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Interaction energy for a pair of quantum wells

Bo E. Sernelius and P. Bik
Department of Physics and Measurement Technology,” pingaUniversity, S-581 83 Linking, Sweden
(Received 24 February 1997; revised manuscript received 8 September 1997

We present a calculation of the interaction energy and force between two quantum wells in which the wells
are treated as strictly two-dimensional metallic sheets. Numerical results are presented for separation values
ranging from 1 to 1&? A. Both nonretarded and retarded calculations are presented. Three distinct ranges with
different separation dependences are clearly revealed in the results; the Casimir limit for large separations; the
van der Waals range for intermediate separations; the small separation limit where also the single-particle
continuum contributes. The result in the Casimir limit coincides with the corresponding result for two metal
half-spaces but the van der Waals result is different from both the half-space result and that of two thin films.
In the present problem the energy and force varies @& andd ™", respectively[S0163-182(8)02511-9

[. INTRODUCTION different separation ranges. For both types of mode the fields
decay exponentially inside the material. The induced charges
In the late 1940s Casintiused a new and very successful and currents are localized to the surfaces. In the van der
approach to calculate the force between neutral objects. H&/aals case, when the force between two metal or dielectric
studied two charge-neutral metallic plates. Surprisingly, forplates is considered, there are two modes; one with higher
large separation this force is independent of the densityenergy and one with lower, both pfpolarized type; for the
charge, and effective mass of the carrfehsstead it depends high- (low-) energy mode the induced charge and current are
on the speed of light. He related the force to the change i®ven(odd) with respect to a plane in the middle between the
zero-point electromagnetic energy with distance between theurfaces; the energy of these modes changes with separation,
objects. There has been a renewed intdfest these so- and this change causes the force. In the Casimir case there
called Casimir forces lately that has inspired the presenare many standing-wave-type modes of bptholarized(TE
work. A historical introduction to the field with emphasis on mode$ and s-polarized (TM modes type; the number of
the experimental attempts to verify the Casimir and van demodes and their energies change with separation, and these
Waals forces is found in the review paper by Elizalde andchanges cause the force.
Romeo® Complimentary reviews can be found where the In the present work, we study a model system of two
Casimir effect in other areas, like elementary-particle physicstrictly two-dimensional2D) metallic sheets. Since it does
and cosmology, is includétiThe most detailed and recent not add to the complexity we have let the sheets be embed-
verification of the Casimir effect is found in Ref. 7. ded in a dielectric medium. This model system very well
Schmit and Lucdsand also Craigused a kindred ap- represents the “current-drag” system of Ref. 12. This sys-
proach to determine the surface energy of simple metalgem consists of two narrow electron quantum wells in GaAs.
They attributed this to the change in zero-point energy of thdcach well can to a good approximation be treated as strictly
surface plasmons when the metal is split in two and theD as long as the following two conditions are fulfilled: the
pieces are separated to infinite distance. Van Kampen, Nijseparation between the wells is big enough, so that the wave
boer, and Schratfiused the zero-point energy of the surfacefunctions in the different wells are not overlapping; the wells
modes of a dielectric to derive the van der Waals force beare narrow enough so that in each well only one level is
tween two semi-infinite dielectric media. They also demon-occupied and the closest unoccupied level is far enough up in
strated that the Casimir result was equivalent to that from thenergy for interband transitions to be negligible.

macroscopic Lifshitz theor* this theory is rather compli- We study how the interaction energy and the attractive
cated and involves the introduction of random fluctuatingforce between these sheets vary with separation. We make
sources inside the dielectrics. both nonretarded and retarded calculations. We first perform

The modes in the two approaches are quite different, buthe nonretarded calculations, which are simpler. The interac-
both types of mode are present in the spectral range wheten energy is just the correlation energy between the sheets.
the dielectric function of the metal or dielectric has a negadn Sec. Il we very briefly describe the system and its dielec-
tive value. In the Casimir case they are formed from purelytric properties. The dielectric properties of 2D, quasi-2D, and
transverse, freely propagating electromagnetic wapé®-  coupled 2D systems and their collective modes have been
tons multiple-reflected at the surfaces of the two metals orstudied extensively in the pa3t!®so we keep the presenta-
dielectrics; the net result is modes of standing-wave- otion of these properties to a minimum. In Sec. lll we present
wave-guide-type. In the van der Waals case they are moddke calculation of the correlation energy and in Sec. IV we
that are localized to the surfaces of the objdéetgponentially  perform a calculation based on the zero-point energy of the
decaying outside the objegtsBoth types of mode are plasmon modes. In the full retarded calculation both longitu-
present and contribute to the energy of the system and théinal and transverse interactions contribute. These calcula-
force between the objects, but they dominate the force itions are presented in Sec. V. Section VI is devoted to the
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"1 Y12 the external potential from an external charge distribution
7 "7 placed in layer 1, the corresponding potential in layer 2, the
resulting potential in layer 1 when the potentials from all
induced charges are taken into account, and the resulting
=== <==2 potential in layer 2, respectively.
I Y2
Vo s Ill. CORRELATION ENERGY APPROACH
In this section we make a strict nonretarded derivation of
the interaction energy between two quantum wells. As we
mentioned in the previous section, for separations large
==s ==s enough so that there is no overlap between the wave func-
Vo Vi tions in different wells the only energy contribution that de-

