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Rate equations for quantum transport in multidot systems

S. A. Gurvitz
Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel

~Received 7 February 1997; revised manuscript received 12 November 1997!

Starting with the many-body Schro¨dinger equation we derive rate equations for resonant transport in quan-
tum dots linked by ballistic channels with high density of states. The charging and the Pauli exclusion principle
effects were taken into account. It is shown that the current in such a system displays quantum coherence
effects, even if the dots are away one from another. A comparative analysis of quantum coherence effects in
coupled and separated dots is presented. The rate equations are extended for description of coherent and
incoherent transport in arbitrary multidot systems. It is demonstrated that the rate equations constitute a
generalization of the well-known optical Bloch equations.@S0163-1829~98!04711-0#
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I. INTRODUCTION

Quantum transport in small tunneling structures~quantum
dots! has attracted great attention due to the possibility
investigating single-electron effects in the electric curren1

Until now research has been mostly concentrated on si
dots, but the rapid progress in microfabrication technolo
has made possible the extension to coupled-dot systems
aligned levels.2–4 An example of such a system is show
schematically in Fig. 1, where the coupled quantum
~coupled wells! are connected with two separate reservo
~the leads!. In contrast with a single dot, the electron wa
function inside a coupled-dot structure is a superposition
electron states localized in each of the dots. As a result,
effects of quantum coherence would appear in electron
rent flowing through such a system. Usually these effects
treated in the framework of the single-electron approach.
though this approach is an appropriate one for coupled-w
semiconductor heterostructures,5–7 it cannot be applied for
coupled dots. The reason is the dominant role of the C
lomb interaction that leads to the Hubbard-type Hamilton
for a description of these systems.8

The Coulomb blockade effects in electron transp
through asingle dot can be taken into account in the mo
simple way by using the ‘‘classical’’ rate equations.9–12

These equations describe the current through the dot in te
of balance between incoming and outgoing rates from~to!
the leads. Basically the same classical approach has
used to calculate the conductance of coupled multi
systems.13,14 In these works the whole array of quantum do
has been treated as a single quantum system, where its m
body eigenstates were calculated by exact~numerical! diago-
nalization of the Hubbard Hamiltonian. Then the leads~res-
ervoirs! were incorporated through the rate equations
single dots.11 Yet, such a procedure is correct only for sm
coupling with the leads. If the corresponding ratesG are of
the order of the interdot transitionsV ~Fig. 1!, they affect the
diagonalization of the Hubbard Hamiltonian.6 Besides, the
approach13,14 is mainly numerical and the inelastic scatteri
within the array is accounted for phenomenologically.

A different way to treat the quantum transport in multid
systems is to use the Bloch-type rate equations15–18 instead
of the classical rate equations. In contrast with previo
570163-1829/98/57~11!/6602~10!/$15.00
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treatments13,14 this approach is valid also for strong coupling
with the leads and it accounts the inelastic scattering effe
inside the multidot system.17 It proves to be much simpler
than the other approaches, so that in many cases the ana
cal treatment of the problem is possible.16,17 It is also impor-
tant to note that this approach is not a phenomenologic
one: new generalized Bloch-type rate equations werederived
from the many-body Schro¨dinger equation with the Hubbard
Hamiltonian by integrating out the continuum states of th
reservoirs.17

An important advantage of the Bloch-type equations is
clear distinction between coherent~‘‘quantum’’! and nonco-
herent ~‘‘classical’’! terms. The quantum coherence in th
Bloch equations manifests itself in the nondiagonal densit
matrix elements~‘‘coherences’’!, coupled with the diagonal
density-matrix elements~‘‘probabilities’’ !.19 Such a coupling
always takes place, whenever a carrier jumps betweeniso-
lated states inside the system.17 Otherwise, the diagonal and
nondiagonal matrix elements are decoupled and the Blo
equations turn into theclassicalrate equation.

Actually, Bloch equations describe quantum motion be
tween isolated~nonorthogonal! states, which are directly
coupled~as in the double-well potential!. In general, these
states can be separated by a medium with high density
states. An example of such a system is shown in Fig.
where two dots with aligned levels are separated by the b
listic channel. In this case a carrier transport from the left
the right reservoir proceeds through continuum states in t
channel. Usually transitions from discrete to continuum
states lead to dephasing, i.e., to destruction of quantum
herence. Yet, some coherent effects may survive. It is the

FIG. 1. Resonant transport through a coupled-dot structure.GL,R

denote the corresponding tunneling rate from~to! the left ~right!
reservoirs, andV0 is the interdot hopping amplitude.EF

L,R denotes
the Fermi level in the left~right! reservoirs. Only those energy
levels inside the dots that carry electron current are shown.
6602 © 1998 The American Physical Society
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57 6603RATE EQUATIONS FOR QUANTUM TRANSPORT IN . . .
fore important to establish whether quantum coherence
affects the transport through separated dots, or more
cisely: are the diagonal density-matrix elements still coup
with the nondiagonal matrix elements in the correspond
rate equations?

This question leads us to a more general problem, of h
to modify the Bloch rate equations for transport in coup
dots for a general case of arbitrary distributed quantum d
Similar to the Bloch equations one can anticipate that
new rate equations would incorporate the classical and q
tum descriptions in a very efficient way. Therefore the
equations can provide most useful account of quantum
herence effects in different processes in a comparison
usual approaches.20

In this paper we study the above mentioned problems
ing as a basis the microscopic many-body Schro¨dinger equa-
tion with the Hubbard-type tunneling Hamiltonian, descr
ing the entire system of the reservoirs and the quantum d
The plan of the paper is the following. In Sec. II we descr
the previously derived Bloch-type rate equations for coup
dots and some particular features of the coherent transpo
these systems. In Sec. III we present the rate equations
separated dots and outline their derivation from the mic
scopic Schro¨dinger equation. The details of the derivatio
are described in the Appendix. A comparison of coher
effects in quantum transport through coupled and separ
dots is given in Sec. IV. The quantum rate equations fo
general configuration of quantum dots are presented in
V. The last section is a summary.

