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We discuss a general approach to a realistic theory of the electronic structure in materials containing
correlatedd or f electrons. The main feature of this approach is the taking into account of the energy
dependence of the electron self-energy with the momentum dependence being nélgleategbproximation
It allows us to consider such correlation effects as the non-Fermi-step form of the distribution function, the
enhancement of the effective mass including Kondo resonances,” the appearance of the satellites in the
electron spectra, etc. To specify the form of the self-energy, it is useful to distin@asbrding to the ratio of
the on-site Coulomb enerdy to the bandwidthV) three regimes—strong, moderate, and weak correlations.

In the case of strong interactionsl (W>1—rare-earth systenthe Hubbard-I approach is the most suitable.
Starting from an exact atomic Green function with the constrained density nmjrix the band-structure
problem is formulated as the functional problem g, for f electrons and the standard local-denisty-
approximation functional for delocalized electrons. In the case of moderate correlations
(U/W~1—metal-insulator regime, Kondo systenwge start from thed=c dynamical mean-field iterative
perturbation scheme of Kotliar and co-workers and also make use of our multiband atomic Green function for
constrainech,,,y. Finally for the weak interactiondJ/W< 1—transition metalsthe self-consistent diagram-
matic fluctuation-exchange approach of Bickers and Scalapino is generalized to the realistic multiband case.
We present two-band, two-dimensional model calculations for all three regimes. A realistic calculation in the
Hubbard-I scheme with the exact solution of the on-site multielectron probleri{drshells was performed

for mixed-valence # compound TmSe, and for the classical Mott insulator Ni€0163-182@08)05112-1

[. INTRODUCTION of an effective single-particle DFT potential as a density-
dependent XC potential, taken from the exact quantum
A general accurate description of the electronic structuréMonte Carlo(QMC) results for the homogeneous electron
of materials with correlated electrons has yet to be develgas. There are many successes but also some failures of the
oped. Such materials include the higip-and colossal mag- LDA approact® related to the simple fact that, in cases
netoresistancelCMR) materials, as well as the mixed- where some portion of the electronic structure is better de-
valence and heavy-fermion compounds. All these systemscribed in terms of atomiclike electronic states, the homoge-
demonstrate essentially many-parti¢orrelation) features neous electron gas approximation is not a good starting
in their excitation spectrum and ground-state properties, thpoint. Another limitation of LDA theory is that it is only a
usual language of one-electron band theory being inadequagtound-state scheme and the one-particle band structure it-
to describe such features even qualitatively: e.g., the problerself has, generally speaking, no proper meaning. Recently
of Mott insulators, the heavy-fermion behavior in some rarethe time-dependerfT D-LDA ) approach has been applied for
earth compounds, satellites and “midgap states” in electrorealculations of excitation energiégbut the TD-LDA effec-
spectra, etc(see, e.g., recent revieWd). Such effects as the tive potential is not known as well as the LDA one. On the
metal-insulator transition, Kondo effect, and others, whichother hand, exact QMC calculations for real materials which
help us to understand the basic physics in these stronglgave tedious first-principles Hartree-Fock band structure as
correlated materials, is usually considered in the frameworlkzero-order approximations is still a challenging problem of
of simplified models such as the Hubbard model, Andersorsolid state theory.**
model, s-f exchange model, and other correlation models. In this situation it is useful to have a simple and accurate
Nevertheless, the complexity of the crystals containingscheme that could still capture the most important properties
10-15 different atoms per unit cell, and the interactions beof real electronic structure and at the same time could take
tween electronic and lattice degrees of freedom demand i@to account the most important correlation effects. One of
more detailed investigation of the energy bands in such syghe first successful approaches in this line was @&/
tems. The only general first-principles approaches that takapproximatioh? for quasiparticle spectra in solids with the
into account in practice specific peculiarities of the electronicself-energy related to a “bare” Green functio®) and a
structure in real compounds are those based on the densitgereened Coulomb interactiolf. Self-consistenGW cal-
functional theory(DFT).® The vast majority of practical DFT culations basing on the LDA band structure give a much
applications today are based on the local-density approximaetter description of a Mott insulator such as NiO than does
tion (LDA), which treats the exchange-correlatiofC) part  pure LDAZ still, the nonlocal Coulomb interactions make
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such type of calculations really time consuming. For the purRoughly speaking, the shape of energy bands may be
pose of only band-structure investigations one could use ahanged but there is no band splitting, or presence of addi-
simplified time-independenGW scheme or the so-called tional bands. The most interesting physical phenomena in
screen-exchange LDA approattt® The latter approach has thls_ case are the reno_rmallza_lt_lon of the effective masses, flat-
some of the same drawbacks as the Hartree-Fock approximining of Van Hove singularities, etc. _ _

tion and did not prove suitable for strongly correlated sys- the ~case of very strong interactions
tems. A different way to incorporate some correlation effec{ Y/ W>1—rare-earth systemwe will start with the exact

in the systems with localized or f states was successfully atomic Green function fof states and use the Hubbard-|
done in the so-called LDAU method® In this case a approximation(HIA) (Ref. 33 to analyze the spectrum 6éf

simple mean-field Hubbard-like term is added to LDA func- SYStéms. This approach also may be applied to slisgs-

tionals for the localized state and care must be taken fof€MS @s Mott insulators with very narrovbands. For this
correction of the LDA double countier.This approach can situation the electronic stru_cture of solids will combine the
also be viewed as a density-functional theory, sincethe Many-body structure ofi(d) ions and broad bands from de-

terms that depend on occupation number for localized eledocalized electrons. In this case such phenomena as multiplet

trons is a function of the total density. So one just uses thatructure, satellites in photoelectron spectra, the narrowing of

