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Localized states in a strong magnetic field: Resonant scattering and the Dicke effect
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We study the energy spectrum of a system of localized states coupled to a two-dimensional electron gas in
a strong magnetic field. If the energy levels of localized states are close to the electron energy in the plane, the
system exhibits a kind of collective behavior analogous to the Dicke effect in optics. The latter manifests itself
in a “trapping” of electronic states by localized states. At the same time, the electronic density of states
develops a gap near the resonance. The gap and the trapping of states appear to be complementary and reflect
an intimate relation between the resonant scattering and the Dicke effect. We reveal this relation by presenting
the exactsolution of the problem for the lowest Landau level. In particular, we show that in the absence of
disorder the system undergoes a phase transition at some critical concentration of localized states.
[S0163-182698)03411-0

l. INTRODUCTION unusually narrow distribution of parametéfs2° with typi-
cal sizes of less than 20 nm and variations of less than 10%,
Electronic states of two-dimensioné2D) systems in a an array of such dots with density 610" cm™2 can be
magnetic field in the presence of impurities have been intenproduced at some preset distance from a plane of high-
sively studied during the last two decade® The macro- mobility electrons’* As the Fermi energy in the plane is
scopic degeneracy of the Landau levgls’s) makes impos-  brought close to the levels of the dots, the scattering becomes
sible a perturbative treatment of even weak disorder and califrongly enhanced. It was, in fact, observed in Ref. 21 that
for nonperturbative approaches. For high LL’s, the self-the mobility dropped by two orders of magnitude when the
consistent Born approximation of Antievas shown to be thickness of the tunneling barrier between the dots and the
asymptotically exact for short-range disor8&fwhile in the  plane was reduced.
case of long-range disorder the averaged density of states In this paper we study the electronic states of a system
(DOS) was obtained within the eikonal approximatiffor ~ consisting of a 2D electron gas in a strong magnetic field and
low LL’s and uncorrelated disorder, the problem contains ndeointlike LS'’s with energy levels close to the electron energy
small parameter and neither of those approximations applie§) the plane. It is important to realize that titembined
Nevertheless, for the lowest LL, the exact DOS in a white-effect of such LS’s differs drastically from that of a collec-
noise potential has been obtained by Wegner by mapping tHéon of isolated LS’s. The reason lies in a specific type of
problem onto that of the 0D complex* model® This re-  coupling between LS’s, which originates from electronic
markable result was extended to non-Gaussian distributiorf§ansitions between LS'’s and the electron plane. For an iso-
of random potentials by Brén, Gross, and ltzykson within lated LS, such transitions merely lead to a broadening of the
the functional-integral approachand recently to multilayer LS level. However, in the case of many LS's, the electron in
systems? the “course” of a single transition between a particular LS
In the works mentioned above, the energy levels of thednd the plane “visits” also thether LS’s, propagating in
impurities played no role in the scattering. Experimentally,the plane between successive transitions. As a result, the
this is well justified since usually the random potential comed-S’s become coupled via the states in the plane. This cou-
from charged donors with energy levels substantially highepling differs qualitatively from the usual overlap of the LS
than the Fermi energy in the plane. The Gaussian form of thwave functions, and leads to the formation of a certzin
distribution function implies that a random potential is cre-herentstate?®
ated by a large number of relatively weakly scattering impu- Let us illustrate the role of such coupling between LS’s
rities. The LL shape is then described by a “smooth” curve,(in the absence of a magnetic fieldn the following ex-
symmetric with respect to the LL center. In the case of pointample. Consider first an isolated LS with energy In the
like scatterers with constant scattering strength, the DOS igbsence of tunneling, the spectral functi@® of the LS is
strongly asymmetrié>7° vanishing below(abové the LL  Simply Sy(w)=8(w—€;). Turning on the tunneling trans-
center for a repulsivéattractive potential. An asymmetry, forms the SF into the Lorentzian
caused by deviations from the Gaussian distribution, has
been observed in very-low-mobility heterostructutes. S(w)=— Yt 1 w 0
The situation is quite different in the presence of localized T T o= W 7 (0—e) 2+ W2
stategLS’s) with energies close to the electron energy in the
plane. A large number of such LS’s can have a dramatiVIt
effect on the properties of the 2D electron gas. Such experi-
men_tal 'structures became available with recent advapces in W= 772 |t1k|2 S(w—Ey), @)
fabrication of arrays of ultrasmall InAs quantum dots with an K
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wheret, is the amplitude of tunneling between the LS andtromagnetic field couples only to the symmetric state, which
statek in the plane. The meaning of E() is, of course, that is the fast-radiating component, whereas for the antisymmet-
in the presence of tunneling the LS level acquires a widthric state(slow-radiating componenthe corresponding ma-
W~ 1= 7 being the decay timéwe seth=1). trix element vanishes. The emission spectrum represents a
Let us now place another LS with energy at some narrow peak with widtitV_—0 on top of a wide peak with
distance from the LS 1. Then a simple generalization of Eqwidth W, —2W, where heraV~1= r is the radiating time of

(1) gives an isolated atom. The wide peak, corresponding to the fast
time 7, = 7/2, is a manifestation of theuperradiancewhich
1 1 1 is coherentemission with the doubled rate, while the narrow
S(w)=— ;ImETrm, 3 peak, corresponding to theubradiance describes therap-

ping of radiationby atoms’* Similarly, the first term of the
wheree is a diagonal X 2 matrix with eigenvalueg; and  SF (6), which turns into}Sy(w) = 1 8(w—€) for rkp<1,
€,, and describes th&rapping of electronic statelsy the LS’s(*sub-
tunneling”), and the second term indicates that the fast com-
W, = t ot s(w—E 4 ponent decays into a contllnuum of states in the plane with a
. 7T§k: it o~ By @ doubled rate“supertunneling’).

