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Rate equations for quantum transport in multidot systems
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Starting with the many-body Schiimger equation we derive rate equations for resonant transport in quan-
tum dots linked by ballistic channels with high density of states. The charging and the Pauli exclusion principle
effects were taken into account. It is shown that the current in such a system displays quantum coherence
effects, even if the dots are away one from another. A comparative analysis of quantum coherence effects in
coupled and separated dots is presented. The rate equations are extended for description of coherent and
incoherent transport in arbitrary multidot systems. It is demonstrated that the rate equations constitute a
generalization of the well-known optical Bloch equatiof80163-182@08)04711-0

. INTRODUCTION treatments>!“this approach is valid also for strong coupling
with the leads and it accounts the inelastic scattering effects
Quantum transport in small tunneling structufgeantum inside the multidot systerft. It proves to be much simpler
dot9 has attracted great attention due to the possibility othan the other approaches, so that in many cases the analyti-
investigating single-electron effects in the electric curfent. cal treatment of the problem is possibfe.’ It is also impor-
Until now research has been mostly concentrated on singli@nt to note that this approach is not a phenomenological
dots, but the rapid progress in microfabrication technologyone: new generalized Bloch-type rate equations wleréeved
has made possible the extension to coupled-dot systems wiffem the many-body Schdinger equation with the Hubbard
aligned level$™* An example of such a system is shown Hamiltonian by integrating out the continuum states of the
schematically in Fig. 1, where the coupled quantum doteservoirs.’
(coupled wells are connected with two separate reservoirs An important advantage of the Bloch-type equations is a
(the leads In contrast with a single dot, the electron wave clear distinction between cohereffjuantum”) and nonco-
function inside a coupled-dot structure is a superposition oherent(“classical”) terms. The quantum coherence in the
electron states localized in each of the dots. As a result, thBloch equations manifests itself in the nondiagonal density-
effects of quantum coherence would appear in electron cuimatrix elementg*coherences’), coupled with the diagonal
rent flowing through such a system. Usually these effects aréiensity-matrix element$‘probabilities”).*® Such a coupling
treated in the framework of the single-electron approach. Alalways takes place, whenever a carrier jumps betvisen
though this approach is an appropriate one for coupled-welpted states inside the systethOtherwise, the diagonal and
semiconductor heterostructur¥s, it cannot be applied for nondiagonal matrix elements are decoupled and the Bloch
coupled dots. The reason is the dominant role of the Couequations turn into thelassicalrate equation.
lomb interaction that leads to the Hubbard-type Hamiltonian Actually, Bloch equations describe quantum motion be-
for a description of these systefhs. tween isolated(nonorthogonal states, which are directly
The Coulomb blockade effects in electron transportcoupled(as in the double-well potentialin general, these
through asingle dot can be taken into account in the mostSstates can be separated by a medium with high density of
simple way by using the “classical” rate equatiohs? states. An example of such a system is shown in Fig. 2,
These equations describe the current through the dot in ternyghere two dots with aligned levels are separated by the bal-
of balance between incoming and outgoing rates fioon listic channel. In this case a carrier transport from the left to
the leads. Basically the same classical approach has beé&te right reservoir proceeds through continuum states in the
used to calculate the conductance of Coup|ed mu|tid0f:hanne|. Usually transitions from discrete to continuum
System§_3'14|n these works the whole array of quantum dotsStates lead to dephasing, i.e., to destruction of quantum co-
has been treated as a single quantum system, where its marjgrence. Yet, some coherent effects may survive. It is there-
body eigenstates were calculated by eXacmerical diago-
nalization of the Hubbard Hamiltonian. Then the ledss-
ervoirg were incorporated through the rate equations for
single dotst! Yet, such a procedure is correct only for small E
coupling with the leads. If the corresponding ratesire of
the order of the interdot transitio’ (Fig. 1), they affect the
diagonalization of the Hubbard Hamiltoni&rBesides, the
approacf!*is mainly numerical and the inelastic scattering  FiG. 1. Resonant transport through a coupled-dot struciyrg.
within the array is accounted for phenomenologically. denote the corresponding tunneling rate fréim the left (right)
A different way to treat the quantum transport in multidot reservoirs, and},, is the interdot hopping amplitud&L® denotes
systems is to use the Bloch-type rate equativi8instead the Fermi level in the leftright) reservoirs. Only those energy
of the classical rate equations. In contrast with previousdevels inside the dots that carry electron current are shown.
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FIG. 2. Resonant transport through two quantum dots separated Y ¢
by a ballistic channel. Her€, and ), denote the coupling of the
left and right dots with the levelg, andE, in the left and in the . ) .
right leads ), and{2,, denote the coupling of the left and the right ap=1(Eg— Eo)oapti > 0oy lyp— > Qo0 sp
. ! - Y o
dots with the leveE,, in the ballistic channel.

1
. . ) —= 0, ', stz 9+ 05l sag-
fore important to establish whether quantum coherence still 2 325 ( stlp-0) y;aﬁ Yo yomab

affects the transport through separated dots, or more pre-
cisely: are the diagonal density-matrix elements still coupled

with the nondiagonal matrix elements in the correspondingHereQ!Hﬁ is the amplitude of one-electron hopping that
rate equations? results in the transition between the statesand 8. The

This question leads us to a more general problem, of howyidth raﬁy:27p|gﬁy|2 is the probability per unit time
to modify the Bloch rate equations for transport in coupledfor the system to make a transition from the stai to the
dots for a general case of arbitrary distributed quantum dotsstate| y) of the device due to the tunneling tor from) the
Similar to the Bloch equations one can anticipate that theeservoirs, or due to interaction with the phonon bath, or any
new rate equations would incorporate the classical and quamther interaction generated by a continuum state medium
tum descriptions in a very efficient way. Therefore thesewith the density of stateg. Notice that Eq(2.13 for diag-
equations can provide most useful account of quantum cosnal elements has a form of classical rate equations, except
herence effects in different processes in a comparison witfor the first term. This term is generated by an electron hop-
usual approaché$. ping between thesolated levels, which results in the cou-

