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Ab initio calculations of quasiparticle band structure in correlated systems: LDA11 approach
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We discuss a general approach to a realistic theory of the electronic structure in materials containing
correlatedd or f electrons. The main feature of this approach is the taking into account of the energy
dependence of the electron self-energy with the momentum dependence being neglected~local approximation!.
It allows us to consider such correlation effects as the non-Fermi-step form of the distribution function, the
enhancement of the effective mass including Kondo resonances,’’ the appearance of the satellites in the
electron spectra, etc. To specify the form of the self-energy, it is useful to distinguish~according to the ratio of
the on-site Coulomb energyU to the bandwidthW) three regimes—strong, moderate, and weak correlations.
In the case of strong interactions (U/W.1—rare-earth system! the Hubbard-I approach is the most suitable.
Starting from an exact atomic Green function with the constrained density matrixnmm8 the band-structure
problem is formulated as the functional problem onnmm8 for f electrons and the standard local-denisty-
approximation functional for delocalized electrons. In the case of moderate correlations
(U/W;1—metal-insulator regime, Kondo systems! we start from thed5` dynamical mean-field iterative
perturbation scheme of Kotliar and co-workers and also make use of our multiband atomic Green function for
constrainednmm8. Finally for the weak interactions (U/W,1—transition metals! the self-consistent diagram-
matic fluctuation-exchange approach of Bickers and Scalapino is generalized to the realistic multiband case.
We present two-band, two-dimensional model calculations for all three regimes. A realistic calculation in the
Hubbard-I scheme with the exact solution of the on-site multielectron problem forf (d) shells was performed
for mixed-valence 4f compound TmSe, and for the classical Mott insulator NiO.@S0163-1829~98!05112-1#
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I. INTRODUCTION

A general accurate description of the electronic struct
of materials with correlated electrons has yet to be de
oped. Such materials include the high-Tc and colossal mag
netoresistance~CMR! materials, as well as the mixed
valence and heavy-fermion compounds. All these syste
demonstrate essentially many-particle~correlation! features
in their excitation spectrum and ground-state properties,
usual language of one-electron band theory being inadeq
to describe such features even qualitatively: e.g., the prob
of Mott insulators, the heavy-fermion behavior in some ra
earth compounds, satellites and ‘‘midgap states’’ in elect
spectra, etc.~see, e.g., recent reviews1–4!. Such effects as the
metal-insulator transition, Kondo effect, and others, wh
help us to understand the basic physics in these stro
correlated materials, is usually considered in the framew
of simplified models such as the Hubbard model, Ander
model, s-f exchange model, and other correlation mode
Nevertheless, the complexity of the crystals contain
10–15 different atoms per unit cell, and the interactions
tween electronic and lattice degrees of freedom deman
more detailed investigation of the energy bands in such
tems. The only general first-principles approaches that t
into account in practice specific peculiarities of the electro
structure in real compounds are those based on the den
functional theory~DFT!.5 The vast majority of practical DFT
applications today are based on the local-density approxi
tion ~LDA !, which treats the exchange-correlation~XC! part
570163-1829/98/57~12!/6884~12!/$15.00
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of an effective single-particle DFT potential as a densi
dependent XC potential, taken from the exact quant
Monte Carlo ~QMC! results for the homogeneous electro
gas. There are many successes but also some failures o
LDA approach,6 related to the simple fact that, in case
where some portion of the electronic structure is better
scribed in terms of atomiclike electronic states, the homo
neous electron gas approximation is not a good star
point. Another limitation of LDA theory is that it is only a
ground-state scheme and the one-particle band structur
self has, generally speaking, no proper meaning. Rece
the time-dependent~TD-LDA ! approach has been applied fo
calculations of excitation energies,7,8 but the TD-LDA effec-
tive potential is not known as well as the LDA one. On t
other hand, exact QMC calculations for real materials wh
have tedious first-principles Hartree-Fock band structure
zero-order approximations is still a challenging problem
solid state theory.9–11

In this situation it is useful to have a simple and accur
scheme that could still capture the most important proper
of real electronic structure and at the same time could t
into account the most important correlation effects. One
the first successful approaches in this line was theGW
approximation12 for quasiparticle spectra in solids with th
self-energy related to a ‘‘bare’’ Green function (G) and a
screened Coulomb interaction (W). Self-consistentGW cal-
culations basing on the LDA band structure give a mu
better description of a Mott insulator such as NiO than do
pure LDA.13 Still, the nonlocal Coulomb interactions mak
6884 © 1998 The American Physical Society



u
e
d
s
im
ys
ec
y

c-
fo

le
th
d

p-
n

ge

th

. I

h
f t
d

-
a
i

on

n
gh

fic

en
n

n-
ag
d
k,

ns
-
w

a-
c
n
i

o
on

be
ddi-

in
flat-

s

-I

he
-
iplet
g of
etc.

cs
s-
mi-

nd,
do
most
ult

The

of
rgy
ic
f a
ms,

ns

-
rix
d-

tic

e
the
he

f
Se
i-
c.

