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Multiband Gutzwiller wave functions for general on-site interactions
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We introduce Gutzwiller wave functions for multiband models with general on-site Coulomb interactions.
As these wave functions employ correlators for the exact atomic eigenstates, they are exact both in the
noninteracting and atomic limits. We evaluate them in infinite lattice dimensions for all interaction strengths
without any restrictions on the structure of the Hamiltonian or the symmetry of the ground state. The results for
the ground-state energy allow us to derive an effective one-electron Hamiltonian for Landau quasiparticles,
applicable for finite temperatures and frequencies within the Fermi-liquid regime. As applications for a two-
band model we study the Brinkman-Rice metal-to-insulator transition at half-band-filling, and the transition to
itinerant ferromagnetism for two specific fillings, at and close to a peak in the density of states of the
noninteracting system. Our results significantly differ from those for earlier Gutzwiller wave functions where
only density-type interactions were included. When the correct spin symmetries for the two-electron states are
taken into account, the importance of the Hund's-rule exchange interaction is even more pronounced, and leads
to paramagnetic metallic ground states with large local magnetic moments. Ferromagnetism requires fairly
large interaction strengths, and the resulting ferromagnetic state is a strongly correlated metal.
[S0163-182608)02212-7

I. INTRODUCTION In his seminal work, Gutzwillérproposed a variational
approach to the problem of itinerant ferromagnetism in the
In transition metals and their compounds the electrons oHubbard modef. In his many-body trial state atomic con-
the opend shells participate in the itineracy of the valence figurations with large deviations from the average occupancy
electrons. At the same time their atomic correlations, as desould be reduced with respect to a Hartree-Fock reference
scribed, e.g., by Hund’s first and second rules, remain imporstate, depending on the value of the variational parameter.
tant. The competition between the electrons’ itinerant andrherefore, his approach incorporated both the itinerant and
local features results in many interesting phenomena: madecalized aspects of itinerant magnetism. Gutzwiller intro-
netism is most prominent, but metal-to-insulator transitionsduced an approximate evaluation of his many-body wave
high-to-low-spin changes, orbital ordering etc. also occur irfunction, the so-called Gutzwiller approximation, and con-
these materials. cluded from his one-band results that itinerant ferromag-
For insulating compounds it is commonly accepted thahetism requires large interaction strengths. Later, Brinkman
their magnetic behavior can be described in terms of thend Rice realizetthat the Gutzwiller approximation con-
spins oflocalized electrons which are coupled by superex-tained a transition from a paramagnetic metal to a paramag-
change via the ligands. However, there are conflicting viewsetic insulator in which all electrons are localized. The
on the magnetism of the metallic state. One line of reasonin@rinkman-Rice insulator provides an instructive example for
which dates back to van Vleck and others assumes rathé¢he more general class of Mott-Hubbard insulafots.
small charge fluctuations around the averdgwomic d" During the last decade, analytical techniques were devel-
configuration, and the localized spins also remain a usefubped which allow for an exact evaluation of the single-band
concept in the metallic stateninimum polarity modé). The ~ Gutzwiller wave function in one dimensidrand in the limit
other school, starting from the Hartree-Fock-Stoner theoryof infinite dimensions:'°For the latter case the results of the
treats magnetism within a single-particle band theory, i.e., irGutzwiller approximation were found to become exact. Fur-
a completely itinerant limit. In particular, spin-density- thermore, the results of the Kotliar-Ruckenstein slave-boson
functional theory quite successfully describes the ferromagmean-field theory were rederived for the paramagnetic and
netism of the iron group metals, not only concerning mag-antiferromagnetic casés? In this work we extend the
netic moments but also such details as the shapes single-band formalism of Refs. 12 and 13, which provided
complicated multisheet Fermi surfacesn the spirit of a  exact results in infinite dimensions for the whole class of
free-electron theory the spin-density-functional theory generGutzwiller wave functions. For the one-band case the
ally assumes a local exchange-correlation potential which i§&utzwiller variational approach in infinite dimensions and
a function of the local charge and spin densities. The successave-boson theoriés*on a mean-field level were shown to
of this effective single-particle theory is quite surprising be completely equivalent; see Ref. 7 for a recent review.
since, in the atomic limit, it cannot reproduce the open-shell The case of multiband systems poses a more complicated
electronic structure. problem. Each lattice site represents an atom with an incom-
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pletely filled shell. Consequently, the atomic Hamiltonianeven qualitatively differ from those using pure density cor-

A, should include the relevant properties of the electronidelations. _
structure of isolated atoms or ions. This means that it should ©Our paper is structured as follows. In Sec. Il we introduce
comply with Hund'’s first rule, it should reproduce the essentn€ multiband Hubbard Hamiltonian with purely on-site in-
tial features of low-lying multiplet excitations, and it has to {eractions. The spectrum of the general atomic Hamiltonian
incorporate the symmetry of the ligand field. The commonlyIS supposed to be known. Then, in Sec. lll, we specily the

. . . class of Gutzwiller wave functions with atomic correlations,
used form for the atomic paH; of the multiband Hubbard 54 give the exact results for the ground-state energy in in-

Hamiltonian included(i) an orbital-diagonal density-density finite dimensions. For the case of pure density correlations
interaction of strength) as in the single-band case, and anye recover our previous expressidis®?°In Sec. IV, we
orbital-nondiagonal density-density interaction of strengthgiscuss the example of two partly fillegl, bands in more
U’; and (i) two-particle spin-exchange terms of strendth detail. We study the Brinkman-Rice metal-insulator transi-
such that the ground statelafatfulfills Hund's first rule, i.e., tion at half-band-filling, and itinerant ferromagnetism for
it exhibits maximum spin fordJ>0. Frequently, the spin- two generic band fillings. A summary and conclusions close

exchange terms are taken only partially into account. If thedur presentation. Technical details are deferred to the Appen-

(orbita) spin-flip terms are neglected, we are left wigers ~ dix-

which contains only density-density interactions on the
atomic sites. Il. HAMILTON OPERATOR
It should be noted that a while ago atomic Hamiltonians _

L ~ . . A. Multiband Hubbard model
similar to H,, were studied using the “local ansatz>'®a
scheme in the spirit of the Gutzwiller method. However, the ~ Our multiband Hubbard modkis defined by the Hamil-
results presented were limited to small interaction strengthdonian
Recently, the Gutzwiller method was generalized to treat
multiband Hubbard models with local-density-type interac-

tions H™of arbitrary strength$’2°The essential idea was
to evaluate correlators for atomic multielectron configura-

tions made up of spin-orbital proddueﬁz_stal(éslater deter- Here,f:ﬁ.,, creates an electron with combined spin-orbit index

minants”). This was possible sinde; " is diagonal inthese ;-1 "' 2N (N=5 for 3d electrons at the lattice sité of
configurations. In a first step the Gutzwiller approximationg solig. We do not yet specify a periodic lattice, i.e., the sites
was used;""*° later it was shown that these results become may also represent ligand atoms. Therefore, the number of
exact in the limit of infinite dimensior®. In Ref. 20 we  rpitals N also depends on the sitd|=N,. To keep the
compared our results with those of previous generalizationgotation transparent we will drop this additional index in the
of the Gutzwiller approximation to the case of degeneratqonowing, and we will use the notion “orbital” for spin-

bands. orbit states.

However, the frequently used treatmentt8f;, as dis- The first term in Eq.(1), H,, represents an appropriate
cussed above, stilliolatesthe atomic symmetry; for an ex- gjngle-particle tight-binding Hamiltonian. Crystal-field terms
ample, see below. The reason is the incomplete form of the o included in the orbital energie&“=e;.,. We may also
exchange interaction. To establish the correct symmetry it is . ) Do e L
necessary to includall exchange terms which result from a 0w nondiagonal crystal-field ternt,” for o# o” in case
(spin conservingtwo-particle interaction, i.e., we will have Of @ sufficiently large orbital basitor a sufficiently low
to consider the contributions from up to four different spin &tomic-site symmetyy In this paper we do not include spin-
orbits. Then the proper-electron atomic eigenstates are cer-°rPit coupling, and we may therefore assume that the terms
tain linear combinations of the respectiveelectron spin- t;” are spin-independent quantities which only depend on
orbit product configurations. As a consequence, the optimurihe spatial part of the underlying spin-orbit wave functions.
way to generalize the Gutzwiller wave function to multiband In model (1) we assume that the electrons interact only
systems is the use of correlators for the atomielectron locally. Separating the density-density interactions we may
eigenstates instead of the pure spin-orbit product states. write the atomic Hamiltonian as two terms,

In this paper we introduce and evaluate such variational
wave functions with atomic correlations. Our formulation al-

= 2 ti(,TjaeiJ;raCj;(r""z I"\Ii;er[Ef'\ll_"Hat- (1)
i,j;o,0 !

)

lows for arbitrary orbital bases, including more than one or- Hia= 2 U™ NN

bital type per representation, i.e., more than one typg pf o' (eta’)

or d orbitals. It also allows for an arbitrary number of atomic , R,
sites in the unit cell. In the limit of infinite dimension, exact + > JH e, O CiraCiray-
results for the ground-state energy are given in terms of an (1= 02) # (03> 72)

effective single-particle Hamiltonian which defines the band 2

structure of correlated electrons. Thus our theory naturally

extends to finite temperaturéBermi-liquid regimg. As an  The exchange-type second term transfers two electrons from
example we apply our theory to a two-band model, and showhe orbitalso;> o, into the orbitalso; < o,. The quantities
that the correct treatment of the atomic correlations yields &; and 7 represent all possible two-partici€oulomb in-
variety of results which quantitatively and, in some casesteractions compatible with the symmetry at dite
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B. Atomic problem [
In our variational wave functions we will deal with opera- fsgn(1’,){1Ul’| H1 6.+rn||>- (6b)
tors which project onto atomie-electron eigenstateld™;) (U"_El,)
n

with arbitrary number &n<2N. Altogether we will have
22N eigenstates. Each of theseelectron eigenstates has the  (4) The operator which projects onto a specific configura-
proper symmetry, i.e., they can be classified according teion | is given by

irreducible representations of the group defined by the sym-
metry of sitei. Part of this classification is according to the

total spin quantum number a&i;at commutes with é)z.

