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Interaction energy for a pair of quantum wells
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We present a calculation of the interaction energy and force between two quantum wells in which the wells
are treated as strictly two-dimensional metallic sheets. Numerical results are presented for separation values
ranging from 1 to 1012 Å. Both nonretarded and retarded calculations are presented. Three distinct ranges with
different separation dependences are clearly revealed in the results; the Casimir limit for large separations; the
van der Waals range for intermediate separations; the small separation limit where also the single-particle
continuum contributes. The result in the Casimir limit coincides with the corresponding result for two metal
half-spaces but the van der Waals result is different from both the half-space result and that of two thin films.
In the present problem the energy and force varies asd25/2 andd27/2, respectively.@S0163-1829~98!02511-9#
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I. INTRODUCTION

In the late 1940s Casimir1 used a new and very successf
approach to calculate the force between neutral objects
studied two charge-neutral metallic plates. Surprisingly,
large separation this force is independent of the dens
charge, and effective mass of the carriers.2 Instead it depends
on the speed of light. He related the force to the chang
zero-point electromagnetic energy with distance between
objects. There has been a renewed interest3,4 in these so-
called Casimir forces lately that has inspired the pres
work. A historical introduction to the field with emphasis o
the experimental attempts to verify the Casimir and van
Waals forces is found in the review paper by Elizalde a
Romeo.5 Complimentary reviews can be found where t
Casimir effect in other areas, like elementary-particle phys
and cosmology, is included.6 The most detailed and recen
verification of the Casimir effect is found in Ref. 7.

Schmit and Lucas8 and also Craig9 used a kindred ap
proach to determine the surface energy of simple met
They attributed this to the change in zero-point energy of
surface plasmons when the metal is split in two and
pieces are separated to infinite distance. Van Kampen,
boer, and Schram10 used the zero-point energy of the surfa
modes of a dielectric to derive the van der Waals force
tween two semi-infinite dielectric media. They also demo
strated that the Casimir result was equivalent to that from
macroscopic Lifshitz theory;11 this theory is rather compli-
cated and involves the introduction of random fluctuat
sources inside the dielectrics.

The modes in the two approaches are quite different,
both types of mode are present in the spectral range w
the dielectric function of the metal or dielectric has a ne
tive value. In the Casimir case they are formed from pur
transverse, freely propagating electromagnetic waves~pho-
tons! multiple-reflected at the surfaces of the two metals
dielectrics; the net result is modes of standing-wave-
wave-guide-type. In the van der Waals case they are mo
that are localized to the surfaces of the objects~exponentially
decaying outside the objects!. Both types of mode are
present and contribute to the energy of the system and
force between the objects, but they dominate the force
570163-1829/98/57~11!/6592~10!/$15.00
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different separation ranges. For both types of mode the fie
decay exponentially inside the material. The induced char
and currents are localized to the surfaces. In the van
Waals case, when the force between two metal or dielec
plates is considered, there are two modes; one with hig
energy and one with lower, both ofp-polarized type; for the
high- ~low-! energy mode the induced charge and current
even~odd! with respect to a plane in the middle between t
surfaces; the energy of these modes changes with separa
and this change causes the force. In the Casimir case t
are many standing-wave-type modes of bothp-polarized~TE
modes! and s-polarized ~TM modes! type; the number of
modes and their energies change with separation, and t
changes cause the force.

In the present work, we study a model system of tw
strictly two-dimensional~2D! metallic sheets. Since it doe
not add to the complexity we have let the sheets be emb
ded in a dielectric medium. This model system very w
represents the ‘‘current-drag’’ system of Ref. 12. This s
tem consists of two narrow electron quantum wells in GaA
Each well can to a good approximation be treated as stri
2D as long as the following two conditions are fulfilled: th
separation between the wells is big enough, so that the w
functions in the different wells are not overlapping; the we
are narrow enough so that in each well only one leve
occupied and the closest unoccupied level is far enough u
energy for interband transitions to be negligible.