In this paper we study the above mentioned problems takPling with nondiagonal density-matrix elements. Therefore it
ing as a basis the microscopic many-body Sdimger equa- IS responsible f_or coherent quantum effects in ele_ctron trans-
tion with the Hubbard-type tunneling Hamiltonian, describ-POrt. The nondiagonal matrix elements are described by Eq.

ing the entire system of the reservoirs and the quantum dot§2-1D- The last term in Eq(2.1b appears only for systems

The plan of the paper is the following. In Sec. Il we descripeWith the number of isolated states participating in the trans-

the previously derived Bloch-type rate equations for couplecP,ort is more than two. It describes the simultaneous conver-

dots and some particular features of the coherent transport #on cif ﬂt]e Stj‘tesy_;g an)d 5_’,['.3 » generated by the same
these systems. In Sec. Ill we present the rate equations fQne-electron decay tdrom) continuum. L
The current flowing through the system is given by

separated dots and outline their derivation from the micro-
scopic Schrdinger equation. The details of the derivation
are described in the Appendix. A comparison of coherent ()= oY, 2.2)
effects in quantum transport through coupled and separated

dots is given in Sec. IV. The quantum rate equations for a

general configuration of quantum dots are presented in Sedhere the sum is extended over statg} in which the dot
V. The last section is a summary. adjacent to the collector is occupi¢de consider the elec-

tron chargee=1). 'Y’ is the partial width of the statey)
due to tunneling to the collectgthe right reservojr

It follows from Egs.(2.1) that the coherent effects do
appear in the quantum transport whenever a carrier jumps
from one to anothersolatedstate inside the device. In the
absence of such a transition as, for instance, in resonant tun-
neling through a single dot, the diagonal and nondiagonal

We start with a review of the quantum rate equations fory, 51y elements ardecoupledand the evolution of diagonal

coupled multidot systems, connected with two reseits  gensity-matrix elements is described by thassical rate
“emitter” and the “collector”) and interacting with phonon equation.

reservoir. The entire system is described by the Hubbard- For an example we consider the quantum transport
type tunneling Hamiltonian where the electron-electron in-through a double-dot system at zero temperattigown in
teraction is taken into account by introducing the corre-Fig. 1. In order to diminish the number of equations we
sponding electrostatic charging energy. In case of larg@assume that the Coulomb repulsion does not allow for two
voltage bias one can reduce the many-body Siihger electrons to occupy the same dot, iE;;+ U;>EE, where
equation to the system of quantum rate equations by integrai= 1,2 andU;; is the corresponding charging energy. Yet, the
ing out continuum reservoir statésAs a result the follow-  interdot Coulomb repulsiobl ;, is much smaller, so the both
ing Bloch-type equations for the density matrix of the mul-levelsE; , can be occupied simultaneously. In this case there
tidot system{o,s} are obtained, wherer,3 denote the are four available states of the double-dot systésn sim-
isolated(nonorthogonalstates of the system: plicity we neglected the spjin|a) levelsE; , are empty|b)

(2.1b

Il. RATE EQUATIONS AND COHERENT EFFECTS
IN COUPLED QUANTUM DOTS
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level E; is occupied|c) level E, is occupied, andd) both
levels E; , are occupied. Using Eqg2.1) with «,8, ...
={a,b,c,d} we find the following equations describing the
time evolution of the corresponding density-matrix elements,

(-Taa: —I' 02t Troce, (2.39

Top=TL0aat TROGa+1Qo(Tpc—0cp),  (2.3D

) ’ . 10 20 30 40 50
o= —roce= ' 0= 1Q0(opc—0cp), (230 1;3/11
(}dd: —Thoget T occ, (2.30 FIG. 3. Current through the coupled-dot structure, Fig. 1, as a

function of I'gx /T’ . The solid line corresponds to E(R.4) for €
. . =0 andT'?/4Q%=5. The dashed line is the result of the classical
0bc=1(Ex—E1) opetiQo(pp— 0¢e) = 3(T'[ +TR) e, rate equations, Eq2.6), for 'y, =T .
(2.3¢

which are supplemented with the probability conservatiomances were already observed in the coupled-dot systems.
condition; 2,0;;(t)=1. Note that the interdot Coulomb re- Yet, the existence of the resonance is not necessarily related
pulsion results in a variation of the corresponding transitiorto the quantum coherence effect. The later manifests itself in
rate whenever both levels are occupidd g is replaced by a peculiar and even a counterintuitive dependence of the
I'[ r, evaluated at the enerdy, ,+ U5, respectively’). resonant current on coupling with the reservoirs. It follows

The dc current id =I'goc(t—®)+ T hoge(t—=), Eq. from Eq. (2.4) that the currentlecreasesvhen the coupling
(2.2. In order to shorten the final expression we assume tha#/ith the reservoirsncreasesFor instance, the peak value of
the rates are weakly dependent on the enefgyz=T" .  the resonant currenit._¢xI', /I'g—0 for I'e>1", . It im-

Then solving Egs(2.3) in the limit t—c we obtain plies that byincreasingthe penetrability of the barrier, con-
necting the second dot with the collector waminish the

total current. As an example we show in Fig. 3 the peak

2
| = I'Tr Q9 value of the resonant current as a functiod"gffor constant
Pi+TR) €T\ Tr/(T +TR)2+ Q3+ T'g/4’ 'L and Q, (the solid ling. This effect can be observed in
(2.9 coupled-dot structures by changing the corresponding gate
voltage.

wheree=E;—E,. E , N i
S : . or a comparison the corresponding ‘“classical” current
It is interesting to compare Eq$2.3) with the corre- l;, Eq.(2.6), is shown in Fig. 3 by the dashed line.