The problem of classification is treated in detail by many - _ .
author2:22 here we refer to Ref. 23. where the operatoms, fulfill the local completeness relation

We now suppress the site index, and introduce the follow-

r’hIEr’hl,I:“)(”:HI ﬁa']._.[_(l_ﬁa')r (78

o oel

ing notation for all possible 2! multiorbital configurations 2 Fnl =1. (7b)
and the corresponding multielectron configuration stites !
(1) A configurationl is characterized by the electron oc- At this point we also define the operators
cupation of the orbitals,
le{D:(1), ... (2N)i(1,2), ... (23, ...(2N ng=1, n|=£[| n, for [I|=1, ®

—1,2N); ..., ... . N)} €)]

Here the symbolJ in Eq. (3) means that the site is empty.
Then, there follow all A one-electron configurations, all
N(2N—1) two-electron configurations—the sequence of

numbers in round bracketsr{, o, . ..) isirrelevant—and
so on up to the B electron configuration (1 ..,2N). For
example, ¢, ,0,) specifies one of the 45 possitlar]3d?

configurations of a Fi" ion in the frozen-core approxima-

tion.
In general, we interpret the indicésn Eq. (3) as sets in

which measure the ‘“gross” occupancy of the atom. The

gross occupancy operato; gives a nonzero result when
applied to|l") only if I contains electrons in the same orbit-
als asl’. However,l andl’ need not be identical becauke
could contain additional electrons in further orbitals, i.e.,
only IC 1" is required. Each grogset operator can be writ-
ten as a sum of ndégrosg operators

ﬁ|22 r’hl’v

1'21

(9a)

the usual sense. For example, in the atomic configuration

I\I" only those orbitals in are occupied which are not Ir.
The complement ofl is 1=(1,2,...,N)\I, i.e., in the
atomic configurationl all orbitals but those i are occu-
pied.

(2) |l|=n, i.e., the absolute valug| of a configuration
indicates the number of a multielectron state,

|D|=0;|(o)|=1;|(01,00)|=2; ... j|(1, ..., N)|=2N.
4)

(3) A multielectron configuration statéSlater determi-
nand is constructed as

Il
[h=|oy, 00, ... ,0'“|)=n];[l E::;n|vacuun) (onel).
5

The sequence of electron creation operatord jnis in as-
cending order, i.e.gy<o; for i<j. When we add an elec-
tron to the configuration eigenstafte with the help of the

electron creation operator we obtain the configuration eigen-

state|l U ) up to the fermionic sign function

fsgno,1)=(1Ualc/|1). (6a)

It gives a minugplus) sign if it takes an oddeven number
of anticommutations to shift the operatf)[j to its proper

place in the sequence of electron creation operators in

[lU@a). In general, fon NI’ = we define

ﬁ1|: 2 (_1)“’\|Iﬁ|'-

1’21

(9b)

For practical calculations the net operat&rﬁare more use-
ful than the gross operators because the former are pro-
jection operators onto a given configurationi.e., mm;,

= 5,,,,ﬁ1, , as can be seen from E(/a).

(5) For I1#1’ we denoteJ=INI1’, 1=JUl,, and I’
=JUl, with ;N I,=. We want to describe the transfer of
[l1]=]1,| electrons from the orbital$, to the orbitalsl,,
whereas the contents of the otH8f orbitals remains un-
changed. The gross operator for the transfer of electrons
from I, to |4 is given by

1]
n=1
(onel,

[14]

- _ A+
nll,lz_< I1 Co-n)
(opely)

n=1

2‘:(,|2|_n> . (10
)

With the help of the fermionic sign functiot6), the net
operator for this process can be cast into the form

my, 1 =|1)(1"[=fsgn(3,1 )fsgn(J,12)

[In, I

o€l ge\(11Uly)

X (1=ng)|ny ., (1D

2

All these operators are also defined for|#]1,|. Note the
useful relation

rh|1,|2rAn|3, L (12

|4:5|2,|3m|1,|4a
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which is easily proven with the help of the Dirac represen

tation of the operatorgn, .
The configuration eigenstatgs) form a basis of the
atomic Hilbert space. The atomic Hamiltonié®) is Hermit-
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) <(DO|6i+;—o-&i;0"|q)0> = 50’,0’<(D0|6i+;—06i;0-|(b0>: 50’,0”ni0;0"
(17)

This is the case when our orbital basis is sufficiently re-

ian, and only states with the same number of electrons aétricted, i.e., when we use only one set of orbitals for each

mixed. For the Hamilton matrixﬁat),,,,z(l [Aad1") we can
find a unitary matrixT such that

(T)*HyT=diag Er). (133
The atomic eigenstaté§') obey
0)=2 Tirl), (13b)
HT)Y=E|T), (130
with
2 TuTre=dun TH=Tir (13d)

Since only configuration eigenstates with the same numb

of electrons mix, the matrid is block diagonal, withT'|
=|I| for each block.
The atomic Hamiltonian can be written as

Ho= 2, Ermr, (143
where the projection operators
mp=|T)T| =2 TI,Fr’hI,I’T;V (14b
1,1’
fulfill the local completeness relation
> mp=L. (140
T

ForI'=1= we setTy z=1. For|T'|=|I|=1 the atomic
Hamiltonian does not fiX, r, and we may choose them to

irreducible representation of the group of the site which we

consider in|3|1 of Eqg. (1). For cubic symmetry this means
that we only consider one type efand/orp and/ord orbit-

als. In cases of lower symmetry further restrictions are pos-
sible; for example, in tetragonal site symmestype and
d(3z2—r?) orbitals may mix. For Hamiltonial), we thus
choose a basis where the orbitals are not mixed locally, i.e.,

tf;”'=0 for o# o’. In the Appendix we treat the general
case without these restrictions.
The one-particle stat¢®,) is usually chosen as the

ground state of an effective one-particle Hamilton}&ﬁff.
Apart from the simplest casd$™ is not identical withH ;;

in generaF$™ has a lower symmetry thaf,. In these cases
restriction(17) may also fail.
The one-particle wave function contains many configura-

et}ons which are energetically unfavorable with respect to the

interacting part of the Hamiltonian. Hence the correld®gr

is chosen to suppress the weight of these configurations to
minimize the total energy in Ed1). In the limit of strong
correlations the Gutzwiller correlatcb:?rG should project onto
atomic eigenstates. Therefore, the proper multiband
Gutzwiller wave function with atomic correlations reads

|Wg)= ISG|(I)O>:H Pi.g|®o),

IADi;Gzl;[ 7\.m'rrzl;[ [1+(Ni;r—1)myp]

:1+; ()\lyr_l)r’hl'r (18)

The 22N variational parameters;.- per site are real, positive
numbers. Fo;.r,=0 and all othei;.-#0 the atomic con-

facilitate the evaluation of expectation values for our varia—ﬁguraﬂon|r0> at sitei is removed from®).

tional wave functions.

Ill. GUTZWILLER-CORRELATED WAVE FUNCTIONS

A. Gutzwiller wave functions with atomic correlations

Gutzwiller-correlated wave functions are Jastrow-type

wave functions, i.e., they are written as the many-particl

Expectation values in Gutzwiller-correlated wave func-
tions | ¥ ) will be denoted as

(¥6|O|We)

O=(0)= "y grg) -

(19

8\e will frequently use the expectation values for the atomic

correlatorPg acting on a normalized single-particle product eigenstatesmi;rz(rﬁi;p% and for the gross and net occu-

state| D),

[P 6)=Pg|Do). (15

Expectation values with the single-particle stabg) are de-
noted by

0%=(0)=(P|O|Dy). (16)

pancy operatorsy;;=(n;,) andm;,,=(m;.).

B. Exact results in infinite dimensions

Even in the one-band case the evaluation of Gutzwiller-
correlated wave functions is a difficult many-particle prob-
lem; see Ref. 7 for a review. It can be solved completely in
the limit of infinite dimensions without further approxima-

In general, these expectation values can be calculated eastipns. Ford—« the electron transfer matrix elements be-

with the help of Wick’s theorerfi? In the following we will
assume that local Fock terms are abseritlig), i.e.,

tween two sites andj at a distancéi —j|==,_,%i,—j,| on
a (hypencubic lattice have to be scaled®as
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_ [ 1 li=il Due to the local completeness relation, the probability for an
tij=tij| = , (20 empty site is a function of the other atomic occupation den-
vad sities,
Wheret_iyl- is independent of the dimension. In this way the
kinetic and potential energies compete with each other for all Mi;z= 1_F<\;* b mi;F_F(‘;>2) mi.r- (24)

d. The bandwidth of the electrons stays finite, and we may
even use the propet-dimensional density of staté3, o €) For the moment we suppress the site index. As shown in the
for our calculations. The essential simplification in the limit Appendix, the parameteist for atomic configurations with

of infinite dimensions lies in the fact that only local proper-a single electron |{'|=1) are the eigenvalues of a 2

ties of the wave function are needed for the calculation ofx (2N) matrix Z whose entries are given by

single-particle properties; see Refs. 7, 25, and 26 for recent

reviews on the limit of infinite dimensions. n?r mp
The class of Gutzwiller-correlated wave functions as  Zg.o' = g0’ — > ) > fsgnia’,l)
specified in Eq.(18) can also be evaluated exactly in the My FT=2) ME i(o,0" 1)
limit of infinite dimensions. We defer technical details of the m°
calculations to the Appendix, and merely quote the main % f + 1U(o,0")
N o . e . S DTauenrT _— 25
result of our work at this point. In the limit of infinite dimen- 9o D TauenrTraue) m° 29

(o,0")

sions the expectation value of Hamiltoniéh in terms of _ 0 .
the Gutzwiller-correlated wave functidd8) is given by The unphysical case,=0 can safely be ignored. The ma-

trix Z is diagonalized by a unitary matri’,

AT ToLo et A N e oo
<H>__ 2 ’ti’j <C|;o-lcj;(rl>0+i;zo_ €.6Ni:o (T’)*Z(T’):diag()\%) (|F|=l), (26)

with T, =Ty . These entries in the matriX remained
+; Eirmir, (218 undetermined at the end of Sec. L.
’ Finally, the local densities;. . can be calculated from Eq.

, / . (99) as
T= Y 172724 [q7 q L, (21b
) , il ) oy
02,0, Ni.¢= 2 m;., (273

. . (oel)
It is seen that the variational ground-state energy can be cast i i 7 o -
into the form of the expectation value of an effective single-Where the configuration probabilities ffif=1 follow from

particle Hamiltonian with a renormalized electron transferEd: (A18b) of the Appendix,
matrix Ti‘ff"' . Due to the off-diagonal terms in the local in- m
teractions/(Z), the q factors are arranged in a nondiagonal mm:; ; %FTIF,ITi;K,F
matrix g, which determines the quasiparticle bandwidth Mir

and the strength of band mixing in the solid state. As showrHence all quantities in Eq21) are now expressed in terms
in the Appendix, the elements of tiimatrix can be written  of the variational parameters;.;- and the properties dfb ).