We study how the interaction energy and the attract
force between these sheets vary with separation. We m
both nonretarded and retarded calculations. We first perf
the nonretarded calculations, which are simpler. The inte
tion energy is just the correlation energy between the she
In Sec. II we very briefly describe the system and its diel
tric properties. The dielectric properties of 2D, quasi-2D, a
coupled 2D systems and their collective modes have b
studied extensively in the past13–19 so we keep the presenta
tion of these properties to a minimum. In Sec. III we pres
the calculation of the correlation energy and in Sec. IV
perform a calculation based on the zero-point energy of
plasmon modes. In the full retarded calculation both longi
dinal and transverse interactions contribute. These calc
tions are presented in Sec. V. Section VI is devoted to
6592 © 1998 The American Physical Society
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57 6593INTERACTION ENERGY FOR A PAIR OF QUANTUM WELLS
presentation of the numerical results and comparison
tween the different approaches. The asymptotic Casimir
van der Waals limits are also given. Finally, Sec. VII co
tains summary and conclusions.

II. THE SYSTEM

We have chosen to perform our calculations on
‘‘current-drag’’ system of Ref. 12. This system consists
two narrow electron quantum wells in GaAs. The electr
density r0 is in each well 1.531011 cm22. The effective
massm* in the conduction band of GaAs is 0.0665 electr
masses and we use the value 13.0 for the background di
tric constantk. We have treated each well as strictly 2D. W
have further limited ourselves toT50. In an interacting elec-
tron system the energy consists of kinetic energy, excha
energy, and correlation energy. The correlation energy is,
definition, the additional energy contribution beyond t
Hartree-Fock approximation. Since there is no overlap
tween wave functions in neighboring wells there is no int
well exchange energy and the kinetic energy and ordin
intrawell exchange energy are independent of separa
Thus the only energy that changes with separation is
correlation energy.

For the calculations we need the dielectric properties
the system. The elements of the dielectric matrix when re
dation effects are neglected are easily found: For inla
screening,
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112a01a0
2~12cq
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for interlayer screening,
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,

where cq5exp(2qd) and a0(q,v) is the 2D
polarizability.13,14 The potentialsVext

(1) , Vext
(2) , V1 , andV2 are

FIG. 1. Feynman diagrams for the correlation energy in
two-layer system. The ellipses represent polarization bubbles
the dashed lines the interactions indicated in the figure. The n
bers 1 and 2 refer to which well the electron belongs to.
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the external potential from an external charge distribut
placed in layer 1, the corresponding potential in layer 2,
resulting potential in layer 1 when the potentials from
induced charges are taken into account, and the resu
potential in layer 2, respectively.

III. CORRELATION ENERGY APPROACH

In this section we make a strict nonretarded derivation
the interaction energy between two quantum wells. As
mentioned in the previous section, for separations la
enough so that there is no overlap between the wave fu
tions in different wells the only energy contribution that d
pends on separation is the correlation energy. The excha
and kinetic energies are constant.

The correlation energy per electron in a 3D or 2D syst
is in the RPA~random-phase approximation! given by20

Ec
RPA52

1

2N ( 8
q

3H E
2`

` dv

2p
\E

0

1

dlF 2a08~q,v!

11la08~q,v!
1a08~q,v!G J

52
1

2N ( 8
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52
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` dv

2p
\$a08~q,v!2 ln@11a08~q,v!#%J ,

where N is the total number of electrons anda08(q,v)
5a0(q,iv), i.e., the polarizability calculated on the imag
nary frequency axis.21 The prime on the summation symbo
denotes that theq50 term is excluded from the summation
In two dimensions the polarizability is expressed in our
mensionless variables:

Q5
q

2k0
, k05~2pr0!1/2,

W5
\v

4E0
, E05

\2k0
2

2m*
,

y5
m* e2

\2kk0
,

wherek0 is the Fermi wave number, as
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The correlation energy per electron in two dimensions
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`E
0

`

dv dq q$a08~q,v!

2 ln@11a08~q,v!#%.

In the present system with two metallic sheets a distancd
apart we get the Feynman diagrams in Fig. 1. These
grams represent the energy
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where N is the total number of electrons in the two we
taken together. Thus we have

Ec
RPA52

\

4p2r0
E

0

`E
0

`

dv dq q{ a08~q,v!

2 1
2 ln@112a08~q,v!1a08

2~q,v!~12cq
2!#}.

With the energy at infinite separation as reference energy
above result can be reduced to

Ec
RPA~d!2Ec

RPA~`!5
\

4p2 E
0

`E
0

`

dv dq q

3 lnF12
cq

2a08
2~q,v!

@11a08~q,v!#2G ,
where we have multiplied with 2r0 to get the total correla-
tion energy per unit area. This is the final result. It is rep
sented by curve 1 in Fig. 3 of Sec. VI.

