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Multiband Gutzwiller wave functions for general on-site interactions
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We introduce Gutzwiller wave functions for multiband models with general on-site Coulomb interactions.
As these wave functions employ correlators for the exact atomic eigenstates, they are exact both in the
noninteracting and atomic limits. We evaluate them in infinite lattice dimensions for all interaction strengths
without any restrictions on the structure of the Hamiltonian or the symmetry of the ground state. The results for
the ground-state energy allow us to derive an effective one-electron Hamiltonian for Landau quasiparticles,
applicable for finite temperatures and frequencies within the Fermi-liquid regime. As applications for a two-
band model we study the Brinkman-Rice metal-to-insulator transition at half-band-filling, and the transition to
itinerant ferromagnetism for two specific fillings, at and close to a peak in the density of states of the
noninteracting system. Our results significantly differ from those for earlier Gutzwiller wave functions where
only density-type interactions were included. When the correct spin symmetries for the two-electron states are
taken into account, the importance of the Hund’s-rule exchange interaction is even more pronounced, and leads
to paramagnetic metallic ground states with large local magnetic moments. Ferromagnetism requires fairly
large interaction strengths, and the resulting ferromagnetic state is a strongly correlated metal.
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I. INTRODUCTION

In transition metals and their compounds the electrons
the opend shells participate in the itineracy of the valen
electrons. At the same time their atomic correlations, as
scribed, e.g., by Hund’s first and second rules, remain imp
tant. The competition between the electrons’ itinerant a
local features results in many interesting phenomena: m
netism is most prominent, but metal-to-insulator transitio
high-to-low-spin changes, orbital ordering etc. also occu
these materials.

For insulating compounds it is commonly accepted t
their magnetic behavior can be described in terms of
spins of localizedelectrons which are coupled by supere
change via the ligands. However, there are conflicting vie
on the magnetism of the metallic state. One line of reason
which dates back to van Vleck and others assumes ra
small charge fluctuations around the average~atomic! dn

configuration, and the localized spins also remain a us
concept in the metallic state~minimum polarity model1!. The
other school, starting from the Hartree-Fock-Stoner theo
treats magnetism within a single-particle band theory, i.e.
a completely itinerant limit. In particular, spin-densit
functional theory quite successfully describes the ferrom
netism of the iron group metals, not only concerning ma
netic moments but also such details as the shapes
complicated multisheet Fermi surfaces.2 In the spirit of a
free-electron theory the spin-density-functional theory gen
ally assumes a local exchange-correlation potential whic
a function of the local charge and spin densities. The suc
of this effective single-particle theory is quite surprisin
since, in the atomic limit, it cannot reproduce the open-sh
electronic structure.
570163-1829/98/57~12!/6896~21!/$15.00
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In his seminal work, Gutzwiller3 proposed a variationa
approach to the problem of itinerant ferromagnetism in
Hubbard model.4 In his many-body trial state atomic con
figurations with large deviations from the average occupa
could be reduced with respect to a Hartree-Fock refere
state, depending on the value of the variational parame
Therefore, his approach incorporated both the itinerant
localized aspects of itinerant magnetism. Gutzwiller intr
duced an approximate evaluation of his many-body wa
function, the so-called Gutzwiller approximation, and co
cluded from his one-band results that itinerant ferrom
netism requires large interaction strengths. Later, Brinkm
and Rice realized5 that the Gutzwiller approximation con
tained a transition from a paramagnetic metal to a param
netic insulator in which all electrons are localized. T
Brinkman-Rice insulator provides an instructive example
the more general class of Mott-Hubbard insulators.6,7

During the last decade, analytical techniques were de
oped which allow for an exact evaluation of the single-ba
Gutzwiller wave function in one dimension,8 and in the limit
of infinite dimensions.9,10 For the latter case the results of th
Gutzwiller approximation were found to become exact. F
thermore, the results of the Kotliar-Ruckenstein slave-bo
mean-field theory11 were rederived for the paramagnetic a
antiferromagnetic cases.9,10 In this work we extend the
single-band formalism of Refs. 12 and 13, which provid
exact results in infinite dimensions for the whole class
Gutzwiller wave functions. For the one-band case
Gutzwiller variational approach in infinite dimensions a
slave-boson theories11,14on a mean-field level were shown t
be completely equivalent; see Ref. 7 for a recent review.

The case of multiband systems poses a more complic
problem. Each lattice site represents an atom with an inc
6896 © 1998 The American Physical Society
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57 6897MULTIBAND GUTZWILLER WAVE FUNCTIONS FOR . . .
pletely filled shell. Consequently, the atomic Hamiltoni

Ĥat should include the relevant properties of the electro
structure of isolated atoms or ions. This means that it sho
comply with Hund’s first rule, it should reproduce the esse
tial features of low-lying multiplet excitations, and it has
incorporate the symmetry of the ligand field. The commo

used form for the atomic partĤat of the multiband Hubbard
Hamiltonian includes~i! an orbital-diagonal density-densit
interaction of strengthU as in the single-band case, and
orbital-nondiagonal density-density interaction of stren
U8; and ~ii ! two-particle spin-exchange terms of strengthJ

such that the ground state ofĤat fulfills Hund’s first rule, i.e.,
it exhibits maximum spin forJ.0. Frequently, the spin
exchange terms are taken only partially into account. If
~orbital! spin-flip terms are neglected, we are left withĤat

dens

which contains only density-density interactions on t
atomic sites.

It should be noted that a while ago atomic Hamiltonia
similar to Ĥat were studied using the ‘‘local ansatz,’’15,16 a
scheme in the spirit of the Gutzwiller method. However, t
results presented were limited to small interaction streng
Recently, the Gutzwiller method was generalized to tr
multiband Hubbard models with local-density-type intera
tions Ĥat

densof arbitrary strengths.17–20The essential idea wa
to evaluate correlators for atomic multielectron configu
tions made up of spin-orbital product states~‘‘Slater deter-
minants’’!. This was possible sinceĤat

densis diagonal in these
configurations. In a first step the Gutzwiller approximati
was used;17–19 later it was shown that these results beco
exact in the limit of infinite dimensions.20 In Ref. 20 we
compared our results with those of previous generalizati
of the Gutzwiller approximation to the case of degener
bands.

However, the frequently used treatment ofĤat, as dis-
cussed above, stillviolatesthe atomic symmetry; for an ex
ample, see below. The reason is the incomplete form of
exchange interaction. To establish the correct symmetry
necessary to includeall exchange terms which result from
~spin conserving! two-particle interaction, i.e., we will have
to consider the contributions from up to four different sp
orbits. Then the propern-electron atomic eigenstates are ce
tain linear combinations of the respectiven-electron spin-
orbit product configurations. As a consequence, the optim
way to generalize the Gutzwiller wave function to multiba
systems is the use of correlators for the atomicn-electron
eigenstates instead of the pure spin-orbit product states.

In this paper we introduce and evaluate such variatio
wave functions with atomic correlations. Our formulation a
lows for arbitrary orbital bases, including more than one
bital type per representation, i.e., more than one type ofs, p,
or d orbitals. It also allows for an arbitrary number of atom
sites in the unit cell. In the limit of infinite dimension, exa
results for the ground-state energy are given in terms o
effective single-particle Hamiltonian which defines the ba
structure of correlated electrons. Thus our theory natur
extends to finite temperatures~Fermi-liquid regime!. As an
example we apply our theory to a two-band model, and sh
that the correct treatment of the atomic correlations yield
variety of results which quantitatively and, in some cas
c
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even qualitatively differ from those using pure density co
relations.

Our paper is structured as follows. In Sec. II we introdu
the multiband Hubbard Hamiltonian with purely on-site i
teractions. The spectrum of the general atomic Hamilton
is supposed to be known. Then, in Sec. III, we specify
class of Gutzwiller wave functions with atomic correlation
and give the exact results for the ground-state energy in
finite dimensions. For the case of pure density correlati
we recover our previous expressions.17,18,20 In Sec. IV, we
discuss the example of two partly filledeg bands in more
detail. We study the Brinkman-Rice metal-insulator tran
tion at half-band-filling, and itinerant ferromagnetism f
two generic band fillings. A summary and conclusions clo
our presentation. Technical details are deferred to the App
dix.

II. HAMILTON OPERATOR

A. Multiband Hubbard model

Our multiband Hubbard model4 is defined by the Hamil-
tonian

Ĥ5 (
i , j ;s,s8

t i , j
s,s8ĉi ;s

1 ĉ j ;s81(
i

Ĥ i ;at[Ĥ11Ĥat. ~1!

Here,ĉi ;s
1 creates an electron with combined spin-orbit ind

s51, . . . ,2N (N55 for 3d electrons! at the lattice sitei of
a solid. We do not yet specify a periodic lattice, i.e., the si
i may also represent ligand atoms. Therefore, the numbe
orbitals N also depends on the site,N[Ni . To keep the
notation transparent we will drop this additional index in t
following, and we will use the notion ‘‘orbital’’ for spin-
orbit states.

The first term in Eq.~1!, Ĥ1, represents an appropriat
single-particle tight-binding Hamiltonian. Crystal-field term
are included in the orbital energiest i ,i

s,s[e i ;s . We may also

allow nondiagonal crystal-field termst i ,i
s,s8 for sÞs8 in case

of a sufficiently large orbital basis~or a sufficiently low
atomic-site symmetry!. In this paper we do not include spin
orbit coupling, and we may therefore assume that the te

t i , j
s,s8 are spin-independent quantities which only depend

the spatial part of the underlying spin-orbit wave function
In model ~1! we assume that the electrons interact on

locally. Separating the density-density interactions we m
write the atomic Hamiltonian as two terms,

Ĥ i ;at5 (
s,s8~sÞs8!

Ui
s,s8n̂i ;sn̂i ;s8

1 (
~s1,s2!Þ~s3.s4!

Ji
s1 ,s2 ;s3 ,s4ĉi ;s1

1 ĉi ;s2

1 ĉi ;s3
ĉi ;s4

.

~2!

The exchange-type second term transfers two electrons f
the orbitalss3.s4 into the orbitalss1,s2. The quantities
Ui andJi represent all possible two-particle~Coulomb! in-
teractions compatible with the symmetry at sitei .
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B. Atomic problem

In our variational wave functions we will deal with oper
tors which project onto atomicn-electron eigenstatesuG i&
with arbitrary number 0<n<2N. Altogether we will have
22N eigenstates. Each of thesen-electron eigenstates has th
proper symmetry, i.e., they can be classified according
irreducible representations of the group defined by the s
metry of sitei . Part of this classification is according to th
total spin quantum number asĤ i ;at commutes with (SW i)

2.
The problem of classification is treated in detail by ma
authors;21,22 here we refer to Ref. 23.

We now suppress the site index, and introduce the follo
ing notation for all possible 22N multiorbital configurationsI
and the corresponding multielectron configuration statesuI &.

~1! A configurationI is characterized by the electron o
cupation of the orbitals,

I P$B;~1!, . . . ,~2N!;~1,2!, . . . ,~2,3!, . . . ~2N

21,2N!; . . . ;~1, . . . ,2N!%. ~3!

Here the symbolB in Eq. ~3! means that the site is empty
Then, there follow all 2N one-electron configurations, a
N(2N21) two-electron configurations—the sequence
numbers in round brackets (s1 ,s2 , . . . ) is irrelevant—and
so on up to the 2N electron configuration (1, . . . ,2N). For
example, (s1 ,s2) specifies one of the 45 possible@Ar#3d2

configurations of a Ti21 ion in the frozen-core approxima
tion.

In general, we interpret the indicesI in Eq. ~3! as sets in
the usual sense. For example, in the atomic configura
I\I 8 only those orbitals inI are occupied which are not inI 8.
The complement ofI is Ī 5(1,2, . . . ,2N)\I , i.e., in the
atomic configurationĪ all orbitals but those inI are occu-
pied.