sponding classical rate equations where only transitions be- The decrease of the resonant current shown in Fig. 3 is a

tween thediagonal dfa.n'sny—matnx elem'ent.s take place. In result of destructive quantum interference during decay of a
Fh's case the probabilities,,, and o of finding an electron coherent superposition to continuum in the regime of strong
in the first and the second dot are coupled by the some ralupling with the reservoiré?* A similar effect had been
I'w . One easily finds that Eq#2.3) become observed in electron decay from coupled quantum wells to
) continuum?® It is quite interesting that such a counterintui-
aa= — L oaat Troce, (2.53 tive behavior of the resonant current looks as a manifestation
of the Zeno effect® It tells us that the quantum transitions
(2.5b) between different states slow down when one of the states is
' continuously observed. Indeed, the increase of the right bar-
] rier penetrability leads to immediate tunneling of an electron
ce=—Trocc—T Lot Tm(opp— o),  (2.50  to the collector whenever it arrives at the second dot. It can
be considered as a continuous observation of the second dot
state, which results in an effective electron localization in the
first dot?’

Tpp=I'L0aat TrOga—T'm(opp—0¢0),

o4a= —Trogat TLoee (2.50

(cf. with the analogous rate equations in Refs. 22 and 23

Solving these classical rate equations in the litritc we
obtain for the(classical dc current lil. RATE EQUATIONS FOR TWO SEPARATED DOTS

Now we are going to derive rate equations for quantum
_ L' Trl'y transport in mesoscopic systems with arbitrary configuration
IC'_FLFR+FLFM +Trly (2.6 of quantum dots. As a generic example we consider quantum
transport through two quantum dots separated by a ballistic
Comparing Eq(2.6) with its “quantum” counterpart, Eq. channel, Fig. 2. The dots contain only isolated levels,
(2.4), we find that the quantum-mechanical nature of the davhereas the density of states in the ballistic channel and in
current displays itself in the Lorentzian-shape resonance asthe emitter and the detector is very higontinuun). This
function of the levels disalignmeng=E,—E;. Such reso- system can be described by the tunneling Hamiltonian
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H= 2 E|a,Ta, + Ela1a1+ E EmaLaer EzaEaZE ara;’ar
| m r

+ E U”nn + 2 Q|a1a|+2 Qnala;

ij=1

+> Qpajant+ > Qala,+H.c.t. (3.2
m r

Here the subscripts, m, andr enumerate correspondingly

the levels in the left reservoir, in theniddle) ballistic chan-

nel, and in the right reservoir. The spin degrees of freedon

were omitted. In order to simplify the derivation we assumec  2:=:: ,

that the intradot charging energy;; is large, E; ;+U;; (©

>EL Thus only one electron can occupy each of the dots

However, the interdot charging ener, is much smaller,

so it does not prevent simultaneous occupation of the twi

dots. The same is assumed for the Coulomb repulsion be

tween electrons inside the dots and the ballistic channel. Al

though we did not include this interaction in the Hamiltonian (@

(3.1), it can be treated in the same way as the interdot inter-

actionU,,. As in the previous case we restrict ourselves to  FIG. 4. Electron states of the two separated dot structure, shown

the zero-temperature case, even though the results are validFig. 2.T z, T'y, andI'y are the tunneling rates between the

for a finite temperature, as would be clear from the deriva-dots and the reservoirs, and between the dots and the ballistic chan-

tion. nel. The indicek andn denote the number of electrons penetrating
Let us assume that all the levels in the emitter, in theto the ballistic channel and to the collector at tine

ballistic channel, and in the collector are initially filled up to

the Fermi energieBE, EY, andER, respectively. We callit |c) the level E; is occupied,|d) that both levelE, , are

as the “vacuum” state|0). (In the following we consider occupied, and the superscript indides denote the number

the case of large bias, so that>EM ,ER.) This vacuum of electrons accumulated in the ballistic channel and in the

state is unstable: the Hamiltonian EG.1) requires it to  collector, respectively, at timg Fig. 4.

decay exponentially to continuum states having the form ©One finds

ala|0) with an elefr:tron in the levelE; and a hole in the

emitter continuuma,a,|0) with an electron in the levek,, 0,04y — 2 1,0 2

in the ballistic channel a21d a hole in the emitter, and so on. oz’ (V=Ibg(OI%,  o3’(H= E Bim(DI,

The many-body wave function describing this system can be

written in the occupation number representation as

o= 2 |bymd ... (3.33
<1’ m,r

[ (©)=|bo(D)+ 2 by(Daa+ 2 bim(Dana

oo (1) 2 by (1)[2,
+2| b2l(t)anraI; b, (t)ala

o 2= 2 |bym(D%

+ 2 blZ'l a1a2a|a|r 1<l”,)m
<1’
(LD 1) — 2
tot oBVty= D |bymmdIA ... (3.3b
+|§‘r by (Hajafaa, +--||0), (3.2 bo (V= &, [P
whereb(t) are the time-dependent probability amplitudes to (00 ) = 2 by (t)b3 (1)
find the system in the corresponding states described above. The u 2000

These amplitudes are obtained from the “Slimger equation
i|\if(t)>=H|\If(t)>, supplemented with the initial condition

[bo(0)=1, and all the otheb(0)’s being zeros Using the a0(t)= 2 bym(Hbl, (1),
amplitudesb(t) we can find the density-matrix of the quan- I<I’,m

tum dots,o{*"(t), by tracing out the continuum states of the

reservoirs and the ballistic channel. Here the subscript indi- (LD )= bt (1)b* ¢
ces ino denote four states of the dotsj ={a,b,c,d}, where oo (V) |<|,<2,,,Vm e ODz1 (V)

|a) the levelsE, , are empty|b) the levelE; is occupied, (3.30
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The rate of electrons arriving at the collector determinesAs expected](t) is the time derivative of the total charge
the electron current in the system. Therefore the current opaccumulated in the collector.