IV. INTERACTION ENERGY AS CHANGE
IN ZERO-POINT PLASMON-ENERGY

The dispersions of the collective modes of our system
obtained as thev(q) for which the inverse dielectric func
tions of Sec. II diverge~or, equivalently, when the determ
nant of the dielectric matrix is zero!. For this choice ofv and
q we may have an induced electric field even in the abse
of external perturbations. Thus, the dispersion curves for
collective modes are obtained as solutions when the den
he

-

re

ce
e
i-

nator ~the interlayer and intralayer versions of the inver
dielectric function have the same denominator! is put equal
to zero. At infinite separation the denominator is just the
dielectric function squared. This function is zero on the pl
mon dispersion curve. Thus we have two degenerate s
tions in this limit. When the separation decreases the deg
eracy is lifted. One curve moves upwards and the ot
downwards. This is illustrated in Fig. 2 which is valid fo

FIG. 2. The dispersion of the collective modes. The thick curv
are the dispersions of the two modes for the well separation 50
The uppermost thin curve is the asymptotic limit for the upp
mode at zero separation. The thin curve in the middle is
asymptotic limit for both modes at infinite separation. The low
thin curve is the upper boundary of the single-particle continuu
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57 6595INTERACTION ENERGY FOR A PAIR OF QUANTUM WELLS
d5500 Å. At zero separation the lower one is pushed co
pletely into the continuum and the upper one is the solut
to the equation 112a0(q,v)50.

All the modes, for increasingq, sooner or later enter th
continuum. The number of modes does not decrease
one each time a mode enters the continuum. The numbe
continuum modes increases with one at this point. We
facing a problem with this approach since we cannot de
mine where each mode goes. The energy of the collec
mode is shared among the continuum modes. This prob
was avoided by Schmit and Lucas and Craig by using th
drastic approximations. We use the approximation that
mode stays at the boundary of the continuum. With this
proximation we get for the energy

E~d!5(
q

H F\2 v1~q,d!1
\

2
v2~q,d!G

2F\2 v1~q,`!1
\

2
v2~q,`!G J

5AE
0

` d2q

~2p!2 H F\2 v1~q,d!1
\

2
v2~q,d!G

2F\2 v1~q,`!1
\

2
v2~q,`!G J ,

wherev1(q,d) and v2(q,d) are the two collective mode
and A is the area of each quantum well. We have used
energy at infinite separation as our reference energy.
result from this calculation is represented by curve 2 in F
3 of Sec. VI.

V. RETARDATION EFFECTS

We have chosen to work in Coulomb gauge. In this gau
one part of the interaction between the electrons is in
form of the instantaneous, longitudinal Coulomb interact
~scalar potential! and the other part is via transverse photo
~vector potential.! The Hamiltonian for the system is

H5(
i

1

2m* Fpi2
ei

c
A~r i !G2

1
1

2 (
i j

eiej

kr i j

1(
k,l

\vk~akl
† akl1 1

2 !,

where the first term is the kinetic energy that contains
interactions via the vector potentialA. The second term rep
resents the scalar potential interaction and the last term is
free photon Hamiltonian. For very large separations betw
the wells we need to take retardation effects into accoun
the distance between two electrons is smaller thanc̃/v, re-
tardation effects in the interaction between the electrons
be neglected. We letc̃ denote the speed of light in the me
dium surrounding the wells. The nonretarded results are
tained by letting the speed of light tend to infinity. From t
Hamiltonian we see that this corresponds to neglecting
vector-potential interaction completely. Now, in the spec
system we consider here, the electrons are only free to m
in a plane. In a plane only one longitudinal and one tra
verse electric field can exist. It turns out that the longitudi
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electric field and thep-polarized photons combine into on
field that is longitudinal in the plane. The induced charge a
current densities from such a field will also produce a field
that kind. Thes-polarized photons produce an electric fie
that is transverse in the plane. The current induced by su
field produces a field of the same type. In a translatio
invariant and homogeneous system there are three type
normal modes; two with transverse fields and one with lo
gitudinal fields. In the present system there are only t
types of normal modes; one withp-polarized fields, i.e., with
electric vector in the plane formed by the in-plane mome
tum q and the normal to the wells, experienced as longitu
nal in the 2D sheets; one withs-polarized fields, i.e., with
electric vector perpendicular to this plane, experienced
transverse in the 2D sheets.

