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Heavy-hole intersubband scattering by confined optical phonons in a Si/ZnS superlattice
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The confinement of optical modes of vibration in a superlattice consisting of polar and nonpolar materials is
described by a continuum model. Specifically, the structure under investigation is the Si/ZnS superlattice.
Optical phonon modes in Si and ZnS layers are totally confined within their respective layers since both layers
can be treated as infinitely rigid with respect to the other layer. Since there are no associated electric fields with
nonpolar optical phonons in Si layers, only a mechanical boundary condition needs to be satisfied for these
nonpolar optical modes at the Si-ZnS interface. The optical phonons in Si layers can be described by guided
modes consisting of an uncoupleds-TO mode and a hybrid of LO andp-TO modes with no interface modes.
In ZnS layers, a continuum model hybridizing the LO, TO, and IP modes is necessary to satisfy both the
mechanical and electrostatic boundary conditions at the heterointerface. A numerical procedure is provided to
determine the common frequency between LO, TO, and IP modes. This is a procedure for obtaining the
eigenmodes of a mixed polar-nonpolar heterosystem. Analytical expressions are obtained for the ionic dis-
placement and associated electric field as well as scalar and vector potentials. The established model for the
confined optical phonons is used in calculating the intersubband heavy-hole scattering rate by optical phonons
in the Si/ZnS superlattice. Our results indicate that contributions to the intersubband scattering rate from Si or
ZnS confined optical phonons depend strongly on the distribution of envelope wave functions over the respec-
tive layers within which different types of optical phonons are confined.@S0163-1829~98!00312-9#
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I. INTRODUCTION

The demonstration of the InGaAs/AlInAs intersubba
quantum cascade laser atl54.2 mm ~Refs. 1 and 2! has
spurred interest in the use of silicon as the lasing mate
because of its integrability with advanced silico
microelectronics.3,4 There is also interest in moving the la
ing from the far- and mid-infrared range to the near-infrar
optical communications wavelengthsl51.3 or 1.55mm.5

Since the latter wavelength corresponds to a photon en
of 800 meV, the Si12xGex /Si heterosystem is inadequa
because a maximum practical valence band offset of o
;500 meV can be obtained for pseudomorphic Si12xGex

layers atx50.5;0.6. Therefore, alternative large-bandga
nearly lattice-matched barrier materials for Si quantum w
must be sought; materials with sufficiently large band offs
with respect to silicon. Possible candidates include Z
BeSeTe, CaF2, SiOx , SiO2, the Si/SiO2 superlattice, and
g-Al2O3, among others.5–7

The Si/ZnS heterosystem has received the most atten
as current advances in epitaxy technology have allowed
growth of heterostructures consisting of polar and nonpo
materials.8,9 The lattice mismatch of cubic ZnS with respe
to Si is only 0.3%. The valence band offset has been p
dicted theoretically,10–13 while recent experiments14 show
that the value is close to 1.5 eV, sufficiently large to gi
intersubband energy differences in the desired 800 m
range. Molecular beam epitaxy~MBE! growth of ZnS upon
Si, and Si upon ZnS have been demonstrated,9 with the use
of an As monolayer to satisfy the local bonding requi
570163-1829/98/57~11!/6550~11!/$15.00
al

d

gy

ly

,
s
s
,

on
he
r

e-

V

-

ments, although the effect of the monolayer on the offs
has not been determined.

The possibility of population inversion and the operati
of intersubband lasers depend critically on the lifetimes
the involved subbands. The subband lifetimes in turn
determined by nonradiative phonon scattering processes.
purpose of the present paper is to study the optical pho
modes and their interaction with carriers in the Si/ZnS s
tem since the optical phonon scattering is considered to
dominant in the phonon scattering processes. This comb
tion of materials is different, since it consists of both a no
polar and polar semiconductor. Previous studies in car
scattering by confined optical phonons in heterostructu
have been focused only on one type of phonon, eit
polar15–23or nonpolar.24–27In the current situation involving
both polar and nonpolar materials, carrier scattering by b
types of phonons needs to be considered. To the best of
knowledge, there has not been any reported investigation
this mixed nature of optical phonons, their confinement
fect, and their interaction with carriers in a heterostructu
In this paper, we will present a theoretical study based on
macroscopic continuum model to describe the confined o
cal phonon modes and will use this model to calculate
optical-phonon scattering of heavy holes in a heterostruc
consisting of polar~ZnS! and nonpolar materials~Si!, as we
are interested in the feasibility of constructing an intersu
band laser within the valence band of the Si/ZnS heterost
ture. This valence intersubband laser will likely be
quantum-parallel superlattice laser28 or a quantum cascad
laser. Our latest thinking29 is that each of theN laser periods
will consists of one square Si quantum well containing tw
6550 © 1998 The American Physical Society
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57 6551HEAVY-HOLE INTERSUBBAND SCATTERING BY . . .
active heavy-hole subbands. Due to the nonparabolicity
these subbands, we believe that a population inversion
calized ink space, can be engineered between the subba
In this investigation, we will consider a simple superlatti
comprised of alternating layers of Si and ZnS, much like
flat-band superlattice of the quantum parallel laser@Fig. 2~b!
of Ref. 28#. The results of this study will provide the bas
for the calculation of subband lifetimes required to determ
laser gain and threshold.