pends on separation is the correlation energy. The exchange

FIG. 1. Feynman diagrams for the correlation energy in ourand kinetic energies are constant.

two-layer system. The ellipses represent polarization bubbles and The correlation energy per electron in a 3D or 2D system

the dashed lines the interactions indicated in the figure. The numz i the RPA(random-phase approximatipgiven b>;0
bers 1 and 2 refer to which well the electron belongs to.

presentation of the numerical results and comparison be-
tween the different approaches. The asymptotic Casimir an%RpA_ 1 ,
van der Waals limits are also given. Finally, Sec. VIl con- =¢ ~ =~ 2N 2
tains summary and conclusions. ,
© 1 —
XU d—wﬁf dy| o)
— 2 0
We have chosen to perform our calculations on the
“current-drag” system of Ref. 12. This system consists of 1 Zr

WJF%(Q@)

II. THE SYSTEM

|

two narrow electron quantum wells in GaAs. The electron 2N
density po is in each well 1.5 10" cm 2 The effective
massm* in the conduction band of GaAs is 0.0665 electron
masses and we use the value 13.0 for the background dielec-
tric constantk. We have treated each well as strictly 2D. We
have further limited ourselves =0. In an interacting elec-
tron system the energy consists of kinetic energy, exchange
energy, and correlation energy. The correlation energy is, per
definition, the additional energy contribution beyond the
Hartree-Fock approximation. Since there is no overlap be-
tween wave functions in neighboring wells there is no inter-
well exchange energy and the kinetic energy and ordinary
intrawell exchange energy are independent of separation,

Thus the only energy that changes with separation is the_herel\.l 1S .the tr:)tal r:ur_nbir_l.of eIIectlronz aml%(q,.w) :
correlation energy. =ap(Q,iw), i.e., the polarizability calculated on the imagi-

For the calculations we need the dielectric properties oftary frequency axi$: The prime on the summation symbol

the system. The elements of the dielectric matrix when retard€notes that thg=0 term is excluded from the summation.

dation effects are neglected are easily found: For inlayel? tWo dimensions the polarizability is expressed in our di-
mensionless variables:

= d
XH —iﬁ[—ln[1+xaa<q,w>]+xaé(q,wné]

1o,
=N

= d
X{ L@ % ﬁ{aé(q,w)—In[1+a6(q,w)]}],

screening,
2
85212811 :%: l+a0(12_cq) 7
VOl 1+2a0+ ag(1—cf) -9 _ 12
) Q 2k01 kO (27Tp0) y
1+ ag(1-cd) .
[1+ag(l+cy)l[1+ag(l—cg)]’
for interlayer screening, :ﬁ_w £ :hzkg
4E," 0 2m*’
8712871222 1
2T A 1+ 2aptag(1-c))
1 m* e2
Y= ik’

T[Tt ag(Itcgl[1+ag(l—cy]’
where cq=exp(—qd) and ao(q,0) is the 2D

polarizability*>!4 The potentiald/{X), V{2, V,, andV, are  wherek, is the Fermi wave number, as
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0(Q,W)=a(Q,iW) fi = )
o o EcRPA:—m JO fo do dgq o{ap(g,w)

I P R e Yy Srevay 2
yQ[l Qg[z\/(Q W2—Q%)?+(2W Q) —In[1+ ag(g, )]}

+%(Q4—W2—Q2)]”2]- , : .
In the present system with two metallic sheets a distahce

The correlation energy per electron in two dimensions P&t we get the Feynman diagrams in Fig. 1. These dia-
given as grams represent the energy

1 , * dw 1 , 3 ]
ES=—2N [ f ot fo dM{A[eg(. @)1 (i w)

+x[aa(q,w>]zsz£<q,iw)+2x[cqaa<q,w>]281§<q,iw)}]

