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Spin polarons in the t-J model in an unconstrained representation

A. V. Dotsenko
School of Physics, The University of New South Wales, Sydney 2052, Australia*

~Received 26 December 1996; revised manuscript received 23 October 1997!

This report discusses the slave-fermion representations of thet-J model and describes another representation
in which fermions and bosons are completely commuting. For a study of the system in the new representation
at half-filling, the interaction of fermions with two magnons is treated in mean-field theory. The obtained
effective model, in comparison to that of the usual slave-fermion representation, has an additional bare hole
dispersion due to the hole moving by using quantum spin fluctuations present in the undoped antiferromagnetic
ground state. The single-hole Green’s function at half-filling is then found numerically using the self-consistent
Born approximation. For all studied quantities good or excellent agreement with numerical data is observed in
the entire parameter range, noticeably better than in the studies with the slave-fermion representation. Using
the same effective model, the two-hole problem is also studied by solving numerically the Bethe-Salpeter
equation with noncrossing diagrams.@S0163-1829~98!07312-3#
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I. INTRODUCTION

Much, if not most, of the progress in describing theore
cally the complex physics of high-temperature supercond
ors and strongly correlated electrons has been achieved u
numerical methods,1 while analytical methods have bee
rather approximate and not often checked against nume
data. A simple and transparent analytical or semianalyt
model can, however, be very valuable by providing physi
insights forunderstandingin addition to describing the sys
tem and by being easily extendible to other problems. C
rently this is the role of the so-called self-consistent Bo
approximation,2–5 which provides a fairly good descriptio
of the undopedt-J model. More accurately, in this metho
(0) the t-J model is expressed in terms of holons a
bosons;6 then~i! the boson part is solved to leading order
1/S ~spin-wave theory!; and finally~ii ! the interacting holon-
boson system is solved numerically using leading-order
grams.@For points~i! and ~ii !, higher-order terms/diagram
have been analyzed by Liu and Manousakis.5#

In this publication I report a study of thet-J model in a
different scheme. The Hilbert space of holons and boson
expanded, so that they are no longer constrained by e
other. Another important difference is that at half-filling th
single-fermion Green’s function in the expanded model c
responds directly to the single-hole Green’s function in
original t-J model.

Numerical results are then obtained for thet-J model on
the square lattice at half-filling. For the first and simple
stage of analysis in the new representation, it is suggeste
use mean-field treatment for zero- and two-magnon term
the Hamiltonian. The effective model obtained this wa
consisting of interacting holes and spin waves, is the sam
in the usual constrained representation with the constr
ignored except for the presence of a bare hole dispersion
to the hole moving by eating away spin fluctuations pres
in the ground state. Solving the equations of motion for o
hole in the self-consistent Born approximation, I find a fai
good agreement with numerical results for all analyzed qu
tities, such as the bandwidth and the band structure, and
570163-1829/98/57~12!/6917~8!/$15.00
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all parameter regimes. The two-hole problem is also stud
using the leading-order, noncrossing diagrams, demons
ing again viability of the method albeit much less convin
ingly.

In Sec. II, I describe the discussed formulations of thet-J
model. Then, in Sec. III the obtained results for single- a
two-hole problems are compared against the available
merical data and against the results obtained in the u
slave-fermion representation. The report ends with a su
mary ~Sec. IV!.

II. ANALYTICAL TRANSFORMATIONS
OF THE t-J MODEL

The familiar t-J Hamiltonian is

HtJ52t (
^ i j &s

~cis
† cj s1H.c.!1J(̂

i j &
~Si•Sj2

1
4 ninj !, ~1!

where the notation is standard with the addition that, b
here and throughout the paper,n, i , and j refer to any, spin-
up, and spin-down sublattice sites, respectively (n as a sub-
index is not to be confused with the electron number ope
tors nn). The square lattice is implied, although much of t
discussion is independent of this. Recently, an extrat8 term
describing next-nearest-neighbor hopping is usually adde
the model.7 This study, however, being mainly for demon
strative and comparative purposes, is restricted to the o
nal t-J model @Eq. ~1!#.