II. RATE EQUATIONS AND COHERENT EFFECTS
IN COUPLED QUANTUM DOTS

We start with a review of the quantum rate equations
coupled multidot systems, connected with two reservoirs~the
‘‘emitter’’ and the ‘‘collector’’! and interacting with phonon
reservoir. The entire system is described by the Hubba
type tunneling Hamiltonian where the electron-electron
teraction is taken into account by introducing the cor
sponding electrostatic charging energy. In case of la
voltage bias one can reduce the many-body Schro¨dinger
equation to the system of quantum rate equations by integ
ing out continuum reservoir states.17 As a result the follow-
ing Bloch-type equations for the density matrix of the m
tidot system $sab% are obtained, wherea,b denote the
isolated~nonorthogonal! states of the system:

FIG. 2. Resonant transport through two quantum dots separ
by a ballistic channel. HereV l andV r denote the coupling of the
left and right dots with the levelsEl and Er in the left and in the

right leads.Vm andV̄m denote the coupling of the left and the rig
dots with the levelEm in the ballistic channel.
ill
e-
d
g

w

s.
e
n-
e
o-
th

k-

-
ts.

d
in

for
-

t
ed
a
c.

r

d-
-
-
e

at-

ṡaa5 i(
b

Va→b~sab2sba!

2saa(
g

Ga→g1(
d

sddGd→a , ~2.1a!

ṡab5 i ~Eb2Ea!sab1 i S (
g

sagVg→b2(
d

Va→dsdbD
2

1

2
sab(

d
~Ga→d1Gb→d!1 (

gdÞab
sgdGgd→ab .

~2.1b!

Here Va→b is the amplitude of one-electron hopping th
results in the transition between the statesa and b. The
width Ga→g52pruVa→gu2 is the probability per unit time
for the system to make a transition from the stateua& to the
stateug& of the device due to the tunneling to~or from! the
reservoirs, or due to interaction with the phonon bath, or a
other interaction generated by a continuum state med
with the density of statesr. Notice that Eq.~2.1a! for diag-
onal elements has a form of classical rate equations, ex
for the first term. This term is generated by an electron h
ping between theisolated levels, which results in the cou
pling with nondiagonal density-matrix elements. Therefore
is responsible for coherent quantum effects in electron tra
port. The nondiagonal matrix elements are described by
~2.1b!. The last term in Eq.~2.1b! appears only for system
with the number of isolated states participating in the tra
port is more than two. It describes the simultaneous conv
sion of the statesg→a and d→b, generated by the sam
one-electron decay to~from! continuum.

The current flowing through the system is given by

I ~ t !5(
g

sgg~ t !GR
~g! , ~2.2!

where the sum is extended over statesug& in which the dot
adjacent to the collector is occupied~we consider the elec
tron chargee51). GR

(g) is the partial width of the stateug&
due to tunneling to the collector~the right reservoir!.

It follows from Eqs. ~2.1! that the coherent effects d
appear in the quantum transport whenever a carrier jum
from one to anotherisolatedstate inside the device. In th
absence of such a transition as, for instance, in resonant
neling through a single dot, the diagonal and nondiago
matrix elements aredecoupledand the evolution of diagona
density-matrix elements is described by theclassical rate
equation.

For an example we consider the quantum transp
through a double-dot system at zero temperature,21 shown in
Fig. 1. In order to diminish the number of equations w
assume that the Coulomb repulsion does not allow for t
electrons to occupy the same dot, i.e.,Ei1Uii @EF

L , where
i 51,2 andUii is the corresponding charging energy. Yet, t
interdot Coulomb repulsionU12 is much smaller, so the both
levelsE1,2 can be occupied simultaneously. In this case th
are four available states of the double-dot system~for sim-
plicity we neglected the spin!: ua& levelsE1,2 are empty,ub&

ed
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6604 57S. A. GURVITZ
level E1 is occupied,uc& level E2 is occupied, andud& both
levels E1,2 are occupied. Using Eqs.~2.1! with a,b, . . .
5$a,b,c,d% we find the following equations describing th
time evolution of the corresponding density-matrix elemen

ṡaa52GLsaa1GRscc , ~2.3a!

ṡbb5GLsaa1GR8sdd1 iV0~sbc2scb!, ~2.3b!

ṡcc52GRscc2GL8scc2 iV0~sbc2scb!, ~2.3c!

ṡdd52GR8sdd1GL8scc , ~2.3d!

ṡbc5 i ~E22E1!sbc1 iV0~sbb2scc!2 1
2 ~GL81GR!sbc ,

~2.3e!

which are supplemented with the probability conservat
condition: ( is i i (t)51. Note that the interdot Coulomb re
pulsion results in a variation of the corresponding transit
rate whenever both levels are occupied (GL,R is replaced by
GL,R8 , evaluated at the energyE1,21U12, respectively17!.

The dc current isI 5GRscc(t→`)1GR8sdd(t→`), Eq.
~2.2!. In order to shorten the final expression we assume
the rates are weakly dependent on the energy,GL,R8 5GL,R .
Then solving Eqs.~2.3! in the limit t→` we obtain

I 5S GLGR

GL1GR
D V0

2

e2GLGR /~GL1GR!21V0
21GLGR/4

,

~2.4!

wheree5E12E2.
It is interesting to compare Eqs.~2.3! with the corre-

sponding classical rate equations where only transitions
tween thediagonal density-matrix elements take place.
this case the probabilitiessbb andscc of finding an electron
in the first and the second dot are coupled by the some
GM . One easily finds that Eqs.~2.3! become

ṡaa52GLsaa1GRscc , ~2.5a!

ṡbb5GLsaa1GRsdd2GM~sbb2scc!, ~2.5b!

ṡcc52GRscc2GLscc1GM~sbb2scc!, ~2.5c!

ṡdd52GRsdd1GLscc ~2.5d!