_ 1 ,Joc dwﬁJ‘ld)\ 2)\a(,)2 N 2+2

1 «, (* do (1 2ah+ 2 a)?(1—c?)
:——Z J —ﬁf d)\ 2&’(,)_ 0 7 20,2 q2

h—, (= d
13| o (@0~ i1+ 2ay(0,0)+ [ ag(q,0) P,

where N is the total number of electrons in the two wells nator (the interlayer and intralayer versions of the inverse
taken together. Thus we have dielectric function have the same denomingaisrput equal
to zero. At infinite separation the denominator is just the 2D

RPA fi i dielectric function squared. This function is zero on the plas-
Ec ' =—72 dw dg of ag(q,w) i -

4mpo Jo Jo oL mon dispersion curve. Thus we have two degenerate solu-

tions in this limit. When the separation decreases the degen-

-1 In[1+2a(’)(q,w)+a(’)z(q,w)(l—cg)]}. eracy is lifted. One curve moves upwards and the other

. o ) downwards. This is illustrated in Fig. 2 which is valid for
With the energy at infinite separation as reference energy the

above result can be reduced to

ﬁ o (oo
B ) - ) - 5 | [ Tdwda g os| ]
4 oJo :
2 12
Cqao™ (0, w) B 1
xin| 1 a0 (4@ | 06
[1+ ao(q’ w)] W
where we have multiplied with @, to get the total correla- 041 ]
tion energy per unit area. This is the final result. It is repre-
sented by curve 1 in Fig. 3 of Sec. VI. 0.2} -
IV. INTERACTION ENERGY AS CHANGE 0 L : : . L
IN ZERO-POINT PLASMON-ENERGY 0 01 02 03 04 05 06
The dispersions of the collective modes of our system are Q
obtained as thev(q) for which the inverse dielectric func- FIG. 2. The dispersion of the collective modes. The thick curves

tions of Sec. Il divergeor, equivalently, when the determi- are the dispersions of the two modes for the well separation 500 A.
nant of the dielectric matrix is zeyoFor this choice ofv and  The uppermost thin curve is the asymptotic limit for the upper

g we may have an induced electric field even in the absencgode at zero separation. The thin curve in the middle is the
of external perturbations. Thus, the dispersion curves for thasymptotic limit for both modes at infinite separation. The lower
collective modes are obtained as solutions when the denomikin curve is the upper boundary of the single-particle continuum.
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d=500 A. At zero separation the lower one is pushed comelectric field and thep-polarized photons combine into one
pletely into the continuum and the upper one is the solutiorfield that is longitudinal in the plane. The induced charge and
to the equation ¥ 2a4(q,w)=0. current densities from such a field will also produce a field of
All the modes, for increasing, sooner or later enter the that kind. Thes-polarized photons produce an electric field
continuum. The number of modes does not decrease witthat is transverse in the plane. The current induced by such a
one each time a mode enters the continuum. The number d¢ield produces a field of the same type. In a translational
continuum modes increases with one at this point. We arévariant and homogeneous system there are three types of
facing a problem with this approach since we cannot deternormal modes; two with transverse fields and one with lon-
mine where each mode goes. The energy of the collectivgitudinal fields. In the present system there are only two
mode is shared among the continuum modes. This problertypes of normal modes; one withtpolarized fields, i.e., with
was avoided by Schmit and Lucas and Craig by using theielectric vector in the plane formed by the in-plane momen-
drastic approximations. We use the approximation that théum g and the normal to the wells, experienced as longitudi-
mode stays at the boundary of the continuum. With this apnal in the 2D sheets; one with-polarized fields, i.e., with
proximation we get for the energy electric vector perpendicular to this plane, experienced as
transverse in the 2D sheets.
E(d)=2 ( The two typeg of_intergction involving Io_ngitudinal and
g transverse electric fields in the planes defined by the two
sheets will not mix and the energy is given by a sum of two
sets of diagrams of the type given in Fig. 1, one set for the
longitudinal interaction and one containing only transverse
interactions. Let us now discuss the longitudinal interaction.
The coupling to the longitudinal field arngpolarized pho-
tons is given by the scalar potential and thé\ terms in the
Hamiltonian. The resulting interaction energy per unit area is

f h
E wl(qid)+ E wZ(qad)}

h h
E wl(q’oo)—}- E wz(q,w)

= d’q ([#
:Afo (2m)? [

fi
5 w4(q,d)+ > wz(q,d)}

|

ﬁ o (e ]
=— — e—2qdy'(q,)
where w4(q,d) and w,(q,d) are the two collective modes Erp(d) 47° fo jo de dq g In[l €
andA is the area of each quantum well. We have used the )
energy at infinite separation as our reference energy. The }
This energy is represented by curve 4 in Fig. 3 of Sec. VL.

