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Lattice dynamics study of zigzag and armchair carbon nanotubes
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We propose a very simple model of lattice dynamics of carbon nanotubes. Using a De Launay model, the
atomic force constants and phonon density of states are given as functions of the nanotube radius. Elastic
constants, a Young modulus, and Poisson ratio are derived from phonon dispersion curves for a homogeneous
deformation.@S0163-1829~98!00911-4#
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I. INTRODUCTION

Immediately following the discovery of carbon nanotub
by Iijima1 in 1991, intense activity was undertaken in bo
experimental and theoretical fields.2–5 The electronic proper-
ties of such one-dimensional~1D! carbon nanotubes are see
to arise predominantly from intralayer interactions rath
than from interlayer interactions between multilayers with
coaxially nested carbon nanotubes or between two diffe
nanotubes. The symmetry of a single nanotube plays an
sential role in understanding the basic underlying physics
this work, we will focus on the properties of single lay
~single wall! nanotubes, designated SWT’s. Such a SWT
an ideal substance to study because its simple structu
defined unambiguously by its diameter, length, and chiral
and its size-specific properties are analyzed on the basis
single sheet of graphite called ‘‘graphene.’’6–11

Theoretically2,3,9,11–13a nanotube is predicted to be a sem
conductor or a metal depending on its diameter and chira
This arises from the fact that the translational symmetry
graphene, persists along the tube axis but no longer e
around its circumference. Thus the wave vectors of b
electrons and phonons possess continuous values alon
direction corresponding to the tube axis in the Brillouin zo
but can take only sets of discrete values around the circ
ference. This size-dependent zone folding effect is the sa
feature of nanotubes that governs their basic properties.

Since 1993, several publications14–18 have dealt with the
vibrational~Raman! spectra of multiwalled carbon nanotub
~MWT’s!. More recent works19–22 have treated SWT’s and
the data have been reviewed in Refs. 10,23. Along with
experimental investigations, a number of authors have
treated the theoretical aspects of SWT’s relating to
symmetry-dependent number of modes and the diame
dependent frequencies.10,19,21–25 Experimental first-order
Raman-active vibrational mode frequencies have b
proposed20 for a series of armchair (Nx ,Nx) nanotubes for
x58,9,10,11 and satisfactory agreement between the the
ical model and the experimental values is found only for
highest frequencies.
570163-1829/98/57~11!/6689~8!/$15.00
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The present work aims to improve agreement betw
theory and experiment. To do so, we will use first the def
mation potential introduced in Refs. 26,27 which is asso
ated with the conformal mapping of a graphene plane
form a cylindrical tube and secondly, the De Laun
model28,29 to study the dynamical properties of zigzag a
armchair carbon nanotubes. Indeed, the experimentally
served multiple splitting of the Raman peaks21,22 may be
understood in terms of the phonon dispersion relation
graphene. The discrete allowed wave vectors around the
bule circumference mean that the optical phonons of th
wave vectors can be excited with their energies given by
dispersion relation of graphene at the same wave vector
vided that the dispersion remains unchanged by rolling int
closed tube.12,13

In what follows, we will first briefly review the notation
used in defining the nanotube structures. In Sec. III we t
successively present the model used in our evaluations
resulting dispersion relations, and finally the specific he
Debye temperatures, and elastic constants. Calculationa
tails have been put into the appendixes.

II. NANOTUBE STRUCTURES

We use the notation of Refs. 6 and 11 in which a tubule
defined in terms of the two direct lattice vectorsa1 anda2 of
a 2D graphene sheet and a pair of integers (n,m). For the
zigzag tubulem50 and for the armchairn5m ~Fig. 1!. The
widely used model of a SWT consists of rolling up a sem
infinite graphene sheet into a cylindrical tube of const

FIG. 1. Representation of armchair and zigzag tubules. Ato
B1 , B2, andB3 are the first nearest neighbors of atomA.
6689 © 1998 The American Physical Society
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6690 57CHARLIER, McRAE, CHARLIER, SPIRE, AND FORSTER
radius. To this conformal mapping corresponds a simple
formation potential26,27taking into account the effects of cu
vature on the one-dimensional electronic properties26 of car-
bon nanotubes.