~cf. with the analogous rate equations in Refs. 22 and 2!.
Solving these classical rate equations in the limitt→` we
obtain for the~classical! dc current

I cl5
GLGRGM

GLGR1GLGM1GRGM
. ~2.6!

Comparing Eq.~2.6! with its ‘‘quantum’’ counterpart, Eq.
~2.4!, we find that the quantum-mechanical nature of the
current displays itself in the Lorentzian-shape resonance
function of the levels disalignment,e5E22E1. Such reso-
,

n

n

at

e-

te

c
a

nances were already observed in the coupled-dot syste3

Yet, the existence of the resonance is not necessarily rel
to the quantum coherence effect. The later manifests itse
a peculiar and even a counterintuitive dependence of
resonant current on coupling with the reservoirs. It follow
from Eq. ~2.4! that the currentdecreaseswhen the coupling
with the reservoirsincreases. For instance, the peak value o
the resonant currentI e50}GL /GR→0 for GR@GL . It im-
plies that byincreasingthe penetrability of the barrier, con
necting the second dot with the collector wediminish the
total current. As an example we show in Fig. 3 the pe
value of the resonant current as a function ofGR for constant
GL and V0 ~the solid line!. This effect can be observed i
coupled-dot structures by changing the corresponding g
voltage.

For a comparison the corresponding ‘‘classical’’ curre
I cl , Eq. ~2.6!, is shown in Fig. 3 by the dashed line.

The decrease of the resonant current shown in Fig. 3
result of destructive quantum interference during decay o
coherent superposition to continuum in the regime of stro
coupling with the reservoirs.23,24 A similar effect had been
observed in electron decay from coupled quantum wells
continuum.25 It is quite interesting that such a counterintu
tive behavior of the resonant current looks as a manifesta
of the Zeno effect.26 It tells us that the quantum transition
between different states slow down when one of the state
continuously observed. Indeed, the increase of the right
rier penetrability leads to immediate tunneling of an electr
to the collector whenever it arrives at the second dot. It c
be considered as a continuous observation of the second
state, which results in an effective electron localization in
first dot.27

III. RATE EQUATIONS FOR TWO SEPARATED DOTS

Now we are going to derive rate equations for quant
transport in mesoscopic systems with arbitrary configurat
of quantum dots. As a generic example we consider quan
transport through two quantum dots separated by a ball
channel, Fig. 2. The dots contain only isolated leve
whereas the density of states in the ballistic channel an
the emitter and the detector is very high~continuum!. This
system can be described by the tunneling Hamiltonian

FIG. 3. Current through the coupled-dot structure, Fig. 1, a
function of GR /GL . The solid line corresponds to Eq.~2.4! for e
50 andGL

2/4V0
255. The dashed line is the result of the classic

rate equations, Eq.~2.6!, for GM5GL .
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H5(
l

Elal
†al1E1a1

†a11(
m

Emam
† am1E2a2

†a2(
r

arar
†ar

1 (
i , j 51,2

Ui j ninj1H(
l

V la1
†al1(

m
Vmam

† a1

1(
m

V̄ma2
†am1(

r
V rar

†a21H.c.J . ~3.1!

Here the subscriptsl , m, and r enumerate correspondingl
the levels in the left reservoir, in the~middle! ballistic chan-
nel, and in the right reservoir. The spin degrees of freed
were omitted. In order to simplify the derivation we assum
that the intradot charging energyUii is large, E1,21Uii

@EF
L . Thus only one electron can occupy each of the d

However, the interdot charging energyU12 is much smaller,
so it does not prevent simultaneous occupation of the
dots. The same is assumed for the Coulomb repulsion
tween electrons inside the dots and the ballistic channel.
though we did not include this interaction in the Hamiltoni
~3.1!, it can be treated in the same way as the interdot in
actionU12. As in the previous case we restrict ourselves
the zero-temperature case, even though the results are
for a finite temperature, as would be clear from the deri
tion.

Let us assume that all the levels in the emitter, in
ballistic channel, and in the collector are initially filled up
the Fermi energiesEF

L , EF
M , andEF

R , respectively. We call it
as the ‘‘vacuum’’ state,u0&. ~In the following we consider
the case of large bias, so thatEF

L@EF
M ,EF

R.) This vacuum
state is unstable: the Hamiltonian Eq.~3.1! requires it to
decay exponentially to continuum states having the fo
a1

†al u0& with an electron in the levelE1 and a hole in the
emitter continuum,am

† al u0& with an electron in the levelEm

in the ballistic channel and a hole in the emitter, and so
The many-body wave function describing this system can
written in the occupation number representation as

uC~ t !&5Fb0~ t !1(
l

b1l~ t !a1
†al1(

l ,m
blm~ t !am

† al

1(
l

b2l~ t !a2
†al(

l ,r
blr ~ t !ar

†al

1 (
l , l 8

b12l l 8~ t !a1
†a2

†alal 8

1 (
l , l 8,r

b1l l 8r~ t !a1
†ar

†alal 81¯G u0&, ~3.2!

whereb(t) are the time-dependent probability amplitudes
find the system in the corresponding states described ab
These amplitudes are obtained from the Shro¨dinger equation
i uĊ(t)&5HuC(t)&, supplemented with the initial conditio
@b0(0)51, and all the otherb(0)’s being zeros#. Using the
amplitudesb(t) we can find the density-matrix of the qua
tum dots,s i j

(k,n)(t), by tracing out the continuum states of th
reservoirs and the ballistic channel. Here the subscript in
ces ins denote four states of the dots:i , j 5$a,b,c,d%, where
ua& the levelsE1,2 are empty,ub& the levelE1 is occupied,
m
d

s.

o
e-
l-

r-
o
lid
-

e

.
e

ve.

i-

uc& the level E2 is occupied,ud& that both levelE1,2 are
occupied, and the superscript indicesk,n denote the number
of electrons accumulated in the ballistic channel and in th
collector, respectively, at timet, Fig. 4.