result from this calculation is represented by curve 2 in Fig.
3 of Sec. VI.
V. RETARDATION EFFECTS The derivation of this expression is given in the Appendix.
We have chosen to work in Coulomb gauge. In this gauggompared with the nonretarded result for the correlation en-

one part of the interaction between the electrons is in th&9Y: We gave earlier, we find that the polarizability has at-
form of the instantaneous, longitudinal Coulomb interactiont@in€d a factory’(q, ) =¥(q,i w) = V1+(w/cq)* in front,

(scalar potentialand the other part is via transverse photongVhich is in agreement with the polarizability obtained by

h h
E wl(q100)+ E wz(q,w)

Y' (9, ) a)(q,w)
1+y'(q,w)ay(q,w)

(vector potentia). The Hamiltonian for the system is Stern?.“ Furthermore, the factor appearing in the inter-
well interactions is modified according ta@q—Ccqy,,
1 e 2 e =g A (a.0)
H :Ei om* [P™ ¢ A(ri)} + 2 ; Fu The response to the-polarized fields is a transverse cur-

rent. It is described by the transverse conductivity, which is
+S hogalag +1) completely QOminated k_)y the contribution originati_ng from

~ KLHASKA T 2/ the A2 term in the Hamiltonian. Also the-A terms in the

' Hamiltonian give a contribution to the transverse conductiv-
where the first term is the kinetic energy that contains théty, in the form of the current-current correlation function.
interactions via the vector potential The second term rep- We have derived this function for two dimensions. It has
resents the scalar potential interaction and the last term is theegligible effects for the present problem but we still give
free photon Hamiltonian. For very large separations betweethe function in the Appendix.
the wells we need to take retardation effects into account. If The energy per unit area from tisephoton interaction is
the distance between two electrons is smaller ®an, re-
tardation effects in the interaction between the electrons can

27€?polqm*c®y’' (g, )
1+ 2mwe’py/qm* c®y' (g, w)

bg neglected. We lat denote the speed of light in the me- E(d)= iz f f dw dq g In[ 1—e—29dY'(q,0)
dium surrounding the wells. The nonretarded results are ob- 47 Jo Jo

tained by letting the speed of light tend to infinity. From the 2

Hamiltonian we see that this corresponds to neglecting the ]
vector-potential interaction completely. Now, in the specific

system we consider here, the electrons are only free to move

in a plane. In a plane only one longitudinal and one transThe result is represented by curve 3 in Fig. 3 of Sec. VI. The
verse electric field can exist. It turns out that the longitudinalderivation of this expression is given in the Appendix.
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D S L T T4 In our expression for the retarded contribution from the
-~ 10 B S a2 n=1.5x10"cm" = longitudinal andp-polarized interaction the exponential fac-
E gt EI4S S all2ds 00665 m. 2 tor in the integrand guarantees that the region near the origin
B e \f\ b ‘ 3 only of the wq plane contributes. Thereyo(q,) is very
s - S - large, which means that the polarizabilities in the numerator
S0 E / RSN a2,5 3] and denominator cancel out. We get the following contribu-
= — 3 \"-\ n .
210*L al,1,2 7 tion:
oy C -
L 24 —
@ 107 F 34 = A= [1+ (w/Tq)?
28 = ’ . ~ _ a—qdVl+(w/cq)
N E(@ong~ 5z | | d da g1 ]
10° 10" 10* 10’ 10* 10° 10° 107 10° 10° 10" 10" 10" -,
d (&) ___fem
480x 3d°"