In a graphene sheet the carbon atoms are placed in
vertices of open hexagons, the edges of which have a le
of dC-C51.42,Å ~the smallest distance between atoms with
the graphitic plane!. The vectors of the primitive cell in the
(e1 ,e2 ,e3) orthonormal basis for graphite are

a15S a

0

0
D , a25S 2a/2

aA3/2

0
D , a35S 0

0

c
D , ~2.1!

with ia1i5ia2i5a5A3dC-C52.46 Å, ia3i5c52dp2p
56.70 Å;dp2p is the distance between two graphitic plane
From these equations, we can immediately determine
vectors of the reciprocal lattice:

b15S 2p/a

2p/A3a

0
D , b25S 0

24p/A3a

0
D , b35S 0

0

2p/c
D .

~2.2!

For graphenea35b350. In discussing the symmetry o
the carbon nanotubes, it is assumed that the tubule leng
much greater than its diameter so that the contributions
the end caps~if any exist! can be neglected in treating th
physical properties. The symmetry groups are symmorp
for armchair and zigzag nanotubes where the translatio
and rotation symmetry operations can be execu
independently.6,10,30

III. DYNAMICAL STUDY OF CARBON NANOTUBES

The De Launay model28 assumes that there exist tw
forces between pairs of atoms: a central or radial force wh
depends only on the distance between the two atoms an
angular force which depends only on the angle between
line joining two atoms at any given instant and the line b
tween the same two atoms at equilibrium: see Fig. 2. A cr
tal lattice made up ofN atoms in the primitive cell is con
sidered as the sum ofN sublattices. Each sublattice is take
to possess the symmetry of the whole crystal. We take

FIG. 2. Central and angular forces.unsn8s8 is the unit vector in
the direction of the line joining the atoms in the equilibrium po
tions defined byRns andRn8s8; dns anddn8s8 represent the instan
taneous displacements, which can be decomposed into r
(AnsP8) and angular (P8P) components.
e-

he
th

.
e

is
of

ic
al
d

h
an
e

-
-

to

account the interactions between atoms in the same su
tice as well as those between different sublattices. We
utilize the following notation:av,i(av,i8 ) is the atomic force
constant corresponding to the central forces~angular forces!;
the indexv specifies whether the atoms are first, seco
third, . . . , nearest neighbors andi corresponds to an interac
tion with the atoms within the same plane ifi 5 intra and
with the atoms in~first, second, . . . ) nearest planes ifi
5 inter. Satisfactory results are obtained for graphite us
the five force constantsa1,intra, a1,intra8 , a2,intra, a1,inter, and
a1, inter8 .

In the case of single-walled nanotubes, such a distinc
between ‘‘intraplanar’’ and ‘‘interplanar’’ is somewhat arb
trary and consideration can be limited to first-, second-, a
further-neighbor interactions characterized respectively
atomic force constantsa1 ,a2 ,a f ,(a18 ,a28 ,a f8) for central
~angular! forces. Let us take, as an example, the~6,6! arm-
chair tube of Fig. 3. We consider the various atoms to be
planesP0 , P1, andP2 , P0 being the reference plane. Firs
and second-nearest-neighbor interactions correspond to t
betweenP0 , P1, andP2, respectively, and ‘‘further’’ inter-
actions to those between planesP0 andPf comprising all the
more distant planes. This reasoning implies that the value
the atomic force constantsa1,inter anda1,inter8 used for graph-
ite must be increased in the case of the nanotubes, since
distanceP0-Pf is less than the interplanar distance in grap
ite. Furthermore, Fig. 3 shows that depending on the t
diameter, it might be necessary to take into account m
planes beyondP2. However, in our case, the modified value
of a1,inter anda1,inter8 denoteda f anda f8 integrate the overall
effects of all atomic planes superior to second neighbo
The above remarks imply that we must introduce a new fo
constanta28 . Indeed the radial force constanta2 remains
almost unmodified under conformal mapping, but the an
lar force constanta28 between second nearest neighbors c
not be neglected because of the nanotube curvature.

The operation of transforming a graphene sheet int
tube can be understood as adding to the graphene Ha
tonian a deformation potential energy term attributed to
alignment defects of thes orbitals due to curvature~i.e.,
nonplanarity! of the graphene plane. As in Ref. 27 and
observed on Fig. 1, the bondAB3 remains parallel to the
tubule axis and consequently is not deformed for zigzag
bules. In the case of armchair tubules thesAB3

bond is the

ial

FIG. 3. Example of a~6,6! armchair nanotube. Filled and un
filled circles represent atoms in two different planes perpendic
to the tube axis. PlanesP0 to P2 and Pf are parallel to tube axis
Interactions between planesP0 and Pf are ‘‘further’’ interactions,
wherePf symbolizes all planes beyondP1 andP2.
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57 6691LATTICE DYNAMICS STUDY OF ZIGZAG AND . . .
most deformed by rolling up a graphene sheet. Deform
the flat graphene sheet to form a tubule means that in a
tion to the initial interatomic force constants we should n
add supplementary termsb i .