One finds

saa
~0,0!~ t !5ub0~ t !u2, saa

~1,0!~ t !5(
l ,m

ublm~ t !u2,

saa
~1,1!~ t !5 (

l , l 8,m,r

ubll 8mr~ t !u2, . . . ~3.3a!

sbb
~0,0!~ t !5(

l
ub1l~ t !u2,

sbb
~1,0!~ t !5 (

l , l 8,m

ub1l l 8m~ t !u2,

sbb
~1,1!~ t !5 (

l , l 8, l 9,m,r

ub1l l 8 l 9mr~ t !u2, . . . ~3.3b!

sbc
~0,0!~ t !5(

l
b1l~ t !b2l* ~ t !,

sbc
~1,0!~ t !5 (

l , l 8,m

b1l l 8m~ t !b2l l 8m
* ~ t !,

sbc
~1,1!~ t !5 (

l , l 8, l 9,m,r

b1l l 8 l 9mr~ t !b2l l 8 l 9mr
* ~ t !, . . .

~3.3c!

FIG. 4. Electron states of the two separated dot structure, show
in Fig. 2. GL,R , GM , and ḠM are the tunneling rates between the
dots and the reservoirs, and between the dots and the ballistic cha
nel. The indicesk andn denote the number of electrons penetrating
to the ballistic channel and to the collector at timet.
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6606 57S. A. GURVITZ
The rate of electrons arriving at the collector determin
the electron current in the system. Therefore the current
erator isÎ 5 i @H,N̂R#, whereN̂R5( rar

†ar is the operator for
the total number of electrons accumulated in the right re
voir. Using Eqs.~3.1!, ~3.2!, and~3.3! we find that the cur-
rent I (t) flowing through the system is

I ~ t !5^C~ t !u Î uC~ t !&

5(
k,n

n@ṡaa
~k,n!~ t !1ṡbb

~k,n!~ t !1ṡcc
~k,n!~ t !1ṡdd

~k,n!~ t !#.

~3.4!
th

n-

se

he
ce
th

s

o
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si

-
th
tr
s
p-

r-

As expected,I (t) is the time derivative of the total charg
accumulated in the collector.

It follows from Eq. ~3.4! that the currentI (t) flowing
through this system is expressed in terms of the diago
elements of the density matrixs(t). In order to find the
differential equations fors(t) we need to sum over the state
of the reservoirs and the ballistic channel, Eqs.~3.3!. It can
be done analytically by using a procedure similar to that
Refs. 17 and 18, providing that the levelsE1,2 are not close
to Fermi levels,uEi2EFu@G, Fig. 2. The details of deriva-
tion are described in the Appendix. As a result we obtain
following Bloch-type rate equations for the matrix elemen
of the density submatrixs(t):
ṡaa
~k,n!52GLsaa

~k,n!1GMsbb
~k21,n!1ḠMscc

~k21,n!1GRscc
~k,n21!12prMVMV̄M~sbc

~k21,n!1scb
~k21,n!!, ~3.5a!

ṡbb
~k,n!52GMsbb

~k,n!1GLsaa
~k,n!1ḠMsdd

~k21,n!1GRsdd
~k,n21!2prMVMV̄M~sbc

~k,n!1scb
~k,n!!, ~3.5b!

ṡcc
~k,n!52~GL1ḠM1GR!scc

~k,n!1GMsdd
~k21,n!2prMVMV̄M~sbc

~k,n!1scb
~k,n!!, ~3.5c!

ṡdd
~k,n!52~GM1ḠM1GR!sdd

~k,n!1GLscc
~k,n! , ~3.5d!

ṡbc
~k,n!5 i ~E22E1!sbc

~k,n!2prMVMV̄M~sbb
~k,n!1scc

~k,n!!12prMVMV̄Msdd
~k21,n!2 1

2 ~GL1GM1ḠM1GR!sbc
~k,n! . ~3.5e!
the

nnot

go-
as
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lly
cu-
m-
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.
e
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ro-
side
Here G denote the tunneling widths to the leads and
ballistic channel (G52pruVu2, wherer is the correspond-
ing density of states!, andVM ,V̄M are the hopping ampli-
tudes between the left and the right dots and the statesEm

5E1,2 of the ballistic channel.
Equations~3.5! have clear physical interpretation. Co

sider for instance Eq.~3.5a! for the probability rate of finding
the system in the statea with k electrons in the ballistic
channel andn electrons in the right reservoir@Fig. 4~a!#. This
state decays with the rateGL into the stateb @Fig. 4~b!#
whenever an electron enters the first dot from the left re
voir. This process is described by the first term in Eq.~3.5a!.
On the other hand, the statesb and c @Figs. 4~b! and 4~c!#
with k21 electrons in the ballistic channel decay into t
statea with k electrons in the ballistic channel. It takes pla
due to one-electron tunneling from the quantum dots into
ballistic channel with the ratesGM and ḠM , respectively.
This process is described by the second and the third term
Eq. ~3.5a!. Also the statec @Fig. 4~c!# with n21 electrons in
the right reservoir can decay into the statea due to tunneling
to the right reservoir with the rateGR @the fourth term in Eq.
~3.5a!#. The last term in this equation describes the decay
coherent superposition of the statesb andc into the statea.
It takes place due to single electron tunneling from the fi
and the second dots into the same state of the ballistic c
nel with the amplitudesVM and V̄M , respectively. Obvi-
ously, this process has no classical analogy, since clas
particle cannot simultaneously occupy two dots.

Equations~3.5b!, ~3.5c!, and~3.5d! describe the probabil
ity rate of finding the system in the states where one of
dots or both dots are occupied. In the first case an elec
e

r-

e

in

f

t
n-

cal

e
on

can jump into unoccupied dot via continuum states of
ballistic channel. As a result, the statesb and c can decay
into linear superposition of the statesb andc. This process is
described by the last terms in Eqs.~3.5b! and ~3.5c!. Obvi-
ously, if the both dots are occupied, such a process ca
take a place. Thereforesdd is not coupled with the nondi-
agonal density-matrix elements, Eq.~3.5d!. The last equa-
tion, ~3.5e! describes the time dependence of the nondia
nal density-matrix element. It has the same interpretation
all previous equations.