erator isi =i[ H,Ng], whereNg=3,a'a, is the operator for It follows from Eq. (3.4) that the current (t) flowing
the total number of electrons accumulated in the right reselrough this system is expressed in terms of the diagonal

voir. Using E@s.(3.), (3.2), and (3.3 we find that the cur- €/éments of the density matrix(t). In order to find the
rent| () flowing through the system is differential equations foor(t) we need to sum over the states

of the reservoirs and the ballistic channel, E¢3). It can
be done analytically by using a procedure similar to that in

IO =¥ 1) Refs. 17 and 18, providing that the levéds , are not close
k) k) k) k) to Fermi levels|E;—Eg|>T, Fig. 2. The details of deriva-
=% n[ods" (O + o™ () +ale™ (1) +ois™ (D], tion are described in the Appendix. As a result we obtain the

following Bloch-type rate equations for the matrix elements
(3.4  of the density submatrix(t):

ol =T oM+ Tyl 2+ Tyo 4+ Tro®M ™Y+ 27py Q (ol 27+ o0, (359
(-rgkb’n)= — FMO'E)kb’n)—I- F,_a'g;’n)—l- T_‘Ma'g(d_l’n)—l- FRO'&kd’n_l)— WpMQMfTM(a'(bﬁ’n)-l- Uf:lf)'n)), (3.5b
ok = (T + T+ TR &V +T 4ol 1 — 7o QuQu (o™ + oy, (3.50

o=~ (Ty+Ty+TRof"+T Lok, (3.50

O'gé’n):|(E2_ El)O'(blf:'n)_ WPMQMQM(O'Ean)+O'f:lén))+27TPMQM6MO'£jkC;1'n)_ %(I‘L‘FFM‘FI—‘M'{‘FR)O’(DIEM . (358

Here I denote the tunneling widths to the leads and thecan jump into unoccupied dot via continuum states of the
ballistic channel [ =2mp|Q|?, wherep is the correspond- ballistic channel. As a result, the statesandc can decay
ing density of States and QM 1QM are the hoppn’]g amp“_ into linear SUperpOSition of the statesindc. This process is
tudes between the left and the right dots and the stajes described by the last terms in Eq8.5b and (3.59. Obvi-
—E, , of the ballistic channel. ously, if the both dots are.occup|ed, such a process cgnnot
Equations(3.5) have clear physical interpretation. Con- @K€ @ place. Therefore, is not coupled with the nondi-
sider for instance E(3.53 for the probability rate of finding a_lgonal den3|ty-n_1atr|x elements, E@.5d. The last equa-
the system in the stata with k electrons in the ballistic tion, (3'5.6) descr_|bes the time dependence O.f the nonc_hago-
channel anah electrons in the right reservdiFig. 4(a)]. This gﬁl (:gciilhys—meahr;iﬁlnesment. It has the same interpretation as
state decays with the ratg, into the stateb [Fig. 4(b)] P g .

h | he first dot f he left Equations(3.5) for the reduced density matrix(t) were
whenever an electron enters the first dot from the left reseryg i/eq starting from the wave functid (1)), Eq. (3.2,

voir. This process is described by the first term in B458.  jnstead of using the density matrix for the entire system. Of
On the other hand, the statbsandc [Figs. 4b) and 4c)]  course, it makes no difference if the entire system is initially
with k—1 electrons in the ballistic channel decay into thejn the pure state, or all the levels of the reservoirs are occu-
statea with k electrons in the ballistic channel. It takes place pied up to the corresponding Fermi energies. At finite tem-
due to one-electron tunneling from the quantum dots into th@erature, however, the system is not initially in a pure state.
ballistic channel with the rateE,, andI'},, respectively. Then one needs to perform the derivation using the Liouville
This process is described by the second and the third terms fhandau—von Neumannequation for the density matrix.
Eq.(3.53. Also the state [Fig. 4c)] with n—1 electrons in  Yet, if energy levelsE, , of the dots are far away from the
the right reservoir can decay into the statdue to tunneling Fermi levels T<Eg—E,,, E;,—EF), then the reservoir
to the right reservoir with the rateg [the fourth term in Eq. levels E; that carry the current|E,—E; J<T) are deeply
(3.53]. The last term in this equation describes the decay ofnside the Fermi sea. In this case one can consider these
coherent superposition of the statesndc into the statea.  levels as fully occupied. Then neglecting the relaxation pro-
It takes place due to single electron tunneling from the firscesses in the reservoir and assuming zero temperature inside
and the second dots into the same state of the ballistic chathe dots, we would arrive at the same E(3.9), derived
nel with the amplituded},, and Q,,, respectively. Obvi- from the pure state.
ously, this process has no classical analogy, since classical Using Egs.(3.5 one finds for the total current, E(8.4),
particle cannot simultaneously occupy two dots. _

Equations(3.5b), (3.50, and(3.5d describe the probabil- () =Trloc(t) + oga(D)], (3.6
ity rate of finding the system in the states where one of thavherea;; =3, ,o{*™ are the total “probabilities.” We can
dots or both dots are occupied. In the first case an electromasily understand this result by taking into account that
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+0y4q 1S the total probability for occupation of the second dot o Teey/T
andI' is the rate of electron transitions from this dot to the == 'L eV
(adjacen right reservoir, Eq(2.2).
In order to find differential equations far; we sum over . Ly=1p =1
k,n in Egs.(3.5. Then we obtain the following Bloch-type o«

0.03

equations, which describe the time dependence of the densi

0.02

matrix for separated dots,

(.Taa=_FLUaa+FMUbb+FMUCC+FRUCC 1_1‘2/11 rM/ri
0O @ (b)
+2mpnQnQp(opct o), (3.79

FIG. 5. dc current through the separated dot structure, Fig. 2, as
a function ofI'g /T’ for I'y,=T"| (a), and as a function oF , /T’

_WPMQMEM(O'bc+0'cb), (3.7p  for'r=I_ (b).