2
mlc. (270

as The remaining task is the minimization gfl) in Eq. (21)
with respect tan;. and|®,). A conceivable though numeri-
g = / 1 D [Mr M cally unsuitable way to achieve this goal is the following.
o n%,(1-n% )7 mom?, For fixed m;.- an input wave functiorj®y) defines local
occupanciemio;*jf. The wave function®{") is the ground
« z fsgn o’ ,1")fsgn( o, 1) state of the effective one-particle Hamiltonian
1,17
(et et Aeftn= 3 T B+ 2 e
0 0 +—+ + i#j,0,0' o
XA o MO TE (e Tarven i Tre Tirrs
(22 +2 Ei.rMi.r, (283
I

where we suppressed the site index and used the definition

(6) of the fermionic sign function. _ pin

Equations(21) and (22) show that we may replace the =€l (28b)
original variational parameters;.r by their physical coun- Ni/e

terparts, the atomic occupancies.. They are related by

X . Note that we have to impose the condition that the orbitals
the simple equation

do not mix locally in our effective one-particle Hamiltonian,
m. 179 = 5,4 €i.o- The local occupancies ¢®3") serve as
Af_rzi_ (23 input for the next step in the iteration procedure. In this way

m?;r the optimum| ®§P) for fixed m;.r is found recursively. After
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the global minimization of H) with respect to the param- 1

etersm;. the optimum effective one-particle Hamiltonian \/K,E \/ﬁs - o0 - E VM M1y e)s
et oPt defines a quasiparticle band structure which is suit- Mio(17Nig) Hoeh (343
able for a comparison with experiments. Furthermore, it can
be used to derive the low-temperature thermodynamicsand the expectation value of the Hamiltonian reduces to

Naturally, the application ofi®™ °Ptis restricted to the de-
scription of the low-energy physics (Fermi-liquid (Ay= >, ti"i"’ Vi oV 0 (€ ol oot 2 €Ny
regimg.” %13 i ' oo o

Another route to finite temperatures is the following. The
variational ground-state energy is a function of the occupan- +> Upmiy, (34b
cies in momentum space. Hence it can be used to derive il
Fermi-liquid parametefé which give access to the low- \here
energy physics of metallic correlated-electron syst&His.

C. Gutzwiller wave functions with pure density correlations Ui =(lHiall)= ag"el U (349

. . ,092,03,0,4 -

I yve |gn9re Fhe nondiagonal termgi"l > in the For translationally invariant systems the above equations

atomic Hamiltonian(2), we may set (34) were first derived in Refs. 17 and 18 using a generalized
T =5 (29 Gutzwiller approximation scheme. A concise description of
LETALr this semiclassical counting approach can be found in Ref. 27;

in all the formulas of Sec. Il B. Under these conditions wefor a mathematically well-defined procedure, see Ref. 30.
recover the Gutzwiller wave functions with pure density cor-The wave function used in Refs. 17, 18, and 20 was defined
relations. In fact, for this class of Gutzwiller wave functions as
the variational ground-state energy is independent of the ~
nondiagonal terms7’*'2'“7_ This is ultimately due to [We)=Pg|¥o)
the fact that the correlator does not change the orbital occu- R
pation, and that Fock terms vanish|if,) according to Eq. %:H H gmit, (35)
(17). Pz

Under condition(29), theZ matrix in Eq.(25) is diagonal.  The wave functions|¥W,) and |®,) are related by the

We use the fact that transformatioft
Ni;g=Mj; o+ z m;. (30 |WO>ZPSP|(DO>’ (369
I(|I|Z=2.0¢el)
> 2N ~
due to Eq.(9) so that the eigenvalues @fcan be written as ﬁSP:H 9o 1‘:[1 gin;i(;ra_ (36b)
)\iZ;(T: Lo (')" id (31  SincePgp contains single-particle operators only, bgth,)

mi. o and|®,) are single-particle wave functions. The relation be-

Hence, for consistency with E¢23), we should have tween the parametets; and\;; is given by

Ni.o= nﬁa (32) 9i:,5=Ni;z» (3739
for Gutzwiller-correlated wave functions with pure density Ao
correlations. This result can be derived more directly. As gi?v_@' (37D
shown in the Appendix, in infinite dimensions we have '
~ A A & A g _)\i:l)\“%—l
(Ni;0) =(Pi;aNi;oPi;6)0=(Ni;oPi.c)0- (33 gi:l_mr (1=2), 379
For the second step we used the fact that now the Gutzwilleg, 4
correlator contains density operators only; compare(E8).
With the help of Eq.(A12b), result (32) follows immedi- mw@_lmm
ately. Thus Eqs(30) and(32) allow us to express explicitly g%, = H— (|1|=2) (370
. . . ' oelMi: o
the probabilities for a single occupancy in terms of the local :
densities in|®,) and the variational parameters;,; for  holds in infinite dimensions.
[l|=2. Independently, expressiong34) were derived by

For pure density correlations and for wave functionsHasegaw?f and Freard and Kotliaf® who used a generali-
which obey Eq.(17), different local configurations are not zation of the Kotliar-Ruckenstein slave-boson mean-field
mixed. Consequently, th§ matrix becomes diagonal, as can approach' introduced by Dorin and Schlottmarfiin Ref.
be shown explicitly from Eq(22) with the help of Eq(29). 20 we proved that the results of these approximate treatments
For the diagonal elements we find are variationally controlled in the limit of infinite dimen-
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TABLE I. Eigenstates with symmetry specifications, spin quantum numbers, energies, and notation sym-
bols for the 16N=2 atomic configurations.

No. Atomic eigenstaté¢l’) Symmetry Sat S energyEr prob.
1 |0,0> a; 0 0 0 e
2 [1,0) &y 1/2 1/2 0 s
3 [0,1) &y 1/2 1/2 0 S|
4 [1,0) €y 1/2 -1/2 0 S
5 |0,1) €y 112 -1/2 0 s,
6 [1,1) °A, 1 1 u'-J d’
7 (T, )y +[L )2 *A 1 0 u’-3J d?
8 11,1 A, 1 -1 u'-J d}t
9 (1. D)=1L.1N/V2 'E 0 0 U'+J de
10 (111,010, 1))/\2 e 0 0 U—Jc de
11 (I11.0+[0,1 1)/\2 Ay 0 0 U+Jc da
12 [1,11) Eq 112 1/2 U+2u'-1J t,
13 [11,1) Eq 112 1/2 U+2u'-J t,
14 11,71 Eq 12 —12 uU+2u'-J t,
15 IT1.1) Eq 2 -1 u+2u'-J t)
16 111,11 Ay 0 0 2U+4U’ 2] f

sions; see Ref. 20 for further comparison with previousare four spin orbitals per atom, leading t6=216 multielec-
variational and slave-boson mean-field approaches t&ron configurationgsee Table ). Then the atomic Hamil-
degenerate-band systems. tonian reads

IV. TWO DEGENERATE BANDS Ha=U Mo Mo U’ D NNy =32 Ny
b

The formulas derived in the Appendix are completely n
general, and apply for all atomic Hamiltonia{® and for all
kinds of symmetry breaking in the one-particle wave func-
tion |®,). Depending on the complexity of the problem, the o
numerical treatment of multiband correlations may become +C5,C5/C1Cqy). (38)
rather involved. It appears to be a good strategy to study the
two-band case first, which provides the simplest example ofor two orbitals,H ,, exhausts all possible two-body interac-
a correlated multiband model. To keep our expressions fotion terms.

the § and Z matrices as simple as possible, we chose a All 16 eigenstates and their respective energies are given
simple cubic lattice with one atomic site per cell and twoin Table I. The one-electron states and, due to the particle-
degeneratal(ey) orbitals per atom. This model should re- hole symmetry, all three-electron states are seen to be degen-
flect the situation of nickel to some extent. For examplegrate. The only nontrivial cases are the two-electron states.
Ni?*, e.g. in NiO, exhibits twad(eg) holes in a high-spin  The model of two degeneratg(e;) orbitals leads to the
state, and metallic nickel has approximately @h&ole per following restrictions enforced by symmetry: first, as we can
site. use real wave functions fod(e,) orbitals, the relation]
Alternatively, we could have chosen atoms with two =Jc holds; second, the relatiod —U'=2J follows from
P(xy) Orbitals on a square lattice. However, such a modefhe cubic symmetry To see this we address the six two-
might be less meaningful for the study of ferromagnetic tran€lectron states. There is one spin tripfét, with the energy
sitions since, as we will see below, these strongly depend o' —J. In addition, there are three spin singlets: one, with
the structure of the density of states, which depends senspymmetry®A,, has the energy +Jc, whereas the other two
tively on the dimension. In addition, our formulas becomehave the energiet)’+J and U—J¢, respectively. Cubic
exact for Gutzwiller-correlated wave functions in the limit of Symmetry requirés that these two form the degenerate dou-
infinite dimensions, and d/corrections are expected to be blet *E. This symmetry requirement can be derived by a
much smaller in three than in two dimensions. From ourtransformation into the equivalent basj8y?—r?) and
experience in the one-band csESwe conjecture that the |22—X2).
differences betweed=3 andd=« are actually marginal. For Gutzwiller wave functions with pure density correla-
tions, exchange-type interactioithe second line in Eq.

_ o (38)] do not contribute to the variational ground-state energy.
A. Atomic Hamiltonian If we ignore these terms in E¢39), all configurationgl ) are

We label the orbitalsd(3z2—r2) as b=1 and d(x? eigenstates of the resultig2®". In addition to the states
—y?) asb=2, and introduce the spin index=1,|. There  with zero, one, three, and four electrons as listed in Table I,

“+ A+ “~ “ “+ A+ A ~
+32 C14C2 - 4C1,-¢C251Jc(C11C1 Co Cay
ag
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TABLE Il. Two-electron spin-orbit states with spin quantum
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The one-particle part of Hamiltoniafi) is easily diago-

numbers, energies, and notation symbols for the case of pure depalized in momentum space via the transformations

sity correlations.

No. Wave function1) S energyU, prob.
6 17,1) 1 u'-J di’
7 [1,1) -1 u'-J dit
8 [1.1) 0 u’ ds
9 I7.1) 0 U’ ds
10 [71.0) 0 u de
11 [0,71) 0 u de

the energies of the two-electron states are grouped into three

doublets. As listed in Table Il, there afg two components
of the spin triplet with|S,|]=1 at the energyJ’—J, (ii)
states|T,|) and||,T) at energyU’, and iii) states|O,]|)
and|1,0) at energyu.

B. One-particle Hamiltonian and density of states

We will use an orthogonal tight-binding Hamiltonian with

first- and second-nearest-neighbor hopping matrix elements.
Furthermore, we apply the two-center approximation for the
hopping matrix elements, and exclude any spin-flip hoppingT

Then the matrix elements in momentum space between t
32°—r? (b=1) and thex?—y? (b=2) orbitals are given
by3®
el(k)—tddg(zcoi +3c0k, + 2 cok,)
ti (cosk, + coky) + tddacoskxcod<y
3 tgzd{,+ 3t{a).1(cosk, + cosky) cosk,

+ 3ti75(cosk,cosky + €Ok, COK, + §COK,COK,),

(393
e(K) =3t (cok, +cok,)
+ g5 3 cosk,+ Fcok, + 2c0%,)
+4t2) cok,co,
+[3 Ul + ticln+ 3 L) (COK,+ COK, ) cOK,
(39
and the band mixing is given by
e1K) = €21(K) = (\3/2)[ — ti, + tid;] (cosk, — cosk,)
+L(V3IaG, — V3t + (3V3/at;
X (COkKy— COKy ) COK, . (3909

7]1:1,0: Cogbkal-('—;l,o'_i_ Sin(ﬁke;—;lo’ ' (403
7];—;2,0': - Sin(ﬁk&;—;l,o—’— Coaﬁkel-('—;Z,(r ' (40b)
with
2612( k)

tan2¢)=—+ <. 400

The dispersion relations for the bands become

€1(K) + ex(k) e1(k)— ex(k) |
1K= | | k1

(41

The » bands are degenerate along the liggé(¢) in the
irreducible Brillouin zone, and the total bandwidth ¥
=6.6 eV. Our one-particle staté,) is chosen as

|q)o>=1;[ l_k[

(Ep AK)<Ef 4)

7]1:1,077k+;2,u|vacuunn)- (42)

he Fermi surfaces of both bands are invariant under the

hseymmetry operations of the lattice.