Equations~3.5! for the reduced density matrixs(t) were
derived starting from the wave functionuC(t)&, Eq. ~3.2!,
instead of using the density matrix for the entire system.
course, it makes no difference if the entire system is initia
in the pure state, or all the levels of the reservoirs are oc
pied up to the corresponding Fermi energies. At finite te
perature, however, the system is not initially in a pure sta
Then one needs to perform the derivation using the Liouv
~Landau–von Neumann! equation for the density matrix
Yet, if energy levelsE1,2 of the dots are far away from th
Fermi levels (T!EF

L2E1,2, E1,22EF
R), then the reservoir

levels El that carry the current (uEl2E1,2u&G) are deeply
inside the Fermi sea. In this case one can consider th
levels as fully occupied. Then neglecting the relaxation p
cesses in the reservoir and assuming zero temperature in
the dots, we would arrive at the same Eqs.~3.5!, derived
from the pure state.

Using Eqs.~3.5! one finds for the total current, Eq.~3.4!,

I ~ t !5GR@scc~ t !1sdd~ t !#, ~3.6!

wheres i i 5(k,ns i i
(k,n) are the total ‘‘probabilities.’’ We can

easily understand this result by taking into account thatscc
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1sdd is the total probability for occupation of the second d
andGR is the rate of electron transitions from this dot to t
~adjacent! right reservoir, Eq.~2.2!.

In order to find differential equations fors i j we sum over
k,n in Eqs. ~3.5!. Then we obtain the following Bloch-type
equations, which describe the time dependence of the de
matrix for separated dots,

ṡaa52GLsaa1GMsbb1ḠMscc1GRscc

12prMVMV̄M~sbc1scb!, ~3.7a!

ṡbb52GMsbb1GLsaa1ḠMsdd1GRsdd

2prMVMV̄M~sbc1scb!, ~3.7b!

ṡcc52~GL1ḠM1GR!scc1GMsdd

2prMVMV̄M~sbc1scb!, ~3.7c!

ṡdd52~GM1ḠM1GR!sdd1GLscc , ~3.7d!

ṡbc5 i ~E22E1!sbc2prMVMV̄M~sbb1scc!

12prMVMV̄Msdd2 1
2 G totsbc , ~3.7e!

whereG tot5GL1GM1ḠM1GR .
The stationary~dc! currentI 5I (t→`), Eq. ~3.6! can be

easily obtained from Eqs.~3.7! by taking into account tha
ṡ i j→0 for t→`. Then Eqs.~3.7! turn into a system of linea
algebraic equations, supplemented by a probability conse
tion condition saa1sbb1scc1sdd51. Consider, for ex-
ample, the case of the same partial widths of the levelsE1,2,
i.e., GL5GR5G0 and GM5ḠM . The latter implies
2prMVMV̄M56GM , since the amplitudesVM , V̄M can
be of the opposite signs. Solving Eqs.~3.6! and ~3.7! one
finds for dc current

I 5
G0

2GM
2

2e2~G01GM !12G0~G0
213G0GM13GM

2 !
, ~3.8!

wheree5E12E2.
Similar to the coupled-dot case, Eq.~2.4!, dc current in

separated dots displays the Lorentzian-shape resonance
function of e and the same peculiar dependence on the c
pling with the leads. The latter manifests the quantu
coherence effects in separated dot systems. We discuss
effects in the next section.

IV. COHERENT EFFECTS IN TWO-DOT SYSTEMS

It follows from the rate equations~3.7! that the diagonal
density-matrix elements are coupled with the nondiago
terms (sbc ,scb), similar to Eqs.~2.3! for a coupled-dot sys-
tem. It means that the coherent effects should survive eve
separated quantum dots. Indeed, let us consider the de
dence of the resonant current on a coupling with the re
voirs. As an example, we show in Fig. 5~a! the peak value of
the resonant current (e50) obtained from Eqs.~3.6! and
~3.7! as a function ofGR at fixedGL5GM . One finds that the
current through the dots separated by a ballistic channel
t

ity
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-
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plays the same peculiar behavior withGR , as in the case of
coupled dots, Fig. 3. Namely, the currentdecreaseswhen the
penetrability of the right barrierincreases. Such a behavior
of the resonant current is a clear manifestation of the quan
tum coherence effects, as explained in Sec. II~see also Refs.
23–25!. It also can be verified experimentally by changing
the voltage on the gate, connecting the right dot with the
collector.

On the other hand, the dependence of the resonant curre
on the widthGM is quite different, Fig. 5~b!. One finds that
the current increases withGM . It is not surprising, sinceGM
plays a role of coupling between the two dots. In fact, a
similar behavior with the couplingV0 displays the resonant
current in the case of coupled dots, Eq.~2.4!.

Despite the analogous quantum coherence effects, the ra
equations~3.7! are different from their counterpart for the
coupled dots, Eqs.~2.3!. One finds that the diagonal matrix
elements in Eqs.~3.7! are coupled with thereal part of the
nondiagonal matrix element, whereas the correspondin
terms in Eqs.~2.3!, are coupled with theimaginary part of
the nondiagonal matrix element. Notice also that the cou
pling is determined by the hopping amplitudeV in Eqs.
~2.3!, while the corresponding coupling in Eqs.~3.7! is pro-
portional toV2r.