Tpp= ~ MOt T L0aat To gt T'rROGg

plays the same peculiar behavior wifly, as in the case of
coupled dots, Fig. 3. Namely, the currelgcreasesvhen the

_ WPMQM(TM(%CJF Oeb), (3.7¢  Penetrability of the right barrieincreases Such a behavior

of the resonant current is a clear manifestation of the quan-
tum coherence effects, as explained in Se¢séke also Refs.
23-25. It also can be verified experimentally by changing
the voltage on the gate, connecting the right dot with the

0ce=— (T +Ty+TR) Tt Tyogg

0d4a=—(Ty+Ty+TR) oget T Loce, (3.70

0pe=i(Ea—E1) ape— oM QmOQm(Tpp+ oce)

collector.
~ On the other hand, the dependence of the resonant current
+2 (OIV10) -3 , 3.7 i [T T X !
TPMEMZEMTdd™ 2 totTbe G78 o the widthT"y, is quite different, Fig. B). One finds that
wherel' =T +Ty+T'y+TR. the current increases withy, . It is not surprising, sincé&'y,

The stationary(dc) currentl =1(t—), Eq. (3.6) can be p_Iays a role pf cqupling betwgen th_e two dots. In fact, a
easily obtained from Eq€3.7) by taking into account that similar behavior with the couplin§, displays the resonant

aij—0 for t—c. Then Eqs(3.7) turn into a system of linear CUrent in the case of coupled dots, &R.4).

algebraic equations, supplemented by a probability conserva- DesPite the analogous quantum coherence effects, the rate
tion condition o+ Tpp+ Teet ogq=1. Consider, for ex- equations(3.7) are different from their counterpart for the

ample, the case of the same partial widths of the leEgls, coupled dots, Eq92.3). One finds that the diagonal matrix

ie. I =To=T- and Tw=T. The latter implies elements in Eqs(3.7) are coupled with theeal part of the

2' ! QL aR +0F sincgl theMa.mpIitudeQ a. Ean nondiagonal matrix element, whereas the corresponding
TPMIEMAEIMT =L M My Sim

LM i terms in Egs(2.3), are coupled with thémaginary part of
be of the opposite signs. Solving Ed8.6) and (3.7) 0né 16 nondiagonal matrix element. Notice also that the cou-
finds for dc current

pling is determined by the hopping amplitud® in Egs.
(2.3), while the corresponding coupling in E(8.7) is pro-

_ Teri 3.9 portional to?p. _ _ _
262(r0+rM)+2r0(r§+3rorM+3r§/|)’ It is important to point out that the coupling with the
nondiagonal density-matrix elements in E¢3.7) does not
wheree=E; —E,. decrease with the separation distance between the dots, al-

Similar to the coupled-dot case, E@®.4), dc current in though the hopping amplitudeQ,,,Q,, do decrease. In-

separated dots displays the Lorentzian-shape resonance agey using semiclassical expressions one fiffs|

function of e and the same peculiar dependence on the cou- ., ——— - (1 =y
pling with the leads. The latter manifests the quantum-_(—ll 717w)€Xp(=S) and|Qy| = (1Vz7)exp(=S), where

coherence effects in separated dot systems. We discuss thede) iS the action under the barrier, separating the fisst-

effects in the next section. ond dot from the ballistic channel. It can be written &s
=f§f|p(x)|dx, where|p(x)|= y2m[V(x) —E] andXx; ¢, are
I
IV. COHERENT EFFECTS IN TWO-DOT SYSTEMS the classical turning points:; , are the classical periods of

) ) motion in the first(second quantum well and-, is the clas-
It follows from the rate equation3.7) that the diagonal  gjca| periods of motion in the ballistic channel. It implies that
density-matrix elements are coupled with the nond|agonaJrM_m when the length of the ballistic channel increases.

terms (o, 0cp), Similar to Eqs(2.3) for a coupled-d_Ot SYS-  vet, 7 is canceled out from the coupling between the diag-
tem. It means that the coherent effects should survive even iBnal and nondiagonal matrix elements, since the ballistic

separated quantum dots. Indeed, let us consider the depethannel is effectively one-dimensional so that the density of
dence of the resonant current on a coupling with the resers; aq ispy = /277 Finally we obtain
voirs. As an example, we show in Fig.a the peak value of
the resonant currente&0) obtained from Eqs(3.6) and . 1 o
(3.7) as a function ol 'y at fixedI', =T"y, . One finds that the 27pnndy=*t———=exgd —(S+95)]. 4.
current through the dots separated by a ballistic channel dis- 2N Ty
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(a) -] (a) —
g1 al?
(®) (b)
—_— — El
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FIG. 7. Electron states of the two separate dot structures of Fig.

FIG. 6. Electron states of the coupled-dot structure of Fig. 1,2’ isolated from the leads.

isolated from the leads.

Q2coS(wqt)+ €2/4
Therefore, the quantum coherence effects in dc current could Taa(t)= Q2+ &2/4
survive even for long ballistic channels. Obviously, it is true 0T €
only for ideal one-dimensional channels, where all the fluxyhere w,=(1/2) \/ESTEZ_ As expected, an electron oscil-
coming from the first dot arrives at the second dot. It shouldates petween the dots with an amplitude H(E1402).
be also pointed out that electron-electron scattering inside The situation is different, however, if the dots are sepa-
the ballistic channefnot taken into account in these calcula- rateq by a ballistic channel, Fig. 7. Indeed, the corresponding
tions) may reduce the mterferenc;e _effects. Yet, we expeciie equations for the probabilities,,(t) andop(t) of find-
that such a process would not diminish the coupddl),  jng an electron in the statés) and(b) of Fig. 7 are obtained
but increase the “dissipation” width',, in Eq. (3.78. This  fom Egs.(3.7 for T =Txr=0. Consider for simplicity the

probllem, howe_ver, needs a special investigation. case of),, =, . Then Eqs(3.7) become
It is interesting to make a comparison between peak val-