~2! uI u[n, i.e., the absolute valueuI u of a configuration
indicates the numbern of a multielectron state,

uBu50;u~s1!u51;u~s1 ,s2!u52; . . . ;u~1, . . . ,2N!u52N.
~4!

~3! A multielectron configuration state~Slater determi-
nant! is constructed as

uI &5us1 ,s2 , . . . ,suI u&5 )
n51

uI u

ĉsn

1 uvacuum& ~snPI !.

~5!

The sequence of electron creation operators inuI & is in as-
cending order, i.e.,si,sj for i , j . When we add an elec
tron to the configuration eigenstateuI & with the help of the
electron creation operator we obtain the configuration eig
stateuI øs& up to the fermionic sign function

fsgn~s,I !5^I øsuĉs
1uI &. ~6a!

It gives a minus~plus! sign if it takes an odd~even! number
of anticommutations to shift the operatorĉs

1 to its proper
place in the sequence of electron creation operators
uI øs&. In general, forI ùI 85B we define
to
-

-

f

n

n-

in

fsgn~ I 8,I !^I øI 8u )
n51

~snPI 8!

uI 8u

ĉsn

1 uI &. ~6b!

~4! The operator which projects onto a specific configu
tion I is given by

m̂I[m̂I ,I5uI &^I u5 )
sPI

n̂s )
sP Ī

~12n̂s!, ~7a!

where the operatorsm̂I fulfill the local completeness relation

(
I

m̂I51. ~7b!

At this point we also define the operators

n̂B51, n̂I5 )
sPI

n̂s for uI u>1, ~8!

which measure the ‘‘gross’’ occupancy of the atom. T
gross occupancy operatorn̂I gives a nonzero result whe
applied touI 8& only if I contains electrons in the same orb
als asI 8. However,I andI 8 need not be identical becauseI 8
could contain additional electrons in further orbitals, i.
only I #I 8 is required. Each gross~net! operator can be writ-
ten as a sum of net~gross! operators

n̂I5 (
I 8$I

m̂I 8, ~9a!

m̂I5 (
I 8$I

~21! uI 8\I un̂I 8. ~9b!

For practical calculations the net operatorsm̂I are more use-
ful than the gross operatorsn̂I because the former are pro
jection operators onto a given configurationI , i.e., m̂Im̂I 8
5d I ,I 8m̂I , as can be seen from Eq.~7a!.

~5! For IÞI 8 we denoteJ5I ùI 8, I 5JøI 1, and I 8
5JøI 2 with I 1ùI 25B. We want to describe the transfer o
uI 1u5uI 2u electrons from the orbitalsI 2 to the orbitalsI 1,
whereas the contents of the otheruJu orbitals remains un-
changed. The gross operator for the transfer of electr
from I 2 to I 1 is given by

n̂I 1 ,I 2
5S )

n51
~snPI 1!

uI 1u

ĉsn

1 D S )
n51

~snPI 2!

uI 2u

ĉsuI 2u2nD . ~10!

With the help of the fermionic sign function~6!, the net
operator for this process can be cast into the form

m̂I ,I 85uI &^I 8u5fsgn~J,I 1!fsgn~J,I 2!

3F )
sPJ

n̂s )
sP J̄\~ I 1øI 2!

~12n̂s!G n̂I 1 ,I 2
. ~11!

All these operators are also defined foruI 1uÞuI 2u. Note the
useful relation

m̂I 1 ,I 2
m̂I 3 ,I 4

5d I 2 ,I 3
m̂I 1 ,I 4

, ~12!
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which is easily proven with the help of the Dirac represe
tation of the operatorsm̂I ,I 8.

The configuration eigenstatesuI & form a basis of the
atomic Hilbert space. The atomic Hamiltonian~2! is Hermit-
ian, and only states with the same number of electrons

mixed. For the Hamilton matrix (HJ at) I ,I 85^I uĤatuI 8& we can

find a unitary matrixTJ such that

~TJ !1HJ atTJ5diag~EG!. ~13a!

The atomic eigenstatesuG& obey

uG&5(
I

TI ,GuI &, ~13b!

ĤatuG&5EGuG&, ~13c!

with

(
G

TI ,GTG,I 8
1

5d I ,I 8, TG,I
1 [TI ,G* . ~13d!

Since only configuration eigenstates with the same num

of electrons mix, the matrixTJ is block diagonal, withuGu
5uI u for each block.

The atomic Hamiltonian can be written as

Ĥat5(
G

EGm̂G , ~14a!

where the projection operators

m̂G5uG&^Gu5(
I ,I 8

TI ,Gm̂I ,I 8TG,I 8
1 ~14b!

fulfill the local completeness relation

(
G

m̂G51. ~14c!

For G5I 5B we setTB,B51. For uGu5uI u51 the atomic
Hamiltonian does not fixTI ,G , and we may choose them t
facilitate the evaluation of expectation values for our var
tional wave functions.

III. GUTZWILLER-CORRELATED WAVE FUNCTIONS

A. Gutzwiller wave functions with atomic correlations

Gutzwiller-correlated wave functions are Jastrow-ty
wave functions, i.e., they are written as the many-part
correlatorP̂G acting on a normalized single-particle produ
stateuF0&,

uCG&5 P̂GuF0&. ~15!

Expectation values with the single-particle stateuF0& are de-
noted by

O0[^Ô&05^F0uÔuF0&. ~16!

In general, these expectation values can be calculated e
with the help of Wick’s theorem.24 In the following we will
assume that local Fock terms are absent inuF0&, i.e.,
-

re

er

-

e

ily

^F0uĉi ;s
1 ĉi ;s8uF0&5ds,s8^F0uĉi ;s

1 ĉi ;suF0&5ds,s8ni ;s
0 .

~17!

This is the case when our orbital basis is sufficiently
stricted, i.e., when we use only one set of orbitals for ea
irreducible representation of the group of the site which
consider inĤ1 of Eq. ~1!. For cubic symmetry this mean
that we only consider one type ofs and/orp and/ord orbit-
als. In cases of lower symmetry further restrictions are p
sible; for example, in tetragonal site symmetrys-type and
d(3z22r 2) orbitals may mix. For Hamiltonian~1!, we thus
choose a basis where the orbitals are not mixed locally,

t i ,i
s,s850 for sÞs8. In the Appendix we treat the genera

case without these restrictions.
The one-particle stateuF0& is usually chosen as th

ground state of an effective one-particle HamiltonianĤ1
eff .

Apart from the simplest casesĤ1
eff is not identical withĤ1;

in generalĤ1
eff has a lower symmetry thanĤ1. In these cases

restriction~17! may also fail.
The one-particle wave function contains many configu

tions which are energetically unfavorable with respect to
interacting part of the Hamiltonian. Hence the correlatorP̂G
is chosen to suppress the weight of these configuration
minimize the total energy in Eq.~1!. In the limit of strong
correlations the Gutzwiller correlatorP̂G should project onto
atomic eigenstates. Therefore, the proper multiba
Gutzwiller wave function with atomic correlations reads

uCG&5 P̂GuF0&5)
i

P̂i ;GuF0&,

P̂i ;G5)
G

l i ;G
m̂i ;G5)

G
@11~l i ;G21!m̂i ;G#

511(
G

~l i ;G21!m̂i ;G . ~18!

The 22N variational parametersl i ;G per site are real, positive
numbers. Forl i ;G0

50 and all otherl i ;GÞ0 the atomic con-

figuration uG0& at sitei is removed fromuF0&.
Expectation values in Gutzwiller-correlated wave fun

tions uCG& will be denoted as

O[^Ô&5
^CGuÔuCG&

^CGuCG&
. ~19!

We will frequently use the expectation values for the atom
eigenstates,mi ;G5^m̂i ;G&, and for the gross and net occu
pancy operators,ni ;I5^n̂i ,I& andmi ;I5^m̂i ;I&.

B. Exact results in infinite dimensions

Even in the one-band case the evaluation of Gutzwill
correlated wave functions is a difficult many-particle pro
lem; see Ref. 7 for a review. It can be solved completely
the limit of infinite dimensions without further approxima
tions. For d→` the electron transfer matrix elements b
tween two sitesi and j at a distanceu i 2 j u5( l 51

du i l2 j l u on
a ~hyper!cubic lattice have to be scaled as9
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t i , j5 t̄ i , j S 1

A2d
D u i 2 j u

, ~20!

where t̄ i , j is independent of the dimension. In this way t
kinetic and potential energies compete with each other fo
d. The bandwidth of the electrons stays finite, and we m
even use the properd-dimensional density of statesDs,0(e)
for our calculations. The essential simplification in the lim
of infinite dimensions lies in the fact that only local prope
ties of the wave function are needed for the calculation
single-particle properties; see Refs. 7, 25, and 26 for rec
reviews on the limit of infinite dimensions.

The class of Gutzwiller-correlated wave functions
specified in Eq.~18! can also be evaluated exactly in th
limit of infinite dimensions. We defer technical details of th
calculations to the Appendix, and merely quote the m
result of our work at this point. In the limit of infinite dimen
sions the expectation value of Hamiltonian~1! in terms of
the Gutzwiller-correlated wave function~18! is given by

^Ĥ&5 (
iÞ j ;s1 ,s18

t̃
i , j
s1 ,s18^ĉi ;s1

1 ĉ j ;s
18
&01(

i ;s
e i ;sni ;s

1(
i ;G

Ei ;Gmi ;G , ~21a!

t̃
i , j
s1 ,s185 (

s2 ,s28
t
i , j
s2 ,s28Aqi ;s2

s1 q
j ;s

28

s18 . ~21b!

It is seen that the variational ground-state energy can be
into the form of the expectation value of an effective sing
particle Hamiltonian with a renormalized electron trans

matrix t̃ i , j
s,s8 . Due to the off-diagonal terms in the local in

teractions~2!, the q factors are arranged in a nondiagon

matrix qi ;s
s8 which determines the quasiparticle bandwid

and the strength of band mixing in the solid state. As sho
in the Appendix, the elements of theqJ matrix can be written
as

Aqs
s85A 1

ns8
0

~12ns8
0

!
(
G,G8

AmGmG8

mG
0mG8

0

3 (
I ,I 8

~s¹I ,s8¹I 8!

fsgn~s8,I 8!fsgn~s,I !

3Am
~ I 8øs8!

0
mI 8

0 TG,~ I øs!
1 T~ I 8øs8!,GTG8,I 8

1 TI ,G8,

~22!

where we suppressed the site index and used the defin
~6! of the fermionic sign function.

Equations~21! and ~22! show that we may replace th
original variational parametersl i ;G by their physical coun-
terparts, the atomic occupanciesmi ;G . They are related by
the simple equation

l i ;G
2 5

mi ;G

mi ;G
0

. ~23!
ll
y

f
nt

n

st
-
r

l

n

on

Due to the local completeness relation, the probability for
empty site is a function of the other atomic occupation d
sities,

mi ;B512 (
G~ uGu51!

mi ;G2 (
G~ uGu>2!

mi ;G . ~24!

For the moment we suppress the site index. As shown in
Appendix, the parameterslG

2 for atomic configurations with
a single electron (uGu51) are the eigenvalues of a (2N)

3(2N) matrix ZJ whose entries are given by

Zs,s85
ns

0

ms
0

ds,s82 (
G~ uGu>2!

mG

mG
0 (

I ~s,s8¹I !

fsgn~s8,I !

3fsgn~s,I !T~ I øs8!,GTG,~ I øs!
1

mI ø~s,s8!

0

m
~s,s8!

0 . ~25!

The unphysical casems
0 50 can safely be ignored. The ma

trix ZJ is diagonalized by a unitary matrixTJ8,

~TJ8!1ZJ~TJ8!5diag~lG
2 ! ~ uGu51!, ~26!

with Ts,G8 5Ts,G* . These entries in the matrixTJ remained
undetermined at the end of Sec. II.