. . . L This analogy holds for an arbitrary number of LS’s. The
is the matrix of widths. The key observation is that the ma-g- ;¢\ Ls's is still given by Eq.(3) (with the factor of 1/2

trix elements ofW are not independent, but instead satisfy a
certain relatiorf This relation follows from the definition of
t;x as the overlap between wave functions ofiL&d of the

replaced by M) and Eq.(4), where W and € are now
NX N matrices. For identical LS’s confined within the area

2 i~ .
statek in the plane. Since the latter is simply a plane wave,)‘ ’ a!l t(r;e (_arlemepts OVI\./ are again of thg sarre order of
t;x contains a phase factor depending on the in-plane coord[!gnitude. To gain qualitative understanding, let us asstme
nater; of the LS: t;,=e"it;, with |k|=ke=27/\¢, \¢ them equalW;; =qW, with someq~1. Then the generali-
being the Fermi wave length. For diagonal elemeit, zation of Eq.(6) reads

=W,, the productt;,t,; in Eq. (4) is independent of the “ 1

N

W_ N 1 W,
(w—e)z—l—WZ, N (w—e)z-i—Wg

orientation ofk. For nondiagonal elements, however, the S(w)zi
productt;t,; contains the factoe' i, rij being the distance

between the LS’s. One then obtains from E4). (7
W12=q\/VV1—W, q=Jo(r 1Ke), (5) with W,=[1+q(N—1)]W. We see again that ag—1, a

fraction 1—1/N of all states becomes trapped by the LS's,
whereJy(x) is the Bessel function. For the simplest case ofwhile the remaining fraction N is distributed in a wide

identical LS’s,¢;=¢€, W;=W andW,,=qW, Eq. (3) yields interval NW. The latter translates into the fast decay time
7s=7/N. This is again completely analogous to the Dicke

11 W_ 1 W, effect for N atoms confined in a volume with a linear size

S(w)=—15 (-2t W2 rEr Al ®  much smaller tham..

With this understanding, let us turn back to our system of

with W.. = (1 q)W. randomly distributed LS’s coupled to a 2D electron gas in a
It can be seen that if the two LS’s are well separatedgstrong magnetic field. In a realistic system, in addition to

rke>1, then the parameteris small and the SF again has LS’s, a “usual” disorder is present in the electron plane,
the form of a simple Lorentzian with widtW/. However, if which we assume to be uncorrelated. At the same time, the
the distance between LS’s is smaller than the Fermi waveenergy levels of LS’s are not all the same, but, in general,

length, r,ke<1, thengq~1 and both diagonal and nondi- distributed within some interval. This introduces into the

agonal elements oV are of the same order of magnitude. Problem yet another type of disorder, which is completely
The SF then represents a superposition of a narrow and apsent in the Dicke effect for a gasidenticalatoms. As we
broad Lorentzian with width&V_ and W, , respectively. will see below, the interplay of the two types of disorder

This, in turn, gives rise to shortr,+=W;1= 7/(1+q), and appears to be rather nontrivial. . .
long, 7. =W~=7/(1—q), decay times. In other words, the An |mporta,nt _parameter 2§:haracter|zmg the syste_m is the
state formed by two LS’s, coupled via the continuum Ofnumber 9f .LSS n 'f‘h_e_areaF. F,(,)r the I’owest LL, this pa-
states in tréezz plane, is split into fast- and slow-decayind""rmter is just the "filling factor” of LS’s,
components: _ 2

The physical mechanism leading to the appearance of v=(2m5)ns, ®
fast- and slow-decaying components is, in fact, analogous tawhere n s is the LS concentration ant is the magnetic
that of the Dicke effect in the spontaneous emission of lightength. Forv<1, the coupling between LS’s via the states in
by a gas® In particular, the case of two LS'’s, coupled via the plane is weak, anf(w) represents a convolution of SF’s
the continuum of electronic states wikz /r ,>1, is similar  of isolated LS’s(coupled to the planeln the opposite limit,
to the case of a pair of atoms radiating a photon with thev>1, the coupling between LS’s is strong and, as the above
wavelengthh much larger than the interatomic distande example suggests, nearly all electronic states should be
For A/d>1, which corresponds to the limig—1, the two trapped by the LS’s. Note, however, that in this example the
atoms form a single quantum-mechanical system. The elecollective (Dicke) state is characterized by the proximity of
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the parameteq to unity: in the limitq— 1, the fraction 1/  DOS in the presence of resonant scattering exhibits a pro-
N of electronic states is trapped farbitrary N (which is  nounced minimum which develops into a gap with increas-
analogous tav). Although it is not possible to introduce  ing v. The width of the gap is independent of the disorder
priori a parameter similar tq in a disordered system, one and is determined by the tunneling strength and the LS con-
expects on physical grounds that with increasinthe sys- centration or)ly. We demonstrate t.hap thi_s behaviamiwer-

tem will find itself in the Dicke state. In particular, for large Sal and persists for an arbitrary distribution of LS levels.

v, one expects that the weight-1L/v of the SFS(w) will be In the strong coupling regimey”/y1'>1, the SF and the
carried by the “bare” SFSy(w), calculated in theabsence DO_S e.XhIk.)It a rathe_r complicated behavior. In the limit of
of tunneling. However, the interval af within which the vanishing in-plane disorder and LS level spread, tish)

crossover bevieen o regimes occurs should deperff09() 1 horarac e, L o fee ke
strongly on the disorder. As we show below, under certain 9y ' gap orig 9

conditions the transition to the Dicke state can occur at Someracy of the LL in the absence of disorder and is unrelated to
critical value of the gap in the weak coupling regime due to the trapping of
V.