FIG. 3. The interaction energy per unit area for our model sys-

tem as function of separation, with parameters in accordance withrhe same applies for the contribution that comes from the
the “current drag” system of Ref. 12. The dotted line$ anda2 s polarized interaction and it gives an identical result. The
are the large separation asymptotes for the van der Waals and Cgp|arizabilities and hence all material parameters completely
simir energies, respectively. Curves 1 and 2 are the nonretardeairop out of the expressions for large distances.
results from the correlation-energy and plasmon zero-point-energy Curve 1 represents our full nonretarded result from the
approaches, respectively. Curves 3 and 4 are the retarded Contrilof‘f(')rreIation-energy calculation. It approaches the van der
tions from thes-polarized and longitudinal plup-polarized inter- Waals result for intermediate and large separation. In the
actions, respectively. The total retarded result, i.e., the sum o . . . . .
curves 3 and 4, is represented by curve 5. c.orrelatlon. energy both smgle—par_tlcle and cpllectlve excita-
tions contribute. The result is obtained as an integral over the
VI. NUMERICAL RESULTS q ple_me. In_the_ smalt Iimit the contributions from the
collective excitations dominate, and one can show that these
The main result of this work is presented in Fig. 3. We contributions are just the zero-point energy of the modes.
present all results in the form of the interaction enefgyer  The exponential factor in the integrand guarantees that for
unit area. The forc& is obtained from these results just by large separations only the small momentum region contrib-
performing the derivative with respect to separation. The asutes. Hence, in that limit the correlation energy approaches
ymptotesal anda2 represent the van der Waals and Ca-the zero-point energy of the modes.
simir results, respectively. They are the large separation lim- Curve 2 is the result from the calculation where the inter-
its of the nonretarded and retarded treatments, respectivelgaction energy comes entirely from the zero-point energy of
The van der Waals resulal, depends on the material pa- the plasmon modes. We find that with this approach we ac-

rameters according to tually get a repulsive force for small separations and a nega-
tive adhesion energy. As we mentioned earlier we let the
modes stay at the boundary of the continuum instead of en-

E~—0.012 562/ \/pg/xm*d 52 y y

tering it. Another possibility would be to let the modes drop
to zero energy as soon as they enter the continuum. We have
F~0.031 40@% \po/km*d ™~ "2 also calculated the energy and force with this approximation.

The results are quantitatively quite different but qualitatively
This d dependence is different from the behavior of twothe same, with a repulsive force at short range. For interme-
semi-infinite solid¥?>*whereE andF depend ol asd~2  diate and large separations the result merges with curve 1
andd ™3, respectively. It does not agree with the result forand the van der Waals resuét], and the result is indepen-
two thin films either where the dependences dré and dent of how we treat the modes when they merge with the

d~>, respectively?>?3 single-particle continuum. Thus for large separations the ap-
The Casimir resulta2, on the other hand, agrees with the Proach where only the zero-point energy of the plasmons is
result for two semi-infinite metals. It is calculated works well and since this means a simpler calcu-

lation this approach may be preferable. This is no longer true
for very large separations where the retardation effects be-

. fCm? come dominant. It turns out that in this regime the force
72003’ caused by the Coulomb interaction is suppressed and re-
placed by photon interactions. In the correlation energy ap-

K2 proach both the longitudinal collective excitations and trans-

F= 2204% verse single-particle excitations contribute to the energy. For

large separations and neglect of retardation effects the col-

lective part dominates the force. When retardation effects are

The asymptot@2 has a steeper slope thah and the two included the collective part of the force is suppressed and

asymptotes cross at the separatibn1.190mn* c?/pye?. It  another contribution appears. This contribution turns up as
is to be noted thah2 does not depend on the material pa-an imaginary part inyaq for frequencies above the disper-
rameters of the sheets. The reason is the following. sion curve for the light. It has its origin in emission of the
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FIG. 4. An expanded view of the bifurcation region of Fig. 3. FIG. 5. Our full retarded results for the interaction energy per

Lo . . . .unit area as functions of separation for the carrier densities 1
transverse photons. That this is so is especially obvious iR 110 11011 1x102 and 1x10% cm™2 respectively. The

the case o$-polarized photons, vv_here there are no CO”_eCti_Vemagnitude of the energy increases with density. The vertical bar
plasmon modes at all, but we still get the same contributionngicates the point where the separation equals the two-dimensional
to the force as from the-polarized ones. Curve 3 is the Thomas-Fermi screening length.

contribution froms-polarized photons. Curve 4 represents

the contribution from the longitudinal argtpolarized inter-  ing length and the separation where the short-range, single-
actions. It reproduces the full nonretarded result for smalparticle correlations become important.

and intermediate separations. When it approaches asymptote |t is of experimental interest to find an estimate of the
a2 it changes direction and follows a curve representing halfnaximum possible Casimir force in our system. If we make
of the Casimir result. The total retarded result, i.e., the sumhe approximation that the van der Waals and Casimir forces
of curves 3 and 4, is represented by curve 5. This full resultepresent the actual force to the left and right of, respec-
coincides with the nonretarded result for small and intermetively, and all the way up to the crossing point between as-
diate separations and with the Casimir result for large sepayrmptotesal and a2, we find that the maximum Casimir
rations. For large separations the scalar-potential contribUgrce is F%giim"%o_ozogh&/ \/;(m*)4c7. The result de-
tion is suppressed and partly canceled by the vector-potentiglends strongly on both the carrier density and the effective
contribution. This is maybe most clearly seen in the dispermass. One should choose as high a density and as small an
sion curves of the plasmon modes. These are, when retardgffective mass as possible if the goal is to study the Casimir
tion is taken into account, in the long-wavelength limit force experimentally.

pushed down below the dispersion curve for the light.