The Hamiltonian@Eq. ~1!# is written without the com-
monly included electron projection operators on the und
standing that, instead, the Hilbert space is restricted to
double electron occupancy~see Fig. 1!. It also goes without
saying that the ‘‘electrons’’ of thet-J model are in fact
Zhang-Rice singlets.8

FIG. 1. The Hilbert space in thet-J model. The arrows repre
sent electrons.
6917 © 1998 The American Physical Society
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6918 57A. V. DOTSENKO
A. The holon-or-spin representation of thet-J model

To disentangle the Hamiltonian, the main degrees of fr
dom must be identified and suitable operators introduc
Intuitively, spin fluctuations and mobile holes are the ma
underlying objects. It was, to the best of the author’s kno
edge, Schmitt-Rink, Varma, and Ruckenstein6 who first pro-
posed to represent the system as a combination of a spin
fermion ~holon! field and a boson field. In this slave-fermio
representation, the electron operators are written ascns

5 f n
†bns and the Hilbert space of holonsf n and bosonsbns is

constrained byf n
†f n1bn↑

† bn↑1bn↓
† bn↓51.

We can think of bosonsbns as the Schwinger bosons o
some spin fieldsn , which in this case corresponds directly
the physical spin,Sn5sn . This spin fieldsn can also be of
course represented by another type of bosons, such a
bosonsan of the Holstein-Primakoff or Dyson-Maleev tran
formation. The entire system is then represented in term
operatorsf n andan ~in the normally implied case of antifer
romagnetic order the bosonic operatorsan are different on
the two sublattices!. The Hilbert space is constrained in th
case byf n

†f n1an
†an,2.

Finally, the spin fieldsn can be present directly rather tha
via bosons. This corresponds to what was done in Ref. 9
is described here in some detail since it is closer to the mo
presented later. Thet-J model Hilbert space Fig. 1 is
mapped onto the one in Fig. 2. At any siten, there can be a
holon f n and there isalwaysa spinsn . A ‘‘normal,’’ that is,
containing one electron, site is thought of as having no
lon, while the spin field on such a site is identified with t
physical electron spin,sn5Sn for f n

†f n50. An empty site is
considered to have one holon. The spinsn on such a site is a
dummy, or a ghost—it is unphysical. We choose to mak
up if the site is on the spin-up sublattice anddownotherwise.
This choice is arbitrary and is motivated by the Ising limi

The relations for operators are as follows. The physi
spin is Sn5(12 f n

†f n)sn . The electron operators areci↑
5( 1

2 1si
z) f i

† and ci↓5si
1 f i

† for the spin-up sublattice an

cj↑5sj
2 f j

† and cj↓5( 1
2 2sj

z) f j
† for the spin-down sublattice

The t-J Hamiltonian is then in this representation~ignoring
spin projection operators!

HtJ5t(̂
i j &

f i
†f j~sj

11si
11 H.c.!1J(̂

i j &
~12 f i

†f i !~si•sj2
1
4 !

3~12 f j
†f j !. ~2!

Again, we have an inhomogeneous Hilbert space, in whic
spin deviation and a holon cannot coexist on a site. T
transformation can be generalized tocns5 f n

†Ûs , whereÛs

is some spin transformation with appropriate properties.
The representations described so far constitute substa

progress relative to the ‘‘raw’’t-J model. In such analytica

FIG. 2. The Hilbert space in thet-J model as represented in th
slave-fermion formulation. The arrows represent the spin fieldsn ,
while the circles show holons. Note that the last two configurati
are on certain sublattices.
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representations, by use of the half-filled state as the ba
ground, most correlations present in the system are alre
taken into account. Due to fermion statistics, it is automa
cally guaranteed that not more than one holon can be o
site. However, there are also problems.

~1! The first one is the constraint, which any not over
complicated wave function can hopefully satisfy only on a
erage. Of course, we may ‘‘get rid’’ of the constraint b
introducing into the Hamiltonian projection operators, b
then the Hamiltonian becomes complicated. It will then ha
some artificial complicated terms of purely ‘‘kinematic’’ or
gin.

~2! The second disadvantage is that the holon operator
these representations only approximately correspond to
original electron operators. Indeed,cn↑ is defined differently
on different sublattices, so thatck↑ is not the same asf k

† but
rather is a combination off k

† and f k2q
† sq

2 . It is then neces-
sary to do additional calculations to find the Green’s funct
of operatorscn ~see Ref. 10 and also the Appendix of Re
3!.