Finally, the local densitiesni ;s can be calculated from Eq
~9a! as

ni ;s5 (
I ~sPI !

mi ;I , ~27a!

where the configuration probabilities foruI u>1 follow from
Eq. ~A18b! of the Appendix,

mi ;I5(
K
U(

G
Ami ;G

mi ;G
0

Ti ;G,I
1 Ti ;K,GU2

mi ;K
0 . ~27b!

Hence all quantities in Eq.~21! are now expressed in term
of the variational parametersmi ;G and the properties ofuF0&.

The remaining task is the minimization of^Ĥ& in Eq. ~21!
with respect tomi ;G anduF0&. A conceivable though numeri
cally unsuitable way to achieve this goal is the followin
For fixed mi ;G an input wave functionuF0

in& defines local
occupanciesni ;s

0,in . The wave functionuF0
out& is the ground

state of the effective one-particle Hamiltonian

Ĥeff, in5 (
iÞ j ;s,s8

t̃ i , j
s,s8; inĉi ;s

1 ĉ j ;s81(
i ;s

ẽ i ;s
in n̂i ;s

1(
i ;G

Ei ;Gmi ;G , ~28a!

ẽ i ;s
in 5e i ;s

ni ;s
in

ni ;s
0,in

. ~28b!

Note that we have to impose the condition that the orbit
do not mix locally in our effective one-particle Hamiltonian

t̃ i ,i
s,s85ds,s8 ẽ i ;s . The local occupancies ofuF0

out& serve as
input for the next step in the iteration procedure. In this w
the optimumuF0

opt& for fixed mi ;G is found recursively. After
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the global minimization of̂ Ĥ& with respect to the param
etersmi ;G the optimum effective one-particle Hamiltonia
Ĥeff, opt defines a quasiparticle band structure which is s
able for a comparison with experiments. Furthermore, it
be used to derive the low-temperature thermodynam
Naturally, the application ofĤeff, opt is restricted to the de
scription of the low-energy physics ~Fermi-liquid
regime!.7,12,13

Another route to finite temperatures is the following. T
variational ground-state energy is a function of the occup
cies in momentum space. Hence it can be used to de
Fermi-liquid parameters27 which give access to the low
energy physics of metallic correlated-electron systems.28,29

C. Gutzwiller wave functions with pure density correlations

If we ignore the nondiagonal termsJi
s1 ,s2 ;s3 ,s4 in the

atomic Hamiltonian~2!, we may set

TI ,G[d I ,G ~29!

in all the formulas of Sec. III B. Under these conditions w
recover the Gutzwiller wave functions with pure density c
relations. In fact, for this class of Gutzwiller wave functio
the variational ground-state energy is independent of
nondiagonal termsJi

s1 ,s2 ;s3 ,s4 . This is ultimately due to
the fact that the correlator does not change the orbital oc
pation, and that Fock terms vanish inuF0& according to Eq.
~17!.

Under condition~29!, theZJ matrix in Eq.~25! is diagonal.
We use the fact that

ni ;s5mi ;s1 (
I ~ uI u>2,sPI !

mi ;I ~30!

due to Eq.~9! so that the eigenvalues ofZJ can be written as

l i ;s
2 5

ni ;s
0 2ni ;s1mi ;s

mi ;s
0

. ~31!

Hence, for consistency with Eq.~23!, we should have

ni ;s5ni ;s
0 ~32!

for Gutzwiller-correlated wave functions with pure dens
correlations. This result can be derived more directly.
shown in the Appendix, in infinite dimensions we have

^n̂i ;s&5^P̂i ;Gn̂i ;sP̂i ;G&05^n̂i ;sP̂i ;G
2 &0 . ~33!

For the second step we used the fact that now the Gutzw
correlator contains density operators only; compare Eq.~18!.
With the help of Eq.~A12b!, result ~32! follows immedi-
ately. Thus Eqs.~30! and~32! allow us to express explicitly
the probabilities for a single occupancy in terms of the lo
densities in uF0& and the variational parametersmi ;I for
uI u>2.

For pure density correlations and for wave functio
which obey Eq.~17!, different local configurations are no
mixed. Consequently, theqJ matrix becomes diagonal, as ca
be shown explicitly from Eq.~22! with the help of Eq.~29!.
For the diagonal elements we find
t-
n
s.

-
ve

-

e

u-

s

er

l

Aqi ;s[Aqi ;s
s 5A 1

ni ;s
0 ~12ni ;s

0 !
(

I ~s¹I !
Ami ;Imi ;~ I øs!,

~34a!

and the expectation value of the Hamiltonian reduces to

^Ĥ&5 (
iÞ j ;s,s8

t i , j
s,s8Aqi ;sAqj ;s8^ĉi ;s

1 ĉ j ;s8&01(
i ;s

e i ;sni ;s
0

1(
i ;I

Ui ;Imi ;I , ~34b!

where

Ui ;I5^I uĤ i ;atuI &5 (
s,s8PI

Ui
s,s8 . ~34c!

For translationally invariant systems the above equati
~34! were first derived in Refs. 17 and 18 using a generaliz
Gutzwiller approximation scheme. A concise description
this semiclassical counting approach can be found in Ref.
for a mathematically well-defined procedure, see Ref.
The wave function used in Refs. 17, 18, and 20 was defi
as

uCG&5 P̂G8 uC0&

P̂G8 5)
i

)
I ~ uI u>2!

gi ;I
m̂i ;I . ~35!

The wave functionsuC0& and uF0& are related by the
transformation31

uC0&5 P̂SPuF0&, ~36a!

P̂SP5)
i

gi ;B )
s51

2N

gi ;s
n̂i ;s . ~36b!

SinceP̂SP contains single-particle operators only, bothuC0&
anduF0& are single-particle wave functions. The relation b
tween the parametersgi ;I andl i ;I is given by

gi ;B5l i ;B , ~37a!

gi ;s5
l i ;s

l i ;B
, ~37b!

gi ;I5
l i ;Il i ;B

uI u21

PsPIl i ;s
~ uI u>2!, ~37c!

and

gi ;I
2 5

mi ;B
uI u21mi ;I

PsPImi ;s
~ uI u>2! ~37d!

holds in infinite dimensions.
Independently, expressions~34! were derived by

Hasegawa32 and Frésard and Kotliar,33 who used a generali
zation of the Kotliar-Ruckenstein slave-boson mean-fi
approach11 introduced by Dorin and Schlottmann.34 In Ref.
20 we proved that the results of these approximate treatm
are variationally controlled in the limit of infinite dimen
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TABLE I. Eigenstates with symmetry specifications, spin quantum numbers, energies, and notatio
bols for the 16N52 atomic configurations.

No. Atomic eigenstateuG& Symmetry Sat Sat
z energyEG prob.

1 u0,0& a1 0 0 0 e
2 u↑,0& eg 1/2 1/2 0 s↑
3 u0,↑& eg 1/2 1/2 0 s↑
4 u↓,0& eg 1/2 21/2 0 s↓
5 u0,↓& eg 1/2 21/2 0 s↓
6 u↑,↑& 3A2 1 1 U82J dt

↑↑

7 (u↑,↓&1u↓,↑&)/A2 3A2 1 0 U82J dt
0

8 u↓,↓& 3A2 1 21 U82J dt
↓↓

9 (u↑,↓&2u↓,↑&)/A2 1E 0 0 U81J dE

10 (u↑↓,0&2u0,↑↓&)/A2 1E 0 0 U2JC dE

11 (u↑↓,0&1u0,↑↓&)/A2 1A1 0 0 U1JC dA

12 u↑,↑↓& Eg 1/2 1/2 U12U82J t↑
13 u↑↓,↑& Eg 1/2 1/2 U12U82J t↑
14 u↓,↑↓& Eg 1/2 21/2 U12U82J t↓
15 u↑↓,↓& Eg 1/2 21/2 U12U82J t↓
16 u↑↓,↑↓& A1 0 0 2U14U822J f
u
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e I,
sions; see Ref. 20 for further comparison with previo
variational and slave-boson mean-field approaches
degenerate-band systems.

IV. TWO DEGENERATE BANDS

The formulas derived in the Appendix are complete
general, and apply for all atomic Hamiltonians~2! and for all
kinds of symmetry breaking in the one-particle wave fun
tion uF0&. Depending on the complexity of the problem, t
numerical treatment of multiband correlations may beco
rather involved. It appears to be a good strategy to study
two-band case first, which provides the simplest example
a correlated multiband model. To keep our expressions

the qJ and ZJ matrices as simple as possible, we chose
simple cubic lattice with one atomic site per cell and tw
degenerated(eg) orbitals per atom. This model should re
flect the situation of nickel to some extent. For examp
Ni21, e.g. in NiO, exhibits twod(eg) holes in a high-spin
state, and metallic nickel has approximately oned hole per
site.

Alternatively, we could have chosen atoms with tw
p(x,y) orbitals on a square lattice. However, such a mo
might be less meaningful for the study of ferromagnetic tr
sitions since, as we will see below, these strongly depend
the structure of the density of states, which depends se
tively on the dimension. In addition, our formulas becom
exact for Gutzwiller-correlated wave functions in the limit
infinite dimensions, and 1/d corrections are expected to b
much smaller in three than in two dimensions. From o
experience in the one-band case10,12,35we conjecture that the
differences betweend53 andd5` are actually marginal.

A. Atomic Hamiltonian

We label the orbitalsd(3z22r 2) as b51 and d(x2

2y2) asb52, and introduce the spin indexs5↑,↓. There
s
to

-

e
e

of
or

a

,

l
-
n

si-

r

are four spin orbitals per atom, leading to 24516 multielec-
tron configurations~see Table I!. Then the atomic Hamil-
tonian reads

Ĥat5U(
b

n̂b,↑n̂b,↓1U8 (
s,s8

n̂1,sn̂2,s82J(
s

n̂1,sn̂2,s

1J(
s

ĉ1,s
1 ĉ2,2s

1 ĉ1,2sĉ2,s1JC~ ĉ1,↑
1 ĉ1,↓

1 ĉ2,↓ĉ2,↑

1 ĉ2,↑
1 ĉ2,↓

1 ĉ1,↓ĉ1,↑!. ~38!

For two orbitals,Ĥat exhausts all possible two-body intera
tion terms.

All 16 eigenstates and their respective energies are g
in Table I. The one-electron states and, due to the parti
hole symmetry, all three-electron states are seen to be de
erate. The only nontrivial cases are the two-electron sta
The model of two degenerated(eg) orbitals leads to the
following restrictions enforced by symmetry: first, as we c
use real wave functions ford(eg) orbitals, the relationJ
5JC holds; second, the relationU2U852J follows from
the cubic symmetry.23 To see this we address the six tw
electron states. There is one spin triplet3A2 with the energy
U82J. In addition, there are three spin singlets: one, w
symmetry1A1, has the energyU1JC, whereas the other two
have the energiesU81J and U2JC , respectively. Cubic
symmetry requires23 that these two form the degenerate do
blet 1E. This symmetry requirement can be derived by
transformation into the equivalent basisu3y22r 2& and
uz22x2&.

For Gutzwiller wave functions with pure density correl
tions, exchange-type interactions@the second line in Eq.
~38!# do not contribute to the variational ground-state ener
If we ignore these terms in Eq.~38!, all configurationsuI & are
eigenstates of the resultingĤat

dens. In addition to the states
with zero, one, three, and four electrons as listed in Tabl
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the energies of the two-electron states are grouped into t
doublets. As listed in Table II, there are~i! two components
of the spin triplet with uSzu51 at the energyU82J, ~ii !
statesu↑,↓& and u↓,↑& at energyU8, and ~iii ! statesu0,↑↓&
and u↑↓,0& at energyU.

B. One-particle Hamiltonian and density of states

We will use an orthogonal tight-binding Hamiltonian wit
first- and second-nearest-neighbor hopping matrix eleme
Furthermore, we apply the two-center approximation for
hopping matrix elements, and exclude any spin-flip hoppi
Then the matrix elements in momentum space between
3z22r 2 (b51) and thex22y2 (b52) orbitals are given
by36

e1~k!5tdds
~1! ~ 1

2 coskx1 1
2 cosky12 coskz!