One interesting thing to notice is that the full result does
not follow the upper one of the two asympto&s anda2.
Instead, it follows the lower one. This is contrary to what one  We have determined the energy and force as functions of
would imagine since the result is the sum of the plasmon andeparation between two two-dimensional metallic sheets—a
photon contributions. The reason is that when the photonmodel system representing a pair of quantum wells. We per-
start to contribute the plasmon contribution drops in size, andormed both nonretarded and retarded calculations.
vice versa. The nonretarded calculations were performed with two

The full nonretarded and full retarded results are the samdifferent approaches. In one approach the energy variation
for small and intermediate separations but split up for largewith separation was attributed to the change in zero-point
separations. In Fig. 4 we have expanded the bifurcation reenergy of the collective modes of the system. We found that
gion. Figure 5 shows the full retarded results for differentthe result for small separations was sensitive to the unavoid-
carrier concentrations. The curves are shifted towards highetble approximations concerning how to treat the modes
energies with increasing densities but they all approach theshen they enter the single-particle continuum. The approach
same density-independent asymptote for large separations. led to a force that is attractive at long range but repulsive at
the figure we have given the results for the densities Ishort range. With the approximations we used, the adhesion
X101 1x 10, 1x10% and 1x 10 cm 2, respectively. energy was negative. In the other, more strict, approach we
These examples span the reasonable density range for thalculated the correlation energy in the random-phase ap-
real system we have chosen to model. The vertical bar in thproximation. This led to an attractive force at all distances.
figure indicates the 2D Thomas-Fermi screening lengthThe forces in the two nonretarded approaches merge for
which is density independent, in contrast to the case in threlarge separation and have the asymptotic foraad ™ "2,
dimensions. There is a clear connection between this screeithese forces drop off faster than that derived from semi-

VII. SUMMARY AND CONCLUSIONS
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infinite metallic plates and more slowly than in the case of APPENDIX
two thin films, The forces depend on the electron density and In this appendix we derive the longitudinal and transverse
electron effective mass. Improvements of the theory by go-

. : . P i polarizabilitiesa {) and@ g, respectively, when retardation
ng beyond RPA through the |ncI_uS|on %f local f'el.d COITEC"is taken into account. To find these we study the response of
tions would be much more complicat&£°only modify the

. a single layer az=0 to an applied electric field, longitudinal
results fgr small separations and would not change th%r transverse. The induced currents and charge densities in
asymptotic form of the forces. For small separations thergne |ayer lead to an induced field in and outside the layer.
would, in a real system, be other complications from short-rhe polarizabilities are identified through the relation be-
range forces on the atomic scale, effects from imperfectiongyeen the induced and the total fields in the layer. If we
like interface roughness and sooner or later, when the disnstead use the induced field in a layetzt=d we may also
tance between the wells decreases further, effects from caggentify the factorc, ,,, replacingc,, which appeared in the
rier tunneling between the wells and interlayer exchange efhonretarded case. We have
fects. All these effects are beyond the scope of the present
work.

The cause of the differences in asymptotic form for the
present system and the thick-metal-plate case is the differ- _ o ] _ _
ence in dispersion of the collective modes: In the presen{’here the superscriptsor t indicate if the fields are longi-
case the dispersion is of square-root type while the dispelt_udlnal or trar)sverge, respectively. The fields are the_compo-
sion of the surface plasmon in the thick-metal-plate caséents of the fields in the plane o.f the layers and longitudinal
starts out as constant for small momenta. In the thin-meta/@nd transverse here mean the field components that are par-

film case the modes on the back sides of the films interfer&llel and perpendiculaibut still in the plangto the momen-
and contribute; thus there are four modes contributing to th&!m g.

interaction and hence the different asymptotic behavior is not
surprising. Longitudinal polarizability

In the full retarded calculation both longitudinal and | ot s first start with the longitudinal case. We choose to
transverse interactions contribute. The result coincides Wlﬂrbt the momentum point in the direction. We apply an

the full nonretarded result for small and intermediate separasyernal longitudinal electric field, which then also points in

tions but _drast|cally changes c_haracter whgn the Casimir aspe ¢ girection. Thus we have

ymptote is approached; then it follows this asymptote and

becomes independent of the material parameters of the .