. iUl to view thi ¢ iiahtly diff states.
It s useful to view this system from a slightly different \yq fing that in the case of strong coupling, the transition

angle. Namely, let us consider the effect of LS's on the elecyg the Dicke state occurs at theitical concentration of LS’s
tronic states in the plane. Clearly, as the electron energyorresponding ta=1: for arbitrary v>1, a fraction +1/»
approaches the LS levels, the electron experienessnant  of states is trapped by LS’s. At the same time, the DOS
scattering by the LS's. As a result, the electronic DOS exhibits a seemingly similar behavior for<1: a fraction
should exhibit a sharp energy dependence near the resg-, of states in the LL center remains unaffected by the
nance. The character of this dependence can be easily undegsonant scattering. The origin of such “condensation of
stood from the physical picture outlined above. Since withstates” is analogous to the one in the case of nonresonant
increasingv a larger fraction of the electronic states is pointlike scattererd®”-°For v<1, one can choose as a basis
trapped by the LS’s, the DOS should develogap in the  |inear combinations of unperturbed wave functions vanishing
limit of large v. The fact that resonant scattering should leadat the positions of all LS’s. This reduces the LL degeneracy
to a gap for large LS concentrations has long been known iy 5 factor of 1- v, leaving this fraction of states unaffected.
the 3D case for identical scatterdin the absence of mag- In fact, the similar behavior o8(w) for »>1 and of
netic field.”~*’ The above arguments suggest that resonany( ) for <1 is not coincidental, but is a consequence of a
scattering and the Dicke effect are, in a certain sensgther remarkable relation between the SF and the DOS in
complementary to each other. The goal of the present papghe absence of disorder. We demonstrate 8at) andg(w)
is to establish this relation in precise terms. _turn into each other under the transformatigss1/v and

In fact, it is easy to see that the shape of the SF of LS's i, _, . ., This unexpected “duality” relates to each other

determined entirely by the resonant scattering. Indeed, thge two phase transitions of entirely different physical ori-
electron in the “course” of a single transition between a LSgin _

and the plane is being scattered by the rest of the LS'S. Tne paper is organized as follows. In Sec. Il we formulate
Therefore, the self-energy of a LS is simply proportional toyhe model and derive the general expression for the SF. In
the Green function of 2D electrons in the presence of résogec ||| the calculation of the averaged Green function of
nant scattering. This formal relation indicates, however, thaf gis is performed. The analysis and numerical results are

finding the SF, averaged over the positions_an_d energies (Hresented in Sec. IV. Section V concludes the paper.
LS’s as well as over the in-plane disorder, is, in general, a

rather difficult task. In particular, it requires the calculation

of not only the averaged electron Green functfobut, in ~ Il. LOCALIZED STATES AND RESONANT SCATTERING

IﬁCt’l of alltltELnlwomle?r:s. Ne\tl)(larthelessbas vvle 1;0\;\( b_?Ihqw, for Consider a 2D electron gas in strong perpendicular mag-
€ lowest L1 Ievel Ine problem can be solvexactly ThIS —  neic field in the presence of a Gaussian random potential

solution, which is the main result of the present paper, i () with correlator

posé'si7ble due to the hidden supersymmetry of the lowes

LL.® -
Let us briefly summarize our results. The exact expres- V()V(r')=ws(r—r’). 9

sions for the SFS(w) and the DOSy(w) are multiparamet-

ric functions determined by the LS filling facter, the tun-  The electron plane is separated by a tunneling barrier from a

neling strengths, the Wegner's width™ of the lowest LL  plane of pointlike LS’s. We assume that the energy levels of

(characterizing the in-plane disorgieand the distribution LS’s are close to the lowest LL and adopt the tunneling

function of the LS levels . (e— ), wheree is the average Hamiltonian
energy andy is the width. In the absence of coupling to the
plane,5=0, the “bare” SF is simplySy(w)=f (w—¢€). In N t ~te Ata
the presence of coupling#0, we distinguishybetween two H % E“a"a"+2i ¢ C'+% (Lud,citH.c).
regimes governed by the dimensionless paramgfeyl . (10

In the weak coupling regimej?/ yI'<1, we find that the
transition to the Dicke state is smooth. In the limit of lange  Heree,, aL, anda,, are the eigenenergy, creation operator,
the fraction 1 1/v of electronic states is trapped by the and annihilation operator of the eigenstpte of the Hamil-
LS’s, so thatS(w)=(1—1/v)Sy(w). At the same time, the tonian Hy+V(r), Hy being the Hamiltonian of a free 2D



57 LOCALIZED STATES IN A STRONG MAGNETC . .. 6645

electron in a magnetic field; , ciT, andc; are those for the

ith localized state, antl,; is the tunneling matrix element. Ei(w):tiz{é(ri ’ri)+J drG(r.NU(w.NGrr)
The latter is defined as

+f drdr’G(r;,r)U(w,nG(r,r’)
tu= [ drazp 2V 2 w2

XU(w,r’)é(r’,ri)+-~}, (18
=g (T in)J drdz\i(r,2)¢;(r,z), (13)
with
where V,(r,z) is the LS potential andy;(r,z) is its wave
function. In the perpendicular direction, the wave function t2
7, (r,z) decays ag™ %, « being the decay constant, while in U(w,r)=>, — o(rj—r). (19

the plane it behaves as an eigenfunctn'ij(r) of the Hamil- eTe

tonian Hy+V(r). We assume that the tunneling barrier is
high enough, so that the dependencexofon p can be
neglected” Thus, we have

The random potentidl (w,r) describegesonant scattering

of electrons by LS’s. It has a form similar to that of the

pointlike scatterers. The crucial difference, however, is that

here the scattering strength depends on the proximity of the

t,i= lr/,z(ri,o)eszif drdz\i(r,2) ¢i(r,2)= l/’;(ri)ti , electron energy to the LS_ levels. In p_articular, the potential
(19 changes from repulsive to attractive as the electron en-

(12) ergy passes through the resonance. Since the LS positions
with t; determined by the transparency of the barrier. are random with uniform density, s, the distribution func-
We are interested in the LS Green function tion of U(w) is Poissonian. Note that due to the spread in the

LS energiese; and tunneling amplitudet, the scattering

R strengths in Eq(19) are also random.