1 3
2 tddd

~1! ~coskx1cosky!1tdds
~2! coskxcosky

1@ 1
4 tdds

~2! 13tddp
~2! #~coskx1cosky!coskz

13tddd
~2! ~coskxcosky1 1

4 coskxcoskz1
1
4 coskycoskz!,

~39a!

e2~k!5 3
2 tdds

~1! ~coskx1cosky!

1tddd
~1! ~ 1

2 coskx1 1
2 cosky12coskz!

14tddp
~2! coskxcosky

1@ 3
4 tdds

~2! 1tddp
~2! 1 9

4 tddd
~2! #~coskx1cosky!coskz ,

~39b!

and the band mixing is given by

e12~k!5e21~k!5~A3/2!@2tdds
~1! 1tddd

~1! #~coskx2cosky!

1@~A3/4!tdds
~2! 2A3tddp

~2! 1~3A3/4!tddd
~2! #

3~coskx2cosky!coskz . ~39c!

Here we set the cubic lattice constant equal to unity. As
Refs. 17 and 18 the hopping parameters were chosen ac
ing to general experience for transition-metal energy ban
tdds
(1) 51 eV, tdds

(2) 50.25 eV and tdds
(1),(2) :tddp

(1),(2) :tddd
(1),(2)

51:(20.3):0.1. This choice avoids pathological features
the energy bands such as perfect nesting at half-filling.

TABLE II. Two-electron spin-orbit states with spin quantu
numbers, energies, and notation symbols for the case of pure
sity correlations.

No. Wave functionuI & Sat
z energyUI prob.

6 u↑,↑& 1 U82J d1
↑↑

7 u↓,↓& 21 U82J d1
↓↓

8 u↓,↑& 0 U8 ds

9 u↑,↓& 0 U8 ds

10 u↑↓,0& 0 U dc

11 u0,↑↓& 0 U dc
ee

ts.
e
.

he

n
rd-
s,

The one-particle part of Hamiltonian~1! is easily diago-
nalized in momentum space via the transformations

hk;1,s
1 5cosfkĉk;1,s

1 1sinfkĉk;2,s
1 , ~40a!

hk;2,s
1 52sinfkĉk;1,s

1 1cosfkĉk;2,s
1 , ~40b!

with

tan~2fk!5
2e12~k!

e1~k!2e2~k!
. ~40c!

The dispersion relations for theh bands become

E1,2~k!5
e1~k!1e2~k!

2
6AS e1~k!2e2~k!

2 D 2

1@e12~k!#2.

~41!

The h bands are degenerate along the line (j,j,j) in the
irreducible Brillouin zone, and the total bandwidth isW
56.6 eV. Our one-particle stateuF0& is chosen as

uF0&5)
s

)
k

~E1,2~k!<EF,s!

ĥk;1,s
1 ĥk;2,s

1 uvacuum&. ~42!

The Fermi surfaces of bothh bands are invariant under th
symmetry operations of the lattice.

Condition~17! is fulfilled due to the degeneracy of theeg
orbitals. For the same reason the projected orbital dens
of states

D1~e!5
1

L(
k

cos2~fk!d@e2E1~k!#

1sin2~fk!d@e2E2~k!#,

D2~e!5
1

L(
k

sin2~fk!d@e2E1~k!#

1cos2~fk!d@e2E2~k!#, ~43!

have to be identical,D1(e)5D2(e)[D0(e)/2, and

nb,s
0 5 1

2 E
2`

EF,s
de D0~e! ~44!

is independent of the band index,n1,s
0 5n2,s

0 [ns
0 .

Since we built in the cubic symmetry into our startin
wave functionuF0& and our atomic Hamiltonian~38! pre-
serves this symmetry, our self-consistency cycle will n
change this property. Therefore, we may sets1,s5s2,s[ss

and t1,s5t2,s[ts for our variational parameters; compa
Table I for the notation. Note that the number of↑ electrons
and↓ electrons need not be the same; i.e., we still allow
band ferromagnetism.

For the study of the ferromagnetic transition it is helpf
to consider the density of states at the Fermi ener
D0(EF,s). This quantity as a function of the band-fillin
fraction ns is displayed in Fig. 1. Later, we will study th
half-filled case,ns50.5, in the context of the Brinkman-Ric
metal-to-insulator transition, and the fillingsns50.29 and
0.35 for ferromagnetism. The casens50.29 corresponds to a

n-
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maximum in the density of states at the Fermi energy. Th
we expect the strongest tendency to ferromagnetism.

In this work we take the viewpoint of the canonical rath
than the grand-canonical ensemble. This means that we
the zero of energy fixed for all band fillings. Then the Fer
energy moves as a function of the band filling, and is diff
ent for the two spin species in the case of ferromagnetism
course, this does not change the results because we c
have kept the Fermi energy the same for both bands
shifted the minority band against the majority band to va
the magnetization density.

C. Variational ground-state energy

Now we derive the explicit form of the ground-state e
ergy functional~21! for our example. To this end we firs

show that the matrixZJ in Eq. ~25! is diagonal. From Table I
we see that foruGu.2 the atomic eigenstates are also co
figuration eigenstates,TI ,G5d I ,G . In this case, the factor
T(Jøs),GTG,(Jøs8)

1 requireJøs5I 5Jøs8, i.e.,s5s8. For
uGu52 we note thatJ5g with gÞs,s8 has to hold. Now
that uG&5A1/2@ us1 ,s2&6us3 ,s4&] according to Table I, we
see again thats5s8 must hold since either (g,s)
5(s1 ,s2)5(g,s8) or (g,s)5(s3 ,s4)5(g,s8) must be

fulfilled @(s1 ,s2)ù(s3 ,s4)5B#. Since theZJ matrix is di-
agonal it follows that the matrixTs,G8 is the unit matrix.

The eigenvalues of theZJ matrix arels
2 5ms /ms

0 . Then
the relation

mG
05mI

0 ~45!

is fulfilled for all G, I with uGu5uI u. We then find from Eq.
~24! that

ss5ns
02[dt

ss1t2s12ts1 f 1 1
2 ~dA12dE1dt

0!]
~46a!

gives the probabilities for a single occupancy in terms of
multiple occupancies which serve as our variational para
eters; see Table I for the notation. The probability for
empty site follows from the completeness relation~14c! as

e5122n↑
022n↓

01dt
↑↑1dt

↓↓1dt
01dA12dE14t↑14t↓

13 f . ~46b!

FIG. 1. Model density of states at the Fermi energy as a func
of the band fillingns5n/4. The dashed lines indicate the filling
used in Sec. IV. The total bandwidth isW56.6 eV.
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Along the same lines it can be shown that Eq.~27b! reduces
to

mI5(
G

uTI ,Gu2mG . ~47a!

With the help of Eqs.~25! and ~45!, it then follows that

ns5ns
0 ~47b!

holds in our model. Similar arguments to those used to sh

that theZJ matrix is diagonal can be employed to show th
the matrixqJ is diagonal. Furthermore, the degeneracy of
orbitals due to the cubic symmetry requires

qs
s[qs . ~47c!

Hence the dispersion relations of theh bands are rescaled b
the same factorq such thatuF0& is unchanged, and our self
consistency cycle terminates after a single iteration. Thus
optimum uF0& can be chosen from the start. Neverthele
we still allow for ferromagnetism, sinceEF,s remained un-
determined thus far.

A straightforward calculation gives the explicit form o
the q factors,

qs5
1

ns
0~12ns

0 !
[ ~Ats1As2s! 1

2 ~AdA12AdE1Adt
0!

1Ass~Ae1Adt
ss!1At2s~Adt

~2s!~2s!1Af !] 2.

~48!

We denote the kinetic energy of the (1,s) and (2,s) elec-
trons in the uncorrelated stateuF0& by

ē s,05E
2`

EF,s
de eD0~e!. ~49!

With the help of Table I, we may then cast the minimizati
problem into the form

Evar, atom5(
s

qsēs,01~U82J!~dt
↑↑1dt

↓↓1dt
0!

12~U81J!dE1~U1J!dA

1~2U14U822J!~ t↑1t↓1 f !. ~50!

This expression must be minimized with respect to the ei
variational parameters,dt

↑↑ , dt
↓↓ , dt

0 , dt
0 , dE , dA , t↑ , t↓ ,

and f for a given band fillingns . In a paramagnetic situa
tion, n↑5n↓ , the number of variational parameters is r
duced to five by the relationsdt

ss5dt
0[dt , ts[t, and qs

5q. Furthermore, the relationss↑5s↓ and ē ↓,05 ē ↑,0 hold.
For Gutzwiller wave functions with density correlation

we employ Eqs.~34! and the notations of Table II. Now th
variational problem reads

Evar, dens5(
s

q̃sēs,01~U82J!~d1
↑↑1d1

↓↓!12U8ds12Udc

1~2U14U822J!~ t↑1t↓1 f !. ~51a!

Here theq factors are given by

n
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q̃s5
1

ns
0~12ns

0 !
@~Ats1As2s!~Adc1Ads!

1Ass~Ae1Ad1
ss!1At2s~Ad1

~2s!~2s!1Af !#2.

~51b!

In this case our variational parameters ared1
↑↑ , d1

↓↓ , ds , dc ,
t↑ , t↓ , and f . The probabilities for an empty sitee and a
singly occupied sitess are related to the variational param
eters by

ss5ns
02@d1

ss1t2s12ts1 f 1dc1ds#, ~52a!

e5122n↑
022n↓

01d1
↑↑1d1

↓↓12ds12dc14t↑14t↓13 f .
~52b!

Expression~51! is identical to the one used in Refs. 17, 1
and 32.

D. Brinkman-Rice metal-insulator transition
at half-band-filling

As a first application of our variational treatment we stu
the Brinkman-Rice metal-to-insulator transition. For a sin
band and a translationally invariant system we recover
original Gutzwiller wave function.3 In infinite dimensions
this wave function at half-band-filling is known to describe
continuous transition from the paramagnetic metal to a p
magnetic insulator atU5UBR above which all electrons ar
localized ~Brinkman-Rice insulator!.5 It can be shown,
though, that the Brinkman-Rice transition at a finite intera
tion strength is the consequence of the large-d limit, i.e., it is
not contained in the wave function for any fini
dimension.37 Hence statements on the metal-insulator tran
tion based on our variational description must be taken w
care. Even in infinite dimensions the Brinkman-Rice tran
tion can be concealed by an~antiferromagnetically! ordered
phase; see Ref. 38 for the one-band case, and Ref. 32
N52. It should be clear, though, that the onset of long-ran
order crucially depends on the choice of the matrix eleme
for the electron transfer. In general, there is no perfect n
ing between the Fermi surface and the Brillouin zone, s
that antiferromagnetism is not expected to set in for sm
interaction strengths.

For multiband systems the Brinkman-Rice transition o
curs at integer numbers 1<n<2N21 of electrons per atom
For two bands the transitions forn51 or 3 are continuous a
in the one-band case. There, our results do not differ m
from those given in Ref. 17 for Gutzwiller wave function
with pure density correlations. Thus we focus on the casn
52, where, in general, the transition isdiscontinuousin the
bandwidth reduction factorq. This means that a jump occur
at the Brinkman-Rice transition from the finite valueqBR in
the metallic phase toq50 in the insulating phase.

For n52 the dependence of the five variational para
etersdt , dE , dA , t, and f as a function of the interaction
strengthU is shown in Fig. 2. Here, the valueJ50.2U
(U850.6U) was chosen. ForU50 ~independent electrons!
the values of all quantities are equal. AsU becomes larger
the spin-triplet double occupancydt increasingly dominates
the other multiple occupancies; in particular, this is tr
,

e
e

a-

-

i-
h
i-

for
e
ts
t-
h
ll

-

h

-

close to the jump atUBR. All multiple occupancies are dis
continuous at the Brinkman-Rice transition, since, in the
sulating case, all electrons are frozen into local spin triple
i.e., we havedt5

1
3 and all other multiple occupancies a

zero. Note that in the case of pure density correlations
dominance ofdt is less pronounced; compare Fig. 2 of Re
17.