The two types of interaction involving longitudinal an
transverse electric fields in the planes defined by the
sheets will not mix and the energy is given by a sum of t
sets of diagrams of the type given in Fig. 1, one set for
longitudinal interaction and one containing only transve
interactions. Let us now discuss the longitudinal interacti
The coupling to the longitudinal field andp-polarized pho-
tons is given by the scalar potential and thep•A terms in the
Hamiltonian. The resulting interaction energy per unit area

El 1p~d!5
\

4p2 E
0

`E
0

`

dv dq q lnH 12e22qdg8~q,v!

3F g8~q,v!a08~q,v!

11g8~q,v!a08~q,v!G
2J .

This energy is represented by curve 4 in Fig. 3 of Sec.
The derivation of this expression is given in the Append
Compared with the nonretarded result for the correlation
ergy, we gave earlier, we find that the polarizability has
tained a factorg8(q,v)5g(q,iv)5A11(v/ c̃q)2 in front,
which is in agreement with the polarizability obtained b
Stern.14 Furthermore, the factor appearing in the inte
well interactions is modified according tocq→cq,iv

5e2qdg8(q,v).
The response to thes-polarized fields is a transverse cu

rent. It is described by the transverse conductivity, which
completely dominated by the contribution originating fro
the A2 term in the Hamiltonian. Also thep•A terms in the
Hamiltonian give a contribution to the transverse conduc
ity, in the form of the current-current correlation functio
We have derived this function for two dimensions. It h
negligible effects for the present problem but we still gi
the function in the Appendix.

The energy per unit area from thes-photon interaction is

Es~d!5
\

4p2 E
0

`E
0

`

dv dq q lnH 12e22qdg8~q,v!

3F 2pe2r0 /qm* c2g8~q,v!

112pe2r0 /qm* c2g8~q,v!G
2J .

The result is represented by curve 3 in Fig. 3 of Sec. VI. T
derivation of this expression is given in the Appendix.
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VI. NUMERICAL RESULTS

The main result of this work is presented in Fig. 3. W
present all results in the form of the interaction energyE per
unit area. The forceF is obtained from these results just b
performing the derivative with respect to separation. The
ymptotesa1 anda2 represent the van der Waals and C
simir results, respectively. They are the large separation
its of the nonretarded and retarded treatments, respecti
The van der Waals result,a1, depends on the material pa
rameters according to

E'20.012 562e\Ar0 /km* d25/2,

F'0.031 406e\Ar0 /km* d27/2.

This d dependence is different from the behavior of tw
semi-infinite solids10,22,23whereE andF depend ond asd22

and d23, respectively. It does not agree with the result
two thin films either where the dependences ared24 and
d25, respectively.22,23

The Casimir result,a2, on the other hand, agrees with th
result for two semi-infinite metals. It is

E52
\ c̃p2

720d3 ,

F5
\ c̃p2

240d4 .

The asymptotea2 has a steeper slope thana1 and the two
asymptotes cross at the separationd'1.1907m* c2/r0e2. It
is to be noted thata2 does not depend on the material p
rameters of the sheets. The reason is the following.

FIG. 3. The interaction energy per unit area for our model s
tem as function of separation, with parameters in accordance
the ‘‘current drag’’ system of Ref. 12. The dotted linesa1 anda2
are the large separation asymptotes for the van der Waals and
simir energies, respectively. Curves 1 and 2 are the nonreta
results from the correlation-energy and plasmon zero-point-en
approaches, respectively. Curves 3 and 4 are the retarded con
tions from thes-polarized and longitudinal plusp-polarized inter-
actions, respectively. The total retarded result, i.e., the sum
curves 3 and 4, is represented by curve 5.
s-
-
-
ly.

r

-

In our expression for the retarded contribution from t
longitudinal andp-polarized interaction the exponential fa
tor in the integrand guarantees that the region near the or
only of the vq plane contributes. There,a08(q,v) is very
large, which means that the polarizabilities in the numera
and denominator cancel out. We get the following contrib
tion:

E~d! long'
\

4p2 E
0

`E
0

`

dv dq q ln@12e2qdA11~v/ c̃q!2
#

52
\ c̃p2

48033d3 .

The same applies for the contribution that comes from
s-polarized interaction and it gives an identical result. T
polarizabilities and hence all material parameters comple
drop out of the expressions for large distances.

Curve 1 represents our full nonretarded result from
correlation-energy calculation. It approaches the van
Waals result for intermediate and large separation. In
correlation energy both single-particle and collective exc
tions contribute. The result is obtained as an integral over
vq plane. In the small-q limit the contributions from the
collective excitations dominate, and one can show that th
contributions are just the zero-point energy of the mod
The exponential factor in the integrand guarantees that
large separations only the small momentum region cont
utes. Hence, in that limit the correlation energy approac
the zero-point energy of the modes.