It is important to point out that the coupling with the
nondiagonal density-matrix elements in Eqs.~3.7! does not
decrease with the separation distance between the dots,
though the hopping amplitudesVM ,V̄M do decrease. In-
deed, using semiclassical expressions one findsuVMu
5(1/At1tM)exp(2S) anduV̄Mu5(1/At2tM)exp(2S̄), where
S(S̄) is the action under the barrier, separating the first~sec-
ond! dot from the ballistic channel. It can be written asS
5*xi

xf up(x)udx, whereup(x)u5A2m@V(x)2E# andxi , f , are

the classical turning points.t1,2 are the classical periods of
motion in the first~second! quantum well andtM is the clas-
sical periods of motion in the ballistic channel. It implies that
tM→` when the length of the ballistic channel increases.
Yet, tM is canceled out from the coupling between the diag-
onal and nondiagonal matrix elements, since the ballistic
channel is effectively one-dimensional so that the density o
states isrM5tM/2p. Finally we obtain

2prMVMV̄M56
1

2pAt1t2

exp@2~S1S̄!#. ~4.1!

FIG. 5. dc current through the separated dot structure, Fig. 2, a
a function ofGR /GL for GM5GL ~a!, and as a function ofGM /GL

for GR5GL ~b!.
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6608 57S. A. GURVITZ
Therefore, the quantum coherence effects in dc current c
survive even for long ballistic channels. Obviously, it is tr
only for ideal one-dimensional channels, where all the fl
coming from the first dot arrives at the second dot. It sho
be also pointed out that electron-electron scattering ins
the ballistic channel~not taken into account in these calcul
tions! may reduce the interference effects. Yet, we exp
that such a process would not diminish the coupling~4.1!,
but increase the ‘‘dissipation’’ widthG tot in Eq. ~3.7e!. This
problem, however, needs a special investigation.

It is interesting to make a comparison between peak
ues of the dc current in coupled and separated dots. In
cases the current reaches its maximal value forGL5GR5G0
ande50, Eqs.~2.4! and~3.8!. One finds for the coupled dot

I max5
G0

2

V0
2

V0
21G0

2/4
→

G0

2
, for V0@G0 , ~4.2!

while for the separated dots

I max5
G0

2

GM
2

3GM
2 13G0GM1G0

2
→

G0

6
, for GM@G0 .

~4.3!

Thus the peak value of dc current in the coupled dots is th
times larger than that in the separated dots.

It is quite natural to associate quantum coherence eff
in double-well systems with quantum oscillations of an el
tron between the wells. Indeed, an electron in a coupled
system, detached from the emitter and the collector, os
lates between the states~a! and~b!, Fig. 6. These oscillations
are reproduced by the same rate equations that des
quantum transport in coupled dots, Eqs.~2.3!, but now with
GL5GR50. We then obtain for the probability of finding a
electron in the states~a! and ~b!, saa(t) andsbb(t), Fig. 6:

ṡaa5 iV0~sab2sba!, ~4.4a!

ṡbb52 iV0~sab2sba!, ~4.4b!

ṡab5 i ~E22E1!sab1 iV0~saa2sbb!. ~4.4c!

Solving these equations with the initial conditionsaa(0)
51 andsbb(0)50, we obtain

FIG. 6. Electron states of the coupled-dot structure of Fig.
isolated from the leads.
ld
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saa~ t !5
V0

2cos2~v1t !1e2/4

V0
21e2/4

, ~4.5!

wherev15(1/2)A4V0
21e2. As expected, an electron oscil-

lates between the dots with an amplitude 1/(11e2/4V0
2).

The situation is different, however, if the dots are sepa
rated by a ballistic channel, Fig. 7. Indeed, the correspondin
rate equations for the probabilitiessaa(t) andsbb(t) of find-
ing an electron in the states~a! and~b! of Fig. 7 are obtained
from Eqs.~3.7! for GL5GR50. Consider for simplicity the
case ofVM5V̄M . Then Eqs.~3.7! become

ṡaa52GMsaa2 1
2 GM~sab1sba!, ~4.6a!

ṡbb52GMsbb2 1
2 GM~sab1sba!, ~4.6b!

ṡab5 i ~E22E1!sab2 1
2 GM~saa1sbb!2GMsab .

~4.6c!

Solving these equations with the initial conditionsaa(0)
51 andsbb(0)50, we obtain

saa~ t !5
GM

2 cosh2~v2t !2e2

GM
2 2e2

exp~2GMt !, ~4.7!

where v25(1/2)AGM
2 2e2. It follows from Eq ~4.7! that

saa(t) does not display any oscillations. As an example, w
show in Fig. 8 the probability of finding an electron in the
left dot as a function of time in the case of coupled an
separated dots~Figs. 6 and 7! for e5GM5V0. The solid line
corresponds to Eq.~4.5!, and the dashed line to Eq.~4.7!.
Notice that saa5sbb→1/4 for t→` when the levels are
aligned (e50), andsaa5sbb→0 for t→` when eÞ0. It
means that an electron decays into the ballistic channel.

The reason for a dissipative behavior ofsaa in the case of
separated dots is a coupling of the dots with continuum stat
of the ballistic channel. The latter leads to dephasing th
destroys quantum oscillations. It is thus rather remarkab
that the quantum coherence effects would ‘‘reappear’’ whe
the same system is connected with the leads, Fig. 2.

V. GENERAL CASE

The rate equations~3.7!, describing electron transport in
separated dots, can be extended to any multidot system.

,

FIG. 7. Electron states of the two separate dot structures of Fi
2, isolated from the leads.
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applying the same technique of integrating out the reser
states as in Ref. 17 and in the Appendix, we arrive at the
equations for the density matrixsab of the multidot system.
These equations can be written as

ṡab5 i ~Eb2Ea!sab1 i S (
g

sagṼg→b2(
g

Ṽa→gsgbD
2(

g,d
8pr~sagVg→dVd→b1sgbVg→dVd→a!

1(
g,d

pr~Vg→aVd→b1Vg→bVd→a!sgd . ~5.1!