an-
se of

ies,
tion
or-
the

57 6885AB INITIO CALCULATIONS OF QUASIPARTICLE . . .
such type of calculations really time consuming. For the p
pose of only band-structure investigations one could us
simplified time-independentGW scheme or the so-calle
screen-exchange LDA approach.14,15 The latter approach ha
some of the same drawbacks as the Hartree-Fock approx
tion and did not prove suitable for strongly correlated s
tems. A different way to incorporate some correlation eff
in the systems with localizedd or f states was successfull
done in the so-called LDA1U method.16 In this case a
simple mean-field Hubbard-like term is added to LDA fun
tionals for the localized state and care must be taken
correction of the LDA double counting.17 This approach can
also be viewed as a density-functional theory, since theU
terms that depend on occupation number for localized e
trons is a function of the total density. So one just uses
LDA functional for delocalized electrons and improve
LDA1U functional for localized atomiclike states. This a
proach produces a more reliable description of the electro
and crystal structure of correlated materials with char
spin, and orbital ordering than does the LSDA scheme.18 But
the LDA1U scheme, as well as the approach based on
so-called self-interaction corrections~SIC!,19 has one intrin-
sic shortcoming related with a mean-field approximation
is well known ~see, e.g., Refs. 20 and 21! that the most
interesting correlation effects in quasiparticle spectra, suc
the mass enhancement, damping, and the difference o
distribution function from the ‘‘Fermi step’’ are connecte
with the energy dependence of the self-energyS(v), so one
needs to generalize the LDA1U approach to include dy
namical effects. Such a scheme we would like to c
LDA11.22 One can mention a few successful attempts
this direction: quasiparticle~QP! band-structure calculation
of Fe, Co, and Ni~Refs. 23–25! as well as a heavy fermion
system26,27 using simplest second-order local approximati
for the self-energy; the QP-band structure of NiO~Refs.
28 and 29! using the three-body Faddeev approximatio
the random-phase-approximation-like approach for hi
temperature superconductors~HTSC! ~Ref. 30! and non-
crossing approximations~NCA’s! for Kondo systems.31 At
the same time, a criterion for the applicability of speci
approximations used in these works was not clear.

In this paper we propose a general scheme for LDA11
band-structure calculations for real materials with a differ
strength of electronic correlations. It is not very efficie
from the computational point of view~as well as not very
reasonable from the purely theoretical one! to use the only
LDA11 scheme for materials with different electro
electron interactions. In accordance with the ratio of aver
on-site Coulomb parameterU to the relevant valence-ban
width W, it is useful to distinguish three regimes of wea
moderate, and strong correlations.

For the simplest case of weak correlatio
(U/W,1—transition metals! we could use the self
consistent diagrammatic approach. The most convenient
is the conserving fluctuation exchange~FLEX!
approximation32 and we will use the multiband generaliz
tions for the LDA11 weak-correlation scheme. The chara
teristic feature of this renormalized band regime is that
additional states appear in the electronic structure due to
teractions or, more exactly, there is one-to-one corresp
dence of quasiparticle states with and without interacti
r-
a

a-
-
t

r

c-
e

ic
,

e

t

as
he

ll
n

;
-

t
t

e

ay

-
o
n-
n-
.

Roughly speaking, the shape of energy bands may
changed but there is no band splitting, or presence of a
tional bands. The most interesting physical phenomena
this case are the renormalization of the effective masses,
tening of Van Hove singularities, etc.

In the case of very strong interaction
(U/W.1—rare-earth system! we will start with the exact
atomic Green function forf states and use the Hubbard
approximation~HIA ! ~Ref. 33! to analyze the spectrum off
systems. This approach also may be applied to suchd sys-
tems as Mott insulators with very narrowd bands. For this
situation the electronic structure of solids will combine t
many-body structure off (d) ions and broad bands from de
localized electrons. In this case such phenomena as mult
structure, satellites in photoelectron spectra, the narrowin
the electron bands depending on the magnetic ordering,
are the subjects of main interests.

In the most difficult case of strongly correlated physi
(U/W;1—metal-insulator transition regime or Kondo sy
tems! we will use the interpolation scheme based on dyna
cal mean-field theory~DMFT!.3 In this situation we will
have a three-peak structure from a single correlated ba
consisting of upper and lower Hubbard bands and Kon
resonance near the Fermi energy. Such a scheme is the
accurate, but also the most time consuming, and it is diffic
to make a self-consistent calculation for a large system.
other point of view of the different LDA11 schemes could
be related to the different energy scales for the spectrum
correlated materials: if one is interested in the large ene
scale, the HIA approximation is sufficient for spectroscop
purposes. If we wich to describe the low-energy scale o
system like doped Mott insulators or mixed valence syste
then the DMFT approach is the most appropriate.

The common feature of all LDA11 methods is the ma-
trix form of self-energy since electron-electron correlatio
can be diagonalized neither in band indexn nor in orbital
indices lm. This peculiarity of multiband Hubbard interac
tions is normally ignored and only a few examples of mat
self-energy exist for a transition metal with the LDA secon
order perturbation scheme:23,25transition-metal oxides within
the three-body Faddeev approximation,29 and for the two-
band Hubbard model, investigation of orbital and magne
instabilities.34

This paper is organized as follows. In Sec. II we will giv
a general description of different correlation schemes to
dynamical mean-field band-structure calculations. T
simple two-band model~Sec. III! will illustrate in practice all
LDA11 methods. In Sec. IV we will give an example o
first-principles calculations of mixed-valence system Tm
and classical Mott insulator NiO within Hubbard-I approx
mation to LDA11. Finally we summarize our results in Se
V.

II. LDA 11 METHODS

The Kohn-Sham energies of one-particle LDA states c
not be considered as the quasiparticle energies in the sen
many-particle theory~see, e.g., Refs. 20 and 21!. In the
LDA11 approach they considered only as the bare energ
which are supposed to be renormalized by the correla
effects. Of course they contain already some part of the c
relation effects but only those that may be considered in
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6886 57A. I. LICHTENSTEIN AND M. I. KATSNELSON
local-density approximation. The most important ‘‘rest’’ in
strongly correlated system is the correlations of the Hubb
type33 due to the intrasite Coulomb repulsion. Therefore o
starting point is the same as in the LDA1U approach. We
proceed with the Hamiltonian

H5 (
i j s$m%

tm1m2

i j cim1s
1 cjm2s

1
1

2 (
i $sm%

U
m1m2m

1
8m

2
8

i
cim1s

1 c
im2s8
1

cim
2
8s8cim

1
8s , ~1!

where (i , j ) represents different crystal sites,$m% labels dif-
ferent orbitals, and the$s% are spin indices. Coulomb matri
elements are defined in the usual way:

Um1m2m
1
8m

2
85E E drdr 8cm1

* ~r !cm2
* ~r 8!