Curve 2 is the result from the calculation where the int
action energy comes entirely from the zero-point energy
the plasmon modes. We find that with this approach we
tually get a repulsive force for small separations and a ne
tive adhesion energy. As we mentioned earlier we let
modes stay at the boundary of the continuum instead of
tering it. Another possibility would be to let the modes dro
to zero energy as soon as they enter the continuum. We h
also calculated the energy and force with this approximati
The results are quantitatively quite different but qualitative
the same, with a repulsive force at short range. For inter
diate and large separations the result merges with curv
and the van der Waals result,a1, and the result is indepen
dent of how we treat the modes when they merge with
single-particle continuum. Thus for large separations the
proach where only the zero-point energy of the plasmon
calculated works well and since this means a simpler ca
lation this approach may be preferable. This is no longer t
for very large separations where the retardation effects
come dominant. It turns out that in this regime the for
caused by the Coulomb interaction is suppressed and
placed by photon interactions. In the correlation energy
proach both the longitudinal collective excitations and tra
verse single-particle excitations contribute to the energy.
large separations and neglect of retardation effects the
lective part dominates the force. When retardation effects
included the collective part of the force is suppressed
another contribution appears. This contribution turns up
an imaginary part inga0 for frequencies above the dispe
sion curve for the light. It has its origin in emission of th
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57 6597INTERACTION ENERGY FOR A PAIR OF QUANTUM WELLS
transverse photons. That this is so is especially obviou
the case ofs-polarized photons, where there are no collect
plasmon modes at all, but we still get the same contribut
to the force as from thep-polarized ones. Curve 3 is th
contribution froms-polarized photons. Curve 4 represen
the contribution from the longitudinal andp-polarized inter-
actions. It reproduces the full nonretarded result for sm
and intermediate separations. When it approaches asym
a2 it changes direction and follows a curve representing h
of the Casimir result. The total retarded result, i.e., the s
of curves 3 and 4, is represented by curve 5. This full re
coincides with the nonretarded result for small and interm
diate separations and with the Casimir result for large se
rations. For large separations the scalar-potential contr
tion is suppressed and partly canceled by the vector-pote
contribution. This is maybe most clearly seen in the disp
sion curves of the plasmon modes. These are, when reta
tion is taken into account, in the long-wavelength lim
pushed down below the dispersion curve for the light.

One interesting thing to notice is that the full result do
not follow the upper one of the two asymptotesa1 anda2.
Instead, it follows the lower one. This is contrary to what o
would imagine since the result is the sum of the plasmon
photon contributions. The reason is that when the phot
start to contribute the plasmon contribution drops in size,
vice versa.

The full nonretarded and full retarded results are the sa
for small and intermediate separations but split up for lar
separations. In Fig. 4 we have expanded the bifurcation
gion. Figure 5 shows the full retarded results for differe
carrier concentrations. The curves are shifted towards hig
energies with increasing densities but they all approach
same density-independent asymptote for large separation
the figure we have given the results for the densities
31010, 131011, 131012, and 131013 cm22, respectively.
These examples span the reasonable density range fo
real system we have chosen to model. The vertical bar in
figure indicates the 2D Thomas-Fermi screening len
which is density independent, in contrast to the case in th
dimensions. There is a clear connection between this scr

FIG. 4. An expanded view of the bifurcation region of Fig. 3.
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ing length and the separation where the short-range, sin
particle correlations become important.

It is of experimental interest to find an estimate of t
maximum possible Casimir force in our system. If we ma
the approximation that the van der Waals and Casimir for
represent the actual force to the left and right of, resp
tively, and all the way up to the crossing point between
ymptotesa1 and a2, we find that the maximum Casimi
force is Fmax

Casimir'0.02r0
4\e8/Ak(m* )4c7. The result de-

pends strongly on both the carrier density and the effec
mass. One should choose as high a density and as sma
effective mass as possible if the goal is to study the Cas
force experimentally.

VII. SUMMARY AND CONCLUSIONS

We have determined the energy and force as function
separation between two two-dimensional metallic sheets
model system representing a pair of quantum wells. We p
formed both nonretarded and retarded calculations.

