parameter per site~i.e., the boson field$di%)
double occupancy can be minimized at sitei , without greatly
reducing the kinetic energy in the spin-down channel
tween sitei and its nearest neighbors. In fact the reason
Gutzwiller wave function leads to a lower energy than H
theory is that there one can minimize double occupa
while keeping the kinetic energy at a higher value as co
pared to the HF approach. In other words, the localizat
behavior is much more pronounced in the HF treatment t
within the SB formalism.

The energy difference of the solutions in Fig. 1 (U56t)
is of the same order of magnitude than for the homogene
AF solutions of Ref. 23. The total energy per site calcula
within the HF approximation isEHF520.607t and for the
SB method we getESB520.645t. Figure 2 shows the orde
parameterD i

S as a function ofU at the perturbed sites and fa
from the spin polaron, evaluated with HF and SB appro
mations, respectively. It turns out that the SB method dr
tically reduces the polarization at the center of the polaron
compared to HF. As can be further seen on Fig. 2, this
duction of polarization is much stronger than in the resid
AF ordered plane. Within the SB scheme the spin pola
acquires a ferromagnetic core for valuesU.5t whereas this
limit in HF is already achieved forU'3.3t.

Finally we evaluate the static interaction between t
spin polarons, which is of special importance with regard
the spin-bag model8 and phase separation scenarios9 of the

FIG. 2. Spin-density order parameterD i
S at the center of the spin

polaron~two lower curves! and at maximum distance from the po
laron ~two upper curves!. Solid line: SB approximation; dashe
line: HF approximation.
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high-Tc superconductors. To calculate the binding energy
consider two holes with opposite spins placed at two nei
boring sites and compare the energy of this configurat
with the energy of two infinitely separated spin polarons
should be noted that a positive binding energy means att
tion. The results are plotted in Fig. 3. Within the HF a
proach we obtain an interaction between the two polar
that is attractive up toU'6.5t, in agreement with the result
of Ref. 1. The binding energy displays a maximum atU
'4.5t. However, within the SB approximation the parame
space of attraction is considerably enlarged. The maxim
of the binding energy, which is approximately twice th
value of the HF calculation, now occurs atU'8.5t. Unfor-
tunately, convergence of our variational approach becom
very slow in the very large-U regime. In this limit one has to
greatly increase the parametersl i in Eq. ~9! in order to keep
the constraint-induced error within the desired limits. Th
fact causes the difficulty in exploring the whole parame
range of attraction in Fig. 3.

B. Domain-wall solutions

For intermediate values of the on-site Hubbard repuls
U Hartree-Fock theory predicts the existence of domain-w
solutions, where the doped charged carriers are local
within a stripe in horizontal or diagonal direction. This strip
separates two AF ordered regions with opposite sign in
AF order parameter. Within the HF approximation it w
shown5 that there is a transition from horizontal to diagon
stripes when the ratio between on-site repulsionU and trans-
fer integralt exceeds the critical value ofU/t'3.6. From a
constrained Gutzwiller variation of hyperbolic-type doma
walls it was concluded in Ref. 26 that this limit probably
shifted to much lower values.

In the following we will compare energies for diagon
and horizontal stripes with the energy of isolated spin p
larons using the unrestricted SB scheme. The calculations
made for different lattice sizes~typically 1734, 1336, 93 8!
by applying appropriate boundary conditions for each d
main wall type~see Fig. 4!. The choice of the supercell is, o
course, a delicate issue since periodic boundary condition
principle require an ‘‘uneven3 uneven’’ lattice for a diag-
onal wall and an ‘‘uneven3 even’’ lattice for a vertical

FIG. 3. Binding energy of a pair of polarons with opposite sp
placed at neighboring sites on an 838 lattice. Dashed line: HF
approximation; Solid line: SB approximation
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57 6941UNRESTRICTED SLAVE-BOSON MEAN-FIELD . . .
stripe. To avoid the comparison between different latt
sizes for different domain wall types we have chosen
‘‘shifted boundaries’’ shown in Fig. 4~b!. This means that
along they direction the supercells are shifted by the exte
of the diagonal domain wall inx direction. Consider, for
example, a diagonal domain wall on a 1336 lattice. Then
the site (Nx,1) is connected with site (Nx16,6) for Nx,8
and with site (Nx16–13,6! for Nx>8. Calculating the en-
ergy per site for the half-filled AF ordered system, we fi
that the two kinds of boundary conditions in Fig. 4 differ
the result by 0.1% forU'3t. This difference rapidly van-
ishes with increasingU.