3Vee~r2r 8!cm
1
8~r !cm

2
8~r 8!; ~2!

here Vee(r2r 8) is the screened Coulomb interactions a
cm(r ) are localized on-site basis functions~the site index
being suppressed!.

In this case all the orbitals are assumed to belong to
correlated set, while in real materials like high-Tc com-
pounds~e.g., YBa2Cu3O7) we may define as a first approx
mation only the 3d orbitals as correlated ones. Therefore it
more reasonable to rewrite Eq.~1! in the form of LDA1U
Hamiltonian:

H5Hdc
LDA1

1

2 (
i $sm%

U
m1m2m

1
8m

2
8

i
cim1s

1 c
im2s8
1

cim
2
8s8cim

1
8s .

~3!

Note that indexi in the second sum of Eq.~3! is running
only for correlated sites, and orbital indices$m% only for
correlated states~e.g., 3d or 4f ) while the first LDA term,

Hdc
LDA5 (

i j s$m%
hm1m2s

i j cim1s
1 cjm2s2Edc,

contains all sites and orbitals in the unit cell. Herehm1m2s
i j are

the one-particle Hamiltonian parameters in the~spin-
polarized! LDA, Edc is the double counting correction fo
average Coulomb interactions in L~S!DA:17

Edc5
1
2 Ūnd~12nd!2 1

2 J̄@nd↑~12nd↑!1nd↓~12nd↓!

with Ū and J̄ being average Coulomb and exchange inter
tions, andnd5nd↑1nd↓ is the total number of correlate
d( f ) electrons.

One nontrivial problem is to find an efficient way to com
pute the one electron HamiltonianhLDA in a minimal or-
thogonal basis set. Orthogonality of the basis functions
required for the use of the second quantization form of
effective Hamiltonian@~Eq. ~1!#. Since the many-body (U)
part of the problem is an order of magnitude more time c
suming than the LDA one, we need to use a minimal ba
set and integrate out all high-energy degrees of freedom~out
of the 6U range!. One of the best LDA methods for such
scheme is the linear muffin-tin orbital~LMTO! method,35

which could give the orthogonal down-folded one-electr
rd
r

e

-

is
e

-
is

tight-binding Hamiltonian. In this case LDA calculation
were corrected for double counting, produce the fir
principles hoppingt i j in the many-body Hamiltonian.

Now we can describe methods for efficient calculations
quasiparticle~QP! spectra for the LDA1U Hamiltonian. In
this sense our approach is no longer density-functio
theory and one could benefit from, possibly using the inf
mation on QP-band structure as compared with differ
‘‘excitation’’ experiments.

A. Multiband FLEX

In this section we generalize the FLEX equations32 for the
purpose of the multiband LDA11 scheme. We will not take
into account a momentumq dependence of the self-energ
although in the FLEX approximation it is straightforward
include it in all the following formulas. The numerical com
putation of the (q,v)-dependent self-energy is time consum
ing in the multiband case.36,37 To unify the approximations
for all our LDA11 schemes we will not include explicitly
the q dependence in the FLEX formalism.

First of all, one needs to symmetrize the bare vertex m
trix U over different fluctuation channels: the particle-ho
~density-Ud and magnetic-Um) and particle-particle~singlet-
Us and triplet-Ut) vertex matrices:

U
m1m

1
8m2m

2
8

d
52Um1m2m

1
8m

2
82Um1m2m

2
8m

1
8 ,

U
m1m

1
8m2m

2
8

m
52Um1m2m

2
8m

1
8 ,

U
m1m

1
8m2m

2
8

s
5 1

2 ~Um1m
1
8m2m

2
81Um1m

1
8m

2
8m2

!,

U
m1m

1
8m2m

2
8

t
5 1

2 ~Um1m
1
8m

2
8m2

2Um1m
1
8m2m

2
8 !.

The one-electron Green function is defined through
following equation:

G
mm8s

21
~ ivn!5~ ivn1m!dmm82hmm8s2S

mm8s

HF

2Smm8s~ ivn!;

herem is chemical potential,vn5(2n11)/b are Matsubara
frequencies, andb51/kBT is the inverse temperature. Th
frequency-independent Hartree Fock part is

S
mm8s

HF
5 (

m1m2
S Umm1m8m2(

s8
nm1m2

s8
2Umm1m2m8nm1m2

s D
~4!

and corresponds to the rotationally invariant LDA1U
method.38

It is useful to write the multiband FLEX equations usin
matrix-vector notation for different Coulomb matrix vertice
and the vector Green function. We will use a combined
dex: a5$m,m8% and define the vector Green function
well as matrix interactions in the following way:

G[$Ga%, Û5$Uaa8%.
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57 6887AB INITIO CALCULATIONS OF QUASIPARTICLE . . .
For simplicity we first write equations for nonpolarized sp
states and omit the spin indices. In this case the Hartree-F
approximation, Eq.~4!, can be rewritten in the form of a
matrix-vector product only with the density Coulomb inte
action:

SHF5Ûd* n,

where the occupation matrix is defined as

na[nmm8
s

5^cms
1 cm8s&5

1

b(
vn

Gm8m~ ivn!1 1
2 dmm8 .

Using the single-site Hubbard interactions one obtain
local form of FLEX equations in the frequency (v)-time (t)
space. It is very efficient to use fast-Fourier transforms w
periodic boundary condition.39 Time-frequency spaces ar
connected by

G~ ivn!5E
0

b

eivntG~t!dt,

G~t!5
1

b(
vn

e2 ivntG~ ivn!.