Physically, both points~1! and ~2! are related to ground
state quantum spin fluctuations and dissappear comple
for a classical Ne´el background. In fact, even for the qua
tum Néel background, as long aslinear spin-wave theory is
used, the constraint can be formally ignored. Both proble
however, get quickly more dramatic as antiferromagnetic
der is weakened, which is known to happen in copper oxid

There is also a problem with analyzing the spin field
itself. Spin-wave theory is certainly only approximate a
has its limitations. However, that is a general problem
condensed-matter physics rather than a problem with
particular representation of thet-J model.

B. The unconstrained representation of thet-J model

It is possible to study thet-J model in a substantially
different representation. The central idea is to relax the c
straint, so that when there is a hole on a site the~ghost! spin
on that site can haveany value.

The new Hilbert space has four states per site instea
the three in the original model. Instead of being able to ha
strictly a holon or a boson, we can have a holonand/or
boson. Thus we have essentially a different, bigger mo
No one-to-one transformation is taking place.~It has in fact
been claimed recently11 using symmetry arguments that it
impossible to transform thet-J model to a model of com-
muting fermions and spins.! We may still call the new mode
a ‘‘representation’’ of thet-J model in the sense of the grou
theory ~a reducible representation!. Two of the states in the
new model,u0 f ,↑& andu0 f ,↓&, correspond to one state in th
original model,u•&. The correspondence for spin operators
as simple as before,Sn→(12 f n

†f n)sn . It is also clear that a
hole remains a hole~holon!, (scns

† cns→12 f n
†f n . For

single-fermion operators however there is no simple gen
relation,cns→” f n

† . In putting correspondence between ferm
onic processes we should distinguish between hopping
‘‘photoemission’’ ~hole creation and destruction! processes.
At a photoemission process a ghost spin appears or di
pears and we have to define somehow the connection
tween the ghost and nonghost spins. It is important that
can do it in a spin- and sublattice-symmetric way. On t

s
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57 6919SPIN POLARONS IN THEt-J MODEL IN AN . . .
other hand, hopping~the combinationscns
† cn8s in the Hamil-

tonian! is considered as some other elementary process
necessarily as a combination of two processes of destruc
and creation of the hole. At hopping processes we define
dynamics of the ghost spin.~The dynamics of the nonghos
spin should, of course, be the same as in the original mod!

To make the model specific, we can choose the hopp
part of the Hamiltonian to have the following form:

Ht5t (
^nn8&ss8

~ u1 fs8&n8u0 fs&n^1 fs8un^0 fsun81 H.c.!.

~3!

Heres is a nonghost spin, and so it should just hop witho
flipping. We have chosen that the ghost spins8 also simply
hops. The ghost spin is thus permanently attached to
hole.

The complete Hamiltonian, when written in terms of sp
operators, is then

H f s52t (
^nn8&

f n
†f n8~

1
4 1sn•sn8!1J (

^nn8&
~12 f n

†f n!~sn•sn82
1
4 !

3~12 f n8
† f n8!. ~4!

The subindexf s at H emphasises that this Hamiltonian is n
the t-J Hamiltonian.H f s is different fromHtJ ; it acts in a
different Hilbert space, in a Hilbert space that it is not ev
isomorphic to the Hilbert space of thet-J Hamiltonian. Nev-
ertheless,H f s has been constructed in such a way that
properties in thet-J model can be simply derived from th
properties in the ‘‘f -s’’ model.

The Hamiltonian@Eq. ~4!# was first proposed~without
derivation! by Khaliullin.12 Later Wang and Rice13 claimed
they had found a mathematical derivation for it.

In any case, there have been no quantitative calculatio
this representation.

The spin-fermion interaction in Eq.~4! is of a very natural
form for spinless fermions. The fermion propagates either
emitting and absorbing two magnons or directly by us
fluctuations present in the ground state. The opposite c
of completely antiferromagnetic and ferromagnetic order
naturally covered.