As described below in greater detail, since the opti
dispersions~frequency versus wave vector! of the silicon
(\vSi564 meV) and zinc sulphide (\vZnS543 meV) have
no overlap, the optical phonons are assumed to be to
confined in both materials. In the silicon layers, a continu
model with double hybridization of the longitudinal optic
~LO! and transverse optical~TO! modes is used to describ
the vibration patterns of the guided modes.24 The only
boundary condition that needs to be satisfied in the Si lay
is the vanishing of the displacements at the Si-ZnS interfa
since the ZnS layers can be considered as infinitely r
with respect to the vibrations of the Si layer. Hence, there
no interface mode in the Si layers. The situation on the Z
layers is more complex. Following the work by Ridley,16,17

here a continuum model is employed with hybridization
the optical LO, TO, and interface polariton~IP! modes
needed to satisfy both the mechanical and electros
boundary conditions at the interfaces. Specifically, the e
trostatic boundary conditions are the continuity ofEx , the
electric field parallel to the interface, and the continuity
Dz , the displacement field normal to the interface. The m
chanical boundary condition is again the vanishing of
optical displacements since the Si layers can be consid
as infinitely rigid with respect to the vibrations of the Zn
layers.

Our current work provides a complete set of analyti
expressions for the optical phonon dispersion relations, o
cal displacements, and associated scalar and vector p
tials. These expressions are subsequently used in calcul
the interaction of heavy holes with the confined optic
phonons. In Sec. II, we establish a continuum model for
optical displacement modes in Si and ZnS layers satisfy
both mechanical and electrical boundary conditions. In S
III, we outline a numerical procedure for determining t
frequency of a ZnS optical mode inducing the intersubba
scattering. In Sec. IV, we describe the scalar and vector
tentials associated with the ZnS ionic displacement mod
In Sec. V, we calculate the intersubband scattering rate
to the emission of Si and ZnS optical phonons since
emission process is rather significant compared to the s
tering process of optical phonon absorption. In Sec. VI,
summarize and discuss our results and conclusions.

II. MODE PATTERNS

A continuum model for the optical modes in the Si/Zn
superlattice is employed. Both mechanical and electr
boundary conditions are satisfied at the heterointerfa
Since the optical dispersion relations~frequency versus pho
non wave vector! in the two bulk materials have no overla
the phonons are taken to be confined in their respective
terials. For the Si layers, the continuum model for opti
of
o-
ds.
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phonons in nonpolar materials24,26 is used. Here double hy
bridization of the LO and TO modes is used to give t
vibration patterns of the guided modes. Since the ZnS lay
are infinitely rigid with respect to the vibrations of the S
layers, only the mechanical boundary condition, the vani
ing of the displacements at the interfaces, has to be satis

For the polar ZnS layers, the situation is more comp
and an alternate continuum model16,17 consisting of an inter-
mixing of confined LO, TO, and IP modes is needed in ord
to satisfy both the electrostatic and mechanical bound
conditions. The boundary conditions which must be satisfi
are ~1! the continuity ofEx , the component of electric field
parallel to the interface,~2! the continuity ofDz , the com-
ponent of the displacement vector normal to the interfa
and ~3! the vanishing of the vector displacementu at the
interface.