Hereua&,ub&, . . . are the states of the multidot system in t
occupation number representation, andVa→b denotes one-
electron hopping amplitude that generatesa→b transition.
We distinguish between the amplitudesṼ and V of one-
electron hopping among isolated states and among isol
and continuum states, respectively. The latter transitions
of the second order in the hopping amplitude;V2. These
transitions are produced by two consecutive hoppings o
electron with the same energy across continuum states
the density of statesr. The symbol(8 means that only those
transitions g→d→(a,b) are accounted for in the sum
where the number of electrons in continuum states~in the
reservoirs and ballistic channels! stays the same in the initia
and final states@c.f. Eqs.~3.5!#.

It is rather easy to verify that Eqs.~5.1! coincide with Eqs.
~3.7! for a,b, . . . 5$a,b,c,d%, which are the states of th
separated dot system, shown in Fig. 4. Let us compare
Eqs. ~5.1! with the Bloch rate equations~2.1! for quantum
transport in coupled dots. We begin with the equations
diagonal density-matrix elements,b5a. The first term in
Eq. ~5.1! is zero, sinceEa5Eb . The first term in Eq.~2.1a!
and the second term in Eq.~5.1! have the same form an
describe the coupling with nondiagonal matrix elements g
erated by one-electron hopping between isolated states.
remaining terms in both equations look differently. Howev
one can easily realize that in the case of coupled dots
only possible transitions for diagonal matrix elements
those corresponding tog5a. Then the third term of Eq
~5.1! becomes

FIG. 8. The occupation of the left dot in Figs. 6 and 7 as
function of time for e5GM5V0. The solid line corresponds to
coupled dots, and the dashed line to separated dots.
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2prVa→dVd→asaa5saa(
d

Ga→d . ~5.2!

It coincides with the second~‘‘dissipative’’! term of the
Bloch rate equation~2.1a!. The last term in Eq.~5.1! de-
scribes the reverse process, i.e., all possible conversion
the statesg,d into the statea. Again, this term turns into the
third term of Eq.~2.1a! for g5d.

The same relation can be traced for the nondiago
density-matrix elements. We find that the third term of E
~5.1!, which describes all possible decays of the statesa and
b, reproduces the third term in Eq.~2.1b! for g5b and
d5a, respectively. The fourth term in Eq.~5.1! describes the
reverse process, i.e., the conversion ofsgd→sab produced
by two consecutive hoppings through continuum state me
In particular, if Vg→a5Vd→b , these terms reproduce th
last term of Eq.~2.1b!, whereGgd→ab52prVg→aVd→b .

VI. SUMMARY

In this paper we derived quantum rate equations, wh
provide the most simple and transparent way for a desc
tion of both the coherent and incoherent electron transpo
quantum dot systems. In the beginning we considered a
tem of two quantum dots linked by a ballistic channel a
connected with the emitter and collector reservoirs. Start
with the many-particle wave function and integrating out t
continuum states, we have obtained the equations of mo
for the density submatrix of the two-dot system in the occ
pation number representation. In spite of the quantum d
might be away one from another, we found that the diago
density-matrix elements are still coupled with the nondiag
nal density-matrix elements, similar to Bloch equations
double-well systems. The essential difference, however
that the diagonal matrix elements in the Bloch equations
coupled with theimaginarypart of the nondiagonal density
matrix elements, while for the separated wells the cor
sponding terms are coupled with thereal part of the non-
diagonal density-matrix elements.

As expected, the coupling between diagonal and non
agonal matrix elements generated quantum coherent ef
in electron transport. For instance, we found that due to
structive quantum interference the dc current in separa
dots is reduced when the barrier penetrability increases. T
effect would survive even if the dots are largely separat
providing that they are linked by ideal one-dimensional b
listic channels.

In spite of the quantum coherence effects found in
current, the same system of separated dot, detached from
emitter and collector reservoirs does not show any quan
oscillations. It is quite different from a coupled-dot syste
with aligned levels, in which an electron oscillates betwe
the dots.

The rate equations for two separated quantum dots
extended to a general case of multidot system, in which
dots are either directly coupled, or interconnected via bal
tic channels. These new rate equations generalize the w
known Bloch equations, describing time-evolution of t
density matrix of coupled multiwell systems in the presen
of a dissipative media. We thus expect that the applicabi
of our generalized rate equations is not restricted by quan
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transport in multidot system only, but these equations wo
be very useful for various physical problems where quant
coherence and classical dissipation effects do interplay.
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APPENDIX: DERIVATION OF RATE EQUATIONS
FOR SEPARATED DOTS

We demonstrate how the sum over continuum state
the density matrix, Eqs.~3.3! can be performed analyticall
leading to the rate equations for two-dot systems. In orde
simplify the algebraic transformations we use the Lapla
transform for the Schro¨dinger equationi uĊ(t)&5HuC(t)&.
Then the amplitudesb(t) in the wave function~3.2! are re-
placed by their Laplace transform

b̃~E!5E
0

`

eiEtb~ t !dt. ~A1!

Substituting Eq.~3.2! into the Schro¨dinger equation we ob
tain an infinite set of coupled equations for the amplitud
b̃(E):

E b̃0~E!2(
l

V l b̃1l~E!5 i , ~A2a!

~E1El2E1! b̃1l~E!2V l b̃0~E!2(
m

Vmb̃lm~E!50,

~A2b!

~E1El2Em! b̃ lm~E!2Vmb̃1l~E!2V̄mb̃2l~E!

2(
l 8

V l 8 b̃12l l 8~E!50, ~A2c!

~E1El2E2! b̃2l~E!2(
m

V̄mb̃lm~E!2(
r

V r b̃ lr ~E!

2(
l 8

V l 8 b̃12l l 8~E!50, ~A2d!

~E1El1El 82E12E22U12! b̃12l l 8~E!2V l 8 b̃2l~E!

1V l b̃2l 8~E!2(
m

V̄mb̃1l l 8m~E!2(
m

Vmb̃2l l 8m~E!

2(
r

V r b̃1l l 8r~E!50 . . . . ~A2e!