~i! for the zigzag tubules and for theA↔B interactions,
only the atoms denotedB1 andB2 are concerned~cf. Fig. 1!:

bAB1

zigzag5bAB2

zigzag5b1 , bAB3

zigzag50. ~3.1!

~ii ! for the armchair tubules, the three atomsB1 , B2, andB3
intervene~cf. Fig. 1!:

bAB1

armchair5bAB2

armchair5b1 , bAB3

armchair5b3. ~3.2!

Since the alignment defect decreases as the radius incre
we takeb1 andb3 proportional to the inverse radius of th
tubules; we recall thatRzigzag5A3NydC-C/2p and Rarmchair

53NxdC-C/2p.
Account is taken of the orbital alignment defects for t

zigzag tubules for atomsB1 or B2 by replacinga1,intra8 in the
dynamic matrix of graphite bya181b1 ~see Appendix A!; for
the armchair tubes, for atomB1 or B2 :a1,intra8 →a181b1 and
for atomB3 :a1,intra8 →a181b3. We recall thata1,inter→a f and
a1,inter8 →a f8 .

By taking into account the new force constantsb1 , b3,
anda28 the dynamical matrix of graphite is transformed in
a dynamical matrix of the nanotube. The numerical values
the constantsa i , a i8 , and b i ~Table I! are determined by
adjusting their values in the dynamical matrix so as to obt
the best fits of calculated and observed Raman frequen
for the different tubule radii corresponding toNx58, 9, 10,
and 11. Comparison of the frequencies is given in Table
(1THz533.35 cm21).

It is of interest to compare the frequencies in Table II w
those force constants with which they are associated in
dynamical matrix. As concerns the low frequencies~3.47 and
5.57 THz! and to a lesser extent 11.3 THz they are stron
dependent ona f anda f8 which signifies that these frequen
cies are characteristic of the ‘‘further’’ atom interactions b
yond second-order neighboring interactions. We may
serve on all spectra (Nx55,200) the frequency at 3.47 TH
indicated as characteristic of nanotubes.16 The frequency
close to 25 THz is linked to the force constanta f8 which
characterizes the angular forces between first neighbors;
frequency, characteristic of graphite is slightly shifted b
cause of the interactions due to the alignment defects.
high frequencies~47.75 and 48.23 THz! are due to first and
second neighbor interactions: they are thus also observe
graphite, although slightly modified in the case of the na
tubes due to the angular distortion.

TABLE I. Atomic force constants:av(av8) is the atomic force
constant corresponding to the central~angular! forces; the indexv
specifies first, second or ‘‘further’’ neighbor interactions. F
graphite,a f anda f8 correpond toa1,inter anda1,inter8 .

a1 a18 a2 a28 a f a f8 b1 b3

Graphite(29) 505.1 84.4 73.7 5.9 0.72
(Nx ,Nx) 505.1 87.8 73.7 15.0 68.0 11.0 4.4/Nx 8.8/Nx

(Ny,0) 505.1 87.8 73.7 15.0 68.0 37.5/Ny
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Let us now examine the passage from graphene to gra
ite. We recall that experimentally, an isolated plane
graphene has never been observed. But SWT’s have b
synthesized in many laboratories and these nanotubes in
limit of high values of radii must be equivalent to graphen
In graphite the interplanar interactions are weak but nec
sary for the stability of the crystal. We observe from Fig.
that the interactions classified in nanotubes as ‘‘furthe
atom interactions are equivalent to graphene’s third, fou
etc., interplanar interactions. If we increase the tubule’s
dius the distanced in Fig. 3 goes to infinity and the tubule
becomes a graphene sheet. We lose the interactions bet
atoms symmetric with respect to the center of the circle a
separated by the distanced. In this limit, there is no equiva-
lent to interplanar interactions existing in graphite. We d
duce from this that graphene is unstable due to lack of in
layer coupling. This means also that a sheet comprising
graphene planes might exist if the interplanar forces w
sufficiently strong. This explains why for SWT’s the forc
constantsa f anda f8 must be much greater than in the case
graphite (a1,inter anda1,inter8 ) and that the force constants co
responding to first- and second-neighbor interactio
a1 , a18 , anda2 are almost unchanged. We now turn to t
phonon density of states.