LDA functional for delocalized electrons and improved the electron bands deper)ding on the magnetic ordering, etc.
LDA +U functional for localized atomiclike states. This ap- are; thi subjects(,jpfff_ mleun mterefsts. | ated ohvsi
proach produces a more reliable description of the electroni<(‘ n the most '_'CUI case o _s_trongy_corre ate c? ysics
and crystal structure of correlated materials with chargelY/W~1—metal-insulator transition regime or Kondo sys-
spin, and orbital ordering than does the LSDA schéfrut tems we will use the interpolation scheme based on dynami-

the LDA+U scheme, as well as the approach based on th%al mean-field theoryDMFT).2 In this.situation we will
so-called self-interaction correctioSIC),'° has one intrin- ave a three-peak structure from a single correlated band,

sic shortcoming related with a mean-field approximation. 1tcOnsisting of upper and lower Hubbard bands and Kondo
is well known (see, e.g., Refs. 20 and 2that the most resonance near the Fermi energy. Such a scheme is the most

interesting correlation effects in quasiparticle spectra, such gccurate, but also the most time consuming, and it is difficult

the mass enhancement, damping, and the difference of tHa make.a self—ponsistent c_alculation for a large system. The
distribution function from the “Fermi step” are connected other point of view of the different LDA + schemes could

with the energy dependence of the self-ene¥dy), so one be related to the different energy scales for the spectrum of
needs to generalize the LD®U approach to inélude dy- correlated materials: if one is interested in the large energy
namical effects. Such a scheme we would like to Ca”scale, the HIA approximation is sufficient for spectroscopic

LDA ++.22 One can mention a few successful attempts inPUrPOSes. If we wich to describe the low-energy scale of a
this direction: quasiparticléQP) band-structure calculation SYSt€M like doped Mott insulators or mixed valence systems,

of Fe, Co, and NiRefs. 23-25as well as a heavy fermion the_lr_lhthe DMFT afppr[oach fis }IhED”:it apmogrigteih
systeni®?” using simplest second-order local approximation_. ' '€ common eature ot a methods Is the ma-
for the self-energy: the QP-band structure of NiRefs. trix form pf self-_energy fslnce.electron_-electron.corre!anons
28 and 29 using the three-body Faddeev approximation; & be d|agor_1allzed r_1e|_ther n ba_nd ind@snor in o_rbltal
the random-phase-approximation-like approach for high_lndmeslm. This peculiarity of multiband Hubbard interac-

temperature superconductofsiTSC) (Ref. 30 and non- tions is normally ignored and only afew_examples of matrix
crossing approximation€NCA's) for Kondo systema! At self-energy exist for a transition metal with the LDA second-
the same time, a criterion for the applicability of épecific order perturbation schent&?°transition-metal oxides within
approximations used in these works was not clear. the three-body Faddeev approximatf3nand for the two-
In this paper we propose a general scheme for HDIA band Hubbard model, investigation of orbital and magnetic

; it n o34
band-structure calculations for real materials withadifferenfnsfl_ip'“t'es' . ed as foll i Sec. Il il i
strength of electronic correlations. It is not very efficient 'S paper IS organized as follows. n Sec. 1l we will give
from the computational point of viewas well as not very & general description of different correlation schemes to the

reasonable from the purely theoretical bie use the only dynamical mean-field band-structure calculations. The
LDA++ scheme for materials with different electron- Simple two-band modéSec. I) willillustrate in practice all

electron interactions. In accordance with the ratio of averag _DA+_+ _methods. In Sec. v we will give an example of
on-site Coulomb paramete to the relevant valence-band irst-principles calculations of mixed-valence system TmSe

width W, it is useful to distinguish three regimes of weak, 2hd classical Mott insulator NiO within Hubbard-1 approxi-
moderat’e- and strong correlations " mation to LDA++. Finally we summarize our results in Sec.

For the simplest case of weak correlations V-
(U/W<1—transition metals we could use the self-
consistent diagrammatic approach. The most convenient way
is the conserving fluctuation exchange(FLEX) The Kohn-Sham energies of one-particle LDA states can-
approximatiori and we will use the multiband generaliza- not be considered as the quasiparticle energies in the sense of
tions for the LDA+ + weak-correlation scheme. The charac- many-particle theory(see, e.g., Refs. 20 and 21n the
teristic feature of this renormalized band regime is that nd_DA ++ approach they considered only as the bare energies,
additional states appear in the electronic structure due to irwhich are supposed to be renormalized by the correlation
teractions or, more exactly, there is one-to-one corresporeffects. Of course they contain already some part of the cor-
dence of quasiparticle states with and without interactionrelation effects but only those that may be considered in the

Il. LDA ++ METHODS
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local-density approximation. The most important “rest” in a tight-binding Hamiltonian. In this case LDA calculations
strongly correlated system is the correlations of the Hubbarevere corrected for double counting, produce the first-
type®™ due to the intrasite Coulomb repulsion. Therefore ourprinciples hopping;; in the many-body Hamiltonian.

starting point is the same as in the LBAJ approach. We Now we can describe methods for efficient calculations of
proceed with the Hamiltonian guasiparticle(QP) spectra for the LDA-U Hamiltonian. In
this sense our approach is no longer density-functional
H= E t ot e theory and one could benefit from, possibly using the infor-
mym,~im, o Jmyo

mation on QP-band structure as compared with different
“excitation” experiments.