The nonretarded calculations were performed with t
different approaches. In one approach the energy varia
with separation was attributed to the change in zero-po
energy of the collective modes of the system. We found t
the result for small separations was sensitive to the unav
able approximations concerning how to treat the mo
when they enter the single-particle continuum. The appro
led to a force that is attractive at long range but repulsive
short range. With the approximations we used, the adhe
energy was negative. In the other, more strict, approach
calculated the correlation energy in the random-phase
proximation. This led to an attractive force at all distanc
The forces in the two nonretarded approaches merge
large separation and have the asymptotic form;d27/2.
These forces drop off faster than that derived from se

FIG. 5. Our full retarded results for the interaction energy p
unit area as functions of separation for the carrier densitie
31010, 131011, 131012, and 131013 cm22, respectively. The
magnitude of the energy increases with density. The vertical
indicates the point where the separation equals the two-dimens
Thomas-Fermi screening length.
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infinite metallic plates and more slowly than in the case
two thin films. The forces depend on the electron density
electron effective mass. Improvements of the theory by
ing beyond RPA through the inclusion of local-field corre
tions would be much more complicated,25,26only modify the
results for small separations and would not change
asymptotic form of the forces. For small separations th
would, in a real system, be other complications from sho
range forces on the atomic scale, effects from imperfecti
like interface roughness and sooner or later, when the
tance between the wells decreases further, effects from
rier tunneling between the wells and interlayer exchange
fects. All these effects are beyond the scope of the pre
work.

The cause of the differences in asymptotic form for t
present system and the thick-metal-plate case is the di
ence in dispersion of the collective modes: In the pres
case the dispersion is of square-root type while the dis
sion of the surface plasmon in the thick-metal-plate c
starts out as constant for small momenta. In the thin-me
film case the modes on the back sides of the films inter
and contribute; thus there are four modes contributing to
interaction and hence the different asymptotic behavior is
surprising.

In the full retarded calculation both longitudinal an
transverse interactions contribute. The result coincides w
the full nonretarded result for small and intermediate sep
tions but drastically changes character when the Casimir
ymptote is approached; then it follows this asymptote a
becomes independent of the material parameters of
sheets. That the results in this limit agree with those of
thick-metal-plate case is not too surprising. In this limit t
fields are totally reflected and these boundary conditions
the same in both cases. The material parameters are
important at which separation the Casimir limit is reache

The maximum force obtained for our model system is
very large, around 106 dyn/cm22 (105 N/m22) for the wells
with highest electron concentration. Expressed in ano
way, it is roughly one-tenth of the electrostatic repulsi
force between the electrons in the two wells. The effe
from these forces on the system are probably small. One
to measure the forces between quantum wells would b
use an atomic force microscope and let one of the wells b
the tip and the other below, but very close to the surface

In summary, different contributions to the force domina
for different separations. For small separations, of the or
of the Thomas-Fermi screening length and smaller, b
single-particle and collective longitudinal excitations co
tribute; in the intermediate separation range collective lon
tudinal excitations completely dominate; for large sepa
tions the contributions from collective longitudina
excitations are suppressed and replaced by contribut
from collective transverse excitations. Our numerical res
are valid for all separations and clearly demonstrate
crossover between the three interaction regimes.
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APPENDIX

In this appendix we derive the longitudinal and transve
polarizabilitiesã 0

l and ã 0
t , respectively, when retardatio

is taken into account. To find these we study the respons
a single layer atz50 to an applied electric field, longitudina
or transverse. The induced currents and charge densitie
the layer lead to an induced field in and outside the lay
The polarizabilities are identified through the relation b
tween the induced and the total fields in the layer. If w
instead use the induced field in a layer atuzu5d we may also
identify the factorcq,v , replacingcq , which appeared in the
nonretarded case. We have

Eind
l ,t ~q,z;v!52ã 0

l ,t~q;v!cq,v~z!Etot
l ,t~q,z50;v!,

where the superscriptsl or t indicate if the fields are longi-
tudinal or transverse, respectively. The fields are the com
nents of the fields in the plane of the layers and longitudi
and transverse here mean the field components that are
allel and perpendicular~but still in the plane! to the momen-
tum q.

Longitudinal polarizability

Let us first start with the longitudinal case. We choose
let the momentum point in thex direction. We apply an
external longitudinal electric field, which then also points
the x direction. Thus we have

Eext~x,y,0;t !5Eext~q,0,0;v!ei ~qx2vt !.