Condition(17) is fulfilled due to the degeneracy of tieg
orbitals. For the same reason the projected orbital densities
of states

1
Di(e)= 2 coS(¢) ol e~ Eq(K)]

+sir(¢) ol e~ E(K)],

1
Dyl €)= 125 Sir(¢y) Sl e~ Ea(K)]

+coS( i) Sl e—Ep(K)], (43)
have to be identicalD,(€) =D,(e)=Dy(€)/2, and
NG, = 2 f i’”de Do(e) (44)

is independent of the band indexy ,=nJ ,=n2.

Since we built in the cubic symmetry into our starting
wave function|®,) and our atomic Hamiltoniari38) pre-
serves this symmetry, our self-consistency cycle will not
change this property. Therefore, we may sgf=s,,=s,
andt, ,=t,,=t, for our variational parameters; compare
Table | for the notation. Note that the numberfoélectrons
and | electrons need not be the same; i.e., we still allow for
band ferromagnetism.

For the study of the ferromagnetic transition it is helpful

Here we set the cubic lattice constant equal to unity. As into consider the density of states at the Fermi energy,
Refs. 17 and 18 the hopping parameters were chosen accorfy(Eg ,). This quantity as a function of the band-filling

ing to general experience for transition-metal energy bandsraction n,

(1) —

ti =1 ev, t) =025 ev and t{);@ 1)@ ()

is displayed in Fig. 1. Later, we will study the
half-filled casen(,=0.5, in the context of the Brinkman-Rice

=1:(—0.3):0.1. This choice avoids pathologlcal features inmetal-to-insulator transition, and the fillingg,=0.29 and

the energy bands such as perfect nesting at half-filling.

0.35 for ferromagnetism. The casg=0.29 corresponds to a
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0.2

FIG. 1. Model density of states at the Fermi energy as a functio
of the band fillingn,=n/4. The dashed lines indicate the fillings
used in Sec. IV. The total bandwidth\§=6.6 eV.

J. BUNEMANN, W. WEBER, AND F. GEBHARD

Along the same lines it can be shown that E2irb) reduces
to

mI:; T, r[?my. (473

With the help of Eqs(25) and (45), it then follows that
(47b

holds in our model. Similar arguments to those used to show
that theZ matrix is diagonal can be employed to show that

n,=n

fhe matrix{ is diagonal. Furthermore, the degeneracy of the

orbitals due to the cubic symmetry requires

do=0,- (479

maximum in the density of states at the Fermi energy. Therélence the dispersion relations of thebands are rescaled by

we expect the strongest tendency to ferromagnetism.
In this work we take the viewpoint of the canonical rather

the same factog such tha{®,) is unchanged, and our self-
consistency cycle terminates after a single iteration. Thus the

than the grand-canonical ensemble. This means that we keeptimum |®,) can be chosen from the start. Nevertheless,

the zero of energy fixed for all band fillings. Then the Fermi

energy moves as a function of the band filling, and is differ-

we still allow for ferromagnetism, sincgg , remained un-
determined thus far.

ent for the two spin species in the case of ferromagnetism. Of A straightforward calculation gives the explicit form of
course, this does not change the results because we coultk g factors,
have kept the Fermi energy the same for both bands and

shifted the minority band against the majority band to vary

the magnetization density.

C. Variational ground-state energy

Now we derive the explicit form of the ground-state en-
ergy functional(21) for our example. To this end we first

show that the matrig in Eq. (25 is diagonal. From Table |
we see that fofl'|>2 the atomic eigenstates are also con-
figuration eigenstatesl, r=4, . In this case, the factors
T(JU,,),FT;(JUG,) requireJUo=1=JUdo’,i.e.,o=0'. For
|T|=2 we note thatl=y with y# o,¢’ has to hold. Now
that|T") = 1/2 | oy ,0,) + | 073, 04)] according to Table |, we
see again thate=¢' must hold since either o)
=(01,05)=(v.0") or (y,0)=(03,04)=(y,0") must be
fulfilled [ (o, 0%) N (03,0,)=]. Since theZ matrix is di-
agonal it follows that the matriX,, ;- is the unit matrix.

The eigenvalues of th& matrix arex2=m,/m{. Then
the relation

m2=m’ (45)

is fulfilled for all T', I with |T'|=]l|. We then find from Eq.
(24) that

Sy=n2—[d77+t_,+2t,+f+3 (da+2de+d))]

(468

gives the probabilities for a single occupancy in terms of th

multiple occupancies which serve as our variational param-

eters; see Table | for the notation. The probability for an
empty site follows from the completeness relatiddc) as

e=1-2n)-2n0+d! +di'+dP+da+2de+ 4t + 4t

+ 3f. (46b)

1

Zm[(\/CﬂL Vs o) % (Vda+2dg+\d?)
+ Vs, (Ve VA7) + V- (VAT 7+ V)2

(48)

We denote the kinetic energy of the §),and (2¢) elec-
trons in the uncorrelated stat®,) by

Ao

6(r,0=

EF,(T
f de €Dy(e€). (49
With the help of Table I, we may then cast the minimization
problem into the form

oS e, 0+ (U~ 3)(d] o)

+2(U'+2)de+(U+J)d,

+(2U+4U" —23)(t;+t,+f). (50)

This expression must be minimized with respect to the eight
variational parametersy{', di'*, d?, d?, dg, da, t;, t|,
andf for a given band fillingn, . In a paramagnetic situa-
tion, n,=n, the number of variational parameters is re-
duced to five by the relationd’’=d%=d,, t,=t, andq,
=q. Furthermore, the relatiorss =s; and e o= €, ¢ hold.

For Gutzwiller wave functions with density correlations
we employ Eqs(34) and the notations of Table Il. Now the
ariational problem reads

BV 01 3 G et (U= 3)(dy ;') +2U" dyt 2Ud,

+(2U+4U' —2J)(t;+t,+ ). (519

Here theq factors are given by
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_ 1

Go=—5 - L(Vt,+ Vs_,) (Vdc+ Vdy)
n,(1—n;)
+ s, (Ve VdfT) + i, (VdT 7T+ )12

(51b

In this case our variational parameters dfé, d;', dg, d.,
t;, t;, andf. The probabilities for an empty site and a
singly occupied sites, are related to the variational param-
eters by

So-=ng_[dgo+t*a+2ta+f+dc+d5]’ (52@

atomic occupancies

e=1-2n{-2n0+d]'+d}j' +2ds+2d.+ 4t; + 4t + 3f. : : :
(520 U/le,|

Expression51) is identical to the one used in Refs. 17, 18,
and 32. FIG. 2. Variational parameters as a functionlffor J=0.2U
(U'=0.68U) at half-band-filling.

D. Brinkman-Rice metal-insulator transition ] ] . i
at half-band-filling close to the jump aUgg. All multiple occupancies are dis-

As afi licati ¢ _ | q continuous at the Brinkman-Rice transition, since, in the in-
th E‘:' a k'rSt aplg_matlontol tou_r varllattlor:a trg?tme'r;t we stu Iysulating case, all electrons are frozen into local spin triplets,
€ brinkman-iice metal-to-insulator transition. -or a SiNg'€j o - \ye haved,=4 and all other multiple occupancies are

band and a translationally invariant system we recover thEz‘ero. Note that in the case of pure density correlations the

original Gutzwiller wave functioi. In infinite dimensions dominance of, is less pronounced: compare Fig. 2 of Ref
this wave function at half-band-filling is known to describe a t ' ’ '

continuous transition from the paramagnetic metal to a para- |

o > In Fig. 3 theq values are shown as a function ©Of for
magnetic insulator at) = Ugg above which all electrons are variousJ/U ratios. The singular cask=0 (U=U") differs
localized (Brinkman-Rice insulator’ It can be shown,

. ; . - from the generic situation both qualitatively and quantita-
though, that the Brinkman-Rice transition at a finite interac 9 q y d

i A this th fthe ladd@nit. i.e. it i tively. The Brinkman-Rice transition is continuowsly at
lon strength IS the consequence of the genit, i.e., i IS this point, and values af/U as small as 107 produce finite
not contained in the wave function for any finite

. Y y jumps of a significant size. Arealistig value ofU’=0.8U
dimension’’ Hence statements on the metal-insulator transi J=0.1U) is enough to reduce the critical interaction

tion based on our variational description must be taken wit trengthU g for the Brinkman-Rice transition by a factor of
care. Even in infinite dimensions the Brinkman-Rice transi-,. BR P _ :
. . . 2; see Fig. 3. Only foru’'=U (J=0) all atomic two-

tion can be concealed by dantiferromagneticallyordered electron states are degenerate in energy. Thus, near the
ph_ase, see Ref. 38 for the one-band case, and Ref. 32 f rinkman-Rice transition, all double occupancies have equal
N=2. It should be clear, though, that the onset of Iong—rang%v

order crucially depends on the choice of the matrix element: eight, both in the metallic and insulating phases. Any finite
y dep . value will remove the degeneracies and reestablish the ge-
for the electron transfer. In general, there is no perfect nest:

) i S heric case. At the singular point of zero configuration witith,
ing between the Fermi surface and the Brillouin zone, suchh itical interaction strenath can be given by an analvtical
that antiferromagnetism is not expected to set in for smalf € critical Int . 9 9 y y
) X expression, first derived by L.
interaction strengths.
For multiband systems the Brinkman-Rice transition oc-
curs at integer numbersin<2N-—1 of electrons per atom.
For two bands the transitions far=1 or 3 are continuous as
in the one-band case. There, our results do not differ much 0.8
from those given in Ref. 17 for Gutzwiller wave functions I
with pure density correlations. Thus we focus on the case 0.6
=2, where, in general, the transitiondsscontinuousn the
bandwidth reduction factay. This means that a jump occurs 0.4}
at the Brinkman-Rice transition from the finite valggg in !
the metallic phase tq=0 in the insulating phase. 02}
For n=2 the dependence of the five variational param-
etersd;, dg, da, t, andf as a function of the interaction 0.0 L— ) ) | ) )
strengthU is shown in Fig. 2. Here, the valug=0.2U o 1 2 3 4 5 6
(U"=0.8U) was chosen. Fod =0 (independent electrohs U/|go|
the values of all quantities are equal. Asbecomes larger
the spin-triplet double occupandal increasingly dominates FIG. 3. Bandwidth renormalization factorat half-band-filling
the other multiple occupancies; in particular, this is trueas a function oU for various values ofl [J=(U—U")/2].