ijo{m}

1 i +
+ = U ' Cih o C Cim'e'Ciml o, (1
Zi&%} g, s iy CmgeCimr - (1) A. Multiband FLEX
where (,]) represents different crystal sitgsn} labels dif- In this section we generalize the FLEX equatithfer the

ferent orbitals, and th{a.a} are spin indicgs. Coulomb matrix purpose of the multiband LDA + scheme. We will not take
elements are defined in the usual way: into account a momentum dependence of the self-energy,
although in the FLEX approximation it is straightforward to

Um.m m’m’:f f drdr'ap:; (r)yyr (r') include it in all the following formulas. The numerical com-
e ' 2 putation of the ¢, w)-dependent self-energy is time consum-
XVed I =1") ! (1) b’ (1'); (27 ing in the multiband cas&:*’ To unify the approximations

for all our LDA++ schemes we will not include explicitly

here V(r—r’) is the screened Coulomb interactions andthe g dependence in the FLEX formalism.
¥m(r) are localized on-site basis functioithe site index First of all, one needs to symmetrize the bare vertex ma-
being suppressed trix U over different fluctuation channels: the particle-hole

In this case all the orbitals are assumed to belong to thédensity® and magnetidd™) and particle-particlésinglet-
correlated set, while in real materials like high-com-  U®and tripletU') vertex matrices:
pounds(e.g., YBaCu;0-) we may define as a first approxi-
mation only the 8 orbitals as correlated ones. Therefore it is v . =2u "m—U ‘m

. . m;m, m,m mmym;m m;mpm,m, »
more reasonable to rewrite E) in the form of LDA+U 1017272 v Zt
Hamiltonian:

m R U ’ ’
oA, L i v+ mym, mpm, MaMzMpMy
H=Hg:"+ Ei%} Umlmzm'lm’zcimllfcimzo'Cimz"/ciml"' s

N[

(U mlm’ mzm’ +U mlm;m;mz) )

(3) mlm;mzm; = i >

Note that index in the second sum of E@3) is running ¢ )
only for correlated sites, and orbital indicés} only for Unmmm, = 2(Umgm
correlated statege.g., 3 or 4f) while the first LDA term, vee

ror '

1m,my -U mlmlmzm,z) .
The one-electron Green function is defined through the

LDA _ ij + i i .
Hao _”Z hy, m.oCim +Cim.o— Edc: following equation:
Ij()’{m} 1'"'"2 1 2

contains all sites and orbitals in the unit cell. Hatg ., , are Gmrln,a(i wn)=(loq+ p) Smm — hmm’a—z:fnfa
the one-particle Hamiltonian parameters in thispin- -3 (iwp):
polarized LDA, Eg is the double counting correction for mm o
average Coulomb interactions if@DA:*’ hereu is chemical potentiake,= (2n+ 1)/ are Matsubara
L = frequencies, an@g=1/kgT is the inverse temperature. The
Edc=2UNg(1—Nng) = 3J[Ng;(1—Nngy) +ng (1 —Ng)) frequency-independent Hartree Fock part is

with U andJ being average Coulomb and exchange interac-

tions, andng=ng;+ny is the total number of correlated 3™, =

d(f) electrons. myms
One nontrivial problem is to find an efficient way to com- (4)

pute the one electron Hamiltoniam®* in a minimal or- _ o

thogonal basis set. Orthogonality of the basis functions i€nd cc;%responds to the rotationally invariant LBR

required for the use of the second quantization form of thenethod: _ _ _ _

effective Hamiltonian((Eq. (1)]. Since the many-bodyl{) It is useful to write the multlband FLEX equations using

part of the problem is an order of magnitude more time conmatrix-vector notation for dlfferent COL_JIomb matrix v_ertlce_s

suming than the LDA one, we need to use a minimal basi@nd the vector Green function. We will use a combined in-

set and integrate out all high-energy degrees of freeghuh  dex: az{m,m'} and define the vector Green function as

of the =U range. One of the best LDA methods for such a well as matrix interactions in the following way:

scheme is the linear muffin-tin orbitdLMTO) method®®

which could give the orthogonal down-folded one-electron G={G,}, U={U,.}.

T _ o
Ummlm'mzz nm1m2 Ummlmzm'nmlmz
o
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For simplicity we first write equations for nonpolarized spin Xmemomem. (T)=—Gm m.(— ) * G m.(7), 7)
states and omit the spin indices. In this case the Hartree-Fock rens o 2's
approximation, Eq(4), can be rewritten in the form of a
matrix-vector product only with the density Coulomb inter-
action: we can write with this notations for susceptibilities the bare
) channel propagator matrices in the following form for the
SHF=Ud*p, density and magnetic part,

7Tmlm2m3m4( T)= Gm1m4( 7)* szms( 7,

where the occupation matrix is defined as A 2
Do=Mo=x,

and for singlet and triplet bare propagators,

1
+ . 1
N ng]m’ = <CmaCm'o> = _2 Grm(i®n)+ 3 mm -
@n 0 _1
Sm1m2m3m4_ 2( 7Tm1m2m3m4+ 7Tm1m2m4m3)1

Using the single-site Hubbard interactions one obtains a
local form of FLEX equations in the frequencyp])-time (7) T?nlmzmgmf %(wmlm2m3m4— Wm1m2m4m3)-
space. It is very efficient to use fast-Fourier transforms with

periodic boundary conditio?f. Time-frequency spaces are The total channel propagatof®, where A={d,m,s,t})
connected by have to be found from the RPA-like matrix inversion:

Glion)= Joﬁem,,TG(T)dT, Rulio)=[1+ R 0)* UM *Rl(iw).