We will try to keep this dual (v-t) notation to stress the
numerical implementation of this LDA11 scheme. We
write the approximation for self-energy in theGW-like form:

S~t!5Ŵ~t!* G~t!, ~5!

where symmetrized fluctuationW( iv)-potential is defined as

Wm1m2m
1
8m

2
85Vm1m

1
8 ,m

2
8m2

and total fluctuation potential consists of the second-or
term, as well as particle-hole and particle-particle contrib
tions:

V̂~ iv!5V̂2~ iv!1V̂ph~ iv!2V̂pp~2 iv!.

All these contributions can be expressed in terms of b
(D0 ,M0 ,S0 ,T0) and renormalized (D,M ,S,T) channel
propagators. The second-order potential for the nonmagn
case is

V̂2~ iv!5Û* D̂0~ iv!* Ûd ~6!

while the particle-hole potential is expressed through
density and magnetic fluctuations:

V̂ph~ iv!5 1
2 Ûd* @D̂~ iv!2D̂0~ iv!#* Ûd1 3

2 Ûm* @M̂ ~ iv!

2M̂0~ iv!#* Ûm.

Finally the particle-particle contribution to the fluctuatio
exchange potential is

V̂pp~ iv!5Ûs* @Ŝ~ iv!2Ŝ0~ iv!#* Ûs13Ût* @ T̂~ iv!

2T̂0~ iv!#* Ût.

If one defines the particle-hole (x) and particle-particle (p)
‘‘empty loop’’ susceptibilities,
ck

a

h

r
-

re

tic

e

xm1m2m3m4
~t!52Gm4m1

~2t!* Gm2m3
~t!, ~7!

pm1m2m3m4
~t!5Gm1m4

~t!* Gm2m3
~t!,

we can write with this notations for susceptibilities the ba
channel propagator matrices in the following form for t
density and magnetic part,

D̂05M̂05x̂,

and for singlet and triplet bare propagators,

Sm1m2m3m4

0 5 1
2 ~pm1m2m3m4

1pm1m2m4m3
!,

Tm1m2m3m4

0 5 1
2 ~pm1m2m3m4

2pm1m2m4m3
!.

The total channel propagators~Rl where l5$d,m,s,t%)
have to be found from the RPA-like matrix inversion:

R̂l~ iv!5@ 1̂1R̂l
0~ iv!* Ul#21* R̂l

0~ iv!.

The derivation of the complete expression for the FLE
self-energy for the spin-polarized case with taking into a
count all the channels is rather cumbersome. Since we
not use here these complicated expressions, they will be
cussed in detail elsewhere.42

B. Hubbard-I approximation

Historically Hubbard-I approximation33 was the first and
the simplest approximation for a strongly correlated on
band model. It has, however, many inconsistencies~see, e.g.,
discussion in Ref. 41!. For example, it is not conserving~the
self-energy cannot be represented as a functional deriva
of the generating functional with respect to the Green fu
tion! and therefore does not obey the Luttinger theorem
other ‘‘exact’’ Fermi-liquid properties. For the half-filled
nondegenerate Hubbard model it always gives a gap in
energy spectrum, even for smallU. This means that HIA is
completely inapplicable for small and medium interaction
But at the same time it gives a correct picture of the elect
spectrum in the narrow-band limit. Therefore it seems to
very useful in 4f systems with a very strong degree of loca
ization of the electron states. Applying this to some real s
tems in the framework of the LDA11 approach, the HIA
scheme could give~as will be shown below! an effective and
nontrivial description of many-body multiplet effects.

To introduce Hubbard-I–type approximation in the d
generate case it is convenient to exploit the so-called ato
representation and HubbardX operators~see Refs. 43, 1, and
44!,

Xi
mn5u im&^ inu,

wherem,n are multielectron states of the sitei as a whole
~configuration and multiplet indices!. In terms ofX operators
the atomic Hamiltonian has a very simple form:

Hat5(
m

EmXmm.

On the other hand, the intersite transfer Hamiltonia
which has very simple~bilinear! structure in terms of the
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operatorsc
m8s

1
, cms , also can be expressed in terms ofX

operators by the relationscms5(mn^mucmsun&Xnm and simi-
larly for c

m8s

1
. In the limit of a very strong interaction it is

convenient to calculate the Green function viaX operators
~using the decoupling procedure44 or a special diagram tech
nique for X operators40! and then transform to electron op
erators. HIA corresponds to the following expression:33,44

G21~ iv!5@Gat~ iv!#212 t̂

wheret̂ is the matrix of transfer integrals. In the limit of ver
small t̂ this expression describes the arising of sepa
bands from each intraatomic transition with the change of
electron number from unity. It is the picture that seems r
sonable for, e.g., rare-earth materials with a very narrowf
band. The bands always appear to be narrowed. Indeed,
the vicinity of the poleiv5«0 the atomic Green function
can be represented as

Gat~ iv!5
Z0

iv2«0
;

the effective transfer Hamiltonian for this ‘‘Hubbard band
will be Z0 t̂ instead oft̂ .

In terms of the LDA11 multiband approach HIA for the
Green function has the following form:

G
im, jm8,s

21
~ iv!5@~ iv1m!dmm82S

mm8s

at
~ iv!#d i j 2h

mm8s

i j
.
~8!

To obtain this Green function, we need to solve by an ex
diagonalization~ED! technique the atomic many-electro
problem:

Hatuy&5En
atuy&

with the effective atomic Hamiltonian ford or f states,

Hat5 (
mm8s

«mm8cms
1 cm8s

1
1

2 (
$sm%

Um1m2m
1
8m

2
8cim1s

1 c
im2s8
1

cim
2
8s8cim

1
8s ; ~9!

here«mm8is the matrix of atomic energies that in principl
can include nondiagonal terms. The latter naturally com
from the LMTO tight-binding effective Hamiltonian, which
has a diagonal part ofhmm8s as a result of transformation t
an orthogonal basis set.35 Diagonalization of atomic Hamil-
tonian Eq.~9! is not a big problem for a standard work st
tion, since it is equivalent to the five- and seven-site Hubb
model in the ED scheme3 for d and f states.