Although quite simple and very symmetric, this model
relatively difficult to study because it leads to two-magn
processes. Below, the model with ghost-spin dynamics
fined in a different way will be analyzed. The dynamics
the ghost spin at hopping processes is defined by the
grams in Fig. 3. The logic behind these relatively comp
cated rules is clarified in Appendix A where an Ising-ty
situation is considered. The intention is to have two-magn
type interaction for the relatively-infrequent interaction wi
ground-state fluctuations but single-magnon for creat
fluctuations.

Now it is time to see if problems~1! and~2! of the slave-
fermion representation have been answered.

~1! It is important that there are now no boson-fermi
constraints, the two fields are interacting dynamically but
kinematicallycompletely free from each other. There mig
be constraints on the bosons when the spin fieldsn is ex-
pressed through them. However, this is a constraint, e
from spin-wave theory and it concerns bosons alone.
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new model does not solve the problem of magnetic orde
such, but it does separate it from the total problem.

~2! To check that the Green’s function of one holon in th
model is equal to that of one hole in thet-J model, consider
the following argument. Let us set at photoemission p

cesses the following correspondence:cn↓→ f n
†( 1

2 1sn
z) and

cn↑→ f n
†( 1

2 2sn
z) and likewise for Hermitian conjugates. Tha

is to say that creation of a hole is represented as crea
of a holon and, importantly, the spin on the site rema
unchanged: it turns simply from a nonghost one to a gh
one. At subsequent hoppings the ghost spin changes acc
ing to the rules outlined above; the physics should
independent of this. Then we haveck↑1ck↓→ f k

† . For
a background with total spin zero~which is the case!
we have then (s^cns

† cn8s&5^(cn↑
† 1cn↓

† )(cn8↑1cn8↓)&→
^ f nf n8

† &, from which a direct relation for Green’s function
follows.

It should be also possible to introduce spin-carrying hol
The Hilbert space would be the direct product of the space
f n↑ and f n↓ ~coexistence forbidden! and of spinsn . How-
ever, it is unclear if such a version would give any adva
tages.

C. Deriving an effective model

At this point the Hamiltonian has only become more co
plicated. The important point, however, is that it can now
simplified significantly without losing much accuracy. Fort
nately, having numerical data allows us to quickly test if th
is so, at least in simple situations.

The guidance for the simplifications is that the sp
fluctuations in the ground state are present in small numb
The well-known14 characteristics of the Ne´el ground state
are the staggered magnetization, m†5u^cNéelu
sn

zucNéel&u'0.305, and the nearest-neighbor spin correla
eAF5^cNéelusi•sj ucNéel&u^ i j &'20.33.

The first two processes in Fig. 3 describe the hole pro
gating by emitting and absorbing spin waves. These p
cesses are the same as known for the slave-fermion sch
and I treat them to leading order in 1/S. The last two pro-
cesses of Fig. 3 describe the hole moving ‘‘friction-free,’’ b
using the liquid component of the Ne´el state. In these term
I replace spin combinations by their expectation values~i.e.,
do a mean-field/Hartree-Fock procedure where the inve
influence of the holes on the spin field is ignored!. A rela-
tionship required here is

FIG. 3. Graphical representation of the hopping part of
Hamiltonian in the unconstrained model~the sublattice-
unsymmetric version!.
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6920 57A. V. DOTSENKO
^cNéelu~
1
2 1si

z!~ 1
2 1sj

z!1si
1sj

2ucNéel&5 1
4 1eAF .

In the following, the following standard notation is use
z54 is the coordination number,N is the number of sites on
the lattice, Q5(p,p), gk5 1

2 (coskx1cosky), and nq5(1
2gq

2)1/2.
With the described simplifications and after Fourier tra

formations, the effective Hamiltonian is

Heff5(
k

E~0!~k! f k
†f k1(

q
vqaq

†aq1
zt

AN
(
kq

M ~k,q!

3~ f k
†f k2qaq1H.c.!

1
1

N (
kk8q

Gcont~q! f k82q
† f k1q

† f k f k8. ~5a!

The first term here, as a noticeable difference from the
constrained case, is a bare fermion dispersion

E~0!~k!5~ 1
4 2eAF!zJ22~ 1

4 1eAF!ztgk . ~5b!