D(w)=N"1X (i[(0—H)"Yi)=N"1X Di(w), Finally, after summation of the serié&8), the self-energy
! ! takes the compact form

(13
where the overbar stands for averaging over positions and Si(0)=t2G(r;,ry), (20)
energies of LS’s as well as over the random potental
Each term in the sunil3) can be presented as where
Di(w) - (14
(w)=—"—F———"7, N — 4
! o= €&~ 2i(w) Grr’ <r w—Ho—V—U(w)|" > 2Y)

ggg;eségx;; t&i;ﬁ:ﬁ:gﬂg%g{?ﬂgﬁg f{r?rph: VLr;lsliL]g:nc;f is the Green function of a 2D electron in the presence of
P : P resonant scattering.

several LS’s, such a transition includes also transitions be- In the following we assume that the magnetic field is

:weel?"t_]he plan?inang 'E(\r/]ve rﬁstso’f I;”S st.hTheta[[att(airrlttrr?nsTonn%trong and the scattering retains the electron in the lowest
esu a coupling betwee S via the states € Plan&.| while this condition is standard for the white-noise po-

Introducing the coupling matrix, tential, it seems to be more restrictive for resonant scattering.
It should be noted, however, that the scattering strength is
N — Uity effectively reduced by the spread in the LS levels. We also
Tjlw)=2 =5, (15) . ; > levels
L W—€, assume that the tunneling barrier, separating LS’s from the
electron plane, is high enough and neglect the difference
the self-energy.(w) can be presented as between tunneling amplitudes of different LS's, setting
=t in the rest of the paper.
Ei(w):Tii+E,TijD0jTji+2’TijDOjTjkDOkai+'"a _ Equations(13), (14), _(20), and (21) determine, in prin-
] I3 ciple, the spectral function
(16)
whereDj(w)=(w— sj)‘l, and the prime indicates that the S(w)=— ilmD(w)= _ £|mm_ (22)
termsj,k=i in the sums are omitted. ™ ™

It is convenient to recast;(w) in a different form. Using

Eq. (12), the coupling matrix can be written as The averaged LS Green functi@(w) =D;(w) can be pre-
sented as the series

Tij(@)=tt;G(r; 1)), (17
. 1 2n
where G(r,r')=(r|[(w—Hy—V)Y|r’) is the Green func- D;(w)= > => <ﬁ> Gh(w),
tion of a 2D electron in the absence of LS’s. After substitut- w—&—1°G(ri,rj) =0 \(w—e) .

ing Eqg. (17) into Eqg. (16), the self-energy takes the form (23
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whereG,(w)=G"(r;,r;) and(- - - ). denotes averaging over d(z,0)=u(z)+ 0v(2)/\2I,

€. In obtaining Eq(23) we used the fact that in Eq&l4) and

(18), the contribution of theth LS into the potentia(19) is D(z*,6%)=u(z*)+ 6* v(z*)I I, (31)
excluded.

The ensemble averaging in E@3) should be performed taking values in the “superspacef. Using the identities
over both random potentials/ and U(w). Calculation of (u)=(v)=0, (uuy=(vv), and{(uu)"y=n{uu)((uu)"~ 1,
S(w) requires then an averaging of not only the electronit is readily seen that the following chain of equalities holds:
Green function21), but, in fact, of all the momentS,(w).
Remarkably, for the lowest LL this averaging can be per-
formedexactlyby generalizing the approach of Ref. 7.

o —o nfeer noo*
(@)= + "ol = 1 "

TN\ _ an06% 12120 TN
Ill. CALCULATION OF THE SPECTRAL FUNCTION X((uu)")=e" ((uw)"). (32)

In order to find the moment§ (), we rely on the hid- Thus, the correlation functio28) can be presented in terms

den supersymmetry of the lowest EL.We start by noting ©f & functional integral over superfield81) as

thatG"(r,r) can be presented as a Gaussian functional inte- (—i)" o néet 22

gral over bosonic fields, G"(r,r)= f D@paeis[(b(g)a(g*)]n
(—i)" @y ’
—i _ _
G'(r.1)= -2 [ DeDeeTe(enT, (29 B 33
. _ ' _ with £¢*=|z|?>+ 66*. The action§[®,®] in Eq. (33) is
with the action(herew . = w+i0) obtained from Eq(29) by substituting
— — e~ l2%2? o
Sle.p]= | dre(n[e, —Ho—=V-U(w)]e(r). (25 —Z(U_Lj+a)):fdZQe—ég*/le(b(g*)(D(S)EQ(Z’Z*)_
2l
The normalization factoZ ~! can be written as a fermionic (39

integral, Z~*= [DyDxe'S, with the same actior§] x, x].
The fieldse(r) and x(r) are then projected onto the lowest
LL subspace according t@ve measure all energies from the
lowest LL)

We now perform the ensemble averaging owerand
U(w). The Gaussian averaging of exu(VQd?z) gives
exd —(W/2)fQ?d?z]. The averaging over the LS potential
U(w), carried out with the Poissonian distribution

(@=Ho)e(n)=we(r), (o—Ho)x(n=wx(r). (26  function® yields

Choosing the symmetric gauge, this projection is achieved . )
with the representation ex —IJ’ UQdz