1.0

T T T T T T T
| J/U=0.45;0.2;0.1;0.05,0.02;0.01;0

L,
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0.6 J/U
0.2 0.1 0.0
05 6 : : :
[ _GWatQm
0.4 S5r| - GWiens
9BR [ .
0.3 Ar insulator_-
0.2 XL 3L _
= |——
i metal {o12
0.1 ok TTrelll . i ﬁ'l
: Tl - 0.08
0.0 . ] . ] . ] . ] . 1k Tl 6
0.0 0.2 0.4 0.6 0.8 1.0 | Tl —10.04
u'/u oL . ] A ! . 1 e O.OOV
. - i _ 0.6 0.7 0.8 0.9 1.0
FIG. 4. Bandwidth renormalization factor at the Brinkman-Rice u'/uU
transitionU =Ugg as a function olU’/U for the Gutzwiller wave
function with atomic correlationéfull line) and pure density corre-  F|G, 5. Phase diagram and critical interaction strength for the
lations (dotted line. Also shown is the value of thq factor for  grinkman-Rice transition in Gutzwiller wave functions with atomic
GWaom at U=Ugg" (dashed ling (GWqom) and pure density@ Wy, correlations as a function of

U’/U (left Y axig). The dashed curve shows the energy gain for
dens

As seen from Fig. 3 the critical interaction strengtlg; ~ atomic correlations against pure density correlation®) atUgg
and the size of the factor strongly depend on the size of the (19Nt Y axis).
Hund’s-rule coupling)/U. In Fig. 4 we display the behavior
of ggr as a function ofU’/U at the corresponding critical

interaction strengthblgg. For the Gutzwiller wave function
max

In the Brinkman-Rice insulator all sites are in the state
with lowest atomic energy. In the metal higher atomic states
: : ; , are mixed in. The strength of the mixing depends on the
with atomic correlations @Waion) @ maximum of ggr”  energy separation between the atomic levels. For example,
~0.4 for L?'_<U occurs nearJ ’_/U:0-9 (/U=0.05). A the threeS=1 configurations at enerdy — 3J are separated
shallow minimum ofggg'~0.1 is seen neat)'/U~0.14  from the singlet'E at energyU—J by 2J. Therefore, the
(JJU=0.43). Conversely, the same curve for the Gutzwillers=1 configurations dominate the metallic state near the

wave function with pure density correlation& Wgeng dig‘n's Brinkman-Rice transition for largaé, andggg decreases with

creases monotonically as a function U toward ggg increasingl. WhenJ becomes too large, ne&t’ =0 (J/U
~0.6 atU'/U=0. . =0.5), the energy of the three-electron staté$-35J is
In the range &<U’/U<1, we always findggg >>0gr.  approaching the energies of the two-electron states. Thus the

Moreover, we havedJge>USS (see Fig. 5. As expected, value oft is enhanced at the expense of theparameter.

the metallic state is stabilized by the introduction of the full Consequentlyggg increases again. In the case of pure den-
atomic correlations. Nevertheless, the two values for thesity correlations, the twdS,|=0 configurationg1,7) and
Brinkman-Rice transition are fairly close to each other,||,|) have energietl —3J not too much lower than the two
Ugr=U9S Therefore, it is interesting to plot the value of configurations|1,]) and||,1), with energiesU—2J. This
the q factor for the case of atomic correlationstat= USs,  leads to a competition of the respective occupancies fa, all
This is very similar to theggg curve for pure density corre- andqia'is a fairly smooth function of.
lations (see Fig. 4. It shows that they factor sharply—yet In Fig. 5 we display the paramagnetid (U’) phase dia-
continuously—drops as a function of in the regionU%"s  gram at half-band-filling. It is seen that the additional atomic
<U<Ugr before it jumps fromqggg to zero at the correlations GWy,,) Stabilize the metallic phase for dll
Brinkman-Rice transition. >U’ (J>0) compared to the result of the density correla-
The Brinkman-Rice transition is discontinuous becausdions. The figure also shows the gain in the variational en-
the “metallic” and “insulating” minima compete for the ergy when we use the Gutzwiller wave functions with full
global minimum of the variational energy function. In con- atomic correlations instead of pure density correlations. The
trast to the one-parameter minimization problem of thegain is shown for fixed valudJ=U33®as a function of
single-band casénd the two-band case fd=0) the me- U’/U. It is quite considerable, of the order of 0.1 eV, for
tallic minimum does not smoothly develop into the insulat-realistic values ofl/U~0.1.
ing one in the presence of more than one atomic energy ForJ<O0 (U’>U), the metal idessstable in the presence
scale. The size of thg-factor jump measures the difference of full atomic correlations. Note that in this parameter range
between the variational parameters in the metallic and insuthe insulating ground state is different for the two variational
lating phases. Small discontinuities imply that the variationalave functions: a unique atomitA; state with energyJ
parameters of the metallic state at the transition are close te |J| versus two degeneraté¢|,0) and|0,]|) states of en-
those of the Brinkman-Rice insulator. For largg; the me-  ergy U for pure density correlations. As a consequence, in
tallic and insulating minima are well separated in parametethis limit the violation of the atomic symmetry leads to a
space. qualitatively different result for pure density correlations.
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2.0 T T T T T T T
a)
16} 02
N
) Moo
Vial o1r
0.0 — r
0.8 [ /U=0.45:0.2,0.1;0.05;0.02,0.01;q] ' '
0.3 b)
L 1 L 1 L 1 L 1 L 1 L
0 1 2 3 4 5 6
U/l v o
FIG. 6. Size of the local spir((é)z) in the paramagnetic
Gutzwiller wave function with atomic correlations as a function of 0.4 - HF
the interaction strength and various valuesJef(U—U')/2 for
half-band-filling.
L 1 L
Finally, in Fig. 6, we display the size of the local spin R "
((S)?=S(S+1) at half-band-filling. In the Brinkman- U (eV)
Rice insulator we hav&(S+1)=2 (S=1) whenJ>0.
For J<O the local spin drops to zero &lgg, since the FIG. 7. Magnetization density per band as a functiorJofor

singlet 1A, is the local ground-state configuration in the J=0.2U for the Hartree-FockHF) solution, the Gutzwiller wave

Brinkman-Rice insulator. We again focus d& 0. For non- gjztczt\i/(\;irl]erv\\:\i:vepflljgiti:r?\?vsiti:]yatg(r)r:ircelca(;ir?g; ﬁg’r\{g@ : Snf‘ir (t;e

interacting electronsl{=0) simple statistical arguments ap- =~ = A

ply, and the local spin is readily found to be (1/2)(1 ;1(:;153\./29 aWnictit(1b?] ni40—0.35. The dotted line indicates the results

+1/2)(8/16)+1(1+1)(3/16)=3. atom e

For J=0 the local spin increases very slowly with up

to 1(1+1)(3/6)=1 at Ugg and above. Recall that fol functions with atomic correlations. Furthermore, the slopes

=0 the Brinkman-Rice insulator is highly degenerate. Forof M(U) are much steeper in the Hartree-Fock results than

J>0 the weight of the local triplets becomes more and morén the presence of correlations.

important toward the Brinkman-Rice transition. This leads to The properties of the ferromagnetic phase strongly de-

local spin values folJ=Ugg as large a§;(S;+1)=1.55for  pend on the spectrum of the atomic two-electron configura-

J/U=0.1, and ever§;(S;+1)=1.8 for JJU=0.45. As seen tions. To further analyze this point, we included the case of

above in Fig. 4, the increase in the local spin is most promiJ.=0, which changes only the excited two-electron states. A

nent close to the Brinkman-Rice transition, which againshift of the curveM (U) results toward smaller interaction

demonstrates the drastic change in the multiple occupanciegrengths; for a given magnetization density a smaller inter-

there. action strength is required as compared to the correct sym-

metry case)=J: (see Fig. 7. The effect is more pronounced

E. ltinerant ferromagnetism when we go to the Gutzwiller wave function with pure den-

The formulas we derived in Sec. IV C apply equally for sity correlations. In this case all exchange terms in_(I_Bﬁ) _
the case of ferromagnetism. In this subsection we allow for &€ neglected. Then, even the ground state is modified since

finite magnetization densityl per band in the direction, ~ the atomic spin triplet witl§*=0 moves up in energy into
the range of the atomic spin singlets. Again, the magnetiza-
0<M=(np;—Np )2<Mg=n/4. (53 tion curve shifts to(much smaller interaction strengths.

_ o _ Both results indicate how strongly itinerant ferromagnetism
In Fig. 7, the magnetizatioM is shown as a function df is influenced by the atomis-electron spectra.

for fixed J/U=0.2 (U "JU :06) The critical interaction for In F|g 7(a) we chose the partide density per band to be
the ferromagnetic transitiot) §°™, is about a factor 2 larger n/4=0.29 (more preciselyn/4=0.2941), right at the maxi-
than its valueU EF obtained from the Hartree-Fock-Stoner mum of the density of state curve; compare Fig. 1. For this
theory. The corresponding valubﬁensalways lie somewhat case there are finite slopes of thi§U) curves atU, and a
below the values for the Gutzwiller wave function with “Stoner criterion” for the onset of ferromagnetism applies.
atomic correlations. In general, the relatiol (V) In Fig. 7(b) we chose the particle density per bandreé
>MyendU)>MaodlU) holds, i.e., for all interaction =0.35. As seen from the density of states in Fig. 1, the
strengths the tendency to ferromagnetism is strongest withidensity of states at the Fermi ener@(Eg ;) +Do(Ef,|)

the Hartree-Fock theory and weakest for Gutzwiller wavefirst increasesas a function of the magnetization density,
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FIG. 8. Size of the local spi(1(§i)2> as a function of the inter- 0.2 |
action strength forJ=0.2U and band fillingn/4=0.35 for the = - PM
Hartree-Fock (HF) theory and the Gutzwiller wave functions
(GWdensx GWaton*)- 01 T
and, therefore, a discontinuous transition occurs from the [ HF
paramagnet to the ferromagnet. 00 — ; :1 : é é %
In the case of pure density correlations a second jump in U (eV)

theM (U) curve is observed, which is absent in the other two

curves. As discussed in R_ef. 18, this jump is related to an- FIG. 9. Phase diagram as a functionlbfandJ for the Hartree-
other feature of the density of states. In the Hartree-Focle . (HF) solution and the two Gutzwiller wave functions