The phonon density was calculated using a method ba
on counting the number of eigenfrequencies existing in e
interval betweenn and n1dn; the phonon density is ob
tained by diagonalizing many times the dynamical matrix
points of the first Brillouin zone;31 Fig. 4 compares the den
sity of states~DOS! for graphite, a~10,0! zigzag, and a
~10,10! armchair nanotube. The graphitic character of t
nanotubes stands out.

Using the density of statesg(n), and the Debye model fo
the specific heat in the form of a discrete sum over the
quencies:

Cv5(
n

kbS hn

kBTD 2 ehn/kBTg~n!

~ehn/kBT21!2
~3.3!

TABLE II. Experimental and theoretical Raman frequencies
THz for armchair nanotubes. The left hand column shows exp
mentally observed frequencies for a powder containing~8,8!, ~9,9!,
~10,10!, and ~11,11! nanotubes. The right hand column gives o
calculated values.

Experimentaln ~Ref. 20! Theoreticaln

3.47 3.47
5.57 5.57
11.30 11.30
20.17 19.16
22.63 22.64
25.63 25.63
40.38 39.58
45.74 43.24
46.46 43.24
46.97 46.96
47.75 47.30
48.23 48.08
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one finds, at low temperatures,

Cv5gT31aT, ~3.4!

wheregT3 and aT are the lattice and electronic contribu
tions, respectively, with

g5
12p4

5
NkBS 1

QD
3 D . ~3.5!

kB is the Boltzmann constant andQD the Debye temperature
The results obtained using the De Launay model for grap
are close to those of the literature:32–34 g52.7
31025 J mol21 K24 and QD5413 K. For a~10,10! arm-
chair tubule, g51.4331025 J mol21 K24 and QD
5475 K and for a ~10,0! zigzag tubule, g58.1
31026 J mol21 K24 and QD5621 K. These values diffe
little for Nx comprised between 8 and 11.

FIG. 4. Density of states of~10,10! armchair, ~10,0! zigzag
nanotubes compared to graphite.
te

We show in Appendix B the importance for carbon nan
tubes of the elastic constantsC11 and C66; they allow the
determination ofC12. For the evaluation ofC11, for ex-
ample, we consider an acoustic branch of the phonon dis
sion curvesn5n(k) which is almost linear in the neighbor
hood of k50. We consider the slope at the originp5n/k
and we apply the relationship of Appendix B:

C11@100#5r
vL

2

k1
2

510.253107S n

kD 2

, ~3.6!

wheren is in THz andk is dimensionless.
We recall35 that l andm are the Lame´ coefficients. The

compression modulusK is given byK5l1(2/3)m with l
5C12 and m5(C1112C12)/2, so thatK5(C1112C12)/3.
For a homogeneous deformation, the Young’s modu
EYoung and Poisson’s ratiosPoissonare defined by

EYoung5
9Km

3K1m
5

~C1112C12!~C112C12!

~C111C12!
, ~3.7!

sPoisson5
1

2

3K22m

3K1m
5

C12

3~C111C12!
. ~3.8!

For the ~10,10! tube, C11584.4531010 nm2, C125
213.8931010 nm2, EYoung5789.8 GPa. and sPoisson
50.065. The Young’s modulus is slightly size depende
rising with the diameter~for graphiteEYoung51020 GPa).

IV. CONCLUSIONS

Our simple dynamical model using only six atomic for
constants has been shown to yield quite satisfactorily th
frequencies experimentally observed in Raman scatte
studies of single wall carbon nanotubes20 and to be in good
agreement with results predicted theoretically for the ar
chair and zigzag tubes with diameters of the order of 10
15 Å.13,21,24Of particular interest is the fact that our mod
has allowed showing that a given atomic force constant m
play a prominent role in determining a given observ
Raman-active frequency.

It is of interest to examine the passage from graphen
graphite: ~i! experimentally, an isolated plane of graphe
has never been observed;~ii ! a sheet comprising two
graphene planes might exist if the interplanar forces w
sufficiently strong;~iii ! for an infinite number of paralle
planes, i.e., the case of graphite, the interplanar forces
come very weak.

We deduce from this that graphene is unstable due to
of interlayer coupling, but that beyond a certain thresho
the greater the number of added graphene planes, the we
the interplanar force constant between them. As a coroll
as we remove graphene planes from graphite, we increas
interplanar force constants.