Notice that due to the Pauli principle an electron can ret
back only into unoccupied states of the emitter. As a res
the summation over the emitter states does not appear in
corresponding terms of Eqs.~A2! @in the second term of Eq
~A2b!, in the second and the third terms of Eq.~A2c!, and so
on#.

Equations~A2! can be substantially simplified. Let us re
place the amplitudeb̃ in the term(V b̃ of each of the equa
ld

in

to
e

s

n
lt,
he

tions by its expression obtained from the subsequent eq
tion. For example, substituteb̃1l(E) from Eq.~A2b! into Eq.
~A2a!. We obtain

FE2(
l

VL
2~El !

E1El2E1
G b̃0~E!

2(
l ,m

VL~El !VM~Em!

E1El2E1
b̃ lm~E!5 i , ~A3!

where V l[VL(El) and Vm[VM(Em). Since the states in
the reservoirs are very dense~continuum!, one can replace
the sums overl and m by integrals, for instance( l
→*rL(El)dEl , whererL(El) is the density of states in th
emitter. Then the first sum in Eq.~A3! becomes an integra
which can be split into a sum of the singular and princip
value parts. The singular part yields2 iQ(EF

L1E
2E1)GL/2, whereGL52prL(E1)uVL(E1)u2 is the levelE1
partial width due to coupling to the emitter. Let us assu
that EF

L@E1@EF
M , i.e., the energy level is deeply inside th

band. In this case the integration overEl (m)-variables can be
extended to6`. As a result, theu function can be replaced
by 1, and the principal part is merely included into redefi
tion of the energyE1. The second sum~integral! in Eq. ~A3!

proves to be negligibly small. Indeed, let us replaceb̃ lm

→ b̃(El ,Em ,E), and assume weak energy dependence oV
on El . Then one finds from Eqs.~A2! that the poles of the
integrand in theEl variable are on one side of the integratio
contour, and therefore this term vanishes. In general,
terms of the type *•••dEs••• b̃( . . . ,Es , . . . )(E1•••

6Es)
21→0, whenever the integration over theEs variable

can be extended to6`. We shall imply this property in all
subsequent derivations. Notice that these results are v
also for nonzero temperature, providing thatT!EF

L2E1,2,
E1,22EF

M .
Now we apply analogous considerations to the ot

equations of the system~A2!. It follows from Eqs.~A2! that
the Coulomb repulsion just shifts the energy levels in E
~A3!, E1,2→E1,21Ui j . If the shifted level is outside the
band, the singular part of the integral vanishes and there
the corresponding widthG is replaced by zero. If, however
the shifted energy stands deeply inside the band, all the
vious treatment remains the same. A problem appears on
the shifted energy is near the Fermi level. This case is
considered here. Finally we arrive at the following set
equations:

~E1 iGL/2! b̃05 i , ~A4a!

~E1El2E11 iGM/2! b̃1l2V l b̃01 iprMVMV̄M b̃2l50,
~A4b!

~E1El2Em1 iGL/2! b̃ lm2Vmb̃1l2V̄mb̃2l50,
~A4c!

~E1El2E21 iGL8 /21 i ḠM/21 iGR/2! b̃2l1 iprMVMV̄M b̃1l

50, ~A4d!
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~E1El1El 82E12E22U121 iGM8 /21 i ḠM8 /21 iGR8 /2! b̃12l l 8

2V l 8 b̃2l1V l b̃2l 850 . . . , ~A4e!

where GM52prM(E1)uVM(E1)u2 and ḠM

52prM(E2)uV̄M(E2)u2 are the partial widths of the level
E1 and E2 , respectively, due to coupling to the ballist
channel andrM is the density of states in the ballistic cha
nel. GR52prR(E2)uVR(E2)u2 is the levelE2 partial width
due to coupling to the collector. The Coulomb interdot
pulsionU12 just modifies the corresponding width (G is re-
placed byG8, evaluated at the energyE1,21U12) whenever
both dots are occupied.17 A similar modification would take
place if we include the Coulomb repulsion between electr
inside the dots and the ballistic channel. In the following
assume that widths are weakly dependent on the energ
G85G everywhere.

The density matrix elements, Eqs.~3.3!, are directly re-
lated to the amplitudesb̃(E) through the inverse Laplac
transform

s~k,n!~ t !5 (
l . . . ,m, . . . ,r . . .

E dEdE8

4p2
b̃ l •••m•••r •••

~E!

3 b̃ l •••m•••r •••

* ~E8!ei ~E82E!t. ~A5!

Using this equation one can transform Eqs.~A4! for the am-
plitudesb̃(E) into differential equations for the probabilitie
n
b

.
n,

st-

ns
-

s

so

s (k,n)(t). Consider, for instance, the termsbb
(0,0)(t)

5( l ub1l(t)u2, Eq. ~3.3b!. Multiplying Eq. ~A4b! by b̃1l* (E8)
and then subtracting the complex conjugated equation w
the interchangeE↔E8 we obtain

E dEdE8

4p2 (
l

$~E82E2 iGM ! b̃1l~E! b̃1l* ~E8!

2V l@ b̃1l~E! b̃0* ~E8!2 b̃1l* ~E8! b̃0~E!#

2 iprMVMV̄M@ b̃1l~E! b̃2l* ~E8!

1 b̃1l* ~E8! b̃2l~E!#%ei ~E82E!t50. ~A6!

Substituting

b̃1l~E!5
V l b̃0~E!2 iprMVMV̄M b̃2l~E!

E1El2E11 iGM/2
~A7!

into Eq. ~A6! we can carry out theE,E8 integrations thus
obtaining

ṡbb
~0,0!52GMsbb

~0,0!1GLsaa
~0,0!2prMVMV̄M~sbc

~0,0!1scb
~0,0!!,

~A8!

which corresponds to Eq.~3.5a! for k5n50. Applying the
same procedure to each of equations~A4c! we obtain the
Bloch-type equations,~3.5! for the density-matrix elemen
s (k,n)(t).
rd,

that
r-
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