_ _ 17127412 _ 1412722 ")
(P:(ZWIZ) 1/2e |z|</41 u(z), X:(27T|2) 1/2e |z|</41 U(Z), B B B B it“Q 5
27) =ex ns| [1-{ex o—el] . d<z;.
where the bosonic field(z) and the fermionic field (z) are (35)
analytic functions of the complex coordinate=x+iy. In _ ) )
terms of projected fields, E424) takes the form As a result, one obtains the effective action
(_i)n e_n‘z‘zl2I2 _ §[CD a] . f d2§ FZJ dZZ (2 |2J d20 )2
n — *\N | y =lw O — T[' o
G = g (@U@ + 7] o
where angular brackets stand for the functional integration d?z i 62
JDuDUDy Due's with action a f omzl b Cw—e
d22 222, — 2 2
S[U,U]:fz |2e Il (uu+vv)[wy—V-U(w)]. X| 27l d°fa ) (36)
an €
(29)

with d2¢6=d?zd?# and
As a next step, one introduces Grassnfanticommuting o
coordinatesd and 6* , satisfying a(& &)= E D (e ) D(&). (37

Herel' = (w/271%)Y2 is Wegner's width of the lowest LL in
f do= f d6o* =0, f dode* 0*6=m"1 (300  the absence of LS'sy;=(212)n,s is the “filling factor” of
LS's, and the parametef=t/(2l?)Y? characterizes the
(normalized such thafd?zd?6e'4°~%7*=1), which to- tunneling.
gether with the coordinatesandz* form the “superspace” The action(36) possesses a supersymmetry, characteristic
£=(z,0). One then defines the analytic “superfields” for the lowest LL®’ This symmetry betweem and ¢ coor-
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dinates is evident for the first term of E(B6). It can be  With suchC, and with help of Eqs(42) and(23), we finally
made explicit for the second and the third terms also byarrive at the followingexactexpression for the Green func-
making use of the identify tion of LS’s:

2 | o 1 i 62
n(Zﬂ'sz d2ge %7 ’z'zd)q)) D(w)zlf daeIA(a)< ex;{— a)> ,
ZyJo w—€ w—e€l[,

=27T|2f d26e """ 2% (H )", (39)

2= [ dagit @
0

This allows one to replace any functional of the form )

[d2zf(2m12fd20a) by the functional 2rl2fd2¢h(a) with  With A(«) given by Eq.(39).

ah(x)/ax="f(x)/x. The result is a manifestly supersymmet- It iS also useful to present this expression in a different
fic action§:fd2§A(a) where form. To do this, we introduce the distribution function of

LS energiesfy(e—:), wheree is the average energy and
242 fadﬂ|: < F{ i52,8)> } is the width. It can be easily seen from E89) that
—v| —|1-{exg — .

4 o B e -
€ 1 i i dA
(39 < exr{— a)> =Do(w)+——(f), (45
w—€ w—€ vV Je
With all three terms now depending on superfields via ¢

a(&,&%) only, the perturbation serievith respect to the where

second and third termdor the moments([(b(g)a(g*)]’w f
drastically simplifies. One notices that transformations of the Do(w)=(Dgj(®)) :f dfﬁ (46)
form ‘ w—e—€

iA(a)=iw,a— P

is the averaged LS Green function in the absence of coupling
to the electron plane. Combining Ed€44) and (45), we fi-

generate translations of in the superspacea(¢,¢¥)  nally obtain

—a(é—n,&—7*), and hence leave the actiors

B (&) —D(£— p)etn™ 27wt (40)

B , : : 1 9Inz
= [d?£A(«a) invariant. This leads to D(w)=Dy(w)+ . (9:0' a7
b %N\ — nén* 1212
([P(OD(7*)]")=Cre™” ’ (42) The analysis of this expression will be performed in the fol-
and from EQ.(33) lowing section.
(_i)nc IV. DISCUSSION AND NUMERICAL RESULTS
Gh(w)= n|(2—7rlz;” (42

The final expression for the SF, E®2), appears to be
where the coefficient€,, are ¢ independent. For free elec- rather involved and its analysis requires distinguishing be-
trons one ha€,=i"n!/ " . With the action(39), the coef-  tween several cases. It is convenient to perform explicitly the
ficient C, determines the averaged electron Green functior@veraging ovek in the action(39). The result read$
G(w)=G,(w) in the presence of resonant scatterifig.

] — . . I?a? edX. L=
For an arbitraryn, the momentg[®(&)®(£*)]") can be iA(e) =i a———— Vf ~ S(x)ellemeox
derived by extending the arguments of Ref. 7 to the case of 0
n-point correlators. A diagram witN internal lines contains x[l—JO(Z(S\/E)] (48)

N free propagators of the form—i<®(§)¢_>(77*)> -
° where f (x) is the Fourier transform of the distribution

— afn* 212 i huti i
=e /w . , while the contribution of each vertex is pro- ) . .

. w+,m§§*,2|z . . P function f(e). With such A(«), one can obtain from Eq.
portional toe , 2m being the number of lines enter- (47)

ing the vertex. After extracting a common face¥¢* 2 in
accordance with Eq41), the contribution of a diagram can N (oD

- . S =— (0—€)
be written ascyKy, WhereKy is a (N-fold) Gaussian inte- D(w) 'fo dx f,(x)€ X(Jo(28Vxa)),, (49
gral in superspace. The value of the latter is unity due to the _ N
exact cancellation betweenand 6 integrals. The remaining Where(: - ), stands for the average with the partition func-
coefficientscy can be generated within the zero-dimensionaltion Z, from Eq. (44). The electron Green functioB(w) is

field theory with partition functionZ,=[d2gpeiA¢#*) ~ given by a slightly simpler expression

where¢ is_ a complex number _a_nd the actigt{ p¢*) is the (2m12)G(w) = —i{a),, (50)
same as in Eq(39). The coefficientsC,, are then found as

ratios of two ordinary integrals which follows from Eqs(42) and(43) with n=1. The form

(49) of the actionA(«) introduces the dimensionless param-

2 - -
o1 [ g2 diAe*) n eter 5/ yI" which represents the relative strength of the cou-
Cn=2o J d“¢e (™)™ 43 pling between LS’s and electronic states in the plane.
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A. Weak coupling