A. Modes in Si layers

As discussed above, since the ZnS layers can be treate
infinitely rigid, the boundary condition to be satisfied in th
Si layers is the vanishing of the ionic displacement of
confined vibration modes. This is an assumption of st
confinement yielding only the guided modes. As pointed
in the continuum theory,24 the ionic displacement of confine
vibrations has two components: one is the hybrid of the
andp-polarized TO~p-TO! modes, and the other is the un
coupleds-polarized TO~s-TO! mode. These modes are d
fined as follows: If we consider a (x,z) plane containing the
normal to the layers and the phonon wave vectorQ, then

Q5qxêx1qzêz , ~1!

where êx and êz are unit vectors. Thep-TO mode has its
displacements normal toQ and in the plane, while thes-TO
displacements are normal toQ and perpendicular to the
plane (i êy).

The form of the ionic displacement, scalar, and vec
potentials in one superlattice period differs from that in
neighboring period only by a phase factor proportional to
Bloch superlattice wave vectorqSL . Their expressions given
below are obtained by takingqSL50. A description of the
s-TO mode is

uy5eiqxx~As-TOeiqzz1Bs-TOe2 iqzz!, ~2!

while the hybrid of the LO andp-TO modes is given by

ux5eiqxx@qx~ALOeiqLz1BLOe2 iqLz!

1qT~Ap-TOeiqTz1Bp-TOe2 iqTz!#,
~3!

uz5eiqxx@qL~ALOeiqLz2BLOe2 iqLz!

2qx~Ap-TOeiqTz2Bp-TOe2 iqTz!#,

which are confined within the Si layer with a width ofdSi ,
0,z,dSi . Thez components of the LO and TO wave ve
tor have been distinguished byqL andqT , respectively.

Since the LO and TO modes must have the same
quency to be effectively coupled, we must satisfy the con
tion

v25vO
2 2aL

2~qx
21qL

2!5vO
2 2aT

2~qx
21qT

2!, ~4!
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6552 57G. SUN, Y. LU, L. FRIEDMAN, AND R. A. SOREF
wherevO is the bulk Si optical phonon frequency atG point,
aL andaT are the sound velocities of LO and TO dispersio
in Si, respectively.

Using the boundary condition thatu50 at the interfaces
gives for thes-TO mode

uy5Aeiqxx sin~qzz!,

with

qz5
np

dSi
, ~5!

wheren51,2, . . . , andA is a mode coefficient. This mod
does not mix with other modes.

The hybrid LO andp-TO modes admit two classes o
solutions. The sin solution is

ux52Beiqxxqx@cos~qLz!2cos~qTz!#,
~6!

uz52iBeikxxFqL sin~qLz!1
qx

2

qT
sin~qTz!G ,

and the cos solution is

ux52iBeiqxxFqx sin~qLz!1
qLqT

qx
sin~qTz!G ,

~7!

uz52BeiqxxqL@cos~qLz!2cos~qTz!#,

where

qL5
nLp

dSi

and

qT5
nTp

dSi
, ~8!

wherenL51,2, . . . , nT53,4, . . . , nT2nL52,4,6, . . . , and
B is a mode coefficient. No interface modes exist in the
layer because of the boundary conditionu50.

The lowests-TO mode pattern in Eq.~5! for qz5p/dSi is
shown in Fig. 1~a! within a Si layer ofdSi540 Å, while the
hybrid patterns of the lowestp-TO and LO modes withqL
5p/dSi andqT53p/dSi are shown in Figs. 1~b! and 1~c! for
the sin and cos solutions given in Eqs.~6! and ~7!, respec-
tively, within the same Si layer. The strict confineme
which requires the vanishing of ionic displacements at
boundaries of Si layers is clearly demonstrated for both
bration modes.

B. Modes in ZnS layers

The boundary conditions are the continuity ofEx , Dz ,
and the vanishing ofu at the interfaces. These conditions c
be satisfied by a unique linear combination of LO, TO, a
IP modes with common frequency and common in-pla
wave vectorqx ,

u5uLO1uTO1uIP . ~9!

We will use this hybrid expression to calculate the electri
interaction with carriers which is considerably stronger th
s

i

t
e
i-

d
e

l
n

the optical deformation potential interaction. We need co
sider only the displacementsux anduz , sinceuy associated
with the s-TO mode has no related electric field and the
fore does not interact with carriers electrically. Once aga
the expressions are obtained by taking the Bloch superla
wave vectorqSL50.

For the LO mode, the ionic displacements are

ux5ei ~qxx2vt !qx~ALeiqLz1BLe2 iqLz!,
~10!

uz5ei ~qxx2vt !qL~ALeiqLz2BLe2 iqLz!

which is confined within the ZnS layer with a width ofdZnS,
2dZnS/2,z,dZnS/2.