In Fig. 3 theq values are shown as a function ofU for
variousJ/U ratios. The singular caseJ50 (U5U8) differs
from the generic situation both qualitatively and quanti
tively. The Brinkman-Rice transition is continuousonly at
this point, and values ofJ/U as small as 1022 produce finite
jumps of a significant size. A~realistic! value ofU850.8U
(J50.1U) is enough to reduce the critical interactio
strengthUBR for the Brinkman-Rice transition by a factor o
2; see Fig. 3. Only forU85U (J50) all atomic two-
electron states are degenerate in energy. Thus, near
Brinkman-Rice transition, all double occupancies have eq
weight, both in the metallic and insulating phases. Any fin
J value will remove the degeneracies and reestablish the
neric case. At the singular point of zero configuration widt4

the critical interaction strength can be given by an analyti
expression, first derived by Lu.39

FIG. 2. Variational parameters as a function ofU for J50.2U
(U850.6U) at half-band-filling.

FIG. 3. Bandwidth renormalization factorq at half-band-filling
as a function ofU for various values ofJ @J5(U2U8)/2#.
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As seen from Fig. 3 the critical interaction strengthUBR

and the size of theq factor strongly depend on the size of th
Hund’s-rule couplingJ/U. In Fig. 4 we display the behavio
of qBR as a function ofU8/U at the corresponding critica
interaction strengthsUBR. For the Gutzwiller wave function
with atomic correlations (GWatom) a maximum of qBR

max

'0.4 for U8,U occurs nearU8/U50.9 (J/U50.05). A
shallow minimum of qBR

min'0.1 is seen nearU8/U'0.14
(J/U50.43). Conversely, the same curve for the Gutzwil
wave function with pure density correlations (GWdens) in-
creases monotonically as a function ofJ/U toward qBR

dens

'0.6 atU8/U50.
In the range 0<U8/U,1, we always findqBR

dens.qBR.
Moreover, we haveUBR.UBR

dens ~see Fig. 5!. As expected,
the metallic state is stabilized by the introduction of the f
atomic correlations. Nevertheless, the two values for
Brinkman-Rice transition are fairly close to each oth
UBR*UBR

dens. Therefore, it is interesting to plot the value
the q factor for the case of atomic correlations atU5UBR

dens.
This is very similar to theqBR curve for pure density corre
lations ~see Fig. 4!. It shows that theq factor sharply—yet
continuously—drops as a function ofU in the regionUBR

dens

<U,UBR before it jumps from qBR to zero at the
Brinkman-Rice transition.

The Brinkman-Rice transition is discontinuous becau
the ‘‘metallic’’ and ‘‘insulating’’ minima compete for the
global minimum of the variational energy function. In co
trast to the one-parameter minimization problem of
single-band case~and the two-band case forJ50) the me-
tallic minimum does not smoothly develop into the insul
ing one in the presence of more than one atomic ene
scale. The size of theq-factor jump measures the differenc
between the variational parameters in the metallic and in
lating phases. Small discontinuities imply that the variatio
parameters of the metallic state at the transition are clos
those of the Brinkman-Rice insulator. For largeqBR the me-
tallic and insulating minima are well separated in parame
space.

FIG. 4. Bandwidth renormalization factor at the Brinkman-Ri
transitionU5UBR as a function ofU8/U for the Gutzwiller wave
function with atomic correlations~full line! and pure density corre
lations ~dotted line!. Also shown is the value of theq factor for
GWatom at U5UBR

dens ~dashed line!.
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In the Brinkman-Rice insulator all sites are in the sta
with lowest atomic energy. In the metal higher atomic sta
are mixed in. The strength of the mixing depends on
energy separation between the atomic levels. For exam
the threeS51 configurations at energyU23J are separated
from the singlet1E at energyU2J by 2J. Therefore, the
S51 configurations dominate the metallic state near
Brinkman-Rice transition for largeJ, andqBR decreases with
increasingJ. WhenJ becomes too large, nearU850 (J/U
50.5), the energy of the three-electron states 3U25J is
approaching the energies of the two-electron states. Thus
value of t is enhanced at the expense of thedt parameter.
Consequently,qBR increases again. In the case of pure de
sity correlations, the twouSzu50 configurationsu↑,↑& and
u↓,↓& have energiesU23J not too much lower than the two
configurationsu↑,↓& and u↓,↑&, with energiesU22J. This
leads to a competition of the respective occupancies for aJ,
andqBR

dens is a fairly smooth function ofJ.
In Fig. 5 we display the paramagnetic (U,U8) phase dia-

gram at half-band-filling. It is seen that the additional atom
correlations (GWatom) stabilize the metallic phase for allU
.U8 (J.0) compared to the result of the density corre
tions. The figure also shows the gain in the variational
ergy when we use the Gutzwiller wave functions with fu
atomic correlations instead of pure density correlations. T
gain is shown for fixed valueU5UBR

dens as a function of
U8/U. It is quite considerable, of the order of 0.1 eV, f
realistic values ofJ/U'0.1.

For J,0 (U8.U), the metal islessstable in the presenc
of full atomic correlations. Note that in this parameter ran
the insulating ground state is different for the two variation
wave functions: a unique atomic1A1 state with energyU
2uJu versus two degenerateu↑↓,0& and u0,↑↓& states of en-
ergy U for pure density correlations. As a consequence
this limit the violation of the atomic symmetry leads to
qualitatively different result for pure density correlations.

FIG. 5. Phase diagram and critical interaction strength for
Brinkman-Rice transition in Gutzwiller wave functions with atom
(GWatom) and pure density (GWdens) correlations as a function o
U8/U ~left Y axis!. The dashed curve shows the energy gain
atomic correlations against pure density correlations atU5UBR

dens

~right Y axis!.



in

e

-
1

o
or
t

m
in
c

or
r

r
er
t
th

ith
v

es
an

de-
ra-
of

. A
n
ter-
ym-
d
n-

ince

iza-
.

sm

be

his

s.

the

y,

of

lts

57 6907MULTIBAND GUTZWILLER WAVE FUNCTIONS FOR . . .
Finally, in Fig. 6, we display the size of the local sp

^(SW i)
2&5Si(Si11) at half-band-filling. In the Brinkman-

Rice insulator we haveSi(Si11)52 (Si51) when J.0.
For J,0 the local spin drops to zero atUBR, since the
singlet 1A1 is the local ground-state configuration in th
Brinkman-Rice insulator. We again focus onJ>0. For non-
interacting electrons (U50) simple statistical arguments ap
ply, and the local spin is readily found to be (1/2)(
11/2)(8/16)11(111)(3/16)5 3

4.
For J50 the local spin increases very slowly withU, up

to 1(111)(3/6)51 at UBR and above. Recall that forJ
50 the Brinkman-Rice insulator is highly degenerate. F
J.0 the weight of the local triplets becomes more and m
important toward the Brinkman-Rice transition. This leads
local spin values forU5UBR as large asSi(Si11)51.55 for
J/U50.1, and evenSi(Si11)51.8 for J/U50.45. As seen
above in Fig. 4, the increase in the local spin is most pro
nent close to the Brinkman-Rice transition, which aga
demonstrates the drastic change in the multiple occupan
there.

E. Itinerant ferromagnetism

The formulas we derived in Sec. IV C apply equally f
the case of ferromagnetism. In this subsection we allow fo
finite magnetization densityM per band in thez direction,

0<M5~nb,↑2nb,↓!/2<M sat5n/4. ~53!

In Fig. 7, the magnetizationM is shown as a function ofU
for fixed J/U50.2 (U8/U50.6). The critical interaction for
the ferromagnetic transition,UF

atom, is about a factor 2 large
than its valueUF

HF obtained from the Hartree-Fock-Ston
theory. The corresponding valuesUF

densalways lie somewha
below the values for the Gutzwiller wave function wi
atomic correlations. In general, the relationMHF(U)
.Mdens(U).Matom(U) holds, i.e., for all interaction
strengths the tendency to ferromagnetism is strongest w
the Hartree-Fock theory and weakest for Gutzwiller wa

FIG. 6. Size of the local spin̂ (SŴ i)
2& in the paramagnetic

Gutzwiller wave function with atomic correlations as a function
the interaction strength and various values ofJ5(U2U8)/2 for
half-band-filling.
r
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functions with atomic correlations. Furthermore, the slop
of M (U) are much steeper in the Hartree-Fock results th
in the presence of correlations.

The properties of the ferromagnetic phase strongly
pend on the spectrum of the atomic two-electron configu
tions. To further analyze this point, we included the case
JC50, which changes only the excited two-electron states
shift of the curveM (U) results toward smaller interactio
strengths; for a given magnetization density a smaller in
action strength is required as compared to the correct s
metry caseJ5JC ~see Fig. 7!. The effect is more pronounce
when we go to the Gutzwiller wave function with pure de
sity correlations. In this case all exchange terms in Eq.~38!
are neglected. Then, even the ground state is modified s
the atomic spin triplet withSz50 moves up in energy into
the range of the atomic spin singlets. Again, the magnet
tion curve shifts to~much! smaller interaction strengths
Both results indicate how strongly itinerant ferromagneti
is influenced by the atomicn-electron spectra.

In Fig. 7~a! we chose the particle density per band to
n/450.29 ~more precisely,n/450.2941), right at the maxi-
mum of the density of state curve; compare Fig. 1. For t
case there are finite slopes of theM (U) curves atUF , and a
‘‘Stoner criterion’’ for the onset of ferromagnetism applie
In Fig. 7~b! we chose the particle density per band asn/4
50.35. As seen from the density of states in Fig. 1,
density of states at the Fermi energyD0(EF,↑)1D0(EF,↓)
first increasesas a function of the magnetization densit

FIG. 7. Magnetization density per band as a function ofU for
J50.2U for the Hartree-Fock~HF! solution, the Gutzwiller wave
function with pure density correlations (GWdens), and the
Gutzwiller wave function with atomic correlations (GWatom) for ~a!
n/450.29 and~b! n/450.35. The dotted line indicates the resu
for GWatom with JC50.
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and, therefore, a discontinuous transition occurs from
paramagnet to the ferromagnet.

In the case of pure density correlations a second jum
theM (U) curve is observed, which is absent in the other t
curves. As discussed in Ref. 18, this jump is related to
other feature of the density of states. In the Hartree-F
theory this feature is too weak to be of any significance
comparison to the interaction energy. When the full atom
correlations are taken into account, this first-order jump a
finite magnetization density disappears due to the enhan
flexibility of the variational wave function. Nevertheless,
this range of a strongly varying magnetization density
find rapid variations of the various double occupancies, q
similar to the behavior near the Brinkman-Rice transition
n/450.5.

Another remarkable difference between the Hartree-F
and Gutzwiller methods lies in the approach to ferromagn
saturation. In the Hartree-Fock theory the magnetizat
saturates atU values about 20–40 % above the onset of f
romagnetism atUF

HF. In contrast, in the variational approac
saturation is reached at about twice the onset value,Usat
&2UF . However, even when the minority-spin occupanc
are zero and̂Ŝz

at& is constant, the majority-spin occupanci
s↑ anddt

↑↑ vary with U, since the limit of zero empty sites i
reached only forU→`.