In Fig. 5 we show the charge- and spin-density profile

FIG. 4. Sketch showing the boundary conditions in they direc-
tion, which have been applied to describe vertical~a! and diagonal
~b! domain walls, respectively. In thex direction we have taken
periodic conditions. The line crossings correspond to the lat
sites and the dashed lattices mark the chosen periodicity in thy
direction.

FIG. 5. Charge-~a! and spin-~b! density profiles in thex direc-
tion for a vertical domain wall on a 1734 lattice. The number of
holes is 4 since the best energy is obtained when there is one
per site in the wall. Solid lines: SB approximation; dashed lines:
approximation; short dashed: cosh~for charge! and tanh~for spin!
functional fit to the SB solution.
e
e

t

f

a vertical domain wall calculated with unrestricted HF a
SB approximations, respectively. The doping correspond
one hole per site in the domain wall. As for the spin polaro
studied in the previous section the SB result displays
charge- and spin profile that is considerably enlarged co
pared to the HF solution. This is in agreement with the c
culations of Ref. 26. The dip in the HF charge profile
nearly twice the value of the SB approximation.

Figure 6 shows the energy per hole as a function ofU for
various textures such as domain walls and spin polarons.
also have investigated the half-filled wall with the on-wa
quadrupling of the period, which has been intensively d
cussed by Zaanen and Oles´ in Ref. 29. The energy has bee
calculated in a standard way29 by comparing the energy o
each texture with the energy of the homogeneous AF orde
state with the same number of holes~compared to half fill-
ing!. In the case of the diagonal wall we additionally ha
chosen the same shift of the boundaries for the reference
lattice.

Within the HF approximation we obtain a crossover fro
vertical to diagonal domain walls forU'3.8t and a cross-
over to isolated spin polarons atU'8t. The energy for half-
filled walls is always higher than for isolated polarons. The
results are in complete agreement with earlier HF studie
the two-dimensional Hubbard model.5,29 However, the range

e

ole
F

FIG. 6. Binding energy per hole for vertical stripes~full lines!,
and diagonal stripes~dashed lines! with one hole per site along the
wall, vertical half-filled walls~dotted lines! and isolated spin po-
larons ~dashed-dotted lines!. The binding energy is defined as th
difference in energy between a given texture and the homogen
AF ordered lattice with the same doping. The domain wall solutio
have been calculated on a 938 lattice, polarons on a 838 lattice.
~a! HF approach;~b! SB approximation.
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of stability for the vertical stripe solution is considerab
enlarged in the unrestricted SB approximation where we
tain the crossover atU'5.7t. This result is supported by
Lancos diagonalization studies of thet-J model30 and Monte
Carlo methods of the one-band Hubbard model.31–33 These
works report a shift of the static spin structure factor peak
the vertical direction when the charge density is redu
away from half filling in agreement with our findings. Als
recent studies of the 2Dt-J model within a density-matrix
renormalization-group approach34 are in agreement with a
vertical striped phase. In addition we do not observe a cro
over to a spin-polaronic Wigner crystal for the consider
range ofU (U<10t). Instead the energy of half-filled wall
turns out to be lower than the energy of spin polarons.
fact, since in the SB approach the range of attraction betw
the holes is considerably enhanced, these textures are
getically favored, which has the holes placed nearby e
other. However, for very large values ofU we again expect
a decay of the stripe into isolated polarons.

IV. CONCLUSIONS

We have shown that the unrestricted SB saddle-point
proximation is a simple and powerful tool to improve inh
mogeneous solutions obtained by the HF method. It turns
that this approach leads to a strong reduction of the s
R.
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polarization of these inhomogeneities in the intermediateU
regime. The most relevant feature of the SB approximati
however, is the considerably enlarged range of attraction
tween spin polarons in comparison with the HF method. T
result has also a strong impact on the spin-bag mode
high-Tc superconductivity, since HF theory has restricted
validity of this model to small values of the Hubbard repu
sion U.

Regarding the domain-wall phases, we find that the cro
over from vertical to horizontal stripes is shifted to high
values of the on-site repulsionU than predicted by HF
theory. Moreover we do not observe a crossover to isola
polarons forU<10t. This result supports the description o
domain-wall structures in the La2NiO4 compounds35 where it
is generally argued that the occurrence of diagonal walls
result of mean-field theory. Within the present approach
range of stability of diagonal walls is considerably enhanc
in comparison to the HF approximation, where forU'8t the
walls decay into isolated polarons.
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