The derivation of the complete expression for the FLEX

1 . self-energy for the spin-polarized case with taking into ac-
G(1)=—=>, e “n"G(iw,). count all the channels is rather cumbersome. Since we will
@n not use here these complicated expressions, they will be dis-

We will try to keep this dual ¢-7) notation to stress the cussed in detail elsewhefe.

numerical implementation of this LDA+ scheme. We o
write the approximation for self-energy in t@W-like form: B. Hubbard-| approximation
R Historically Hubbard-I approximationl was the first and
3(7)=W(7)*G(1), (5) the simplest approximation for a strongly correlated one-
band model. It has, however, many inconsisten(ses, e.g.,
discussion in Ref. 41 For example, it is not conservirithe
P =\ self-energy cannot be represented as a functional derivative
1Mz 7 MMy MpMy of the generating functional with respect to the Green func-
and total fluctuation potential consists of the second-ordefion) and therefore does not obey the Luttinger theorem and
term, as well as particle-hole and particle-particle contribu-Other “exact” Fermi-liquid properties. For the half-filled
tions: nondegenerate Hubbard model it always gives a gap in the
energy spectrum, even for small. This means that HIA is
\7(iw)=Vz(iw)+\7ph(iw)—Vpp(—iw). completely inapplicable for small and medium interactions.
But at the same time it gives a correct picture of the electron
All these contributions can be expressed in terms of bargpectrum in the narrow-band limit. Therefore it seems to be
(Dg,Mg,Sy,Ty) and renormalized ,M,S,T) channel very useful in 4 systems with a very strong degree of local-
propagators. The second-order potential for the nonmagnetization of the electron states. Applying this to some real sys-
case is tems in the framework of the LDA+ approach, the HIA
R o R scheme could givéas will be shown beloyvan effective and
Vy(iw)=U*Dy(iw)* U4 (6) nontrivial description of many-body multiplet effects.

To introduce Hubbard-lI-type approximation in the de-
enerate case it is convenient to exploit the so-called atomic
representation and HubbaXdoperatorgsee Refs. 43, 1, and
44),

where symmetrized fluctuation(i w)-potential is defined as

W,
mim,m

while the particle-hole potential is expressed through theg
density and magnetic fluctuations:

Vor(i@)=30%[D(iw)—Dy(i0)]* U+ 30™ [M(iw)
XEr=liw)(ivl,

where u,v are multielectron states of the siteas a whole
(configuration and multiplet indicgsin terms ofX operators
the atomic Hamiltonian has a very simple form:

~Mo(iw)]*0™.

Finally the particle-particle contribution to the fluctuation-
exchange potential is

Vpp(iw):usj[S(i w)tso(iw)]* US+3U%[T(iw) HA= S E X,
oo O ’

If one defines the particle-holey] and particle-particle %) On the other hand, the intersite transfer Hamiltonian,
“empty loop” susceptibilities, which has very simplebilinear structure in terms of the
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operatorsc_, , Cp,, also can be expressed in termsof Finally %*, which is needed for HIA approximation, is
operators by the relations,, == , ,{ | Cmo| ¥)X** and simi- found from the following expression:

+ .. . . ..
larly for. c. - Inthe limit of a very stron_g interaction it is sat (iw)=iw5mm’—8mm’—(Gat)71r (o). (11)
convenient to calculate the Green function Waoperators mm e mm e
(using the decoupling proceddfer a special diagram tech- Now the HIA approach to LDA-+ may be formulated as a
nique for X operator®’) and then transform to electron op- functional for the atomic density matrix,,,y with a con-
erators. HIA corresponds to the following expressioft straint (for &my):

—1/; — at/; -1_% 1
G iw)=[GHiw)] ™~ o= 5 G (1) + 33 12)
wheret is the matrix of transfer integrals. In the limit of very ¢
small T this expression describes the arising of separatésee Ref. 2Dhaving the same,,; density matrix ford or f
bands from each intraatomic transition with the change of th&lectrons as in the crystal, as for the corresponding site and
electron number from unity. It is the picture that seems reaorbital element of the Green function, E®).
sonable for, e.g., rare-earth materials with a very narréw 4
band. The bands always appear to be narrowed. Indeed, if in C. DMFT-multiband scheme
the vicinity of the poleiw=¢y the atomic Green function

can be represented as A great success of the dynamical mean-fialid=(<) ap-

proach to the theory of correlated systéraows that prob-
ably this scheme can be the most accurate for the calcula-
. : tions of the self-energy from local description of electron
lo—e&p fluctuations, at least in the vicinity of the metal-insulator

the effective transfer Hamiltonian for this “Hubbard bangd” transition. We will use this scheme for real crystals as a best
will be Zt instead oft local approximation. The DMFT scheme is based on the cav-

In terms of the LDA+ + multiband approach HIA for the ity _method or the solution of the_ effective impurity problem,
Green function has the following form: which corresponds to_subtrac.tlon of the qual self-energy
only on the one atom in question. In Appendix A we show
ij the equivalence of the cavity and impurity methods for ma-
mmo trix multiband Hamiltonians. It was realized recently that the
®  success of DMFT in the one-band half-filled Hubbard model

To obtain this Green function, we need to solve by an exac¥ith simplest second-order self-energy is related to the fact
diagonalization(ED) technique the atomic many-electron that both small and large) limits are exact in this cask.