Consider first the case of weak couplinf§/yI'<1. Sub-
stituting

(Jo(28Vx@)) o =exp I1—[1—(Jo(26VX)) ]}

=exp — 6%(a) X), (51)
into the right-hand sidéRHS) of Eq. (49), we obtain
D<w>:<ﬁ> , (52
with
3(w)=—i6%a),=6°(2m%)G(w). (53
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the effective widthy+ vy, experiences a sharp increasesas
approaches. This, in turn, leads to a minimum in the SF
(see Fig. L

Let us now turn to the case of many LS'e#0). The
Bessel function in Eq48) can be expanded to first order in
8%1yI', yielding

G(w)=Gy(w—r6°Dy), (59

with Dy(w) given by Eq.(46). Thus, in this case the energy
of the electron is shifted by an amount proportional to the
average potential (U(w,r)).,=v8°Dy(w). At the same
time, the fluctuations olJ(w,r), which are described by
terms of higher orders i8%/yI", are small. In other words,
the effect of scattering of the electron by LS'’s is reduced to
that of aneffective mediumFor the usual, nonresonant scat-

Thus, the self-energy in this case is proportional to the aVeltering (w-independentU), this would merely result in a

aged electron Green function in the presence of resonaptnormalization of the energy by a constant. In the case of
scattering. In particular, the width of the SF is determined byegonant scattering, however, the average potentiat@ma

the electronic DOS,

1
J(w)=— ;ImG(w). (54

plex quantity. Its imaginary part, which originates from the
spread in the LS levels, is a sharp functionwofThis affects
strongly the shape of the DOS and, in turn, of the SF.

For a low LS concentrationy5%/yI'<1, and foro~e

Note that Eq.(52) could be also readily obtained from Eq. <I', we find that the change in the DO&j(w), is given by

(14) by substituting the averaged;(w)=2(w) from Eq.
(20).

To simplify the analysis, let us assume that the distribu- g
tion of LS levels is Lorentziafinumerical calculations below
Gaussianwhere Sy(w) = 7 ImDy(w) is the “bare” SF in the ab-

are performed with the more realistic
distributior?). Then the averaging in Eq52) can be done
analytically, yielding

1 Yt v1
S(w)=— ,

T (0—€e— €)%+ (y+71)?

(55
with
e1(w)=6%(2m?)ReG(w),

yi(w)=—6%(2m?)IMG(w)=78*(27?)g(w). (56)

Consider first the case of an isolated LS, thawis,0 in Eq.
(48). Then we haves(w) =Gy(w), whereGy(w) is Weg-
ner's Green functiofi.This leads to

, ewlesz/thetz
20°l w 2 0
ST | T & T 17| (57
1+ (Z/JE)J dtet
0
252 ewzlrz (58)
V1= /T 2
Val (2/ﬁ)f dtet”
0

The renormalization of the LS energy is a slow function
of w, €,=28%w(m—2)I7I'? for <I'" and ;= 5%/ w for

w>T", so that its role is relatively unimportant. In contrast,

the renormalization of the width,, being proportional to the
DOS, is a sharp function ab, y,=25% \#T for o<T and

y,= (282 mw2IT3)e T for w>T. Therefore, fore<T,

@_57’1

a2 v&%w

no m T

So(w), (60)

sence of coupling to the plane. We see that the DOS in the
presence of resonant scattering exhibits a minimum. This, in
turn, leads to a maximum in the SF via the renormalization
of its width y;. Numerical results for several sets of param-
eters are shown in Figs. 1 and 2.

With increasing LS concentration, the SF develops a pro-
nounced peak which saturates for large(see Fig. 3. In
order to understand this behavior, let us consider the case
when the LS concentration is high>1, so thatvé?/yI"
>1, but at the same time the scattering remains weak. Then,
the fluctuations of the random potentld{ w) are still sup-
pressed, but the argument &, in Eqg. (59) is large. Pre-
sentingGyy, as[see Eq.(50)]

, 1 9 (=
Gww—vé DO)Z—mmm o da

a’T?
el

X exr{ ia(w,—v8?Dg)—
(61)

we notice that forw—?~y one has Iy~ 1/y, so that the
last term in the exponent can be omitted. This gives

1
27? w—v8°Dy(w)

Guw(w—vd°Dy)= (62)

If € is not in the LL tail, the first term in the denominator can
be neglected. For the Lorentzian distributi@y(w)=(w
—e+iy) 1, this readily leads toe;=(e—w)/v and y;
=v/v, and we obtain
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0.4
0.4 . .
0.3 r 1 03 |
= 02 =)
w i | i
B 0.2
0.1 r 1 01 L
0.0
— 0.0 :
8.0 8.0 ~40 20 0.0 2.0 4.0
o/T
0.4
FIG. 2. The DOSin units of g,=(2#1%) ' 1] for a strong
in-plane disorders/I"=0.3, with e=0 and »=1.5, is shown for
v/ 5§=0.1 (solid line), y/6=0.5 (dotted ling, y/5=1.0 (dashed
0.3 r i line), y/6=2.0 (long-dashed ling and y/5=10.0 (dot-dashed
line).
= . .
o 02+ 1 Since for suchw one hasDy(w)~1/y, we see thaB(w) is
again given bySy(w) up to a small fraction /.
At the same time, with increasing the DOS exhibits a
0 | | pronounced minimum which turns intogap as v becomes
' large (see Fig. 4. For v>1, the width of the gap is of the
order of the separation between peaks. The latter can be es-
timated from the condition that the argument of the Green
0.08 5 8.0 function (61) turns to zero. Sinc® y(w)=1/w for large w,

one easily finds that this separation ig25. Thus, the width

of the gap is universal and independent of the disorder.