theory t_his feature _is too vyeak to be of any significance i.n(GWdensv GW,y,,) for (a) n/4=0.29 and(b) n/4=0.35; PM: para-
comparison to the interaction energy. When the full atomicyagnet, FM: ferromagnet.
correlations are taken into account, this first-order jump at a
finite magnetization density disappears due to the enhancefle correlated-electron approach. In particular, this holds for
flexibility of the variational wave function. Nevertheless, in the case of atomic correlations, where about 90% of the local
this range of a strongly varying magnetization density wespin saturation value is already reached in the paramagnetic
find rapid variations of the various double occupancies, quitgtate. Again, the Hartree-Fock results are completely differ-
similar to the behavior near the Brinkman-Rice transition forent, There the local spin sharply increases as a function of
n/4=0.5. _ the interaction strength, since the absence of correlations
Another.remarkable d!ffe(ence between the Hal’tl’ee-FOC.lﬁxeS<($)2>HF(U<UEF):<(S)2>(U:O).
and Gutzwiller methods lies in the approach to ferromagnetic
saturation. In the Hartree-Fock theory the magnetizationinas 1t shows that Hartree-Fock theory always predicts a
saturates al values about 20-40 % above the onset of fer-tgomagnetic instability. In contrast, the correlated-electron
romagnetism aUg" . In contrast, in the variational approach 4nnraach strongly supports the idea that a substantial on-site
saturation is reached at about twice the onset vallig,  exchange is required for the occurrence of ferromagnetism at
=2Ug. However, even when the minority-spin occupancieseajistic interaction strengths. For the cas@=0.29, the
are zero andS§‘> is constant, the majority-spin occupancies differences between the phase diagrams for the two
Sy andd, " vary with U, since the limit of zero empty sites is correlated-electron wave functions are minor. Due to the
reached only folJ —oo. large density of states at the Fermi energy, the critical inter-
The magnitude of the local spin as a function Wfis  action strengths for the ferromagnetic transition are compa-
shown in Fig. 8. Folu—« each site is either singly occu- rably small, and the densities for the double occupancies in
pied with probability 2-n or doubly occupiedspin S=1)  both correlated wave functions do not differ much. For the
with probability n—1. Hence(($)?)..= 2(2—n)+2(n—1) larger band fillingn/4=0.35, i.e., away from the peak in the
=5(n/4)— 1. For the correlated wave functions this limit is d€nsity of state, the values fdJe are larger, and, in the
reached fronabovesince, forU <, charge fluctuations first atomic correlation case, the Gutzwiller wave functions can
increase the number of spin-1 sites at the expense ofspinMore easily generate local spin triplets while keeping the
sites, which turn into empty sites. A further decreasdJof 9l0bal paramagnetic phase. _
will also activate the singlet double occupancies and higher Finally, in Fig. 10, we display the energy differences be-
multiple occupancies. Thus the local spin eventually reduce®Veen the paramagnetic and ferromagnetic ground states as a

2 function of the interaction strength faf=0.1U. For the
2 -
bglow((si) ) Conver.selly, Hartree Fock'theory does r]Otcorrelated-electron case this quantity is of the order of the
give the proper largé&} limit for the local spin. Instead, the

s 2 \ 2\ HF Curie temperature which is in the range of 100-1000 K in
Hartree-Fock limit is given by (S)%).."=(n/4)(3+n/2). real materials. On the other hand, the Hartree-Fock theory
The change of(S;)?) atUg is only a minor effect within  yields small condensation energies only in the rangéJof

In Fig. 9 we display theJ/U phase diagram for both
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- r - 1 T T T ] Hamiltonian are taken into account, i.e., all atomic correla-
tions must be included from the beginning. Hence all con-
figurations|l;) within the subspacé;|=n are coupled, and

the diagonalization of the atomic Hamiltonian by unitary ma-
tricesT;., r results in then-electron atomic eigenstaték;).
Therefore, the multiple occupancies;. for the atomic
eigenstates are the appropriate variational parameters in our

problem. In many cases the elements of the matricese

given by symmetry alone; in general, however, they must be

obtained from the diagonalization of the atomic Hamiltonian.

. The exact results in infinite dimensions can be cast into
6 8 10 12 the form of aneffectivesingle-particle Hamiltonian with re-

U (eV) duced electron transfers between the lattice sites. Since the

atomic eigenstates are nontrivial linear combinations of one-

FIG. 10. Condensation energy as a functiontbfor J=0.2U  particle (spin-orbiy product states, the hopping reduction
for the Hartree-FockHF) theory and the Gutzwiller wave function f din &B<2N i a® with spi bi
(GW,om for n,=n/4=0.29(full lines) andn,=n/4=0.35(dashed actors are arranged in matrixqg, With spin-orbit

lines). indiceso- ando’. These quantities are nontrivial functions of
(i) the variational parameters;.i-, (ii) the local occupancies

~4 eV, for largerU, the condensation energy is of ord¢r  of the Hartree-Fock wave function, afid) the one-electron

Including the correlation effects we have relatively smalldensities in the interacting case. The derivation of the latter

condensation energies even for interaction values as large asquires the diagonalization of a\N2< 2N matrix Z. Further

K
N
o
8
T

-

(5]

o

[=]
T

1000

cond. energy (

0 2 4

twice the bandwidth §~10 eV). complexities occur for the most general case, i.e., for an
extended spin-orbit basis with more than one orbital type per
V. SUMMARY AND CONCLUSIONS representation of the symmetry group of the atomic site.

: , Here we have nonzero values for the orbital-nondiagonal
In this work we constructed Gutzwiller-correlated wave

functions with atomic correlations for general multiband parts of the on-site one-particle expectation values. At the

Hubbard models. We evaluated these many-particle wayexpense of another unitary transformation this most general

functions in the limit of infinite space dimensiors=£ =) for Case is also covered by our formalism. Naturally, this leads

the general atomic Hamiltonian for all interaction strengthsto & more complicated structure for the matriéeandZ and
without any restrictions on the electron transfer matrix elethe effective local hybridizations and one-particle densities.
ments between orbitals on the same or on different lattice Like the density-functional theory, the variational method
sites. Within the metallic phase the differences between threl§ intrinsically limited to the description of ground-state
and infinite dimensions were found to be small for theProperties, e.g., the ground-state energy, compressibility,
Gutzwiller wave function for a single barl@23*Therefore, ~Magnetization, and magnetic susceptibility. Similar to the
we expect that our results are very applicable for the case ¢fensity-functional theory our variational approach naturally
physical interest. e_xtends to fin_ite_ temperatures and low-frequency excitations,

Our variational states consist of a Jastrow-type manySince ourva_rlatlonal grOL_md-state energy corresponds to that
particle correlator which acts on an appropriate Hartree-FocRf an effective one-particle Hamiltonian. The “correlated
single-particle product wave function. The Gutzwiller cor- bands” of this Hamiltonian can be used for a comparison
relator is chosen to modify the occurrence of atomic multi-With measured dispersion curves and effective masses. Note
electron eigenstated’;) as compared to the uncorrelated that our approach is completely general, and applies to all
(statistica) case. Therefore, our trial states are exact both ifnultiband systems. Therefore, we hope that it will be fruitful
the noninteracting and atomic limits, and they incorporatdOr @ description of correlated electron systems in the metal-
the essential competition between local and itinerant featurdic Phase. Naturally, any quasiparticle approach is limited to
of interacting multiband systems. the region of the validity of Ferm!-l!qwd theory.

The atomic single-particle states of appropriate symmetry In this work we presen_ted explicit res_ults for_a d_egenerate
(spin orhit3 constitute the basis for our one-electron Hamil- two-band model as the simplest nontrivial application of our
tonian which describes the motion of the electrons througtnéthod. We assumee,-type orbitals on sites of a simple
the solid, and provides the Hartree-Fock wave function. Th&ubic lattice. For the single-particle Hamiltonian, nearest-
atomic multielectron configurationd;) are product states and next-nearest neighbor transfer matrix elements were
(Slater determinantsmade from the spin-orbit states. If the used which give rise to two bands of widthi=6.6 eV. In
(on-site electron-electron interaction contains only density-Our model we included all possible two-particle interactions.
type two-particle interactions, the configuratighg will not Yet, there _eX|st only two_ independent interaction parameters
couple, and the local probabilities;., of thesen-electron U andJ, since the relatioJ —U’=2J holds due to sym-
configurations =1|) can be used as variational parametersmetry, and, likewiseJc=J is fulfilled for the charge ex-
to minimize the ground-state energy. In general, howeverchange term. For our simple model system Eenatrix is
the stategl;) do not exhibit the correct symmetry of atomic the unit matrix and the hopping reduction matrix is diagonal.
n-electron eigenstatd§’;). The correct symmetry can be es- As a first application we studied the Brinkman-Rice
tablished only when all exchange-type terms of the atomienetal-insulator transition at half-band-filling. Above some
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finite interaction strength all electrons localize. As for thechange toward smaller values af,) if a larger value for
one-band case this localization transition is rather questiorthe peak density of states is chosen. In any case, our results
able as a scenario for the Mott transition in multiband Mott-stress the importance of the atomic Hund’s-rule exchange for
Hubbard systems. The lattice sites will not be isolated as ifierromagnetism in multiband models, a view fostered a long
the Brinkman-Rice insulator but they will remain coupled time ago by van Vleck.The ferromagnetic condensation en-
via the itinerant exchange. Thus, in the latdelimit, we  ergy is an estimate fdegT¢, the Curie temperature for iron-
should expect an antiferromagnetic insulating ground statgroup metals. It is found to be of right order of magnitude,
for J>0 whereas, fordJ<0, antiferro-type orbital ordering Tc~500 K, for interaction strengths as large as 10 eV. The
appears to be most likely. condensation energy is a smooth function of the interaction
Apart from the singular poin=0 the metal-insulator strength, i.e., the ground-state magnetization does not too
transition is discontinuous, as manifests itself in finitesensitively depend ob.
changegygx of the bandwidth reduction factor at the transi-  In contrast, the corresponding Hartree-Fock treatment
tion. The results for Gutzwiller wave functions with atomic Yields completely different results. The ferromagnetic transi-
correlations significantly differ from those for pure density tion is predicted to occur for small values &f, with
correlations. In particular, this applies to the behavior of theUf /W<1. The magnitude of the spin exchanges rela-
curves ggr(J/Ugg) for large J, which monotonously in- tively unimportant, and the magnetization saturates almost
creasegdecreasesas a function of) for atomic (pure den- immediately as a function dfi. Finally, apart from a small
sity) correlations fordJ/U>0.05. The Gutzwiller wave func- interval aboveUEF, the condensation energy is grossly over-
tion with atomic correlations is seen to be more “flexible” estimated. Thus itinerant ferromagnetism in interacting
than that with pure density correlations in the sense that theultiband systems is a correlated-electron problem that can-
metallic state can much better adapt itself to Benkman-  not be treated within a weak-coupling approach.
Rice) insulator. The inferior results of the Hartree-Fock treatment might
The general aspect of a discontinuous metal-insulatobe taken as an indication that spin-density-functional theory
transition could be generic for multiband Hubbard models. Ins also inadequate for the description of itinerant ferromag-
the insulator the atoms are dominantly in a specificnetism in iron-group metals because our results suggest
n-electron ground state which is compatible with Hund's firststrong correlation effects there. On the other hand, the suc-
rule. Othern-electron stategof excitation energyl), even  cess of this effective single-particle theory may point to an
moren=1 electron stateexcitation energies)), are sepa- inadequacy of our multiband model for the following reason.
rated from the ground state by finite gaps. In the metallicThe results from spin-density-functional theory indicate that
phase a macroscopic number of energetically unfavorable the minority-spin bands are broader and, accordingly, the
+1 electron states is created and, consequently, also a maesrresponding wave functions more extended in space than
roscopic number of the other-electron states. It does not those of the majority bands. This “orbital flexibility” makes
seem to be very likely that all of these occupation densitie¢he minority-spin density to dominate in the interstitial re-
change continuously at single critical interaction strength. gions. Orbital flexibility is not included in the present form
Instead, the metallic state breaks down discontinuously wheff our multiband models. If considered, e.g., by extending
the gain in kinetic energy can no longer compensate the inthe orbital basis, the required interaction strength for ferro-
traatomic gaps. However, variational statements on the nanagnetism may be reduced considerably toward a less cor-
ture of the transition between the metal and the Mott-related situation. In principle, our treatment of generalized
Hubbard insulator must be taken with great cafe. Gutzwiller wave functions allows us to incorporate such ba-
Nonetheless, we expect, for reasonably sdéll and for ~ sis extensions. Work in this direction is in progress, and
the case of a general band structure without the perfec@pplications of our general formalism to real systems are
nesting property, that there will exist a transition to an anti-presently under investigation.
ferromagnetic state with strong electronic localization, i.e.,
with Iarge_c_harge—transfe_r excitation e.nergies.. We do not ex- ACKNOWLEDGMENT
pect transitions to an antiferromagnetic metallic or small-gap
insulating state. Yet to test this conjecture an antiferromag- J.B. thanks P. Nozies for an invitation to the ILL, where
netic trial state needs to be investigated. this project was started.
As a second application we addressed the issue of itiner-
ant ferromagnetism. For this purpose we chose tWo bandyppenpix: EVALUATION OF EXPECTATION VALUES
fillings, the first one at the maximum of the density of states,
the second one close to it. Again, we found a large “flex- In this appendix we sketch the essential steps for the exact
ibility” of the Gutzwiller wave function with atomic corre- evaluation of Gutzwiller-correlated wave functions in infinite
lations: the paramagnetic state accommodates large locdlmensions. First, we choose a basis in which local Fock
spins, as much as 90% of the saturation value, and only terms are absent. Second, we select appropriate expansion
small jump is observed at the ferromagnetic transitionparameters for a perturbation theory around the limit of zero
Hence the paramagnetic metallic state near the transitioimteractions. As a third step we set up a diagrammatic theory
and, moreover, the ferromagnetic state are highly correlatedor the calculation of expectation values based on Wick’s
In general, the ferromagnetic transition is found to occurtheorem and the linked-cluster theoréThe clue to an
at fairly large interaction strength®l, with values 1 exact solution in infinite dimensions is the selection of the
<Ug/W=2. In addition, finite values of the exchange inter- expansion parameters. They are chosen in such a way that all
action J are required withd,,;;~0.1U. These results may higher-order diagrams vanish in infinite dimensions, and the
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trivial order gives the exact result. Further technical details . . N
can be found in Refs. 12, 13, and 20. In the rest of the mp= 2 A My 30 Ap 500 - (A4c)
Appendix we derive explicit results for the local multiple HH