The next two terms, describing spin waves with dispers
vq5 1

2 zJnq and interaction between holes and spin wav
are the same as in the slave-fermion case. The vertex f
tion can be written as

M ~k,q!5@ 1
2 ~nq

2111!gk2q
2 1 1

2 ~nq
2121!gk

2

2nq
21gqgkgk2q#1/2. ~5c!

The last term, with

Gcont~q!5 1
2 ~eAF2 1

4 !zJgq , ~5d!

may be called a ‘‘contact’’ interaction as it describes insta
taneous attraction of holes on hearest-neighbor sites~easily
recognized to be due to the ‘‘broken-bond’’ mechanism!.
This interaction is also present in the slave-fermion case
is usually omitted since it is negligible in the usually cons
ered regime ofJ/t!1 and completely irrelevant in th
single-hole problem. The effective model does not cov
obviously, the extreme Nagaoka case oft/J→` and the
high-energy physics.

It is trivially seen that the slave-fermion model is reco
ered when switching off the bare hole dispersion. The line
in-t hole dispersion in the static limit has been known
some time.15 It may be obtained directly by calculating th
amplitudes

FIG. 4. The leading-order crossing diagram for the single-h
Green’s function.i and j are sublattice indices.

FIG. 5. The Dyson equation for the single-hole Green’s funct
in the self-consistent Born approximation.
-
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n
,
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ut
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r

K cNéelUcis
† S t(

s8
cj s8

† cis8D cj sUcNéelL ,

and remembering to normalize hole operators. What is
markable is that this effect can be added ‘‘linearly’’ to th
spin-wave-emission mechanism.

III. COMPARISON OF RESULTS

A. The single-hole problem

To find the single-hole Green’s function given the effe
tive Hamiltonian@Eqs.~5!# it appears natural to use the sam
self-consistent Born approximations that has been used in
slave-fermion case. The first crossing diagram, Fig. 4, is p
hibited for kinematic reasons~it may be seen when the two
sublattice formalism is used that the spin wave emitted w
the hole jumps from sublattice$ i % to sublattice$ j % must be
absorbed when the hole jumps from sublattice$ j % back to
$ i %). The Green’s function is then found by solving the fo
lowing Dyson equation~corresponding to the diagram in Fig
5!:

e

n

FIG. 6. Quasiparticle bandwidthW on a 434 lattice.

FIG. 7. Quasiparticle band structure on a 434 lattice. The lines
are trigonometric-function fits to the points plotted. The notation
in the previous figure. See Fig. 6 for the actual scale. Note ther
no degeneracy betweenk andk1Q observed for holons. Except fo
J/t52, the results of the present study are almost indistinguisha
from the exact ones.
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@G~k,v!#215@G~0!~k,v!#212
~zt!2

N

3(
q

M2~k,q! G~k2q,v2vq!, ~6!

where G(0)(k,v)5@v2E(0)(k)1 i0#21 is the zeroth-order
Green’s function and integration over spin-wave frequenc
has been carried out using the observation that in the sin
particle case all poles ofG(k,v) are in the lower plane.~On
the antiferromagnetic background, we could use the m
netic Brillouin zone, but it is more convenient to use the f
one; it is, however, not the ‘‘true’’ Brillouin zone.!

In Figs. 6, 7, and 8, the solution of Eq.~6! on a 434
lattice is compared against exact results~I used data from
Refs. 15 and 16!. The agreement can be rated as good
excellent. Other quantities, such as the structure of the s
tral function, were in good agreement too. Note also t
since no account has been taken of small-cluster spec
such as a slightly different magnetic order and a relativ
large influence of the hole on the spin order~very roughly
speaking, one hole on a 434 lattice constitutes a sizeab
6% doping!, it may be conjectured that the method is ev
more accurate than may be suggested by the given com

FIG. 8. The quasiparticle residueZ at the pointM̄5(p/2,p/2)
on a 434 lattice.