Using eigenfunctions and eigenvectors of the Hamilton
@Eq. ~9!#, the exact atomic Green function can be found
the standard definition:20

G
mm8s

at
~ iv!5

1

Z(
mn

^mucmsun&^nuc
m8s

1 um&

iv1Em2En
~e2bEm1e2bEn!,

~10!

whereZ5(ne2bEn.
te
e
-

in

ct

s

d

n
y

Finally Sat, which is needed for HIA approximation, i
found from the following expression:

S
mm8s

at
~ iv!5 ivdmm82«mm82~Gat!

mm8s

21
~ iv!. ~11!

Now the HIA approach to LDA11 may be formulated as a
functional for the atomic density matrix,nmm8 with a con-
straint ~for «mm8):

nmm85
1

b(
v

G
mm8
at

~ iv!1 1
2 dmm8 ~12!

~see Ref. 20! having the samenmm8 density matrix ford or f
electrons as in the crystal, as for the corresponding site
orbital element of the Green function, Eq.~8!.

C. DMFT-multiband scheme

A great success of the dynamical mean-field (d5`) ap-
proach to the theory of correlated systems3 shows that prob-
ably this scheme can be the most accurate for the calc
tions of the self-energy from local description of electr
fluctuations, at least in the vicinity of the metal-insulat
transition. We will use this scheme for real crystals as a b
local approximation. The DMFT scheme is based on the c
ity method or the solution of the effective impurity problem
which corresponds to subtraction of the local self-ene
only on the one atom in question. In Appendix A we sho
the equivalence of the cavity and impurity methods for m
trix multiband Hamiltonians. It was realized recently that t
success of DMFT in the one-band half-filled Hubbard mo
with simplest second-order self-energy is related to the
that both small and largeU limits are exact in this case.3

This is not true for the noninteger filling or for the multiban
case. The elegant iterative perturbation IPS for noninte
one-band Hubbard model was proposed recently45 and gives
almost perfect agreement with ED and QMC results. For
case of a multiband with noninteger occupations the prob
is much more severe and the existing IPS generalizatio46

does not produce good results for large doping. Here we
the main idea of the original IPS method45 and propose an-
other version of multiband DMFT that is based more on
numerical solutions of corresponding atomic problem th
the approximate analytical one used in Ref. 46.

The impurity problem for the ‘‘bath‘‘ Green function
reads

@G0~ iv!#
mm8
21

5@G~ iv!#mm8
21

1~m02m!dmm81Smm8~ iv!,

where the local Green function is defined through Brillou
zone sum:

Gmm8~ iv!5
1

Nk
(

k
Gmm8~k,iv!;

here Nk is the total number ofk points. Alternatively one
may perform thek integration using a complex-tetrahedro
scheme.47,48We introduce here according to Ref. 45 the ‘‘lo
cal’’ impurity chemical potentialm0 to satisfy the condition

(
k
E

2`

1` dv

2p
TrF Ĝ~k,iv!

]Ŝ~ iv!

]v
G50,
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which is necessary to establish that the Luttinger theorem
true.

We use the following ansatz for the self energy is in t
matrix (m,m8) form:

Ŝ~ iv!5ŜHF~ iv!1Â* Ŝ~2!~ iv!* @ 1̂2B̂~ iv!* Ŝ~2!~ iv!#21,
~13!

where the second-order self-energyŜ (2)( iv) is defined in
terms of the bath Green functionG0( iv) in accordance with
Eq. ~5! with W5V(2) @see also Eq.~6!#:

Ŝ~2!5Ŝ~2!@G0#.

In the spirit of the approach of Ref. 45 theA matrix
should be defined to provide the exact high-energyv

→`) limit of Ŝ( iv). The best way to bring about such a
asymptotic is to use the equations of motion for the doub
time retarded Green function with the analytical continuat
on the Matsubara frequencies.20,40 One has an exact atv
→` expression

Smm8s~ iv!5
1

iv
Nmm8s ,

where

Nmm8s5^$@cms ,H int#,@H int ,cm8s
1

#%&;

here @ . . . , . . .# and $ . . . , . . .% are the symbols for com
mutator and anticommutator, correspondingly, andH int is the
Hubbard~interaction! part of the Hamiltonian. Note that in
the multiband case the averageNmm8s contains the products
of four electron operators and cannot be found exactly.
coupling of these four-fermion averages according to
Wick theorem and comparing the result with the asympto

of Ŝ (2),

S
mm8s

~2!
~ iv→`!5

N
mm8s

0

iv
,

we obtain the following expression:

Â5N̂* @N̂0#21,

where theN0̂ matrix defined in the spin-polarized case as

N
mm8s

0
5(

$mi %
H Umm3m1m4

Um1m5m8m2(
s8

n
m5m4s8
0

~dm3m2

2n
m3m2s8
0

!2Umm3m4m1
Um1m5m8m2

n
m5m4s8
0

~dm3m2

2nm3m2s
0 !J

and in the nonmagnetic case it simplifies to

N
mm8
0

5(
$mi %

Umm1m3m4

d Um1m5m8m2
nm5m4

0 ~dm3m2
2nm3m2

0 !.
is

-
n

-
e
c

The expression for theN̂ matrix differs from that forN̂0 by
the replacement of the occupation matrixn0→n. Note that

matrix Â appears to be non-Hermitian. In the nondegener
case this expression appears to be exact~see Ref. 45! due to
the identity

~cms
1 cms!25cms

1 cms .