Consider a coaxial, carbon multiwall tube from which w
successively remove layers, starting from the outmost w
and finishing at a single walled tube. Upon the removal
each layer, the interlayer force constant increases to main
the overall stability. This explains why, for SWT’s, the ‘‘in
terplanar’’ force constants must be much greater than in
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57 6693LATTICE DYNAMICS STUDY OF ZIGZAG AND . . .
case of graphite and that the intraplanar force constants
almost unchanged; this is clearly brought out in Table I.

APPENDIX A: DYNAMICAL MATRIX
FOR CARBON NANOTUBES

In the frame of the De Launay model, application of t
fundamental principle of dynamics leads to

msd̈ns5 (
n8s8v

Fnsn8s8v52msvns
2 dns ~A1!

with

Fnsn8s8v52av,i
8 ~dns2dn8s8!2~av,i2av,i

8 !

3@$unsn8s8•~dns2dn8s8!%unsn8s8#. ~A2!

The indexv indicates first, second, third, etc., neighbo
under consideration. In the case of graphite the indexi indi-
cates whether the neighbor is within the same plane o
another. For single-walled carbon nanotubes the indexi has
no signification, the only distinction is between firs
second-, and further-neighbor interactions:av,i(av,i8 ) is re-
placed byav(av8), v51, 2, f indicating first-, second-, o
further-neighbor interactions.

A system of 3N equations in 3N unknowns is obtained
the unknowns being the components of the displacem
vector:

msd̈ns j2 (
n8s8v j 8

$2av,i8 d j j 81~av,i8 2av,i !

3unsn8s8 junsn8s8 j 8~dns j82dn8s8 j 8!%

50 ~A3!

introducing

dns5Anse
i ~2vnst1k•Rns! ~A4!

we obtain for carbon nanotubes
re

in

nt

2msvns
2 Ans j1 (

n8s8v j 8
$2av8d j j 81~av82av!

3unsn8s8 junsn8s8 j 8%~An8s8 j 8e
ik•~Rn8s82Rns!2Ans j8!

50. ~A5!

A nontrivial solution of this system of 3N equations exists
for uM (k)2msvns

2 (k)I u50, whereM is the dynamical ma-
trix of the crystal andI the identity matrix.

In the case of hexagonal graphite, the primitive cell co
tains four independent carbon atoms denotedA, B, C, and
D. Therefore we have four sublattices leading to a 12312
dynamical matrix with 78 elements above the diagonal. T
matrix adapted to carbon nanotubes has the form

S A↔A A↔B A↔C A↔D

B↔A B↔B B↔C B↔D

C↔A C↔B C↔C C↔D

D↔A D↔B D↔C D↔D

D , ~A6!

whereA↔B, for example, expresses the interaction betwe
the typeA and B atoms. The dynamical matrix being He
mitian and the symmetry of the unit cell, lead to

S A B* C 0

B D 0 0

C 0 A B

0 0 B* D

D ; ~A7!

A, B, C, D, and 0 are 333 matrices.
The element of the dynamical matrix being

(
n8s8v j 8

$2av8d j j 81~av82av!

3unsn8s8 junsn8s8 j 8%~An8s8 j 8e
ik•~Rn8s82Rns!2Ans j8!

~A8!

we have explicitly
A11~k!5
3

2
~a11a18!12a f813a2H 12

1

2
@cos~2pk1!1cos2p~k11k2!#J 1

3

4
~b11b3!

1a28H 32
1

2
@cos2pk11cos2p~k11k2!#J 22cos~2pk2!,

A12~k!5A21~k!52~A3/2!a2@cos2p~k11k2!2cos~2pk1!#1
A3

4
~b12b3!,

A13~k!5A31~k!50,

A22~k!5
3

2
~a11a18!12a f813a2H 12

2

3
cos~2pk2!2

1

6
@cos~2pk1!1cos2p~k11k2!#J 1

5

4
b11

1

4
b3

1a28H 32
3

2
@cos2pk11cos2p~k11k2!#J ,

A23~k!5A32~k!50,
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A33~k!53a1812a f12b11b31a28$622@cos2pk11cos2p~k11k2!1cos2pk2#%,

B11~k!52
1

4
~a113a18!~e22p i /3~k112k2!1e22p i /3~k12k2!!2a1e2p i /3~2k11k2!2

3

4
b1e22p i /3~k12k2!2

3

4
b3e22p i /3~k112k2!,

B12~k!5B21~k!5
A3

4
~a12a18!~e22p i /3~k12k2!2e22p i /3~k112k2!!2

A3

4
b1e22p i /3~k12k2!1

A3

4
b3e22p i /3~k112k2!,

B13~k!5B31~k!50,

B22~k!52
1

4
~a11a18!~e22p i /3~k112k2!1e22p i /3~k12k2!!2a18e

2p i /3~2k11k2!2
1

4
b1e22p i /3~k12k2!2b1e2p i /3~2k11k2!