FIG. 9. Quasiparticle band structure atJ/t50.4 on a 16316
lattice. The solid line~the result of the present work! was smoothed
by constructing a trigonometric-function fit and it passes through
the points actually calculated. The real scales are somewhat d

ent, E(G)2E(M̄ )51.18t52.95J for the Green’s function Monte

Carlo result~Ref. 17! andE(G)2E(M̄ )50.83t52.08J for the re-
sult of the present study.
s
le-

g-
l

o
c-
t
s,

y

ri-

son. That the agreement is not an artifact of the highly
generate 434 lattice is proved in Fig. 9, where the dispe
sion relation is compared to that obtained17 by the Green’s
function Monte Carlo method on the 16316 lattice. In ex-
amining the accuracy it should also be remembered
physically the low-energy part of the band is most importa
~the close agreement for the quasiparticle residue at the b
bottom is thus most encouraging!.

Since the computational load is quite low, it is easy
move on to fairly large lattices. Finite-size effects per
almost disappear starting from the 838 lattice. The main
drawback of small clusters seems to be a lack of resolutio
k space~however, in the case of dispersion, which is a ve
smooth function, it can be mostly overcome by usi
trigonometric-function fits!.

The dispersion relation calculated on a 32332 lattice is
shown in Figs. 10 and 11. Of course, the most notable
ference from previous slave-fermion studies is that there
no degeneracy betweenk andk1Q. In the low-energy part
of the band there is now an extended nearly flat region n
X5(p,0). This is in agreement with the experimental ang
resolved photoemission spectroscopy~ARPES! data and is
probably key to explaining some of the experimental pro
erties of the cuprates.18

Another effect observed in the results is that the ba
minimum slightly shifts away fromM̄5(p/2,p/2) towards
M5(p,p) while the maximum splits, moving fromG
5(0,0) in the direction ofX5(p,0) andY. Using various
lattices and supplementing it with interpolation by means

ll
r-

FIG. 10. The quasiparticle band structure at representative
ues of J/t. The result was obtained using a 32332 lattice. The

actual scales are as follows. ForJ/t50.2,E(G)2E(M̄ )50.45t; for

J/t50.4, E(G)2E(M̄ )50.83t; for J/t51, E(G)2E(M̄ )51.40t.
See also Fig. 11.

FIG. 11. A three-dimensional plot of the ‘‘normalized’’ dispe
sion atJ/t50.4.
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6922 57A. V. DOTSENKO
trigonometric-functions fits, I found the minimum to be
(0.503p,0.503p) for J/t50.4 and at (0.545p,0.545p) for
J/t51.

Higher-order terms will probably lead to a renormaliz
tion of the values oft andJ, similar to what was found in the
slave-fermion case.5 In the present study, the shape of t
dispersion is almost the same in a fairly wide parame
range and is presumably very accurate but the absolute n
bers may change.

B. The two-hole problem

As a further test of the method’s usefulness, I applied i
the two-hole problem. Many issues that come up here are
same as in the many-body problem and, again, availabilit
some numerical data makes it a good opportunity to
viability and/or accuracy of the diagrammatic approach i
context more complex than the single-particle one. To
best of the author’s knowledge, no such test has been do
the framework of the slave-fermion approach either an
believe this problem must be definitively solved analytica
before attacking the many-body problem. All of the follow
ing consideration is restricted to pairs with total moment
zero.

The bound state is found by solving the Bethe-Salpe
equation

G↑↓~k,v!5
1

2pN(
k8

E dv8 V~k,k8,v2v8!

FIG. 12. The diagrams included in the two-particle scatter
amplitudeV(k,k8,v). The next-order omitted diagrams are show
in Fig. 15.

FIG. 13. The two-hole binding energyDB as a function oft/J.
The numerical results on the 434 lattice are from exact diagona
izations. The numerical results on the 838 lattice are from Monte
Carlo studies@Barnes and Kovarik~Ref. 19! for t/J50 and Bonin-
segni and Manousakis~Ref. 20! for the other points#. The numerical
result on the 638 lattice was quoted by White and Scalapino~Ref.
23! in a density matrix renormalization-group study. The analyti
result is from Ref. 24. The irregularities at smallt/J on the 434
lattice are caused by level crossings~at t/J50.4814 and 0.1526, se
Ref. 16!.
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G~k8,E1v8! G~2k8,E2v8! G↑↓~k8,v8!,

~7!

whereE is half the total energy~i.e., the energyper hole!.
The functionG↑↓(k,v) is the two-hole vertex function. Fo
the hole-hole scattering amplitude I used

V~k,k8,v!5~zt!2M ~k,k2k8! M ~k8,k82k! D~k2k8,v!