It can be quite accurate also in the general multiband ca

Coefficient matrixB̂ is designed to fix the exact atomi
limit of the interaction self-energy, Eq.~13!. There are other
problems with coefficientB in the multiband case.46 While
in the single-band model one can find an analytical expr
sion for the constantB,45 in the multiband case this param
eter should bev dependent, owing to the frequency depe
dence of the atomic self-energy, Eq.~11!. We decide to find
numerically the non-Hermitian matrixB( iv) from the

atomic limit of Eq.~13! using the exactŜat( iv) with a con-

straint for the density matrixn̂. In this limit Ŝ (2)( iv) in the
nonmagnetic case has the form

Ŝ
mm8
~2!at

~ iv!5(
$mi %

Umm1m3m2

d Um1m2m8m3

3
@ f m3

~12 f m2
2 f m1

!1 f m1
f m2

#

iv1m02«m2
1«m3

2«m1

;

here f mi
and«mi

are diagonal occupation numbers and en

gies ofhat. In this case we have

B̂~ iv!5@Ŝ~2!at~ iv!#212@Ŝat~ iv!2ŜHF#21* Â. ~14!

As a simple example for such a scheme we compare
Fig. 1 the DMFT to exact diagonalization for the Anders
model of two sites, two bands with one correlated siteU
54, « f524 and one ‘‘free site’’ with«050 and hybridiza-
tion between the sitesV50.25.46 For convenience we as
sume that all parameters for our model calculations are in
energy units. The corresponding Hamiltonian for the And
son impurity model has the following form:

H imp5e f(
ms

f ms
1 f ms1V(

ms
~ f ms

1 cms1cms
1 f ms!

1U(
m

f m↑
1 f m↑ f m↓

1 f m↓ .

It is not a problem to find an exact Green function for th
model~the nonsymmetrized many-body Hamiltonian has
dimension 2563256) and compare it with approximate ca
culations. We see that the agreement between exact solu
and our DMFT results is quite good even for a large fillin
~ntot.1; in this casenf50.76, ntot'2). Also note that the
atomic Green function in Fig. 1 for the correlated site has
three-peak structure for this occupation~there are, in general
eight poles in Green functions for the two-band case! and not
the two-peak structure as in the one-band model. The us
the numericalatomic Green function for theB( iv)-matrix
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calculation is quite important even for qualitative agreem
with exact results for such a model at a filling larger than o
electron per site.45

III. RESULTS FOR TWO-BAND MODEL

In this section we compare the three different LDA11
approaches described above for a two-band system. We

FIG. 1. Energy spectrum for two-band two-site Anderson mo
in exact diagonalization and DMFT scheme as well as atomic Gr
function for correlated site.
f-

2
o

t
e

ed

the simplified two-dimensional model for high-Tc supercon-
ductors fordx22y2[x anddz2[z orbitals.34 If one can skip
the z orbital it will be the standard single-band neare
neighbor hoppingt model. The LDA band-structure calcula
tion for high-Tc materials shows the large contribution of C
dz2 orbital to states near the Fermi level.49 Therefore the
situation with two correlated valence bands could be poss
in this materials. Although we knew that for the realist
description of the Cudx22y2 state in the single-band mode
one need to include next-nearest hoppings~coming from in-
teractions with O 2p- and Cu 4s orbitals49! we used here the
simplified tight-binding~TB! model for two correlated band
x andz within the nearest-neighbor hopping approximatio
The one-electron Hamiltonian has the following form:34

ĥ~k!

5S 22txx~coskx1cosky!1D, 22txz~coskx2cosky!

22txz~coskx2cosky!, 22tzz~coskx1cosky!
D .

The hopping parameters are related via a simple Sla
Koster ratio: txx51, tzz50.3, txz50.4. Again we assume
that all TB parameters are in eV energy units, while the va
txx;0.5 eV would be more realistic.49 It is important to take
into account the energy shifting parameterD since Cudx22y2

bands are located higher than the Cudz2 one, so we useD
54. For the Coulomb energy our parameterization cor
sponds to the following matrix elements (m1Þm2):
Um1m1m1m1

5U1J, Um1m2m1m2
5U, Um1m2m2m1

5J, and

Um1m2m1m1
5dJ. In this case the symmetrized bare vertic

has the following form~the basis function numbering a
xx,xz,zx,zz):

l
n

Ud5S U1J dJ dJ 2U2J

dJ 0 2J2U dJ

dJ 2J2U 0 dJ

2U2J dJ dJ U1J

D , Um5S 2U2J 2dJ 2dJ 2J

2dJ 0 2U 2dJ

2dJ 2U 0 2dJ

2J 2dJ 2dJ 2U2J

D ,

Us5S U1J dJ dJ 0

dJ 1
2 ~J1U ! 1

2 ~J1U ! dJ

dJ 1
2 ~J1U ! 1

2 ~J1U ! dJ

0 dJ dJ U1J

D , Ut5S 0 0 0 0

0 1
2 ~J2U ! 1

2 ~J2U ! 0

0 1
2 ~J2U ! 1

2 ~J2U ! 0

0 0 0 0

D .
ith
e

eV
S

We investigate this model for differentU parameters:U
5228 with the fixed values ofJ50.5 anddJ50.1. The
total number of electrons isntot51.4, which approximately
corresponds to fully occupiedz bands and the almost hal
filled x band with 10% holes. We use the 32332 mesh for
the summation over the Brillouin zone and the 400028000
Matsubara frequencies with the cutoff energy equal to
240 times the bandwidth. In Fig. 2 we show the results
0
f

self-consistent FLEX two-band calculations forU52, 4, 6,
and 8. The density of states~DOS! was obtained from the
Green function, extrapolating Matsubara frequencies w
the Pade approximation50 to the real axis. Note that the bar
bandwidth for txz50 is equal to 8t in the case of two-
dimensional square lattice and corresponds to 8 and 2.4
for x and z bands. One can see the narrowing of the DO
peak near the Fermi energy~EF) for the x band and the
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boarding of the totalx and z-subbands asU increased. An
interesting feature of this two-band model is seen in mov
the peak from occupiedz bands towards the Fermi level wit
increasing correlation strengthU, and a pinning of the van
Hove peak from thex band just above Fermi level. Thi
drastic change of thex and z band shape maximizes th
particle-hole interband susceptibility~inversely proportional
to the energy distance between band peaks! and therefore
increases the fluctuation contribution to FLEX energy. T
value of the average inverse mass enhancement fa
Z5@12]S(e)/]e#e50

21 is equal to 0.45 and 0.83 forx andz
orbitals for U54. Spectral function A(k,e)5
21/pTr Im G„k,e… for three differentk directions in the
two-dimensional Brillouin zone is shown in Fig. 3. On
could see the renormalized dispersion of two bands: thx
band from approximately25 eV at theX point to 5 eV at
the M point and thez band from approximately28 eV at
the X point to 3 eV at theM point. Similar to all high-Tc
models36 there is an extended van Hove singularity inx
bands just at the Fermi energy near the X point.