2
1

4
b3e22p i /3~k112k2!,

B23~k!5B32~k!50,

B33~k!52a18~e22p i /3~k112k2!1e22p i /3~k12k2!1e2p i /3~2k11k2!!2b1e22p i /3~k12k2!1b1e22p i /3~2k11k2!2b3e22p i /3~k112k2!,

C11~k!5C22~k!522a f8cos~pk3!,

C33~k!522a fcos~pk3!,

Ci j ~k!50 if iÞ j ,

D11~k!5
3

2
~a11a18!13a2H 12

1

2
@cos~2pk1!1cos2p~k11k2!#J 1

3

4
~b11b3!

1a28H 322cos2pk22
1

2
@cos2pk11cos2p~k11k2!#J ,

D12~k!5D21~k!52
A3

2
a2@cos2p~k11k2!2cos~2pk1!#1

A3

4
~b12b3!,

D13~k!5D31~k!50,

D22~k!5
3

2
~a11a18!13a2H 12

2

3
cos~2pk2!2

1

6
@cos~2pk1!1cos2p~k11k2!#J 1

5

4
b11

1

4
b3

1a28H 32
3

2
@cos2pk11cos2p~k11k2!#J ,

D23~k!5D32~k!50,

D33~k!53a1812b11b31a28$622@cos2pk11cos2p~k11k2!1cos2pk2#%,

Oi j ~k!50.
te

ib
he ss
APPENDIX B: ELASTIC CONSTANTS

When we limit ourselves to graphene, the physical sys
is two dimensional. Using Nye’s notation36 which allows us
to write the tensor relationships using more comprehens
matrices, we obtain the following relation between t
strainsdi and the stressess i :
m

le

S s1

s2

s3

D 5S C11 C12 0

C12 C11 0

0 0 C66

D S d1

d2

d3

D . ~B1!

The elastic tensor is defined by only two elastic stiffne
constants or moduli of elasticityCi j @C665(C112C12)/2#.
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Upon applying uniaxial compression or tractions parallel to
the tubule axis, ifRi andRi8 are the atomic positions befor
and after applying stress, then,

Ri85~ I 1e!Ri ,

whereI is the identity matrix ande the reduced deformation
tensor and

earmchair5S S12s 0 0

0 S11s 0

0 0 0
D , ~B2!

ezigzag5S S11s 0 0

0 S12s 0

0 0 0
D . ~B3!

The Si j ’s are called elastic compliance constants or ela
constants@S665(S112S12)/2#. These two last relationship
illustrate the interest,26,27 in the case of the nanotubes,
knowing the constantsSi j or Ci j in particularC11 andC12.

By considering the forces29 acting on an element of vol
ume in the crystal we obtain the equation of motion in t
Oe1 direction

r
]2

]t2
d15C11

]2d1

]x2
1C66

]2d1

]y2
1~C121C66!

]2d2

]x]y
~B4!
.

hy

tt.

hy

ar

G

m

hy
ic

and equivalent formulas alongOe2 andOe3 ;r is the volumic
mass. Taking ford, as a plane wave propagating in the d
rectionk:d5Aei (Ãt2k•r ) the preceding relation yields

rv2A15~C11k1
21C66k2

2!A11~C121C66!k1k2A2 .
~B5!

Identical relations exist for the other two directions so th
a system of equations is obtained with nonzero solution o
if the following determinant is set equal to zero:

UC11k1
21C66k2

22rv2 ~C121C66!k1k2

~C121C66!k1k2 C66k1
21C11k2

22rv2U50.

~B6!

In the case of a wave, longitudinally polarized in the dire
tion Oe1 (A15A,A25A350) and propagating in the direc
tion @100# in other wordsk15k andk25k350 one obtains

C11@100#5r
vL

2

k1
2

. ~B7!

For a wave polarized transversely along the axisOe2 (A2
5A,A15A350):

C66@100#5r
vT

2

k1
2

~B8!

with r52.263103 kg/m3, ik1i54p/aA3 and ik3i
52p/c. These equations were used to evaluate the va
given for nanotubes.
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