1Gcont~k2k8!,

where D(q,v)52vq(v
22vq

21 i0)21 is the magnon
Green’s function. This amplitude corresponds to the leadi
order spin-wave exchange diagram and the contact inte
tion, which is all diagrammatically represented in Fig. 1
Note that the product ofM ’s is simply @gkgk82

1
2 gq(gk

2

1gk8
2 )#nq

21 .
In solving Eq.~7!, the convolution over frequencies wa

performed using fast Fourier transforms~FFT!, taking in
various regimes 1024 to 8192 points for the frequency me
The frequency cutoff was typically 8t13J. Although despite
appearances the structure of the vertex allows FFT over
menta as well, doing so in practice involves fairly large ov
heads and small lattices are solved faster by direct sum
tion in k space, using all available symmetries. The bou
state energyE0 is found as theE at which ~the real part of!
the largest eigenvalue for a given symmetry becomes e
to 1 ~the imaginary part was kept under 0.05 and its neg
gible influence was verified!. The binding energy per pair is
then DB52(E2Emin), whereEmin is the minimum single-
hole energy~for consistency, this must be found from th
momenta actually available on the cluster instead of by
terpolation or by using the bulk-limit result!.

The solution I consider is even in frequency and ha
dx22y2-wave spatial symmetry. The results, presented in F
13, show a maybe-satisfactory agreement with numer
data. The dependence of binding energy onJ/t is noticeably
different. The size dependence is, however, matched ra
well, suggesting that the difference is due to a ‘‘renormaliz
tion.’’ This is further illustrated in Fig. 14, where the resu
for obtained on the 16316 lattice is also plotted, demonstra
ing almost complete finite-size convergence at such size

Barring the possibility of an error, the most likel
cause of the discrepancy is contribution of higher-ord
diagrams.21 In the regime of smallt/J, the calculated binding

g

l

FIG. 14. Size dependence of the two-hole binding energyDB at
J/t50.4. L3L is the lattice size. The dotted line is the result o
tained using the static approximation described in the text.
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energy behaves as the square of the quasiparticle res
which is what is expected but which is not what is seen
numerical data. The small size of the bound state may m
that a real-space-based approach may be more efficient a
complexity of diagrams grows very quickly. The next-ord
omitted diagrams are shown in Fig. 15. The first cross
diagram, however, is expected to be zero for the same k
matic reason as in the single-hole case.22

Note also that the binding energy is quite small relative
the total energy scale. The result is very sensitive to value
interaction and the values of single-hole energy. Given
complexity of the problem, renormalizing the interaction
an attractive option.

Various features of the two-hole bound state have b
discussed at length in the literature~see Ref. 1 and reference
therein, recent references are Refs. 23, 24, and the very
tailed Ref. 25! and will not be described here except for
note on the ‘‘static’’ nature of the bound state. In the mo
naive, ‘‘nonrelativistic’’ static limit the spin-wave Green’
function is replaced by22vq

21 , thus creating a poten
tial interaction. A more accurate, mixed approximation is
take into account holes’ velocity in virtual processes but
sume a static bound state,G↑↓(k,v)5G↑↓~k,v50!
[G8~k!. Mathematically, starting from the Bethe-Salpe
equation, it means that in the range in whichG(k,E
1v)G(2k,E2v) is not negligible, the functionG↑↓(k,v)
is assumed to change very little, so that for integration in
~7! one can replaceG↑↓(k,v) with G↑↓(k,0).

This approach, used in several studies of thet-J model,26

is based on the following argument. Since the vertex fu
tion M (k,q) is small for smallq, magnons with small mo-
mentum are not important in the problem. Thetypical energy
of magnons involved in spin-wave exchange is thus of
order of 2J. On the other hand, the energy of a pair ho
excitation isuDBu1E(k)1E(q2k) so that the correspond
ing energy scale isuDBu12Weff , whereWeff is the effective
hole bandwidth. Since the hole band, unlike the spin-w
band, has most of its states in the lower part, the effec
bandwidth is assumed to be much less that the total ba
width, Weff;0.2W;0.4J at J/t;0.4, so that the holes ma
be regarded as slow.