(4.5

ues of the dc current in coupled and separated dots. In both =T _1ir n 4
cases the current reaches its maximal valudfor I'g=T Taa MTaa~ 2 m(Tapt Toa), (4.63
ande=0, Egs.(2.4) and(3.8). One finds for the coupled dots :
gs(2.4 and(3.9 P opp=—T Moo= 3T M(0apt opa), (4.6b
o 9F Ty o )
Imax:7 02124 2 for Qo>T', (4.2 Tab=1(E2=E1)0ap— 3 m(0Taat 0pn) ~I'map.
Q5+T§/4 (4.60
while for the separated dots Solving these equations with the initial conditiar,,(0)
=1 andoy,,(0)=0, we obtain
e L O for Ty>T
=— — — or > . 2 2
max 2 2 ) M 0 r COSH(&) t)—€
2 3r4+3rry+r; 6 M 2 exp(—I'yt), (4.7

t)=
4.3 Tad 2 — &

Thus the peak value of dc current in the coupled dots is thregere w2=(1/2)\/ﬂ,,—_62. It follows from Eq (4.7) that
times larger than that in the separated dots. o.a(t) does not display any oscillations. As an example, we
It is quite natural to associate quantum coherence effectsyg\ in Fig. 8 the probability of finding an electron in the
in double-well systems with quantum oscillations of an elecqatt qot as a function of time in the case of coupled and
tron between the wells. Indeed, an electron in a CO“pled'onIeparated dot&igs. 6 and Tfor e=T'y,=,. The solid line

system, detached from the emitter and the collector, OSC"éorresponds to Eq4.5), and the dashed line to E¢4.7).
lates between the staté® and(b), Fig. 6. These oscillations Notice that o= opy— 1/4 for t—o when the levels are

are reproduced by the same rate equations that descril&eﬁgned €=0), ando,,=0pp—0 for t—c when e#0. It
. . 1 aa )
quantum transport in coupled dots, E¢&.3), but now with ¢ that an electron decays into the ballistic channel.

I' =I"g=0. We then obtain for the probability of finding an ¢ rea50n for a dissipative behavioraf, in the case of
electron in the state&@) and (b), oa,(t) andopy(t), Fig. 61 ganarated dots is a coupling of the dots with continuum states
of the ballistic channel. The latter leads to dephasing that

Taa=1o(0ap~ Oba), (4.43 destroys quantum oscillations. It is thus rather remarkable
. ) that the quantum coherence effects would “reappear” when
opp=~1Q0(Tap— 0ba), (44D the same system is connected with the leads, Fig. 2.
Tap=1(Ep~E1)0apTiQo(Taa—0pp). (449 V. GENERAL CASE
Solving these equations with the initial conditior,(0) The rate equationé3.7), describing electron transport in

=1 ando(0)=0, we obtain separated dots, can be extended to any multidot system. By
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2 prﬂaﬂﬁﬁﬂaaaazaaaE Faﬂé- (52)
B S

It coincides with the second‘dissipative”) term of the
Bloch rate equatior(2.13. The last term in Eq(5.1) de-
scribes the reverse process, i.e., all possible conversions of
the statesy,d into the statex. Again, this term turns into the
third term of Eq.(2.1a for y= 6.

The same relation can be traced for the nondiagonal
density-matrix elements. We find that the third term of Eq.
(5.1), which describes all possible decays of the statemd
B, reproduces the third term in E¢2.1b for y=8 and
5= a, respectively. The fourth term in E¢p.1) describes the

FIG. 8. The occupation of the left dot in Figs. 6 and 7 as areverse process, i.e., the conversionogf— o,z produced
function of time for e=T",,=Q,. The solid line corresponds to by two consecutive hoppings through continuum state media.
coupled dots, and the dashed line to separated dots. In particular, ifQ,_,,=Q, 4, these terms reproduce the

last term of Eq.(2.10), wherel' 5 ,z=2mpQ, Qs 5.
applying the same technique of integrating out the reservoir

states as in Ref. 17 anq in the_Appendix, we e_lrrive at the rate VI. SUMMARY
equations for the density matrix,z of the multidot system.
These equations can be written as In this paper we derived quantum rate equations, which

provide the most simple and transparent way for a descrip-
_ tion of both the coherent and incoherent electron transport in
Oop=1(Eg—E,) o, a7 2 owﬁy_)ﬁ—E ﬁa_wayﬁ guantum dot systems. In the beginning we considered a sys-
Y Y tem of two quantum dots linked by a ballistic channel and
connected with the emitter and collector reservoirs. Starting
- E' TP(0 0y sQs gt 0,50, 505 ) with the many-particle wave function and integrating out the
.0 continuum states, we have obtained the equations of motion
for the density submatrix of the two-dot system in the occu-
+> Tp(Q Qs gt Q, Qs 00,5 (5.1)  pation number representation. In spite of the quantum dots
7.0 might be away one from another, we found that the diagonal
) ) density-matrix elements are still coupled with the nondiago-
Here[a),|B), ... are the states of the multidot system in the density-matrix elements, similar to Bloch equations for
occupation number representation, dig_, ; denotes one- o ple-well systems. The essential difference, however, is
electron hopping amplitude that generates: 8 transition.  that the diagonal matrix elements in the Bloch equations are
We distinguish between the amplitudés and () of one-  coupled with theémaginarypart of the nondiagonal density-
electron hopping among isolated states and among isolateflatrix elements, while for the separated wells the corre-
and continuum states, respectively. The latter transitions argponding terms are coupled with theal part of the non-
of the second order in the hopping amplituge)?. These diagonal density-matrix elements.
transitions are produced by two consecutive hoppings of an As expected, the coupling between diagonal and nondi-
electron with the same energy across continuum states withgonal matrix elements generated quantum coherent effects
the density of states. The symbol=" means that only those in electron transport. For instance, we found that due to de-
transitions y— 6—(«a,B) are accounted for in the sum, structive quantum interference the dc current in separated
where the number of electrons in continuum staiasthe  dots is reduced when the barrier penetrability increases. This
reservoirs and ballistic channgkstays the same in the initial effect would survive even if the dots are largely separated,