Within the gap, the DOS can be estimated from E&2) as
FIG. 1. The SF ata) »=0 (isolated LS and (b) »=1.5, with  (2712)g(w)~ y/v5°.

I'/y=1.0 ande=0, is shown fors/y=0.1 (dot-dashed ling &/y

=0.5 (long-dashed ling 8/ y=1.0 (dashed ling 6/y=1.5 (dotted

line), and &/ y=2.5 (solid line). B. Strong coupling

In the case of strong coupling?/yI'>1, Egs.(52) and

1 y 1 (53) do not apply and, in general, all momei@s contribute
S(w)= =7 =5 22(1— —> So(®). to D(w). Nevertheless, the SF and the DOS appear to be
m(1+v7) (w—€e)"+y intimately related. In order to reveal this relation, let us con-

sider the limit of vanishing disorder, with’/6<1 and

vl §<1. In this case the second term in the acti88) can be

We see that for a large LS cogcentr,ation, almost the entirgmitted and no energy averaging is implied. Then it is easy
weight ofS(w) is carried by the "bare” SFSy(w), meaning 5 see that in the energy interval e— »)>0, the integra-

that the fraction -1/v of electronic states is trapped by (ion path in thee integral for the partition functionZ,
LS’s. The remaining ¥ fraction of states is carried by the =7Tf5°dae‘f‘(“) can be rotated bg~ 7SM@~ 972, resulting

tails, » — e>y, which become longer asincreasessee Fig.  in purely reali.A. After rescaling the integration variabte,
3). As was discussed in the Introduction, such a form ofihe partition function takes the form

S(w) is a manifestation of the Dicke effect. Clearly, in the

case of weak coupling, the transition to the Dicke state is

smooth. 7 _7T(w—€)f°°d _ w(e-ow)
Although Eq.(63) was derived for the Lorentzian form of 0T [t T

f,(e), this behavior persists for an arbitrary distribution of

LS levels. Indeed, foe<I" and w— e~ v, Egs.(52), (53), _ vfad—ﬁ(l—eﬁ)

(59), and(62) yield o B

. (65

D(w)=Dg[w+ 1/vDg(w)]. (64)  With this Z,, one obtains from Eq47) after some algebfa
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0.2
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0.1 -
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FIG. 3. (a) The SF withl'/y=1.0, 8/ y=1.0, ande=0 is shown
for v=0 (dot-dashed ling »=0.8 (long-dashed ling »=3.2
(dashed ling v=10.0 (dotted ling, and »=16.0 (solid line). (b)
The SF withI'/y=2.0, 5/y=2.0, ande=0 is shown fory=0
(dot-dashed ling »=0.4 (long-dashed ling v=1.6 (dashed ling
v=6.0 (dotted ling, andv=16.0(solid line).

+——In| —ex
viw—e vde Jo g 5

1 19 »da [{ w(e—w)
—a——

(66)

The second term can be written ag w/ 5°v)(a), [calcu-
lated with the partition functiof65)]. On the other hand, the
same manipulations with the electron Green functi6f)
give G(w)=[(e— w)/8?2m71?](a),. This leads to the rela-
tion

v(e—w)D(w)+w(27?)G(w)=1— . (67)

The fact that ImlZ, has no energy dependence foXe

04 :
(a) a
oA
03 | [ |
! \
o
> 02 1 1
01 f |
0.0 :
-8.0 -4.0 0.0 40 8.0
o/T
0.4 . ;

8.0

FIG. 4. () The DOS withy/T'=1.0, 8/T'=1.0, ande=0 is
shown for v=0 (dot-dashed ling »=0.8 (long-dashed ling v
=3.2 (dashed ling »=10.0(dotted ling, andv=16.0(solid line).
(b) The DOS withy/I'=0.5, §/'=1.0, ande=0 is shown forv
=0 (dot-dashed ling »=0.4 (long-dashed ling »=1.6 (dashed
line), v=6.0 (dotted ling, andv=16.0(solid line).

understood from the following reasonifgln the absence of
in-plane disordefsmallI’), the LL broadening comes from
the resonant scattering alone. Then the scattering potential
(19) appears to be attractive far<e, pulling the states from
the LL center to theeft, while for w>e€ it is repulsive,
pushing the states to theght. At the same time, in the
absence of a LS level spredsimall v), the finite width of
S(w) comes from transitions between the LS’s and the elec-
tron plane. Therefore, the absence of states in the latter
leavesS(w) unaffectedthat isS(w)=0] in the same energy
interval. It should be emphasized th8tw) and g(w) are
nonanalyti turning to zero for arbitrary [in the weak cou-
pling case,S(w) and g(w) are finite for all w, vanishing
only in the limit v—oo].

Near the gap edges,(w—€)—0, , the behavior o8(w)

—w)>0 implies that both the SF and the DOS should ex-andg(w) depends strongly on the value of The integral in

hibit a gap in this energy intervdkee Fig. 5. However, in

Eq. (66) is similar to that already analyzed in Ref. 7. Con-

contrast to the weak coupling case, here the gap is not relatesider first the case<1. The second term in Eg66) can be
to the Dicke effect. The physical origin of this gap can besplit as
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A Y n{1-— 16 | ‘
;E(V )IN[w(e—w)]+In T(1=7)
(a)
wle— )| (»da 12 & ]
& 0 a”
Xefaw(efw)laz 1—EX[<_VJ Fﬁeﬁ) ]), (69 a 0.8
wherel(x) is the gamma function. The derivative of the first
term cancels the first term in E(66). The second term, after 04 | .
analytical continuationw(e—w) —e '""w(w—E¢€), gives
near the gap edges
A 1 et 99,5 20 00 4.0
0)= , 69) . . . .
Ste)=5 lw—e|" 8 /8
whereA is a v-dependent constafit(A~ v? as v—0). 2.0
The SF diverges at one edge of the gapy e, and is
continuous at the othery— 0. The exactly opposite behav- (b)
ior is exhibited by the DOS, for which we obtain from Eq. 15 | |
(67)
w— € [
(27?)g(w)=(1-v)8(w)+v S(w). (70 D0t i
@ ()]
Aside from the first term, the behavior of the DOS near the
gap edgesg(w)x|w| "|o—e€|*"", “mirrors” that of the
SF. Figure 5 shows that the similarity is striking over the 0.5 r |
entire energy range.
The first term in Eq(70) indicates that a fraction v of 2N
states remains unaffected by the resonant scattering. Such 0.0 s N\on S
“condensation of states” originates from the residual LL -4.0 —2.0 0.0 2.0 4.0
degeneracy left after arranging the unperturbed wave func- /3