sheets. That the results in this limit agree with those of the Eex(X,Y,0;t) =Eey(,0,0;0) €' @Y,

thick-metal-plate case is not too surprising. In this limit the

fields are totally reflected and these boundary conditions ar&his field will lead to both an induced charge density and an

the same in both cases. The material parameters are oniyduced current density. These are not independent but re-

important at which separation the Casimir limit is reached. lated through the continuity equation. The charge density is
The maximum force obtained for our model system is not

very large, around fodyn/cm 2 (1(.)5 N/m~?) for the wells p(%,—,2,0) = p(0,0— ; )&l 0D 5(2)

with highest electron concentration. Expressed in another

way, it is roughly one-tenth of the electrostatic repulsive 1 ‘ (Gt Gz o)

force between the electrons in the two wells. The effects L ; p(Q,0,=; w) e HLT .

from these forces on the system are probably small. One way z

to measure the forces between quantum wells would be tg

use an atomic force microscope and let one of the wells be i . 7 .
P ourier transform is independent qf. The current density

the tip and the other below, but very close to the surface. t point inside the | Y tn t b
In summary, different contributions to the force dominateMuSt point inside the layer. Hence, taeomponent must be
Q. Use of the continuity equation,

for different separations. For small separations, of the orde
of the Thomas-Fermi screening length and smaller, both

single-particle and collective longitudinal excitations con- dp(r,t) ]

tribute; in the intermediate separation range collective longi- a —V-j(r.p),
tudinal excitations completely dominate; for large separa-

tions the contributions from collective longitudinal leads to

excitations are suppressed and replaced by contributions

from collective transverse excitations. Our numerical results

are valid for all separations and clearly demonstrate the —i0-j(9,00;;0)=~1wp(q,0,—; ),
crossover between the three interaction regimes.

Eil(a,Z0)=—a §(q;0)Cq.o(2)ERi(a,2=0;0),

his charge density is independent of theoordinate and its

which means that the current must point in thelirection.
We have
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— 41

Now, we are interested in the induced electric field. The E, (0,00, ®)=iq = (9,0~ 0)

electric field depends on both the scalar and vector poten-
tials, according to

«l —
\v 1o x| 1+ ° i
Ve cal w2 _ 1@
K E —q 2
We use Coulomb guage where the scalar potential is instan-
taneous and the vector potential transverse. In Coulomb w\? )
gauge we have . K < —q
=—i— 00— 0) ——|.
2 4 pree p(q ) e
Vép=———, k| —| —g2
K c
K 2 4 We want thez dependence of the induced field, which is
V2A— 252 A=— vy Jts obtained by taking the inverse Fourier transform of this ex-

pression with respect tq,. The result is

_ 27
Eing(9,0Z;0)=—i pre p(0,0,—;w)

2
w
©l | e Va7 x(wicrd]

X  —
A=——— .. JZ— k(wlc)?

clg“—« < 2w
=g p(9,0,—w)
The(q in these last relations is a genegaihat need not point
inside the layer and the indéxmeans the transverse part of X \1— k(wlqc) o~ V1-«(w/qc)%l

the current density, i.e., the component along this sub-

i - ield i 2
tracted from the total current density. The induced field is - < (9,0, : ) Y(q, w)e~ el

— a1
Eina(0,00,; @) =i(0x+0,) rFi p(9,0,— ;) =—ap(; w)E(q,2=0;w)
X y(q,w)e” Yq.w)dlz
. 47T .
Hio —————71(4.00;;0). where
C2 N 2_ _
a K( C) ¥(9,0)=V1-k(w/qc)*= V1 (w/¢c)%

The first term is a longitudinal field and the second ain the plane we have
p-polarized transverse one. In the plane itself they are indis-
tinguishable. They are both experienced as longitudinal. E;,4(q,0z=0;0)=—ay(q;w)y(q,0)E(q,2=0;w)

Now, we have _
=—a o(0;w)E(q,2=0;w).

™
Eind(0.0021 @) =1(0ht @) = p(Q.0.~0) In the other plane we have

Eina(9,0]2|=d;0) = — ap(q; ©) ¥(q, 0) e~ 7a-)ad

_ 4a d,
tlo 0\ g X Eqo(9,2=0;w)
c?q2—«|— ~| [
C =- ao(q;‘U)Cq,wEtot(Q:Z:O;w)-
J; . .\ w From these relations we find that the longitudinal interaction
X| = X-=z| —p(0,0,~;0). is the same as without retardation except for the following
q changes:
As can be seen there is, apart from the field in xheirec- ~
tion, which is the field we are interested in, also a field in the ao(Q; @)= a o(0;w) = ¥(0, ) ag(q; w),

z direction. The carriers can only respond to the field inxhe
direction. This field is Cqﬁcqyw:ew(q,wmd_
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Transverse polarizability The expression inside the square brackets is the transverse
Let us now treat the transverse case. We still choose to |é@"@logue of the polarizability in two dimensions. In the plane

the momentum point in the direction. We apply an external we

transverse electric field, which then points in thdirection.
Thus we have

Eex(X,y,0it) = Eext(qyoyo;w)ei(qxfwt).
The net induced current density is

iy (r,)=jy(0,0,—;0)e' @V 5(z)