The magnitude of the local spin as a function ofU is
shown in Fig. 8. ForU→` each site is either singly occu
pied with probability 22n or doubly occupied~spin S51)
with probability n21. Hencê (SW i)

2&`5 3
4 (22n)12(n21)

55(n/4)2 1
2. For the correlated wave functions this limit

reached fromabovesince, forU,`, charge fluctuations firs
increase the number of spin-1 sites at the expense of sp1

2

sites, which turn into empty sites. A further decrease ofU
will also activate the singlet double occupancies and hig
multiple occupancies. Thus the local spin eventually redu
below ^(SW i)

2&` . Conversely, Hartree-Fock theory does n
give the proper large-U limit for the local spin. Instead, the
Hartree-Fock limit is given bŷ(SW i)

2&`
HF5(n/4)(31n/2).

The change of̂(SW i)
2& at UF is only a minor effect within

FIG. 8. Size of the local spin̂(SŴ i)
2& as a function of the inter-

action strength forJ50.2U and band filling n/450.35 for the
Hartree-Fock ~HF! theory and the Gutzwiller wave function
(GWdens, GWatom).
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the correlated-electron approach. In particular, this holds
the case of atomic correlations, where about 90% of the lo
spin saturation value is already reached in the paramagn
state. Again, the Hartree-Fock results are completely dif
ent. There the local spin sharply increases as a function
the interaction strength, since the absence of correlat
fixes ^(SW i)

2&HF(U,UF
HF)5^(SW i)

2&(U50).
In Fig. 9 we display theJ/U phase diagram for both

fillings. It shows that Hartree-Fock theory always predicts
ferromagnetic instability. In contrast, the correlated-elect
approach strongly supports the idea that a substantial on
exchange is required for the occurrence of ferromagnetism
realistic interaction strengths. For the casen/450.29, the
differences between the phase diagrams for the
correlated-electron wave functions are minor. Due to
large density of states at the Fermi energy, the critical in
action strengths for the ferromagnetic transition are com
rably small, and the densities for the double occupancie
both correlated wave functions do not differ much. For t
larger band fillingn/450.35, i.e., away from the peak in th
density of state, the values forUF are larger, and, in the
atomic correlation case, the Gutzwiller wave functions c
more easily generate local spin triplets while keeping
global paramagnetic phase.

Finally, in Fig. 10, we display the energy differences b
tween the paramagnetic and ferromagnetic ground states
function of the interaction strength forJ50.1U. For the
correlated-electron case this quantity is of the order of
Curie temperature which is in the range of 100–1000 K
real materials. On the other hand, the Hartree-Fock the
yields small condensation energies only in the range oU

FIG. 9. Phase diagram as a function ofU andJ for the Hartree-
Fock ~HF! solution and the two Gutzwiller wave function
(GWdens, GWatom) for ~a! n/450.29 and~b! n/450.35; PM: para-
magnet, FM: ferromagnet.
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'4 eV; for largerU, the condensation energy is of orderU.
Including the correlation effects we have relatively sm
condensation energies even for interaction values as larg
twice the bandwidth (U'10 eV!.

V. SUMMARY AND CONCLUSIONS

In this work we constructed Gutzwiller-correlated wa
functions with atomic correlations for general multiba
Hubbard models. We evaluated these many-particle w
functions in the limit of infinite space dimensions (d5`) for
the general atomic Hamiltonian for all interaction streng
without any restrictions on the electron transfer matrix e
ments between orbitals on the same or on different lat
sites. Within the metallic phase the differences between th
and infinite dimensions were found to be small for t
Gutzwiller wave function for a single band.10,12,35Therefore,
we expect that our results are very applicable for the cas
physical interest.

Our variational states consist of a Jastrow-type ma
particle correlator which acts on an appropriate Hartree-F
single-particle product wave function. The Gutzwiller co
relator is chosen to modify the occurrence of atomic mu
electron eigenstatesuG i& as compared to the uncorrelate
~statistical! case. Therefore, our trial states are exact both
the noninteracting and atomic limits, and they incorpor
the essential competition between local and itinerant feat
of interacting multiband systems.

The atomic single-particle states of appropriate symme
~spin orbits! constitute the basis for our one-electron Ham
tonian which describes the motion of the electrons throu
the solid, and provides the Hartree-Fock wave function. T
atomic multielectron configurationsuI i& are product states
~Slater determinants! made from the spin-orbit states. If th
~on-site! electron-electron interaction contains only densi
type two-particle interactions, the configurationsuI i& will not
couple, and the local probabilitiesmi ;I of thesen-electron
configurations (n5uI u) can be used as variational paramet
to minimize the ground-state energy. In general, howev
the statesuI i& do not exhibit the correct symmetry of atom
n-electron eigenstatesuG i&. The correct symmetry can be e
tablished only when all exchange-type terms of the ato

FIG. 10. Condensation energy as a function ofU for J50.2U
for the Hartree-Fock~HF! theory and the Gutzwiller wave functio
(GWatom) for ns5n/450.29~full lines! andns5n/450.35~dashed
lines!.
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Hamiltonian are taken into account, i.e., all atomic corre
tions must be included from the beginning. Hence all co
figurationsuI i& within the subspaceuI i u5n are coupled, and
the diagonalization of the atomic Hamiltonian by unitary m
tricesTi ;I ,G results in then-electron atomic eigenstatesuG i&.
Therefore, the multiple occupanciesmi ;G for the atomic
eigenstates are the appropriate variational parameters in

problem. In many cases the elements of the matricesTJ are
given by symmetry alone; in general, however, they must
obtained from the diagonalization of the atomic Hamiltonia

The exact results in infinite dimensions can be cast i
the form of aneffectivesingle-particle Hamiltonian with re-
duced electron transfers between the lattice sites. Since
atomic eigenstates are nontrivial linear combinations of o
particle ~spin-orbit! product states, the hopping reductio

factors are arranged in a 2N32N matrix qs
s8 with spin-orbit

indicess ands8. These quantities are nontrivial functions
~i! the variational parametersmi ;G , ~ii ! the local occupancies
of the Hartree-Fock wave function, and~iii ! the one-electron
densities in the interacting case. The derivation of the la

requires the diagonalization of a 2N32N matrix ZJ. Further
complexities occur for the most general case, i.e., for
extended spin-orbit basis with more than one orbital type
representation of the symmetry group of the atomic s
Here we have nonzero values for the orbital-nondiago
parts of the on-site one-particle expectation values. At
expense of another unitary transformation this most gen
case is also covered by our formalism. Naturally, this lea

to a more complicated structure for the matricesqJ andZJ and
the effective local hybridizations and one-particle densitie

Like the density-functional theory, the variational meth
is intrinsically limited to the description of ground-sta
properties, e.g., the ground-state energy, compressib
magnetization, and magnetic susceptibility. Similar to t
density-functional theory our variational approach natura
extends to finite temperatures and low-frequency excitatio
since our variational ground-state energy corresponds to
of an effective one-particle Hamiltonian. The ‘‘correlate
bands’’ of this Hamiltonian can be used for a comparis
with measured dispersion curves and effective masses. N
that our approach is completely general, and applies to
multiband systems. Therefore, we hope that it will be fruit
for a description of correlated electron systems in the me
lic phase. Naturally, any quasiparticle approach is limited
the region of the validity of Fermi-liquid theory.

In this work we presented explicit results for a degener
two-band model as the simplest nontrivial application of o
method. We assumedeg-type orbitals on sites of a simpl
cubic lattice. For the single-particle Hamiltonian, neare
and next-nearest neighbor transfer matrix elements w
used which give rise to two bands of widthW56.6 eV. In
our model we included all possible two-particle interaction
Yet, there exist only two independent interaction parame
U and J, since the relationU2U852J holds due to sym-
metry, and, likewise,JC5J is fulfilled for the charge ex-

change term. For our simple model system theZJ matrix is
the unit matrix and the hopping reduction matrix is diagon

As a first application we studied the Brinkman-Ric
metal-insulator transition at half-band-filling. Above som
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6910 57J. BÜNEMANN, W. WEBER, AND F. GEBHARD
finite interaction strength all electrons localize. As for t
one-band case this localization transition is rather quest
able as a scenario for the Mott transition in multiband Mo
Hubbard systems. The lattice sites will not be isolated a
the Brinkman-Rice insulator but they will remain couple
via the itinerant exchange. Thus, in the large-U limit, we
should expect an antiferromagnetic insulating ground s
for J.0 whereas, forJ,0, antiferro-type orbital ordering
appears to be most likely.

Apart from the singular pointJ50 the metal-insulator
transition is discontinuous, as manifests itself in fin
changesqBR of the bandwidth reduction factor at the trans
tion. The results for Gutzwiller wave functions with atom
correlations significantly differ from those for pure dens
correlations. In particular, this applies to the behavior of
curves qBR(J/UBR) for large J, which monotonously in-
creases~decreases! as a function ofJ for atomic ~pure den-
sity! correlations forJ/U.0.05. The Gutzwiller wave func
tion with atomic correlations is seen to be more ‘‘flexible
than that with pure density correlations in the sense that
metallic state can much better adapt itself to the~Brinkman-
Rice! insulator.

The general aspect of a discontinuous metal-insula
transition could be generic for multiband Hubbard models
the insulator the atoms are dominantly in a spec
n-electron ground state which is compatible with Hund’s fi
rule. Othern-electron states~of excitation energyJ), even
moren61 electron states~excitation energiesU), are sepa-
rated from the ground state by finite gaps. In the meta
phase a macroscopic number of energetically unfavorabn

61 electron states is created and, consequently, also a
roscopic number of the othern-electron states. It does no
seem to be very likely that all of these occupation densi
change continuously at asinglecritical interaction strength
Instead, the metallic state breaks down discontinuously w
the gain in kinetic energy can no longer compensate the
traatomic gaps. However, variational statements on the
ture of the transition between the metal and the Mo
Hubbard insulator must be taken with great care.6,7

Nonetheless, we expect, for reasonably smallJ/U and for
the case of a general band structure without the perf
nesting property, that there will exist a transition to an an
ferromagnetic state with strong electronic localization, i
with large charge-transfer excitation energies. We do not
pect transitions to an antiferromagnetic metallic or small-g
insulating state. Yet to test this conjecture an antiferrom
netic trial state needs to be investigated.

As a second application we addressed the issue of iti
ant ferromagnetism. For this purpose we chose two b
fillings, the first one at the maximum of the density of stat
the second one close to it. Again, we found a large ‘‘fle
ibility’’ of the Gutzwiller wave function with atomic corre-
lations: the paramagnetic state accommodates large
spins, as much as 90% of the saturation value, and on
small jump is observed at the ferromagnetic transiti
Hence the paramagnetic metallic state near the trans
and, moreover, the ferromagnetic state are highly correla

In general, the ferromagnetic transition is found to occ
at fairly large interaction strengthsUF , with values 1
,UF /W&2. In addition, finite values of the exchange inte
action J are required withJmin'0.1U. These results may
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change toward smaller values of (J,U) if a larger value for
the peak density of states is chosen. In any case, our re
stress the importance of the atomic Hund’s-rule exchange
ferromagnetism in multiband models, a view fostered a lo
time ago by van Vleck.1 The ferromagnetic condensation e
ergy is an estimate forkBTC , the Curie temperature for iron
group metals. It is found to be of right order of magnitud
TC'500 K, for interaction strengths as large as 10 eV. T
condensation energy is a smooth function of the interac
strength, i.e., the ground-state magnetization does not
sensitively depend onU.

In contrast, the corresponding Hartree-Fock treatm
yields completely different results. The ferromagnetic tran
tion is predicted to occur for small values ofU, with
UF

HF/W,1. The magnitude of the spin exchangeJ is rela-
tively unimportant, and the magnetization saturates alm
immediately as a function ofU. Finally, apart from a small
interval aboveUF

HF, the condensation energy is grossly ove
estimated. Thus itinerant ferromagnetism in interact
multiband systems is a correlated-electron problem that c
not be treated within a weak-coupling approach.