This field will lead to both an induced charge density and
induced current density. These are not independent bu
lated through the continuity equation. The charge density

r~x,2,z,t !5r~q,0,2;v!ei ~qx2vt !d~z!

5
1

L (
qz

r~q,0,2;v!ei ~qxx1qzz2vt !.

This charge density is independent of they coordinate and its
Fourier transform is independent ofqz . The current density
must point inside the layer. Hence, thez component must be
0. Use of the continuity equation,

]r~r ,t !

]t
52¹• j ~r ,t !,

leads to

2 iq• j ~q,0,qz ;v!52 ivr~q,0,2;v!,

which means that the current must point in thex direction.
We have

j ~q,0,2;v!5
v

q
r~q,0,2;v!.
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Now, we are interested in the induced electric field. T
electric field depends on both the scalar and vector po
tials, according to

E52¹w2
1

c

]

]t
A.

We use Coulomb guage where the scalar potential is ins
taneous and the vector potential transverse. In Coulo
gauge we have

¹2w52
4pr

k
,

¹2A2
k

c2

]2

]t2 A52
4p

c
j t ,

which means that

w5
4pr

kq̃ 2 ,

A5
4p

cF q̃ 22kS v

c
D 2G j t .

The q̃ in these last relations is a generalq̃ that need not point
inside the layer and the indext means the transverse part
the current density, i.e., the component along thisq̃ is sub-
tracted from the total current density. The induced field i

Eind~q,0,qz ;v!5 i ~qx1qz!
24p

kq̃ 2 r~q,0,2;v!

1 iv
4p

c2F q̃ 22kS v

c
D 2G j t~q,0,qz ;v!.

The first term is a longitudinal field and the second
p-polarized transverse one. In the plane itself they are in
tinguishable. They are both experienced as longitudi
Now, we have

Eind~q,0,qz ;v!5 i ~qx1qz!
24p

kq̃2 r~q,0,2;v!

1 iv
4p

c2F q̃ 22kS v

c
D 2G

qz

q̃

3S qz

q̃
x̂2

q

q̃
ẑD v

q
r~q,0,2;v!.

As can be seen there is, apart from the field in thex direc-
tion, which is the field we are interested in, also a field in
z direction. The carriers can only respond to the field in thx
direction. This field is
e
n-

n-
b

s-
l.

e

Eind~q,0,qz ;v!5 iq
24p

kq̃ 2 r~q,0,2;v!

3F 11

kS v

c
D 2

FkS v

c
D 2

2q̃ 2G
qz

2

q2G
52 i

4p

kq2 r~q,0,2;v!F kS v

c
D 2

2q2

kS v

c
D 2

2q̃ 2G .

We want thez dependence of the induced field, which
obtained by taking the inverse Fourier transform of this e
pression with respect toqz . The result is

Eind~q,0,z;v!52 i
2p

kq2 r~q,0,2;v!

3F q22kS v

c D 2

Aq22k~v/c!2
Ge2Aq22k~v/c!2uzu

52 i
2p

kq
r~q,0,2;v!

3A12k~v/qc!2e2A12k~v/qc!2quzu

52 i
2p

kq
r~q,0,2;v!g~q,v!e2g~q,v!quzu

52a0~q;v!Etot~q,z50;v!

3g~q,v!e2g~q,v!quzu,

where

g~q,v!5A12k~v/qc!25A12~v/qc̃!2.

In the plane we have

Eind~q,0,z50;v!52a0~q;v!g~q,v!Etot~q,z50;v!

52ã 0
l ~q;v!Etot~q,z50;v!.

In the other plane we have

Eind~q,0,uzu5d;v!52a0~q;v!g~q,v!e2g~q,v!qd

3Etot~q,z50;v!

52ã0
l ~q;v!cq,vEtot

l ~q,z50;v!.

From these relations we find that the longitudinal interact
is the same as without retardation except for the follow
changes:

a0~q;v!→ã 0
l ~q;v!5g~q,v!a0~q;v!,

cq→cq,v5e2g~q,v!qd.
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Transverse polarizability

Let us now treat the transverse case. We still choose to
the momentum point in thex direction. We apply an externa
transverse electric field, which then points in they direction.
Thus we have

Eext~x,y,0;t !5Eext~q,0,0;v!ei ~qx2vt !.

The net induced current density is

j y~r ,t !5 j y~q,0,2;v!ei ~qx2vt !d~z!

5
1

L (
qz

j y~q,0,2;v!ei ~qx1qzz2vt !.