and final stategc.f. Eqs.(3.5)]. providing that they are linked by ideal one-dimensional bal-
It is rather easy to verify that Eq&.1) coincide with Egs.  listic channels.
(3.7 for «,B, ...={a,b,c,d}, which are the states of the In spite of the quantum coherence effects found in dc

separated dot system, shown in Fig. 4. Let us compare nowsurrent, the same system of separated dot, detached from the
Egs. (5.1 with the Bloch rate equation&@.1) for quantum  emitter and collector reservoirs does not show any quantum
transport in coupled dots. We begin with the equations fooscillations. It is quite different from a coupled-dot system
diagonal density-matrix elementg=c«. The first term in  with aligned levels, in which an electron oscillates between
Eq. (5.1) is zero, sincéE,,=Eg. The first term in Eq(2.1a the dots.

and the second term in E¢5.1) have the same form and The rate equations for two separated quantum dots are
describe the coupling with nondiagonal matrix elements genextended to a general case of multidot system, in which the
erated by one-electron hopping between isolated states. Thits are either directly coupled, or interconnected via ballis-
remaining terms in both equations look differently. However,tic channels. These new rate equations generalize the well-
one can easily realize that in the case of coupled dots thkenown Bloch equations, describing time-evolution of the
only possible transitions for diagonal matrix elements aredensity matrix of coupled multiwell systems in the presence
those corresponding t=«a. Then the third term of Eq. of a dissipative media. We thus expect that the applicability
(5.1) becomes of our generalized rate equations is not restricted by quantum
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transport in multidot system only, but these equations wouldions by its expression obtained from the subsequent equa-

be very useful for various physical problems where quantumion. For example, substituie, (E) from Eq.(A2b) into Eq.
coherence and classical dissipation effects do interplay.  (A2a). We obtain
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APPENDIX: DERIVATION OF RATE EQUATIONS -> Mb,m(a:i, (A3)
FOR SEPARATED DOTS fm E+E—-E

We demonstrate how the sum over continuum states ivhere O,=Q, (E,) and Q,,=Q\(E,,). Since the states in
the density matrix, Eq93.3) can be performed analytically the reservoirs are very dengeontinuunj, one can replace
leading to the rate equations for two-dot systems. In order tthe sums overl and m by integrals, for instances,
simplify the algebraic transformations we use the Laplace., [p, (E,)dE,, wherep,(E,) is the density of states in the
transform for the Schidinger equatiori| W (t))=7|W¥(t)).  emitter. Then the first sum in E¢QA3) becomes an integral
Then the amplitudeb(t) in the wave function3.2) are re-  which can be split into a sum of the singular and principal

placed by their Laplace transform value parts. The singular part yieIds—i(EkJr E
—E,)T /2, wherel', =27p, (E1)| Q. (E,)|? is the levelE,
Tievo | aiEt partial width due to coupling to the emitter. Let us assume
b(E) fo e b(tat. (A1) thatEE>E,;>EM, i.e., the energy level is deeply inside the

o . . i band. In this case the integration o\, -variables can be
Substituting Eq(3.2) into the Schrdinger equation we ob-  eytanded tar . As a result, thed function can be replaced

tain an infinite set of coupled equations for the amplitudes,y 1 and the principal part is merely included into redefini-
b(E): tion of the energyE;. The second surfintegra) in Eq. (A3)
proves to be negligibly small. Indeed, let us repldzg,
Ebo(E)— >, Qby(E)=i, (A2a) —Db(E|,En,E), and assume weak energy dependenc® of
! on E,. Then one finds from Eqg$A2) that the poles of the
integrand in thekE, variable are on one side of the integration
contour, and therefore this term vanishes. In general, any
terms of the typef---dEg--b(...Es, ...)(E+---
(A2b)  +E))'—0, whenever the integration over tiig variable
can be extended taoo. We shall imply this property in all

<E+E|—E1)’61.(E>—Q|’50(E>—§ Qb im(E)=0,

(E+E —Ep)bim(E)— Quby(E) — Qb (E) subsequent derivations. Notice that these results are valid
also for nonzero temperature, providing tiiag Ek—El,z,
_z Q|/B]_2||/(E):O, (A2C) El,2_ E'F\:/I .
II

Now we apply analogous considerations to the other
equations of the systefi\2). It follows from Egs.(A2) that
- — - the Coulomb repulsion just shifts the energy levels in Eq.
(E+EI‘EZ>'°2|(E)—§ mem(E)—Z Qb (E) (A3), E; ,~E;,+U;;. If the shifted level is outside the
band, the singular part of the integral vanishes and therefore
the corresponding width' is replaced by zero. If, however,
the shifted energy stands deeply inside the band, all the pre-
vious treatment remains the same. A problem appears only if
the shifted energy is near the Fermi level. This case is not
considered here. Finally we arrive at the following set of

—> Qbya/(E)=0, (A2d)
Il

(E+E+E—E;—Ey—U1p)b a1 (E)— Q) by (E)

_ - _ equations:
+Q|b2|,(E)—% melll’m(E)_§ Qpbaym(E)
(E+il' /2)bo=i, (Ada)
- Q,by(E)=0... . (A2¢) N N _
' (E+E|_E1+iFM/2)b1|_Q|bo+iWPMQMQMbm:O,

Notice that due to the Pauli principle an electron can return (A4b)
back only into unoccupied states of the emitter. As a result, .
the summation over the emitter states does not appear inthe ~ (E+E;—E,+il'[/2)Djy— Qb1 — Qb2 =0,
corresponding terms of Eq§\2) [in the second term of Eq. (Adc)
(A2b), in the second and the third terms of E42c), and so
on].