The results of solving the static version of the Beth
Salpeter equation,

FIG. 15. The higher-order diagrams for the four-particle scat
ing amplitude. Both diagrams are expected to be suppressed~see
the text!.

FIG. 16. The perfectly antiferromagnetic ground state. In t
and following figures half of the spins have been rotated byp.
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G8~k!5
1

2pN(
k8

E dv8 V~k,k8,2v8! G~k8,E1v8!

3G~2k8,E2v8! G8~k8!, ~8!

at J/t50.4 are shown in Fig. 15. They show that the sta
approximation, although of course far from being complet
safe, should be sufficient for most estimations, especi
considering that errors introduced this way seem to be
than those originating from other sources~presumably from
neglecting or mean-field-decoupling higher-order diagram!.

IV. SUMMARY

I have analyzed thet-J model using an ‘‘unconstrained’
representation, in which fermions and bosons are fully co
muting. The results for single-hole properties within t
noncrossing-diagram approximation have been found to
in good agreement with numerical data. The results cla
the nature of the hole dynamics. It is almost completely
scribed by only two kinds of underlying processes:~i! a
string-picture-like motion by means of emitting/absorbing
spin wave at each step and~ii ! direct hopping on ground-
state spin fluctuations. The results for the two-hole probl
are less clear and more work may be required.

In the physical regime of smallJ/t and on antiferromag-
netic background, the numerical differences of the sla
fermion formulation, from the presented method, are fai
small. However, since the described method has exactly
same level of complexity~or rather simplicity!, there is no
reason not to use it. It is also important that this represe
tion has the potential to be used on a background with
arbitrary magnetic order.
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APPENDIX: THE MOTION OF A HOLE
ON AN ISING-TYPE BACKGROUND

In this appendix I describe the hole motion in the prese
of ground-state spin fluctuations using a very simple o
dimensional Ising system. In the following, all spin-dow
sublattice sites have been rotated byp.

The perfect antiferromagnetic ground state is shown
Fig. 16, and the motion of a hole in such a background

r-

s

FIG. 17. Motion of a holon in perfectly antiferromagnetic bac
ground.

FIG. 18. An antiferromagnetic ground state with spin fluctu
tions present.
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depicted in Fig. 17. As the hole moves, it leaves behind
trail of flipped spins~in one dimension they all amount t
one spin-order distortion at the origin!. The hole may move
back to wipe out the distortion it created. In the correspon
ing two-dimensional, string picture, the hole creates a s
distortion ateachstep away from the origin. The hole move
by either emitting a spin wave or by absorbing one that it h
created earlier. The spin wave can be thought of as a c
plex spread-out-in-space form of spin flip/distortion, conce
tually the two are the same. Notice that the ghost spin fi
on the hole site is left effectively idle, always being no
flipped according to the convention.

Now assume that for whatever reason~perhaps due to a
kind of frustration! the ground state has the form in Fig. 1
that is, it has spin flips/fluctuations frozen in it~incidentally,
the flips come in pairs!. On this background, in addition to
the processes shown earlier in Fig. 17, there will be oc
sional processes where the hole moves without creating
new spin distortions, but only shifting those already pres
~Fig. 19!. Analyzing the process in Fig. 19, an inconvenien
of the holon approach becomes obvious. Namely, it is t

FIG. 19. Motion of a holon encountering a ground-state s
fluctuation.
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although no actual spin excitation was created, there is a s
flip in the spin field due to rigidity of the ghost spin attache
to the holon. This makes the analytical transformation u
natural and it will be hard to account for such process
accurately. The easy way out is to fully employ the gho
spin by forcing it to flip when necessary, thus carrying mu
more information and doing much more work. Figure 2
illustrates the motion of a hole as described by the new c
ventions. The direction of the ghost spin effectively indicat
whether any encountered spin flip could have been crea
by the hole back in time or if it is a background spin flu
tuation. In the latter case, the hole advances to the next
without creating a string.

in

FIG. 20. Motion of a hole in a background with spin fluctua
tions, as appearing in the unconstrained representation.
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