Zy

GHNiw)=

-1
imjm’,o

G o (1@ =[(0+ ) S =31 0 (10)]8—h

problem: This is not true for the noninteger filling or for the multiband
case. The elegant iterative perturbation IPS for noninteger
H3v)=E®|v) one-band Hubbard model was proposed rec&htipd gives
almost perfect agreement with ED and QMC results. For the
with the effective atomic Hamiltonian faf or f states, case of a multiband with noninteger occupations the problem

is much more severe and the existing IPS generaliZ&tion
Hate Z ey does not produce good_rgsults for large doping. Here we use
/ TmmEmetm o the main idea of the original IPS metH8dnd propose an-
mme other version of multiband DMFT that is based more on the
1 .+ numerical solutions of corresponding atomic problem than
+ 5{%} U mym,m;m;Cim, oCim, o' Cimyo Cim, o3 (9 the approximate analytical one used in Ref. 46.
The impurity problem for the “bath* Green function
heree,yis the matrix of atomic energies that in principle, reads
can include nondiagonal terms. The latter naturally comes .
from the LMTO tight-binding effective Hamiltonian, which [go(iw)]mer[G(iw)]r;lm,-i-(ﬂo—,u)b‘mm’-i-zmm’(i(1)),
has a diagonal part df,,,/, as a result of transformation to
an orthogona| basis Sa.Diagonanzaﬂon of atomic Hamil- where the local Green function is defined thrOUgh Brillouin
tonian Eq.(9) is not a big problem for a standard work sta- ZOne sum:
tion, since it is equivalent to the five- and seven-site Hubbard
mode_l in the ED sc_herﬁefor d _andf states. - G (iw)= iz G (K,iw);
Using eigenfunctions and eigenvectors of the Hamiltonian N

Eq. (9)], the exact atomic Green function can be found b . . .
Ehg s(ta)r]1dard definitioff yhere N, is the total number ok points. Alternatively one

may perform thek integration using a complex-tetrahedron
schemé’*®We introduce here according to Ref. 45 the “lo-

n
1 <lu’|cmlT|V><V|C ! |Iu’> [ H . - A .
at o= mo - BE - BE, cal” impurity chemical potentiaj, to satisfy the condition
Cmnio19)= 22 —,7E, €, (@ te ),
(10 vedw_| ai(iw)}
—Tr| G(K,i =0,
wherez=3 e A&, ; J_m 2 (kiw) dw
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true. he followi or th . < in th the replacement of the occupation matn%—n. Note that
We use t, elo o'wmg ansatz for the self energy is in t Cmatrix A appears to be non-Hermitian. In the nondegenerate
matrix (m,m’) form: case this expression appears to be exset Ref. 45due to
the identity

S(iw)=3"(iw)+A*3P(10)* [1-B(iw)*S?P(w)] L
(13) (CrJTrlo'Cm(r)ZI Cr;r]ocmo .

where tfhi s%corr:dc—;orderfself—_ener_E)(F)_(iw) is (cjiefined ?nh It can be quite accurate also in the general multiband case.
terms of the bath Green functiai(i ) in accordance wit Coefficient matrixB is designed to fix the exact atomic

Eq. (5) with W=V [see also Eq(6)]; limit of the interaction self-energy, Eq13). There are other
S2)_ 3@ problems with coefficienB in the multiband cas& While
2 9=2"Gol. in the single-band model one can find an analytical expres-
. . sion for the constarB,*® in the multiband case this param-
In the sp|r|t'of LS apprqach of Ref. 45 'tme matriX oter should beo dependent, owing to the frequency depen-
should be defined to provide the exact high-energy ( yence of the atomic self-energy, Ha1). We decide to find
—o0) limit of E(Iw) The best way to bring about such an numerically the non-Hermitian matr|>B(|w) from the
asymptotic is to use the equations of motion for the double-

time retarded Green function with the analytical continuation

on the Matsubara frequenci®® One has an exact ap  Straint for the density matriR. In this limit S@(iw) in the
% expression nonmagnetic case has the form

atomic limit of Eq.(13) using the exacEat(m) with a con-

. 1 (2 at
Emm’a'(lw):mNmm’(ra 2 2 Umn11m3m2 mym,m’mg

where [fm3(1_fm2_fm1)+fmlfmz]_

lo+ o= &m,+ Em, " &m,

Nmm’a:<{[cmovHint]v[HinhCr;'g]D;
here[...,...]and{...,...} are the symbols for com- heref,, ande, are diagonal occupation numbers and ener-

mutator and anticommutator, correspondingly, ahgis the  gies ofh® In this case we have

Hubbard(interaction) part of the Hamiltonian. Note that in

the multiband case the averalye,,s, contains the products é(iw)=[§(2)at(iw)]*l—[ia‘(iw)—iHF]*l*A. (14)
of four electron operators and cannot be found exactly. De-
coupling of these four-fermion averages according to the

A imple example for h heme w mpare in
Wick theorem and comparing the result with the asymptotlcFI S @ Simpie example Tof Such a scheme we compare

R g. 1 the DMFT to exact diagonalization for the Anderson
of 3@, model of two sites, two bands with one correlated &ite
=4, es=—4 and one “free site” withe;=0 and hybridiza-

0 . . .
tion between the site¥=0.25% For convenience we as-

2 . T . )
Emm'(,(l w—0)= :n:; ' sume that all parameters for our model calculations are in eV
energy units. The corresponding Hamiltonian for the Ander-
we obtain the following expression: son impurity model has the following form:
A= N*[No]ila + + +
Himp= €12 frhofmet V2 (fhoCmet Chofmo)
— mo mo
where theN, matrix defined in the spin-polarized case as
o +u2 oo fon oy Fon -