occupancies and the interacting one-particle density matrixThe elements of the unitary matrix are given by

1. Change of the local basis
. . . Apr=(HIT)=2 T, (HII),
For a genera|®,) the noninteracting local one-particle !

. 20 . .
matrix C; with the entries (H|I>=de‘(Fyi Yaj), (yel,ocH). (A53)

Cﬁyyy,=(®o|6ifyai;,,r|<bo> (A1)  The inverse relation to EqA5a) reads

is not diagonal. Therefore, we derive the formalism here

which covers the most general case. T|,r:; As (1| H). (AS5b)
Since our diagrammatic approach for the evaluation of

Gutzwiller-correlated wave functions requires that local FOCkAgain, A is block-diagonal. Equation€A5) are defined for

terms are absent, we need to perform a local unitary tranSfﬂ —|H|=2. ForT =H= we setA = 1. The entries in

formation, . .
A for [T'|=|H|=1 can be chosen at our convenience. We

will specify them such that an exact evaluation of our varia-
> Fif‘,'},Fi;%U;éma,, (A2a)  tional wave functions becomes feasible in infinite dimen-
Y sions; see below.
After the change of the basis we obtain simple expres-
ﬁr;a:zy F:a’yar;w e =3 Fi;y,uﬁ+ (A2b)  Sions for expectation values j,) with the help of Wick's

Ly & Lo theoren?* For example, we have
. A - N 0_ 2,-h,0
hi;U:E Fi.y,0Ciiys Ci:yzz Fi-';—o,'yhi:o" (A2¢) mr ; |Aserl“ma,
L v (A6)
This diagonalizes the noninteracting local one-particle den- ho ho ho
sity matrix my =0HH Ng H_(l—ng ),
€ oeH
(F,)*COF,=diagn™?). (A3a)  Where we used the fact that Fock terms are absent in the new
7 basis; see EqA3b).
This is always possible becauﬁé’ is Hermitian. As seen
from Eq.(A3a), local Fock terms are absent in the new basis, 2. Choice of the expansion parameter
i.e., the noninteracting local one-particle density maittfxis In this subsection we suppress the site index. We proceed
diagonal, along the derivation outlined in Refs. 12, 13, and 20. First,
o T C o we express the square of the Gutzwiller correla®gy in
Hi oo =(Pol N ohi: 0/ [@0) = 86, 6 (Pl il D o Do) terms of the operators for the configuration eigenstates,
=g oY, (A3b) . . .
- Pézl“l‘; ()\12~—1)mF=l+ E, yH’Hrm/H’Hr,
For a given|®,) the transformation matrif; is fixed, and LH (A7)
the local occupancietsih;'g in the new basis are the eigenval-
> +
ues ofC?. Vi = ; NF= DAy AL,
From now on we work in the new local basis. We sup-
press the site index for the rest of this subsection. The notaNext, we demand that
tion of Sec. Il B remains essentially the same but each op-
~ 4 ~ oo+ n~ ~ ~
eratprc,, (cq) .has tp be'replaced by, (h,). In the new E Vi Mg = 2 XH,H'”:,FHH (A8)
basis the configuration eigenstates are denoted by HH HH (H]|H |=2)
M| such that
|H)=11 A |vacuum (oneH), (Ada)
=1 n A ~
" Pi=1+ , > , X 10 Mot 31 (A9)
and the atomic eigenstat&8) and their projection operator HH(HLIH1Z2)
mp=|T)(T'| are given by Here
IT)= ; Asr| M), (A4b) b =nh = ,EH nt, (A103)



6912 J. BUNEMANN, W. WEBER, AND F. GEBHARD 57

AHF— Ah _ nho (A10b) also “external vertices” which come from the site depen-
dence of the operato®. For example, there are two exter-

for 7="", and nal vertices at the siteisandj for O=h;’,h;.,.. The non-
HE <] triviall regult in infinite dimensions stem from the Hartree
My = I1 n¥ N3, 1, contributions at the external vertices; see below.
e To obtain an expansion in powers »f we setl5i2;0=
(J=HNH'TH=JUH;H'=JUH,) +P; and write
(A100) " i\
for H#H'; compare Secs. IIB and Al. Note that Il [1+P]=1+ > % > Il P, (13
(®o|ntF|dy)=0 because we subtracted the Hartree terms, ' K= i 15
and all Fock terms vanish ifb,) due to Eq.(A3b). wherei, ... i, specify internal vertices. Here, the prime on
The expansion 0P in Eq. (A9) is chosen such that at the sum indicates that all lattice sitgs . . . ,i, are different

least four lines meet at every internal vertex in our diagramwhen we apply Wick’s theorem. Consequently, the “lines”
matic expansion; see below. The number of parametersf our diagrammatic theory are given by the one-particle
Xy in Eq. (A8) is less than the number of parametersdensity matrix for the single-particle wave functiph,) for
Y1 due to the restrictionH|=|H'|=2, i.e., we essen- i#],

tially require
PZ = (1— 8 W Do|hT Ao |Po)y=(1— & (AT A or)o.
X@’QZO, (Alla) i ( |,])< O| i;o''j; | O> ( I,J)< io J(A?]_OL].)
X =0. (Al1b)  Note that we do not have to distinguish between “hole” and

. 2 “particle” lines because all sites are different when we ap-
Alternatively, as follows from Eq(A9), these & (2N)< lo- ply Wick's theoremt2:13:20

cal conditions can be formulated as To make further progress we have to apply the linked-

cluster theorem? Unfortunately, the restriction on the lattice
sums prevents its direct application. As shown in Refs. 13
DR R BB = (B IRTE 1D AL2b and 20, this problem can be circumvented by a redefinition

(Polhs o Pel Do) =(PolNghe Do) (A12D) e inemal vertices, i.eX;.y, y— Xi.¢ - AS a result we
The first equation follows immediately because we elimi-obtain a standard diagrammatic theory with renormalized
nated all Hartree terms from the right-hand side of &f).  vertices x;.5;, and lines given by Eq(A14). Since the
For the other ()2 equations(A12b) we analyze the case trivial order does not contain any internal vertex, it is unaf-
o= o' first. The operatoréZF on the right-hand side of Eq. fected by the redefinition of the internal vertices.

(A9) contain at least two Hartree-Fock operaton&';( In our theory we subtracted the_Hartree contributions and
howsAh h ) o ©  ruled out local Fock terms according to Eé3b). For our
—ngd)(ng,—ng?) which cannot be eliminated completely diagrams this implies that there are no trivial loops at any
by a single operaton”.. The term withﬁ;"’FH, for H#=H'  internal vertex. Consequently, there are at least three inde-

vanishes because of the Fock terms, which transfer electrof§ndent paths from one vertexto another vertex, in each
from H' to H. According to Eq(A3b), the expectation value nontrivial diagram, sincg{| =|7'|=>2 requires that at least
of Fock terms vanishes ). For o+ o, we note that Eq. four lines meet at every internal vertex; paths are indepen-
(A10) requiresH’'=yU o and H=yU 0_/' to eliminate all dent if they do not have a line in common. In the limit of
possible Fock terms. Nevertheless, this contribution still vaninfinite dimensionSonly i, =i, contributes to a diagram if

; . - andi, are linked by(at leas} three independent paths. In our
Lihes E?{clausle OSf the;\egwammg I-||Iarfcreet—rl]: ock olpgtnifolfotr_ case this implies that the diagram simplginishessince a

e orbitaly. In Se€c. A We shal give the explicit solution ;¢ linking two identical vertices is zero by the definition
of EqQ. (A12) in infinite dimensions.