The current density is pointing in they direction and is in-
dependent of they coordinate and its Fourier transform
independent ofqz . This current contributes to the vecto
potential, which in turn contributes to the induced elect
field:

Eind~q,0,qz ;v!5 i
v

c
A~q,0,qz ;v!

5 iv
4p

c2F q̃ 22kS v

c D 2G j t~q,0,2;v!

5 iv
4p

c2F q̃ 22kS v

c D 2G j y~q,0,2;v!.

Thus the induced field points in they direction. We can drop
the vector notation:

Eind~q,0,qz ;v!5 iv
4p

c2F q̃ 22kS v

c D 2G j ~q,0,2;v!.

We want thez dependence of the induced field, which
obtained by taking the inverse Fourier transform of this
pression with respect toqz . The result is

Eind~q,0,z;v!5 iv
2p

c2Aq22k~v/c!2

3 j ~q,0,2;v!e2Aq22k~v/c!2uzu

5 iv
2p

c2Aq22k~v/c!2
s~q,v!

3Etot~q,0,z50;v!

3e2Aq22k~v/c!2uzu

5

S v

c̃qD 2

g~q,v! F i2pq

kv
s t~q,v!G

3Etot~q,0,z50;v!

3e2g~q,v!quzu.
let

-

The expression inside the square brackets is the transv
analogue of the polarizability in two dimensions. In the pla
we have

Eind~q,0,z50;v!5

S v

c̃qD 2

g~q,v! F i2pq

kv
s t~q,v!G

3Etot~q,0,z50;v!,

and in the second plane

Eind~q,0,uzu5d;v!5

S v

c̃qD 2

g~q,v! F i2pq

kv
s t~q,v!G

3e2g~q,v!qdEtot~q,0,z50;v!.

We get the contribution to the interaction energy from th
s-polarized interaction by using the same expressions a
the nonretarded interaction with the replacements:

a0~q;v!→ã 0
t ~q;v!5

2S v

c̃qD 2

g~q,v!
a0

t ~q;v!

5

2S v

c̃qD 2

g~q,v! F i2pq

kv
s t~q,v!G ,

cq→cq,v5e2g~q,v!qd.

The conductivity is

s t~q,v!5 i
r0e2

m* v
1 i

P~v!

\v
,

whereP~v! is the current-current correlation function. Th
first term dominates completely in the expression for
interaction energy. Thus we do not really need the curre
current correlation for the present problem. However, it m
be useful in other situations so we give it here anyhow. W
find it is

P~Q,iWQ!52
e2k0

2

6m* p H 6W222Q2

2&
1

Q
@A~12W22Q2!214W2

2~11W22Q2!#1/2@A~12W22Q2!214W2

12~11W22Q2!#J ,

when expressed in our dimensionless variables from
main text. It is given on the imaginary frequency axis, whi
is where it is needed in calculations of the type perform
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here. The result near the real axis, if needed, is obtai
through an analytical continuation.

Transverse dielectric function

In three dimensions transverse and longitudinal dielec
functions have the same long-wavelength limits. It is a
true in two dimensions as is demonstrated below. The tra
verse dielectric function enters the relation between the t
and external fields in the following way:

Etot5
v22~ c̃q!2

v2« t~q;v!2~ c̃q!2 Eext.

This leads to

« t~q;v!512 iv
2p

c2qg~q,v!
s t~q;v!

1 i
2pq

vkg~q,v!
s t~q;v!

511 i
2pq

vk
g~q,v!s t~q;v!.

Thus we have
wo
en
in
er
u

, t
ha
p

siv
er
s
d

nly
rie
hic
d

ic
o
s-
al

« t~q;v!51

1 i
2pq

vk
g~q,v!s t~q;v! including retardation,

« t~q;v!511 i
2pq

vk
s t~q;v! neglecting retardation.

In the long-wavelength limit, neglecting retardation, we ha

«2D
t ~q,iv!'11

2pe2r0

km*
q

v2 S 12
q2nF

2

4v2 D ,

«2D
l ~q,iv!'11

2pe2r0

km*
q

v2 S 12
3q2nF

2

4v2 D ,

where nF is the Fermi velocity. Including retardation w
have

«2D
t ~q,iv!'11

2pe2r0

m* k

q

v2 g~q,iv!S 12
q2nF

2

4v2 D ,

«2D
l ~q,iv!'11

2pe2r0

m* k

q

v2 g~q,iv!S 12
3q2nF

2

4v2 D .
tt.
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