0,
m5m4(r'( mamy
(o

m'g_{%}{ mmsm1m4Umlm5m'm22 n

It is not a problem to find an exact Green function for this

—n° D=V mmmem. Y mom’m n° (Smm model(the nonsymmetrized many-body Hamiltonian has the
MMz MaMafy =M MsM M2 mgmao % 7o dimension 256 256) and compare it with approximate cal-
o culations. We see that the agreement between exact solution
- nmsmzo—)] and our DMFT results is quite good even for a large filling
(Ne>1; in this casen;=0.76, ni;=2). Also note that the

atomic Green function in Fig. 1 for the correlated site has the

three-peak structure for this occupatighere are, in general,

eight poles in Green functions for the two-band gasel not

= 2 yd e mem’ m n® (S —n% ). the two-peak structure as in the one-band model. The use of
{m) iy, mymgn'mgmgmg Omgm, = Mg, the numericalatomic Green function for th&(i w)-matrix

and in the nonmagnetic case it simplifies to



6890 A. I. LICHTENSTEIN AND M. I. KATSNELSON 57

T T ' T ' the simplified two-dimensional model for high:- supercon-
6r Exact ’ ductors ford,z_y2=x andd,2=z orbitals** If one can skip
al i the z orbital it will be the standard single-band nearest-

neighbor hopping model. The LDA band-structure calcula-
oL i tion for high-T, materials shows the large contribution of Cu
1 UL d,> orbital to states near the Fermi leV&ITherefore the
0 T ——4 T T situation with two correlated valence bands could be possible
< 6} . in this materials. Although we knew that for the realistic
% DMFT description of the Cu,2_,2 state in the single-band model
~ 4r T one need to include next-nearest hoppifg@ming from in-
8 .l J | teractions with O p- and Cu 4 orbital$'®) we used here the
e simplified tight-binding(TB) model for two correlated bands
0 1 { l . A x andz within the nearest-neighbor hopping approximation.
sl ' ' i The one-electron Hamiltonian has the following fotfn:
Atom
4 - -
h(k)
2 l — 2ty (CoKy+cok, ) +A, —2t,,(CoK,—CoKy)
0 y L . — 2t,,(cok,—coky), —2t,(coky+coky)

6 4 -2 0 2 4 6

Energy (eV)

The hopping parameters are related via a simple Slater-
FIG. 1. Energy spectrum for two-band two-site Anderson modelKoster ratio: t,,=1, t,,=0.3, t,,=0.4. Again we assume
in exact diagonalization and DMFT scheme as well as atomic Greethat all TB parameters are in eV energy units, while the value
function for correlated site. t,«~0.5 eV would be more realistft.It is important to take
o . into account the energy shifting parametesince Cud,2_ 2
calculation is quite important even for qualitative agreemenyands are located higher than the € one, so we usé
with exact results for such a model at a filling larger than one— 4 For the Coulomb energy our parameterization corre-

electron per sité sponds to the following matrix elementsm{#m,):
Um1m1m1m1:U+‘Jv Umlmzmlmzzua UmlmzmzmlzJa and
lll. RESULTS FOR TWO-BAND MODEL U, m,m,m, = 6J. In this case the symmetrized bare vertices

In this section we compare the three different LBA has the following form(the basis function numbering as
approaches described above for a two-band system. We usg#d, Xz,zx,22):

U+J 83 8] 2Uu-1J -U-J -8 -681 -1J

83 0 21-U &8 -8 0 -U -6J
ud= . Um= ,

8l 2J-U 0 83 -8 -U 0 -8

2U-J  &8J 8J u+J -J -8 -8 —-U-J

U+J 83 8J 0 0 0 0 0
. 8 f@+u) f@+u) & Ui 0 1J-vU) f@Wy-u) O

8 1a+u) f@+u) &3 | 0 {QJ-u) t@y-u) o

0 83 8J u+J 0 0 0 0

We investigate this model for differett parametersty self-consistent FLEX two-band calculations fdr=2, 4, 6,
=2—8 with the fixed values ofl=0.5 and8J=0.1. The and 8. The density of statd®0OS was obtained from the
total number of electrons is,,;=1.4, which approximately Green function, extrapolating Matsubara frequencies with
corresponds to fully occupied bands and the almost half- the Pade approximatiohto the real axis. Note that the bare
filled x band with 10% holes. We use the>832 mesh for bandwidth fort,,=0 is equal to 8 in the case of two-
the summation over the Brillouin zone and the 46@D00  dimensional square lattice and corresponds to 8 and 2.4 eV
Matsubara frequencies with the cutoff energy equal to 2Gor x and z bands. One can see the narrowing of the DOS
—40 times the bandwidth. In Fig. 2 we show the results ofpeak near the Fermi enerd¥) for the x band and the
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FIG. 3. Spectral functiorithe two-band FLEX modelJ =4)

for three different directions in the two-dimensional square Bril-
louin zone:I'=(0,0), X=(0.5,0), andM =(0.5,0.5) in units of
2mla.