The inferior results of the Hartree-Fock treatment mig
be taken as an indication that spin-density-functional the
is also inadequate for the description of itinerant ferrom
netism in iron-group metals because our results sug
strong correlation effects there. On the other hand, the s
cess of this effective single-particle theory may point to
inadequacy of our multiband model for the following reaso
The results from spin-density-functional theory indicate th
the minority-spin bands are broader and, accordingly,
corresponding wave functions more extended in space
those of the majority bands. This ‘‘orbital flexibility’’ make
the minority-spin density to dominate in the interstitial r
gions. Orbital flexibility is not included in the present form
of our multiband models. If considered, e.g., by extend
the orbital basis, the required interaction strength for fer
magnetism may be reduced considerably toward a less
related situation. In principle, our treatment of generaliz
Gutzwiller wave functions allows us to incorporate such b
sis extensions. Work in this direction is in progress, a
applications of our general formalism to real systems
presently under investigation.
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APPENDIX: EVALUATION OF EXPECTATION VALUES

In this appendix we sketch the essential steps for the e
evaluation of Gutzwiller-correlated wave functions in infini
dimensions. First, we choose a basis in which local Fo
terms are absent. Second, we select appropriate expan
parameters for a perturbation theory around the limit of z
interactions. As a third step we set up a diagrammatic the
for the calculation of expectation values based on Wic
theorem and the linked-cluster theorem.24 The clue to an
exact solution in infinite dimensions is the selection of t
expansion parameters. They are chosen in such a way th
higher-order diagrams vanish in infinite dimensions, and
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trivial order gives the exact result. Further technical deta
can be found in Refs. 12, 13, and 20. In the rest of
Appendix we derive explicit results for the local multip
occupancies and the interacting one-particle density mat

1. Change of the local basis

For a generaluF0& the noninteracting local one-particl

matrix CJ i
0 with the entries

Ci ;g,g8
0

5^F0uĉi ;g
1 ĉi ;g8uF0& ~A1!

is not diagonal. Therefore, we derive the formalism h
which covers the most general case.

Since our diagrammatic approach for the evaluation
Gutzwiller-correlated wave functions requires that local Fo
terms are absent, we need to perform a local unitary tra
formation,

(
g

Fi ;s,g
1 Fi ;g,s85ds,s8, ~A2a!

ĥi ;s
1 5(

g
Fi ;s,g

1 ĉi ;g
1 , ĉi ;g

1 5(
s

Fi ;g,sĥi ;s
1 , ~A2b!

ĥi ;s5(
g

Fi ;g,sĉi ;g , ĉi ;g5(
s

Fi ;s,g
1 ĥi ;s . ~A2c!

This diagonalizes the noninteracting local one-particle d
sity matrix

~FJ i !
1CJ i

0FJ i5diag~ni ;s
h,0!. ~A3a!

This is always possible becauseCJ i
0 is Hermitian. As seen

from Eq.~A3a!, local Fock terms are absent in the new bas

i.e., the noninteracting local one-particle density matrixHJ i
0 is

diagonal,

Hi ;s,s8
0

5^F0uĥi ;s
1 ĥi ;s8uF0&5ds,s8^F0uĥi ;s

1 ĥi ;suF0&

5ds,s8ni ;s
h,0 . ~A3b!

For a givenuF0& the transformation matrixFJ i is fixed, and
the local occupanciesni ;s

h,0 in the new basis are the eigenva

ues ofCJ i
0 .

From now on we work in the new local basis. We su
press the site index for the rest of this subsection. The n
tion of Sec. II B remains essentially the same but each
erator ĉs

1 ( ĉs) has to be replaced byĥs
1 (ĥs). In the new

basis the configuration eigenstates are denoted by

uH&5 )
n51

uHu

ĥsn

1 uvacuum& ~snPH!, ~A4a!

and the atomic eigenstatesuG& and their projection operato
mG5uG&^Gu are given by

uG&5(
H

AH,GuH&, ~A4b!
s
e

.

e

f
k
s-

-

,

-
a-
p-

m̂G5 (
H,H8

AH,Gm̂H,H8AG,H8
1 . ~A4c!

The elements of the unitary matrixAJ are given by

AH,G5^HuG&5(
I

TI ,G^HuI &,

^HuI &5det~Fgi ,sj
!, ~giPI ,sjPH!. ~A5a!

The inverse relation to Eq.~A5a! reads

TI ,G5(
H

AH,G^I uH&. ~A5b!

Again, AJ is block-diagonal. Equations~A5! are defined for
uGu5uHu>2. ForG5H5B we setAB,B51. The entries in

AJ for uGu5uHu51 can be chosen at our convenience. W
will specify them such that an exact evaluation of our var
tional wave functions becomes feasible in infinite dime
sions; see below.

After the change of the basis we obtain simple expr
sions for expectation values inuF0& with the help of Wick’s
theorem.24 For example, we have

mG
05(

H
uAH,Gu2mH

h,0 ,

~A6!

mH
h,05 )

sPH
ns

h,0 )
sPH̄

~12ns
h,0!,

where we used the fact that Fock terms are absent in the
basis; see Eq.~A3b!.

2. Choice of the expansion parameter

In this subsection we suppress the site index. We proc
along the derivation outlined in Refs. 12, 13, and 20. Fir
we express the square of the Gutzwiller correlatorP̂G

2 in
terms of the operators for the configuration eigenstates,

P̂G
2 511(

G
~lG

221!m̂G511 (
H,H8

yH,H8m̂H,H8,

~A7!

yH,H85(
G

~lG
221!AH,GAG,H8

1 .

Next, we demand that

(
H,H8

yH,H8m̂H,H85 (
H,H8~ uHu,uH8u>2!

xH,H8n̂H,H8
HF , ~A8!

such that

P̂G
2 511 (

H,H8~ uHu,uH8u>2!

xH,H8n̂H,H8
HF . ~A9!

Here

n̂H,H
HF 5n̂H

HF5 )
sPH

n̂s
HF, ~A10a!
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n̂s
HF5n̂s

h 2ns
h,0 ~A10b!

for H5H8, and

n̂H,H8
HF

5F )
sPJ

n̂s
HFG n̂H1 ,H2

~J5HùH8;H5JøH1 ;H85JøH2!

~A10c!

for HÞH8; compare Secs. II B and A 1. Note th

^F0un̂H
HFuF0&50 because we subtracted the Hartree ter

and all Fock terms vanish inuF0& due to Eq.~A3b!.
The expansion ofP̂G

2 in Eq. ~A9! is chosen such that a
least four lines meet at every internal vertex in our diagra
matic expansion; see below. The number of parame
xH,H8 in Eq. ~A8! is less than the number of paramete
yH,H8 due to the restrictionuHu5uH8u>2, i.e., we essen
tially require

xB,B50, ~A11a!

xs,s850. ~A11b!

Alternatively, as follows from Eq.~A9!, these 11(2N)2 lo-
cal conditions can be formulated as

^F0uP̂G
2 uF0&51, ~A12a!

^F0uĥs
1ĥs8P̂G

2 uF0&5^F0uĥs
1ĥs8uF0&. ~A12b!

The first equation follows immediately because we elim
nated all Hartree terms from the right-hand side of Eq.~A9!.
For the other (2N)2 equations~A12b! we analyze the cas
s5s8 first. The operatorsn̂H

HF on the right-hand side of Eq

~A9! contain at least two Hartree-Fock operators (n̂s1

h

2ns1

h,0)(n̂s2

h 2ns2

h,0) which cannot be eliminated complete

by a single operatorn̂s
h . The term withn̂H,H8

HF for HÞH8
vanishes because of the Fock terms, which transfer elect
fromH8 toH. According to Eq.~A3b!, the expectation value
of Fock terms vanishes inuF0&. ForsÞs8, we note that Eq.
~A10! requiresH85gøs andH5gøs8 to eliminate all
possible Fock terms. Nevertheless, this contribution still v
ishes because of the remaining Hartree-Fock operatorn̂g

HF for
the orbitalg. In Sec. A 6 we shall give the explicit solutio
of Eq. ~A12! in infinite dimensions.

3. Diagrammatic theory and simplifications
in infinite dimensions

Since the variational parameters obeyl i ;G51 in the ab-
sence of interactions, the parametersxi ;H,H8 go to zero for
vanishing interactions. Therefore, they are suitable for a p
turbation expansion in which the order of the expansion
given by the number of factorsx. When we perform this
expansion we may apply Wick’s theorem for the resulti
expectation values, sinceuF0& is a one-particle state. A
usual in perturbation theory around a single-particle stat24

the resulting contributions can be represented diagramm
cally. In our theory the ‘‘internal vertices’’ represent the fa
tors xi ;H,H8. In addition to these internal vertices there a
s,

-
rs

-

ns

-

r-
is

ti-

also ‘‘external vertices’’ which come from the site depe
dence of the operatorsÔ. For example, there are two exte
nal vertices at the sitesi and j for Ô5ĥi ;s

1 ĥ j ;s8. The non-
trivial result in infinite dimensions stem from the Hartre
contributions at the external vertices; see below.

To obtain an expansion in powers ofx, we setP̂i ;G
2 51

1 P̄i and write

)
i

@11 P̄i #511 (
k51

`
1

k! (
i 1, . . . ,i k

8 )
j 5 i 1

i k

P̄ j , ~A13!

wherei 1 , . . . ,i k specify internal vertices. Here, the prime o
the sum indicates that all lattice sitesi 1 , . . . ,i k are different
when we apply Wick’s theorem. Consequently, the ‘‘lines
of our diagrammatic theory are given by the one-parti
density matrix for the single-particle wave functionuF0& for
iÞ j ,

Pi , j
s,s85~12d i , j !^F0uĥi ;s

1 ĥ j ;s8uF0&[~12d i , j !^ĥi ;s
1 ĥ j ;s8&0 .

~A14!

Note that we do not have to distinguish between ‘‘hole’’ a
‘‘particle’’ lines because all sites are different when we a
ply Wick’s theorem.12,13,20

To make further progress we have to apply the linke
cluster theorem.24 Unfortunately, the restriction on the lattic
sums prevents its direct application. As shown in Refs.
and 20, this problem can be circumvented by a redefinit
of the internal vertices, i.e.,xi ;H,H8→ x̃ i ;H,H8. As a result we
obtain a standard diagrammatic theory with renormaliz
vertices x̃ i ;H,H8 and lines given by Eq.~A14!. Since the
trivial order does not contain any internal vertex, it is una
fected by the redefinition of the internal vertices.

In our theory we subtracted the Hartree contributions a
ruled out local Fock terms according to Eq.~A3b!. For our
diagrams this implies that there are no trivial loops at a
internal vertex. Consequently, there are at least three in
pendent paths from one vertexi 1 to another vertexi 2 in each
nontrivial diagram, sinceuHu5uH8u>2 requires that at leas
four lines meet at every internal vertex; paths are indep
dent if they do not have a line in common. In the limit o
infinite dimensions9 only i 15 i 2 contributes to a diagram ifi 1
andi 2 are linked by~at least! three independent paths. In ou
case this implies that the diagram simplyvanishessince a
line linking two identical vertices is zero by the definitio
Eq. ~A14!.12,13,20 Consequently, the trivial order of our ex
pansion gives the exact result in infinite dimension, e.g., o
the diagram for̂ ĥi ;s

1 ĥ j ;s8& with a single line survives the
limit d→`. The remaining task is the calculation of th
trivial ~Hartree! terms which stem from the external vertice
This will be carried out for the local occupancies and t
one-particle density matrix in the rest of the Appendix.

4. Local atomic occupancies

In this subsection we suppress the site index. We nee
evaluatê mG&. As described in Sec. A 3, the task is read
solved in infinite dimensions,

mG5^m̂G&5^P̂Gm̂GP̂G&05lG
2mG

0 , ~A15!
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where we used the definitions~14b! and ~18!. This proves
Eq. ~23!. Furthermore, we may use this result to show t
condition ~A12a! is indeed fulfilled. We have

^F0uP̂G
2 uF0&5K (

G
lG

2m̂GL
0

5(
G

mG51, ~A16!

because the local completeness relation~14c! holds for the
correlated wave function in any dimension.