tions to vanish at the positions of all LS’s. Such a behavior is _
similar to the case of pointlike scatterers with constant scat- FIG. 5. (@ The SF for a small LS level spreag5=0.1, with

tering strengttf:>"%In fact, the analogy extends also to the

»=0.8 and e/5=1.0, is shown forl'/6=0.1 (solid line), /5

intricate structure of the DOS away from the gap. In particu-=0-3 (dotted ling, I'/6=0.5 (dashed ling andI'/6=1.0 (long-

lar, the smaller peaks correspond to the singulafitias
g(w) at integer values ofw(w— €)/ 8%, with increasingy

dashed ling (b) The DOSJin units of g,=(2x1%) 15 ] for a
weak in-plane disorder’/6=0.1, with €/6=1.0 andv=0.8, is

they are washed out. A similar structure appears also ighown fory/6=0.1 (solid line), y/6=0.3 (dotted ling, y/5=0.5

S(w); here it is washed out with increasifg(see Fig. 5.
In the case ofv=1, the DOS atw(w—€)—0, can be
found in a similar manner. The result redtls

1 —
2a?)g(w)x —in-2 27 for b=1)
ol 8
v—2 w—e v
| w| 52 (for v>1).
(7D

Note that forv=1, the LL degeneracy is lifted completely,

(dashed ling andy/ 5=1.0 (long-dashed ling

LS’s, while the tails ofS(w), given by the second term, are
suppressed by the factoril/However, in contrast to the
weak coupling case, here such behavior persists not only for
a large, but for ararbitrary filling factor »>1. It is instruc-
tive to compare the SF from E¢j72) to the SF from Eq(7).
In the the latter casé\ identical LS’s, confined to the area
A2, form a coherent(Dicke) state in the limitg—1. In
former case, the transition into the Dicke state occurs at a
critical filling factor v=1.

Thus, in the absence of disorder, the system undergoes

so that no condensation of states occurs. Instead, accordifiyo types of transitions at=1: the condensation of states in

to Eq.(67), the SF represents a sum of two terms

1 1 o
S(w)Z(l——)5(w—e)+——(277|2)g(w). (72
14 V w— €

Since in the absence of disordg§(w)=d(w—€), we ob-
serve again that the fraction-11/v of all states is trapped by

the LL center forv<<1 and the trapping of states by LS’s for
v>1. It should be emphasized that the two phase transitions
have entirely different physical origins. The former is caused
by the LL degeneracy and persists also for nonresonant scat-
tering; the latter is a manifestation of the Dicke effect, which
takes place also in the absence of a magnetic field. Never-
theless, the one can be derived from the other due to a sur-
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prising “duality” relation. Namely, it is readily seen from LS’s and the condensation of states in the LL center. In fact,
Egs.(70) and (72) that the SF and the DOS turn into each for identical non-resonant scatterers, the latter transition

other, (271?)g(w)— S(w), under the transformation takes place for all LL numbets(as far as LL mixing is
neglectedl Therefore, we believe that for higher LL's, the
velly, woe-o. (73 transition to the Dicke state should also occur at a critical
It is rather remarkable that the resonant scattering and th#ling factor »=1, although we have not proved the duality
Dicke effect can be unified in such a simple manner. relation in the general case. In the absence of a magnetic

field, however, the question remains open.
As a possible experimental realization, we suggest a sys-
V. CONCLUSION tem of self-assembled quantum dots separated from a 2D
electron gas by a tunable tunneling barrier. Due to the ultra-
We have shown that a system of LS’s coupled to a 2Dharrow distribution of the dots’ sizes, the spread in their
electron gas in a strong magnetic field exhibits a kind ofenergy levelsy, does not exceéd10.0 meV. Although, it is
collective behavior similar to the Dicke effect. For high hard to achieve an interdot separation much smaller than the
enough LS concentrations, the trapping of electronic stategermi wavelength, a condition~1 seems to be quite rea-
by the LS's takes place, which is analogous to the Dickesonable. For a considerable resonant scattering effect, one
subradiance. Such trapping is complementary to the gap iRas to haves?/ yI'~1. For a typical LL widthT'~1 meV,
the DOS in the presence of resonant scattering. this condition implies that the tunneling paramesieshould
Although our derivation was restricted to the lowest LL, be about several meV. We believe that the significant drop in
we believe that our results are more general and remain valighe mobility, observedat zero field by the authors of Ref.
for higher LL’s. There is little doubt that the gap in the DOS 21, should be attributed to the gap in the DOS.
is a rather general feature. A much more subtle question is
related to the type of the transition to the Dicke state. It
seems obvious that in a disordered system this transition ACKNOWLEDGMENTS
should be smooth. In a clean system, we have shown that this
is, in fact, a phase transition. However, this result appears to llluminating discussions with M. E. Raikh are gratefully
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. - g =d
1-e 1B o= f dtel(@~ 94852 (1), f % 1 -eB=Ctina+ f Bes
0 0 ﬂ a B

whereJ,(t) is the Bessel function. _
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