The results of self-consistent DMFT calculations forU
54 and 8 are presents in Fig. 4. In this case we use only
seven Matsubara frequencies in Eq.~14! and the constantB
matrix for the rest frequencies. One can clearly see so
differences to the corresponding FLEX results, which
related to a sharpness of the DOS nearEF and the more
pronounced three-peak structure of the partialx-band DOS
for U58. We plot also the DOS corresponding to the atom
Green function forU58 with the four poles near the Ferm
energy out of eight poles in the paramagnetic two-orb
atom. The corresponding spectral function for the same
rections in the Brillouin zone is present in Fig. 5 forU58.
There is a sharp quasiparticle dispersion near the Fermi l
and a broad incoherent background aboveEF at an energy of

FIG. 2. Density of states for the two-band model in the FLE
scheme for differentU values. Full and dashed lines indicate part
DOS for x andz orbitals.
g
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e
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c
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about 7 eV near theM point. An extended van Hove singu
larity at theX point becomes more pronounced. We plot a
the momentum distribution functionn(k) in ~1,1! direction
in the Fig. 6. From the quasiparticle dispersion of thex band
along theG-M direction ~Fig. 5!, we expect the Fermi sur
face crossing almost exactly halfway between these
points. The momentum distribution function~Fig. 6! just
confirms this situation and shows that the Fermi step~our
simulation temperatureT50.06t) is smaller than 1 and

l

FIG. 3. Spectral function~the two-band FLEX model,U54)
for three different directions in the two-dimensional square B
louin zone: G5(0,0), X5(0.5,0), andM5(0.5,0.5) in units of
2p/a.

FIG. 4. Density of states for the two-band model in the DMF
scheme for differentU values as well as the atomic Green functio
for U58. Full and dashed lines indicate partial DOS forx and z
orbitals.
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6892 57A. I. LICHTENSTEIN AND M. I. KATSNELSON
agrees with the calculated value of the mass renormaliza
factor Z50.43 for thex band.

Finally, the HIA solution for this two-band model forU
58 is shown in Fig. 7. In this case we have the dielec
DOS with narrow atomiclike resonances. It is interesting
note that the structure of the atomic Green function in
DMFT approximation~Fig. 4! quite close to the HIA solu-
tion shifted down by approximately 2 eV. We would like
mention that the application of the HIA scheme is reasona
only for U@W and not forU5W as in this case.

IV. LDA 11 CALCULATIONS FOR REAL SYSTEMS

The self-consistent LDA11 calculation for real system
pose a serious computational problem. One needs to op
with the susceptibility matrix, which is of dimensionNd

2

3Nd
2 and depends on the Matsubara frequencies. For a

lustrative purpose we have calculated the electronic struc
of classical Mott-Hubbard insulator NiO and mixed-valen
4 f -compound TmSe in the HIA scheme for LDA11. We
use the non-self-consistent HIA approximation with the si

FIG. 6. The momentum distribution functionn(k) in the ~1,1!
direction for the two-band DMFT modelU58.

FIG. 5. Spectral function~the two-band DMFT modelU58)
for three different directions in the two-dimensional square B
louin zone.
n
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plest constraint for only diagonal« f in Eq. ~9! to havend for
NiO or nf electrons for TmSe from self-consistent parama
netic LDA calculations. The Coulomb matrix is express
via effective Slater integrals:

Um1m2m
18m

28
5(

k
ak~m1 ,m18 ,m2 ,m28!Fk,

where 0<k<2l and

ak~m1 ,m18 ,m2 ,m28!5
4p

2k11 (
q52k

k

^ lm1uYkqu lm18&

3^ lm2uYkq* u lm28&.

We used the following effective Slater parameters, wh
define screened Coulomb interaction in thed shell for NiO:
F058.0 eV,F258.2 eV, andF455.2 eV, and in thef shell
for TmSe: F055.7 eV, F259.1 eV, F455.7 eV, andF6

54.7 eV ~see, e.g., Refs. 16, 51, and 52!. We start from the
nonmagnetic LDA calculations in the LMTO nearly orthog
nal representation35 for experimental crystal structures o
NiO and TmSe. The minimal basis set ofs, p, andd orbitals
for NiO ands, p, d, and f orbitals for TmSe corresponds t
the 18318 and 32332 matrices of the LDA Hamiltonian
h(k…. The occupation number for correlated electrons are
electrons in thed shell of Ni and 12.6 electrons in the 4f
shell of Tm. Using the corresponding atomic self-energy
the Ni atom and Tm atom the total DOS’s for NiO and Tm
have been calculated from Eq.~8!. In Fig. 8 we compare the
paramagnetic LDA results with the HIA LDA11 scheme. It
is well known that the paramagnetic LDA calculations ca
not produce the insulating gap in nickel oxide: the Fer
level located in the middle of the half-filledeg bands.18 In
the HIA approximation to the LDA11 approach there is a
gap ~or pseudogap in Fig. 8 due to temperature broaden!
of the order of 3.5 eV even in this nonmagnetic state. T
gap and the satellites at25 and28 eV are related to the
structure of the atomic Green function shown in the low
panel of Fig. 8.