For later use we writeP̂G in the form

P̂G5 (
H,H8

lH,H8m̂H,H8, ~A17a!

where we defined

lH,H85(
G

AH,GlGAG,H8
1 . ~A17b!

In infinite dimensions we then have

mH,H85^m̂H,H8&5^P̂Gm̂H,H8P̂G&0

5 (
H1 ,H2 ,H3 ,H4

lH1 ,H2
lH3 ,H4

^m̂H1 ,H2
m̂H,H8m̂H3 ,H4

&0

5(
K

lK,HlH8,KmK
h,0 , ~A18a!

where we used Eq.~12! in the last step. In particular, fo
H5H8 we obtain

mH5mH,H5(
K

ulK,Hu2mK
h,0 . ~A18b!

With the help of Eq.~A15! and definition~A17b!, Eq. ~27b!
follows.

Now we solve the (2N)2 equations~A12b!. We multiply
both sides of Eq.~A9! with ĥs

1ĥs8, and take the expectatio
value with respect touF0&. With the help of Eqs.~14c! and
~A4c!, Eq. ~A12b! becomes

^ĥs
1ĥs8&05(

G
lG

2 (
H,H8

AH,GAG,H8
1 ^ĥs

1ĥs8m̂H,H8&0 .

~A19!

Apparently we may setH5Jøs8 (s8¹J). With the help
of Eq. ~A3b! we then find thatH85Jøs and, therefore,
s¹J. We use the definition of the fermionic sign functio
~6! and Eq. ~A15!, which allow us to simplify the above
equation to

Zs,s85 (
uGu51

As,G* lG
2~AG,s8

1
!* , ~A20a!

where the entries of the (2N)3(2N) matrix ZJ are given by
t Zs,s85
ns

h,0

ms
h,0

ds,s82 (
uGu>2

mG

mG
0 (
J~s,s8¹J!

fsgn~s8,J!

3fsgn~s,J!A~Jøs8!,GAG,~Jøs!
1

mJø~s,s8!

h,0

m
~s,s8!

h,0 .

~A20b!

We can safely ignore the unphysical case ofms
h,050. All

quantities in the matrixZJ are known as soon as we fixuF0&
and our variational parametersmG for uGu>2. Equation

~A20a! states that a unitary (2N)3(2N) matrix AJ8 with

As,G8 [As,G* diagonalizes the Hermitian matrixZJ, and that
lG

2>0 (uGu51) are its eigenvalues,

~AJ8!1ZJ~AJ8!5diag~lG
2 !. ~A21!

Therefore, conditions~A12b! fix the matrix As,G for uGu
5usu51, and the expectation values for the atomic config
rations with a single electron are given bymG5lG

2mG
0 .

5. qJ matrix

As in Sec. A 4, we have to work in the new basis. The
fore, we start the derivation of theqJ matrix with a unitary
transformation

^ĉi ;g1

1 ĉ j ;g
18
&5 (

s1 ,s18
Fi ;g1 ,s1

F j ;s
18 ,g

18
1

^ĥi ;s1

1 ĥ j ;s
18
&.

~A22!

In Sec. A 3 we showed that the calculation of the interact
one-particle density matrix reduces to

^ĥi ;s1

1 ĥ j ;s
18
&5^F0u~ P̂i ;Gĥi ;s1

1 P̂i ;G!~ P̂j ;Gĥj ;s
18
P̂j ;G!uF0&

~A23!

in infinite dimensions. There we also showed that only
single line can join the two external verticesi and j . This
implies

^ĥi ;s1

1 ĥ j ;s
18
&5 (

s2 ,s28
Aqi ;s1

s2 q
j ;s

18

s28 ^F0uĥi ;s2

1 ĥ j ;s
28
uF0&

~A24a!

5 (
g2 ,g28

^ĉi ;g2

1 ĉ j ;g
28
&0

3 (
s2 ,s28

Aqi ;s1

s2 q
j ;s

18

s28 Fi ;s2 ,g2

1 F j ;g
28 ,s

28
,

~A24b!

which proves the general structure of the variational kine
energy~21b!,

^Ĥ1&5 (
iÞ j ;g1 ,g18

t̃
i , j
g1 ,g18^ĉi ;g1

1 ĉ j ;g
18
&0 , ~A25a!
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t̃
i , j
g1 ,g185 (

s1 ,s18 ,s2 ,s28
Aqi ;s2

s1 q
j ;s

28

s18 Fi ;s1 ,g1

1 F j ;g
18 ,s

18

3 (
g2 ,g28

t
i , j
g2 ,g28Fi ;g2 ,s2

F j ;s
28 ,g

28
1

. ~A25b!

Recall that theFJ matrix is the unit matrix when Eq.~17! is
fulfilled.

From now on we suppress the site index. To derive
explicit form of the qJ matrix we useP̂G in form ~A17! to
write

P̂Gĥs
1P̂G5 (

H1 ,H2 ,H3 ,H4

lH1 ,H2
lH3 ,H4

m̂H1 ,H2
ĥs

1m̂H3 ,H4
.

~A26!

We use the Dirac representation of the operatorsm̂H,H8
5uH&^H8u and find

P̂Gĥs
1P̂G5 (

H1 ,H2 ,H3 ,H4

lH1 ,H2
lH3 ,H4

^H2uĥs
1uH3&m̂H1 ,H4

5 (
H1 ,H2 ,H3 ,H4

lH1 ,H2
lH3 ,H4

3fsgn~s,H3!dH2 ,H3øsm̂H1 ,H4
, ~A27!

where we used the definition of the fermionic sign functi
~6!. Note thats¹H3 is now required. We see thatuH1u
5uH4u11, and our arguments presented in Sec. A 4 sh
that we haveH15H8øs8 (s8¹H8) andH45H8 in infi-
nite dimensions. Otherwise, local Fock terms would app
in the evaluation of Eq.~A23!. For s8¹H8 we introduce the
operator

m̂H8,H8
s8 5 )

gPH8\s8
n̂g

h )
gPH8̄\s8

~12n̂g
h!, ~A28!

which allows us to write (H3[H)

P̂Gĥs
1P̂G5(

s8
ĥs8

1 (
H8~s8¹H8!

(
H~s¹H!

3l~H8øs8!,~Høs!lH,H8fsgn~s,H!

3fsgn~s8,H8!m̂H8,H8
s8 ~A29!

in infinite dimensions. When we compare this express
with Eq. ~A24a!, we see that
e

w

r

n

Aqs
s85 (

H8~s8¹H8!
(

H~s¹H!
l~H8øs8!,~Høs!lH,H8

3fsgn~s,H!fsgn~s8,H8!^m̂H8,H8
s8 &0 , ~A30!

because we finally singled out the electron creation oper
ĥs8

1 for the contraction according to Wick’s theorem in E
~A24a!. We use Eqs.~A15! and ~A17b! and the trivial rela-
tion

^m̂H8,H8
s8 &05

mH8
h,0

12ns8
h,05AmH8

h,0m
~H8øs8!

h,0

ns8
h,0

~12ns8
h,0

!
~A31!

to derive theqJ matrix in the form

Aqs
s85A 1

ns8
h,0

~12ns8
h,0

!
(
G,G8

AmGmG8

mG
0mG8

0

3 (
H,H8

~s¹H,s8¹H8!

fsgn~s8,H8!fsgn~s,H!

3Am
~H8øs8!

h,0
mH8

h,0AG,~Høs!
1 A~H8øs8!,GAG8,H8

1 AH,G8.

~A32!

When Eq.~17! holds, we recover Eq.~22!.

6. Local one-particle density matrix

Finally, we derive an expression for theinteracting local
one-particle density matrix,

Cg1 ,g
18
5^ĉg1

1 ĉg
18
&. ~A33a!

Note that the local gross occupancies are the diagonal en
of this matrix,ng5Cg,g . We express this matrix in the new
basis,

Cg1 ,g
18
5 (

s1 ,s18
Fg1 ,s1

F
s

18 ,g
18

1
^ĥs1

1 ĥs
18
&. ~A33b!

In infinite dimensions the entries of the interacting local on

particle density matrixHJ in the new basis are readily calcu
lated,

Hs1 ,s
18
5^ĥs1

1 ĥs
18
&5^P̂Gĥs1

1 ĥs
18
P̂G&0

5 (
H1 ,H2 ,H3 ,H4

lH1 ,H2
lH3 ,H4

3^m̂H1 ,H2
ĥs1

1 ĥs
18
m̂H3 ,H4

&0 . ~A34!

In infinite dimensions we may setH15H45H8, H3

5Høs18 , andH25Høs1 with s1 ,s18¹H. We then find
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Hs1 ,s
18
5 (

H
~s1 ,s18¹H!

fsgn~s1 ,H!fsgn~s18 ,H!

3(
H8

lH8,Høs1
lHøs

18 ,H8mH8
h,0

5 (
H

~s1 ,s18¹H!

fsgn~s1 ,H!fsgn~s18 ,H!

3 (
G,G8

AmGmG8

mG
0mG8

0 AG,Høs1

1 AHøs
18 ,G8

3(
H8

AH8,GAG8,H8
1 mH8

h,0 . ~A35!

Therefore, the matrixHJ is known in terms of the variationa
parametersmG and the properties of the one-particle produ

stateuF0&. If the noninteracting local-density matrixCJ 0 is

diagonal, i.e., Eq.~17! is fulfilled, the matricesCJ andHJ are

identical, and Eq.~A35! also leads to Eq.~27!. The matrixHJ

is Hermitian and can thus be diagonalized with the help

the unitary matrixXJ ,

~XJ !1HJ XJ5diag~ ñs
h !, ~A36!

whereñs
h are the eigenvalues of the matrixHJ . The entries of

HJ thus obey

Hs1 ,s
18
5 (

s2 ,s28
Xs1 ,s2

ds2 ,s
28
ñs2

h X
s

28 ,s
18

1

5 (
s2 ,s28

Xs1 ,s2

ñs2

h

ns2

h,0 ^ĥs2

1 ĥs
28
&0X

s
28 ,s

18
1

. ~A37!

We transform back into the representation withĉ operators
and find for the interacting local one-particle density mat
in the original basis
d

t

f

Cg1 ,g
18
5 (

g2 ,g28
C

g2 ,g
28

0 (
s1 ,s18 ,s2 ,s28

Fs2 ,g2

1 Fg
28 ,s

28
Xs1 ,s2

3
ñs2

h

ns2

h,0
X

s
28 ,s

18
1

Fg1 ,s1
F

s
18 ,g

18
1

. ~A38!

Recall that the local gross occupancies are the diagonal
tries of this matrix,ng5Cg,g .

The result~A38! allows us to cast the local hybridizatio
term in the variational ground-state energy into the form

(
g1 ,g18

tg1 ,g18^ĉg1

1 ĉg
18
&5 (

g2 ,g28
t̃ g2 ,g28^ĉg2

1 ĉg
28
&0 , ~A39a!

where the effective local hybridizations are given by

t̃ g2 ,g285 (
g1 ,g18

tg1 ,g18 (
s1 ,s18

Fg1 ,s1
F

s
18 ,g

18
1 (

s2 ,s28
Xs1 ,s2

3
ñs2

h

ns2

h,0
X

s
28 ,s

18
1

Fs2 ,g2

1 Fg
28 ,s

28
. ~A39b!

This expression simplifies if we assume that there are
local Fock terms already in the basis of theĉ operators. Then

theFJ matrix becomes the unit matrix. Let us further dema
that orbitals with different crystal-field energies do not m
i.e., tg,g85dg,g8eg . If our one-particle product stateuF0&
respects this symmetry, theXJ matrix becomes the unit ma
trix, and we find

t̃ g2 ,g285dg2 ,g
28
eg2

ng2

ng2

0
. ~A40!

Thus we recover Eq.~28b! for the effective crystal-field en-
ergies.
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