1o i _
=T qE 1y(9,0,—; )€ @+ azm b,

The current density is pointing in the direction and is in-
dependent of thegy coordinate and its Fourier transform is
independent ofg,. This current contributes to the vector

potential, which in turn contributes to the induced electric

field:

. W
Eind(9.00z;0) =1 = A(0,00;; )

. 4 .
=iw 2 11(9,0,—; w)
ol=2_ (2
. 4 .
=lw —F o2 1y(9,0,—; ).
2l=2_ |2
c _q K(C)

Thus the induced field points in thedirection. We can drop
the vector notation:

. 4 .

Eing(d0,.00,;0) =10 T 7o 1(9,0—;w).
5 z_K(_>

c

We want thez dependence of the induced field, which is

have
® 2
Tq

E 0z=0;0)= 2mq
ind(9,02= ’w)_y(q,w) o 7 @)
XEtot(anyZIO;w)y
and in the second plane
Gl
. \cq i2mq
Eind(a,0]2|=d;w) = 0.0 | xo o (q,w)

X e YA4@adE (q.0z=0;w).
We get the contribution to the interaction energy from this

s-polarized interaction by using the same expressions as in
the nonretarded interaction with the replacements:

(&

(0 0) ~ @ b(d) =gy ab(Gie)
il
B B E i2mq .
“Haw w70

Cq_’ Cq,w: e Y(Q’w)qd_
The conductivity is

(o)

2
Po€
+1

ho '

m* @

al(q,w)=i

obtained by taking the inverse Fourier transform of this ex-wherelIl(w) is the current-current correlation function. The

pression with respect tq,. The result is

2
c?Jg%— k(wlc)?

Xj(q,0,—;w)e” Vo= k(wlc)?l2]

Eing(0,0Z,0)=iw

2
c2\Jg?— k(wlc)? (@)

X Etot(q,O,ZZ O,w)

=iw

Xe V92— k(wlc)?lZ]

® 2
&
~ (g,0)

X Eipi(q,02=0;w)

i2mq

t
= a'(d.0)

x @~ YAz

first term dominates completely in the expression for the
interaction energy. Thus we do not really need the current-
current correlation for the present problem. However, it may
be useful in other situations so we give it here anyhow. We
find it is

e2 2
M(QIWQ)=~ 5"

m*‘; (GWZ—ZQZ

—\/Q%[\/(l—wz—Qz)2+4W2

—(1+W2- Q)M (1-W?— Q%)%+ 4W?
+2(1+W2—Q2)]],

when expressed in our dimensionless variables from the
main text. It is given on the imaginary frequency axis, which
is where it is needed in calculations of the type performed
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here. The result near the real axis, if needed, is obtainegd!(q;w)=1
through an analytical continuation.

27q
+i— , Y(q; including retardation,
Transverse dielectric function WK Y(d,0)0 (g 0) 9

In three dimensions transverse and longitudinal dielectric

. S ) . 2mq . .
functions have the same long-wavelength limits. It is also ¢'(q:w)=1+i — o'(q;w) neglecting retardation.
true in two dimensions as is demonstrated below. The trans- WK

verse dielectric function enters the relation between the totg}, ine long-wavelength limit, neglecting retardation, we have
and external fields in the following way:

~ 271€2p q q2V2
2 2 . 0 F
= (Cq) SED(qvlw)%l Km* 2 4 2 |

WZe (0 ) — (Sa)2

This leads to _ 2me%py q 3q%vZ
8|2D(q,lw)%1+ P ? 1_W ,
. 7T .
el(Gie)=1-io c*qy(q,w) o'(00) where v¢ is the Fermi velocity. Including retardation we
have
2
* #ﬁm o) 2me’pq q o°v
7 Stzo(q,iw)~1+mTKp Y(Q,iw)(l— 4w2>,
. 2mq ¢
=1+i ok v(q,w)0'(q; w). o e? q 3q2v2
| . . m pO_ . . F
Thus we have son(@iw)~1+ — = 0 y(q"w)(l 4w )
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