Equations(A2) can be substantially simplified. Let us re- (BE+ B =Bt il 241 T/ TRI2) b Fimom Qb

place the amplitud® in the term=Qb of each of the equa- =0, (A4d)
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(E+E +Ej —Eq—Ey— Ut iT} /24T {2+ T /2) D1

_Q|752|+Q|Bz|120 ceey (A4e)
where Ty =27pw(E1)|Qu(Ey)|? and Ty

=2mpm(E2)|Qum(E,)|? are the partial widths of the levels
E, and E,, respectively, due to coupling to the ballistic
channel angby, is the density of states in the ballistic chan-
nel. T'r=2mpgr(E,) | Qr(E,)|? is the levelE, partial width

due to coupling to the collector. The Coulomb interdot re-

pulsionU ,, just modifies the corresponding width’ (is re-
placed byl'’, evaluated at the enerdy; ,+ U;,) whenever
both dots are occupied.A similar modification would take

RATE EQUATIONS FOR QUANTUM TRANSPORTN . ..
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o®"(t). Consider, for instance, the termr{3%(t)
=3,|by(t)|?, Eq.(3.3b. Multiplying Eq. (A4b) by b} (E")
and then subtracting the complex conjugated equation with
the interchang&«— E’ we obtain

|

dEdE

E—iTw)by(E)bY(E")

2| {(E'-

— by (E)bE(E")—DB}(E)by(E)]

_inMQMQM[ElI(E)ESI(E,)

place if we include the Coulomb repulsion between electrons o
inside the dots and the ballistic channel. In the following weSubstituting

assume that widths are weakly dependent on the energy, so

I'"=T everywhere.

The density matrix elements, Eq®.3), are directly re-
lated to the amplitude®(E) through the inverse Laplace
transform

dEJE _
O'(k’n)(t)zl mE ] f a2 bi..m...r...(E)
xbr (E")elE'-Brt, (A5)

Using this equation one can transform E¢&4) for the am-
plitudesb (E) into differential equations for the probabilities

+b1i(E")ba(E)]}e ™ "®=0. (A6)
= OBy(E)~impuQuuBa(E)
Pu(B) =T E e Hir 2 (A7)

into Eq. (A6) we can carry out thé&,E’ integrations thus
obtaining

(0,0 _

(0,0)
Obp ocp )

(A8)
which corresponds to Eq3.53 for k=n=0. Applying the
same procedure to each of equatidAgic) we obtain the

Bloch-type equations(3.5) for the density-matrix element
akm(t).

—I'm 0' O)+I‘L0'(OO—7TpMQ QM(U(OO)

1D. V. Averin and K. K. Likharev, inMesoscopic Phenomena in
Solids edited by B. Altshuler, P.A. Lee, and R.A. Webb
(Elsevier, Amsterdam, 1991

2R. J. Haug, J. M. Hong, and K. Y. Lee, Surf. S@&i63 415
(1992.

3N. C. van der Vaart, S. F. Godijn, Y. V. Nazarov, C. J. P. M.

Hartmans, J. E. Mooij, L. W. Molenkamp, and C. T. Foxon, 1

Phys. Rev. Lett74, 4702(1995.

4F. R. Waugh, F. R. Waugh, M. J. Berry, D. J. Mar, R. M. West-

ervelt, K. L. Campman, and A. C. Gossard, Phys. Rev. [7&t.
4702(1995.

5 Bryant, Phys. Rev. B4, 3064 (1997).

6S. A. Gurvitz, Phys. Rev. B4, 11 924(1991)).

"A. N. Korotkov, D. V. Averin, and K. K. Likharev, Phys. Rev. B
49, 7548(1999.

8C. A. Stafford and S. Das Sarma, Phys. Rev. L&&, 3590
(1994.

9L.I. Glazman and K. A. Matveev, Pis'ma Zh. Eksp. Teor. Big.
403 (1988 [JETP Lett.48, 445(1988)].

10D, v. Averin and A. N. Korotkov, Zh. Eksp. Teor. Fig7, 1661
(1990 [Sov. Phys. JETRO, 937(1990].

11c. W. J. Beenakker, Phys. Rev.4, 1646(1997).

123, H. Davies, S. Hershfield, P. Hyldgaard, and J. W. Wilkins,

Phys. Rev. BA7, 4603(1993.

183G, Klimeck, G. Chen, and S. Datta, Phys. Rev.5B, 2316
(1994.

14G. Chen, G. Klimeck, S. Datta, G. Chen, and W. A. Goddard,
Phys. Rev. B50, 8035(1994).

15yu. V. Nazarov, Physica B89 57 (1993.

165, A. Gurvitz, H. J. Lipkin, and Ya. S. Prager, Phys. Lett222,
91 (1996.

7S. A. Gurvitz and Ya. S. Prager, Phys. Revc® 15 932(1996.

185 A. Gurvitz, Phys. Rev. B6, 15 215(1997).

19¢. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynbektpm-
Photon Interactions: Basic Processes and ApplicatiOngley,
New York, 1992.

203, Rammer and H. Smith, Rev. Mod. Ph§i8§, 323(1986.

21The results are valid also for nonzero temperature providing that
T<Eg—E,,, E;,—ER. Otherwise, the average over the reser-
voir states would enter explicitly in the equations.

223, Bjornholm and J. E. Lynn, Rev. Mod. Phy2, 725 (1980.

233, A. Gurvitz and M. S. Marinov, Phys. Rev. 40, 2166(1989.

243, A. Gurvitz, 1. Bar-Joseph, and B. Deveaud, Phys. Re¥3B
14 703(1991).

25G. Cohen, S. A. Gurvitz, |. Bar-Joseph, B. Deveaud, P. Bergman,
and A. Regreny, Phys. Rev. 87, 16 012(1993.

26/, Beige and G. C. Hegerfeldt, Phys. Rev.58, 53 (1996, and
references therein.

27A. N. Korotkov (private communication