10

-5 0 5
Energy (eV)

FIG. 2. Density of states for the two-band model in the FLEX . .
scheme for different) values. Full and dashed lines indicate partial ab_out 7ev nea_r thé! point. An extended van Hove singu-
DOS forx andz orbitals. larity at theX point becomes more pronounced. We plot also

the momentum distribution function(k) in (1,1) direction
boarding of the totak and z-subbands a& increased. An in the Fig. 6. From the quasiparticle dispersion of xheand
interesting feature of this two-band model is seen in movingalong thel’-M direction (Fig. 5), we expect the Fermi sur-
the peak from occupied bands towards the Fermi level with face crossing almost exactly halfway between these two
increasing correlation strengthh, and a pinning of the van points. The momentum distribution functioffrig. 6) just
Hove peak from thex band just above Fermi level. This confirms this situation and shows that the Fermi dtepr
drastic change of th& and z band shape maximizes the simulation temperaturel =0.0&) is smaller than 1 and
particle-hole interband susceptibilitjnversely proportional
to the energy distance between band pgaisd therefore 0.3
increases the fluctuation contribution to FLEX energy. The
value of the average inverse mass enhancement factor
Z=[1-03(€)ld€]. 2, is equal to 0.45 and 0.83 forandz
orbitals for U=4. Spectral function A(k,e)=

0.2

—1/rTr Im G(k,e) for three differentk directions in the 0.1
two-dimensional Brillouin zone is shown in Fig. 3. One -
could see the renormalized dispersion of two bands:xthe 0.0
band from approximately-5 eV at theX point to 5 eV at o3
the M point and thez band from approximately-8 eV at S

the X point to 3 eV at theM point. Similar to all highT, 202
models® there is an extended van Hove singularity %n Qo
bands just at the Fermi energy near the X point. 8 ’

The results of self-consistent DMFT calculations fdr
=4 and 8 are presents in Fig. 4. In this case we use only first ;
seven Matsubara frequencies in Et4) and the constari G,
matrix for the rest frequencies. One can clearly see some i
differences to the corresponding FLEX results, which are
related to a sharpness of the DOS né&ar and the more
pronounced three-peak structure of the partiddand DOS ]
for U=8. We plot also the DOS corresponding to the atomic 0 Bt
Green function folU =8 with the four poles near the Fermi >
energy out of eight poles in the paramagnetic two-orbital
atom. The corresponding spectral function for the same di- F|G. 4. Density of states for the two-band model in the DMFT
rections in the Brillouin zone is present in Fig. 5 fdr=8.  scheme for different) values as well as the atomic Green function
There is a sharp quasiparticle dispersion near the Fermi levédr U=8. Full and dashed lines indicate partial DOS foand z
and a broad incoherent background abByeat an energy of orbitals.

o
o

0
Energy (eV)
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T Energy (eV)
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-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10 FIG. 7. Density of states for the two-band model in the HIA
e (eV) scheme folU =8. Full and dashed lines indicate partial DOS %or

andz orbitals.

FIG. 5. Spectral functiorithe two-band DMFT modeU =8) . . .
for three different directions in the two-dimensional square Bril- PIéSt constraint for only diagonal in Eg. (9) to haven, for
louin zone. NiO or n; electrons for TmSe from self-consistent paramag-

netic LDA calculations. The Coulomb matrix is expressed

agrees with the calculated value of the mass renormalizatiofi@ €ffective Slater integrals:
factor Z=0.43 for thex band.

Finally, the HIA solution for this two-band model fady
=8 is shown in Fig. 7. In this case we have the dielectric
DOS with narrow atomiclike resonances. It is inte_resti_ng tOyhere 0<k<2! and
note that the structure of the atomic Green function in the

=2 a(mg,my,my,mj)FX,
X

U '
m;mym;m;

DMFT approximation(Fig. 4) quite close to the HIA solu- 4ar K
tion s_hifted down by gpp_roximately 2 eV. We vvpuld like to a,(my,m;,my,my)= Kl _Zk (Imy|YyqlImy)
mention that the application of the HIA scheme is reasonable a=
only for U>W and not forU=W as in this case. X(ImzlYﬁqllmé).
IV. LDA ++ CALCULATIONS FOR REAL SYSTEMS We used the following effective Slater parameters, which

define screened Coulomb interaction in thehell for NiO:
The self-consistent LDA + calculation for real systems FO0=g eV ,F2=8.2 eV, andF*=5.2 eV, and in thé shell
pose a serious computational problem. One needs to operat§ TmsSe: F°=5.7 eV, F2=9.1 eV, F4=5.7 eV, andF®
with the Susceptlblllty matriX, which is of dimensidﬁg =47 eV(See’ e.g., Refs. 16’ 51' and)SWe start from the
X N3 and depends on the Matsubara frequencies. For an ihonmagnetic LDA calculations in the LMTO nearly orthogo-
lustrative purpose we have calculated the electronic structuneal representation for experimental crystal structures of
of classical Mott-Hubbard insulator NiO and mixed-valenceNiO and TmSe. The minimal basis set%fp, andd orbitals
4f-compound TmSe in the HIA scheme for LBA+. We  for NiO ands, p, d, andf orbitals for TmSe corresponds to
use the non-self-consistent HIA approximation with the sim-the 18< 18 and 3X 32 matrices of the LDA Hamiltonian
h(k). The occupation number for correlated electrons are 8.4
1.0 electrons in thed shell of Ni and 12.6 electrons in thef 4
i . shell of Tm. Using the corresponding atomic self-energy for
the Ni atom and Tm atom the total DOS's for NiO and TmSe

0.8
have been calculated from E@). In Fig. 8 we compare the
0.6 paramagnetic LDA results with the HIA LDA+ scheme. It
= is well known that the paramagnetic LDA calculations can-
Z not produce the insulating gap in nickel oxide: the Fermi

0.4 level located in the middle of the half-filleg, bandst® In

the HIA approximation to the LDA + approach there is a
gap (or pseudogap in Fig. 8 due to temperature broadening
of the order of 3.5 eV even in this nonmagnetic state. This
gap and the satellites at5 and —8 eV are related to the