Eq. (A14).12132°Consequently, the trivial order of our ex-
pansion gives the exact result in infinite dimension, e.g., only
the diagram for(h;’,h;.,,) with a single line survives the
limit d—. The remaining task is the calculation of the

Since the variational parameters obey-=1 in the ab- trivial (Hartreg terms which stem from the external vertices.
sence of interactions, the parametgs, ;,» go to zero for  This will be carried out for the local occupancies and the
vanishing interactions. Therefore, they are suitable for a perene-particle density matrix in the rest of the Appendix.
turbation expansion in which the order of the expansion is

(Dol PEDo)=1, (A129)

3. Diagrammatic theory and simplifications
in infinite dimensions

given by the number of factors. When we perform this 4. Local atomic occupancies
expansion we may apply Wick’s theorem for the resulting . . o
expectation values, sincab,) is a one-particle state. As In this subsection we suppress the site index. We need to

usual in perturbation theory around a single-particle <tate, €valuate(mr). As described in Sec. A 3, the task is readily
the resulting contributions can be represented diagrammatrolved in infinite dimensions,

cally. In our theory the “internal vertices” represent the fac- - A o~ A 2 0

tors X;.4, 7. IN addition to these internal vertices there are mp=(mr)=(PcMrPg)o=Armr, (A15)
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where we used the definitiord4b) and (18). This proves

Eq. (23). Furthermore, we may use this result to show that

condition(A12q) is indeed fulfilled. We have

(@dlPEf0=( T\ ) =3 me-1. 410
0

because the local completeness relafibac) holds for the
correlated wave function in any dimension.

For later use we writé¢ in the form

Po= 2 NpsrMynr, (Al7a)
HH
where we defined
AH,H,:; A rArAL (A17b)

In infinite dimensions we then have

My 1 = <':n7-t,H’> = ISGr:nH,H’ ISG>O

Nty 1Ny 1AM 20 M M 24,00
Hl,Hz,H3,H4

:; )\}C"H)\'HI‘Km}hC’O, (A].Sa)

where we used Eq12) in the last step. In particular, for
H="H' we obtain

My =My = EK: I\ | 2. (A18Db)

With the help of Eq(A15) and definition(A17b), Eq. (27b)
follows.

Now we solve the (R)? equationgA12b). We multiply
both sides of Eq(A9) with h h,., and take the expectation
value with respect t¢d ). With the help of Eqs(14¢ and
(Adc), Eqg. (A12b) becomes

<ﬁ;ﬁa’>O:; )\% 2 AH,FA;,H'<F];ﬁa’mH,H'>O'
HH'
(A19)

Apparently we may set{=JU o’ (o' ¢ J). With the help
of Eqg. (A3b) we then find that{'=JU o and, therefore,
o<¢ J. We use the definition of the fermionic sign function
(6) and Eq.(A15), which allow us to simplify the above
equation to

Zyor :%1 A% AL ), (A20a)

where the entries of the (2 X (2N) matrix Z are given by
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h,0
n, My
Zo’,a”z h050',0"— 2 0 2 ngr(U',,m
mg IF=2 My 70,0" ¢ )
mho0
+ ._7U(0',0")
xfsgn(a, DA 7U o), PAT (70 e) o
(o,0")
(A20b)

We can safely ignore the unphysical casendf®=0. All

quantities in the matriZ are known as soon as we figb )
and our variational parameters; for |I'|=2. Equation

(A20a states that a unitary () X (2N) matrix A’ with
» =A% diagonalizes the Hermitian matri, and that

o,

A2=0 ([T'|=1) are its eigenvalues,

(A")*Z(A")=diag\?). (A21)
Therefore, conditiongA12b) fix the matrix A, for |T|
=|o]|=1, and the expectation values for the atomic configu-
rations with a single electron are given by-=\2m2.

5. @ matrix

As in Sec. A 4, we have to work in the new basis. There-
fore, we start the derivation of th§ matrix with a unitary
transformation

+ L+
J?‘Tix'i’i<hi;"'lhj;ai>'

(€lin)= 2 Fiyof

01,09

i;v1.0q
(A22)

In Sec. A 3 we showed that the calculation of the interacting
one-particle density matrix reduces to

<F‘i+;alﬁj;ai>:<q)o|(ﬁ’i;eﬁi+;alﬁ’i;e)(Isj;Gﬁj;aiﬁ’j;e)M’o)
(A23)
in infinite dimensions. There we also showed that only a

single line can join the two external verticesand j. This
implies

<ﬁi+;—¢rlﬁj;a'i>: 2 qff,lq:ii<(b0|ﬁrazﬁjoé|q)0>

0'2,0'é
(A243
— A+ -
- E/ <Ci;‘yzci;‘;’é>0
Y2:Y2
o U'é +
X 2 N\ A 0 i, 2 Fiig.oy
0'2,0'2
(A24b)

which proves the general structure of the variational kinetic
energy(21b),

(o= 2 T07%ci,ciyo (A58

iy
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TV o) 01 o+ [0 _
ti'} 1= 2 qi;%,-ij;aéFi;o-l,'yle;yi,(ri qg_ 2 2 )\(H’UU’),(HUU))\H,H’

Ulv”iyo'zyﬂ'é H!(O,I¢H’) H(o¢H)

, xfsgn o, H)fsgn( e’ H')(M%, .00,  (A30
v E VR, Er (A25b) an( )fsgn( ){my H Yo, (A30)
, b 72,92 05,7,
2.7 because we finally singled out the electron creation operator
h_, for the contraction according to Wick’s theorem in Eq.

Recall that theF matrix is the unit matrix when Eq17) is ~ (A24a). We use Egs(A15) and (A17b) and the trivial rela-

fulfilled. tion
From now on we suppress the site index. To derive the
explicit form of the § matrix we usePg in form (A17) to m™0 mMome
write (M7, Vo= — = 1 0tUe) (A31)
H' H'/0T ho ™ h,0 h,0
1-n,, n, (1—ng)
to derive thed matrix in the form
Aaia R A
PGho-PG_Hl HZZHS ” Mgy N g 1, 1, Mo
(A26) — 1 mprmp»
Ug = h.0 h.0 > 0,0
n,(1=n )rr’ mpmg,
We use the Dirac representation of the operanfnn%H,
=|H)(H'| and find X > fsgn o’ H')fsgn o, H)
HH
(oeH,0' ¢H')
h,0p + +
A ala N - x\/m’ﬁ, Mo A oA ve) TAR AR T
PchoPs= > Mo, Mg 1 { Hal N [ Ha) My g (Vo) TH T RO HH Do) T pe AT
My Hy Hy Hy 172 73704 14 (A32)
= N o NHL H When Eq.(17) holds, we recover Eq22).
My Hy Ha My 1271277 3,1y
X fsgn( U,H3)5H2,H3U(,ﬁ1ﬁlﬂ4, (A27) 6. Local one-particle density matrix

Finally, we derive an expression for tligeractinglocal

L L . one-particle density matrix,
where we used the definition of the fermionic sign function P y

(6). Note thato ¢ Hs is now required. We see that,| o

=|H4|+1, and our arguments presented in Sec. A 4 show Cyl,yf(C;lei)- (A33a)

that we haveH,=H'Uo’ (¢’ ¢ H') andH,="H' in infi-

nite dimensions. Otherwise, local Fock terms would appeagge that the local gross occupancies are the diagonal entries
in the evaluation of EqUA23). For o’ ¢ H' we introduce the o this matrix,n,=C,, .. We express this matrix in the new
operator basis, '

e - - C, = F, .F. (hifh,). (A33b
me o= I A T1 a-ab,  (a2s) 012,«; rorF o y(fnhe).  (A33D

yeH'\o' yeH' o'

In infinite dimensions the entries of the interacting local one-

which allows us to write f{3="H) particle density matriXi in the new basis are readily calcu-
lated,

IE’GF];IE’GZZ ﬁ:;, > H(,l,(,i=<h:;lh(,r>=<PGh:; hePalo
o' H/(O'/$H/) ’}-[(0-¢’H)

X)\(HIUO.!)'(HUU.))\H’Hrngr(O',H) )\Hl,Hz)\H3,H4

Hl,Hz,Hg ,H4
Xfsgne’  H')m7, ;0 (A29) XUAT‘Hl,HzF‘;lﬁaiths,H)o- (A34)

in infinite dimensions. When we compare this expressiorin infinite dimensions we may set;=H;=H', Ha
with Eg. (A24a), we see that =HU oy, andH,=HU o, with o,07 ¢ H. We then find
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— ! _ 0 +
H"l"’i_ ; fsgn( oy, H)fsgn oy, H) Cyl'yi_yzyr C'Yz'?’éa Uza . FtrzszFyé,(réXulatrz
(0’1,0'5_¢H) 2172 171722
~h
h,0 n"z + + 38
X2 Mt U MHU el 1My XT,()xa'é,o"Fylv"lFﬂ'le/' (A38)
H’ n(r2 1 1"
= E fsgn o, H)fsgn o}, H) Recall that the local gross occupancies are the diagonal en-
H tries of this matrixn,=C,, .
(op.0¢H) The result(A38) allows Us to cast the local hybridization
o term in the variational ground-state energy into the form
rir’
x 2 —5 o Ar HUo AHUG T
r.r’ MpMp RArSE: T Yot g
E/ tN(c Cy) = Z £72:72(C} Cyr)o, (A393)
xE Ager AL, 2. (A35) wn 7272

where the effective local hybridizations are given by
Therefore, the matrixi is known in terms of the variational
parametersn; and the properties of the one-particle product

- Trv= 1.7 +

state|d,). If the noninteracting local-density matri@° is L 727, . E, FVlleFvi'Yi E, X0,

- - 1 01,0 oy, 0.
diagonal, i.e., Eq(17) is fulfilled, the matrice<C andH are ’ ' ?

- ~h
identical, and Eq(A35) also leads to Eq27). The matrixH Neg, . .
is Hermitian and can thus be diagonalized with the help of X_nh,oxaé oF o, vy (A39Db)
the unitary matrixX, 72
X = diag wh This expression simplifies if we assume that there are no
(X)"THX=diagn?), (A36) p p

local Fock terms already in the basis of theperators. Then

~h . e . -
wheren; are the eigenvalues of the matkik The entries of o = matrix becomes the unit matrix. Let us further demand

H thus obey that orbitals with different crystal-field energies do not mix,
. e, t*" =46, €, If our (lne-particle product statgb)
Ho o= > Xay.0,00,,0M 0, X g1 o respects this symmetry, thé matrix becomes the unit ma-
2.0, 2t trix, and we find
mn
=2 Xy, h0<h Ro)oX s oo (A37) Tr; M
. 0_2 2 2'71 t%2:72= 572'7é672nT. (A40)
Y2

We transform back into the representation watloperators
and find for the interacting local one-particle density matrixThus we recover Eq28b) for the effective crystal-field en-
in the original basis ergies.
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