In Fig. 9 we compare the calculated DOS for TmSe w
experimental x-ray photoemission spectroscopy.53 The HIA

FIG. 7. Density of states for the two-band model in the H
scheme forU58. Full and dashed lines indicate partial DOS forx
andz orbitals.
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approximation in this case well reproduces the ladder-t
photoemission spectrum, comes mainly from combinati
of two multiplets structure of Tm21( f 13) and Tm31( f 12).
This example demonstrates how the LDA11 scheme can
combine the many-body atomic physics with band struct
methods. The normal LDA-band structure for rare-earth s

FIG. 8. Density of states for paramagnetic nickel oxide in
LDA and HIA approximations as well as the Ni-atom Green fun
tion.

FIG. 9. Density of states for TmSe in the HIA scheme in co
parison with the experimenral XPS spectrum~Ref. 53! and the re-
sults of paramagnetic LDA calculations.
e
s

e
s-

tems corresponds to the narrowf peak at the Fermi level and
could not describe the experimental XPS spectrum, wh
has thef resonances over a wide energy range of the orde
12 eV. At the same time, HIA is not adequate to descr
correctly the fine features of the electron structure near
Fermi level. It is known54 that TmSe is really the narrow-ga
semiconductor. According to the most developed model
proach to mixed-valence semiconductors55,1 the appearance
of this energy gap is caused by both hybridization and ex
ton effects due to the Coulomb attraction of the 5d conduc-
tion electron and 4f hole. This effect cannot be described
the HIA approximation. Nevertheless, we believe that
description of the electronic structure off compounds in-
cluding mixed-valence ones on the large energy scale
important in and of itself and in this sense the results p
sented here demonstrate the usefulness of the LDA11 ap-
proach for the description of real strongly correlated syste

V. SUMMARY

We have formulated a general LDA11 scheme that takes
into account dynamical electron fluctuations in the case
correlatedd or f states. The most accurate approach is
DMFT-band structure method, while the more simple FLE
and HIA schemes can be useful as well for investigation
correlation effects in real systems, in the cases of rather w
and rather strong interaction, respectively. In principle, o
could combine the idea of the bath Green function in
DMFT scheme with the simple expression for the se

energy in the FLEX approximation. In this caseŜ

5ŜFLEX@G0#, and we expected to effectively reduce the e
fects of vertex corrections in the FLEX scheme.

Here we compare the LDA11 approach with more
simple LDA1U one. First of all, to describe Mott insulator
in the LDA1U approach~as well as in the SIC approach! it
is necessary to assume magnetic and~or! orbital ordering.18

In LDA11 it is possible to consider theparamagneticMott
insulators in the framework ofab initio calculations. More-
over, it is possible to obtain not only the Mott-Hubbard g
in the electron spectrum but also satellites and multip
structure~see, e.g., the results for TmSe and NiO in the p
vious section!.

The correlation effects results from the frequency dep
dence of the self-energy~the non-Fermi-step form of the dis
tribution function for quasiparticles, the mass enhancem
the appearance of many-electron Kondo resonances, etc.! can
be obtained and investigated in the LDA11 approach but
not in the LDA1U. Our results for the two-band model pro
vide interesting examples of such behavior. In particular, i
worthwhile to note such features as the narrowing of the
Hove singularity and its ‘‘pinning’’ to the Fermi level~which
is important for the physics of highTc superconductors36 and
can be described already in the multiband FLEX approxim
tion!, the three-peak structure of the spectrum in the vicin
of Mott insulators~Kondo resonance and midgap states t
can be described in the DMFT approach!.

We hope that the approximations described here may
useful for theab initio calculations of the electron structur
of a great variety of strongly correlated electron systems
cluding doped Mott insulators, rare-earth metals, and th
compounds ~in particular mixed-valence ones!, high-

-

-



e
e
s-

e
K
n-

vit
d
tio

ic

o

th

6894 57A. I. LICHTENSTEIN AND M. I. KATSNELSON
temperature superconductors, and many others.
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APPENDIX A

Here we present the proof of the equivalence of a ca
method and impurity problem in DMFT for the multiban
case. We start with the expression for the Green-func
matrix on the zero site in the cavity method@see Ref. 3,
Eq. ~35!#,

@G0~ iv!#215 iv1m2hat2R,

where

R5(
i j

t0iGi j
~0!t j 0 ~A1!

with hat being the one-electron part of the intra-atom
Hamiltonian. All of these functions are the matrix in (m,m8)
indices as well as the diagonal matrix in spin space. N
that Gi j

(0) is the Green function between sitesi and j on the
lattice with the site zero being eliminated,

Gi j
~0!5Gi j 2Gi0G00

21G0 j . ~A2!

Using the Fourier expansion of all the quantities over
Brillouin zone and substituting Eq.~A2! to Eq.~A1! one has
t.

.R

d

.J.
n-
.

y

n

te

e

R5M2LG00
21LT,

where

L5(
i

t0iGi05(
k

t~k!G~k!

and

M5(
i j

t0iGi j t j 05(
k

t~k!G~k!t~k!.

At the same time~see Ref. 3!

G~k!5@L2t~k!#21,

L5 iv1m2hat2S~ iv!. ~A3!

Taking into account that(kt(k)50 one obtains

L5(
k

@ t~k!2L1L#@L2t~k!#215211LG00

and

LT5211G00L.

One can obtain by the similar way the result forM ma-
trix: M5LLT.

Substituting all of these formulas into Eq.~A1! we have

R5~L1G00
212L!LT52G00

211L.

Using Eq.~A3!, we can finally write

@G0~ iv!#215 iv1m2hat2L1G00
215S~ iv!1G00

21 .

It means thatG0( iv) is the Green function of the impurity
problem with the on-site one-electron Hamiltonianhat
1S( iv) on each nonzero site andhat for the zero site.
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