0.2

0.0 i ; :
r k(1,1) M structure of the atomic Green function shown in the lower
' panel of Fig. 8.
FIG. 6. The momentum distribution functiar(k) in the (1,1) In Fig. 9 we compare the calculated DOS for TmSe with

direction for the two-band DMFT modé&)=8. experimental x-ray photoemission spectroscopyhe HIA
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tems corresponds to the narrdvpeak at the Fermi level and
could not describe the experimental XPS spectrum, which
has thef resonances over a wide energy range of the order of
12 eV. At the same time, HIA is not adequate to describe
correctly the fine features of the electron structure near the
Fermi level. It is knowr* that TmSe is really the narrow-gap
semiconductor. According to the most developed model ap-
proach to mixed-valence semiconductdrsthe appearance

of this energy gap is caused by both hybridization and exci-
ton effects due to the Coulomb attraction of theé &nduc-
tion electron and # hole. This effect cannot be described in
the HIA approximation. Nevertheless, we believe that the
description of the electronic structure &fcompounds in-
cluding mixed-valence ones on the large energy scales is
important in and of itself and in this sense the results pre-
sented here demonstrate the usefulness of the tBAap-
proach for the description of real strongly correlated systems.

V. SUMMARY

We have formulated a general LBA+ scheme that takes
into account dynamical electron fluctuations in the case of
correlatedd or f states. The most accurate approach is the
DMFT-band structure method, while the more simple FLEX

FIG. 8. Density of states for paramagnetic nickel oxide in theand HIA schemes can be useful as well for investigation of
LDA and HIA approximations as well as the Ni-atom Green func- correlation effects in real systems, in the cases of rather weak

tion.

and rather strong interaction, respectively. In principle, one
could combine the idea of the bath Green function in the

approximation in this case well reproduces the ladder-typ®MFT scheme with the simple expression for the self-

photoemission spectrum, comes mainly from combination
of two multiplets structure of Tri" (1) and Tn?*(f19).
This example demonstrates how the LBA scheme can

®nergy in the FLEX approximation. In this cask

=3SFLEX[G,], and we expected to effectively reduce the ef-

combine the many-body atomic physics with band structurd€CtS Of vertex corrections in the FLEX scheme.

methods. The normal LDA-band structure for rare-earth sys-.

40
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I et S

0
-15

-10

-5 0
Energy (eV)

5 10

Here we compare the LDA+ approach with more
simple LDA+U one. First of all, to describe Mott insulators
in the LDA+U approachas well as in the SIC approach
is necessary to assume magnetic &l orbital ordering'®
In LDA ++ it is possible to consider thgaramagnetidVott
insulators in the framework cdb initio calculations. More-
over, it is possible to obtain not only the Mott-Hubbard gap
in the electron spectrum but also satellites and multiplet
structure(see, e.g., the results for TmSe and NiO in the pre-
vious section

The correlation effects results from the frequency depen-
dence of the self-energyhe non-Fermi-step form of the dis-
tribution function for quasiparticles, the mass enhancement,
the appearance of many-electron Kondo resonancescatt.
be obtained and investigated in the LBA- approach but
not in the LDA+U. Our results for the two-band model pro-
vide interesting examples of such behavior. In particular, it is
worthwhile to note such features as the narrowing of the van
Hove singularity and its “pinning” to the Fermi levélvhich
is important for the physics of high, superconductor§ and
can be described already in the multiband FLEX approxima-
tion), the three-peak structure of the spectrum in the vicinity
of Mott insulators(Kondo resonance and midgap states that
can be described in the DMFT approach

We hope that the approximations described here may be
useful for theab initio calculations of the electron structure

FIG. 9. Density of states for TmSe in the HIA scheme in com-Of @ great variety of strongly correlated electron systems in-

parison with the experimenral XPS spectrgRef. 53 and the re-

sults of paramagnetic LDA calculations.

cluding doped Mott insulators, rare-earth metals, and their
compounds (in particular mixed-valence ongs high-
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temperature superconductors, and many others. R=M — |_G501|_T,
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APPENDIX A G(k)=[A-t(k)] %

Here we present the proof of the equivalence of a cavity A=iw+pu—hy—3(iw). (A3)
method and impurity problem in DMFT for the multiband
case. We start with the expression for the Green-function Taking into account thak,t(k)=0 one obtains
matrix on the zero site in the cavity meth¢see Ref. 3,

Fa- (9 L= [t~ A+ A[A-t(K)]'=~ 1+ AGoo
[Go(iw)] *=iw+p—haR,

and
where
LT: -1+ GO()A
R=2 t6iG{ tjo (A1) One can obtain by the similar way the result fdr ma-
. trix: M=ALT.

with h, being the one-electron part of the intra-atomic ~ Substituting all of these formulas into EGA1) we have
Hamiltonian. All of these functions are the matrix im(m’) _ —1 T a1
indices as well as the diagonal matrix in spin space. Note R=(A+Ggg ~A)L'=—Ggg +A.
thatGI(JO)|S the G.reen funCtion be.tV\./een Slteﬂnd] on the Using Eq(As), we can f|na||y Write
lattice with the site zero being eliminated,
. . [Go(iw)] *=iw+u—hy—A+Gyl=3(iw)+ Gy .
Gi(j ):Gij_GiOGoo Goj- (A2) oL . : :
It means thaty(i ») is the Green function of the impurity
Using the Fourier expansion of all the quantities over theproblem with the on-site one-electron Hamiltonidn,
Brillouin zone and substituting E¢A2) to Eq.(Al) one has +3(iw) on each nonzero site arig, for the zero site.
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