The associated electric fields are

FIG. 1. Vibration patterns in a Si layer with a width of 40 Å fo
~a! the guideds-TO mode,~b! the sin solution, and~c! the cos
solution of the guidedp-TO and LO modes.
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57 6553HEAVY-HOLE INTERSUBBAND SCATTERING BY . . .
Ex52r0ux , Ez52r0uz , ~11!

where

rs5
e*

e0V
, ~12!

with the effective ionic charge

e* 25MVvLO
2 e0

2S 1

e`
2

1

es
D , ~13!

whereM is the reduced mass,e0 is the permittivity of free
space,e` andes are the high-frequency and static permittiv
ties, andV is the volume of primitive unit cell. The scala
potentialf associated with the electric fieldE52¹f is in
turn given as

f52 ir0ei ~qxx2vt !~ALeiqLz1BLe2 iqLz!. ~14!

For the TO mode

ux5ei ~qxx2vt !qT~ATeiqTz1BTe2 iqTz!,
~15!

uz52ei ~qxx2vt !qL~ATeiqTz2BTe2 iqTz!.

The electric fields associated with this mode are negligib
For the IP mode

ux5ei ~qxx2vt !qp~Apeiqpz1Bpe2 iqpz!,
~16!

uz5 iei ~qxx2vt !qp~Apeiqpz2Bpe2 iqpz!.

The associated electric fields are

Ex52rpux , Ez52rpuz , ~17!

where

rp5r0

v22vTO
2

vLO
2 2vTO

2 , ~18!

andvLO andvTO are bulk ZnS LO and TO optical phono
frequencies at theG point, respectively. The electric field
associated with the interface modes propagate into the
layers although they are treated as infinitely rigid and do
contain ZnS ionic displacement.

Being a transverse electromagnetic wave, there is a ve
potential A associated with the electric fieldE52]A/]t.
Within the ZnS layers,

Ax5 i
rp

v
ei ~qxx2vt !qp~APeiqpz1BPe2 iqpz!,

~19!

Az52
rp

v
ei ~qxx2vt !qp~APeiqpz2BPe2 iqpz!,

while in the Si layers, a similar expression can be obtain
with another set of mode coefficientsAp1 andBp1 .

Since large in-plane wave vectors are likely to be
volved when dealing with carrier transitions due to optic
phonons between two subbands separated with a relat
large energy, we have endeavored to obtain analytical
persions of the LO and TO optical branches by curve fitt
.

Si
t

tor

d

-
l
ly

s-
g

the experimental bulk phonon dispersions for the entire B
lioun zone. The requirement for common frequency yield

v5vLO2bL~qx
21qL

2!5vTO2bT~qx
21qT

2!

5
c2~qx

21qp
2!

e~v!m0
, ~20!

where bL50.808 THz Å2 and bT52.194 THz Å2 are ob-
tained from curve fitting the bulk ZnS optical phonon dispe
sions,c is the velocity of light in vacuum, andm0 is the
permittivity of free space. In the above expressions, the
quency in the ZnS layers lies between the ZnS LO and
zone center frequencies. SincevTO,vLO , in order for the
TO frequency to be equal to a LO frequencyqT must be
imaginaryqT5 iq0 , corresponding to a TO interface mod
The modes which interact most strongly with carriers a
those with frequencies near the LO branch. For these mo
the value ofq0 is large, and we can take the approximatio

tanh~q0dZnS!'1. ~21!

In the unretarded limit (c→`), qx
21qp

2'0 for the IP mode.
Hence,qp' iqx .

Applying, at the two interfaces between layers Si and Z
in a period of the superlattice, the conditions thatux anduz
equal to zero along with the continuity ofEx andDz , leads
to eight simultaneous equations involving the eight unkno
mode coefficients~AL , BL ; AT , BT ; AP , BP ; and AP1 ,
BP1!. The following two ionic displacement mode patter
emerge for the hybrid in Eq.~9! taking the Bloch superlattice
wave vectorqSL50 and the approximation tanh (q0dZnS)
'1. Both ionic displacement patterns are confined within
ZnS layer,2dZnS/2,z,dZnS/2. For the first type,

ux52iBeiqxxqxH sin~qLz!2@12p1 tanh~qxdZnS/2!#

3sin~qLdZnS/2!
sinh~q0z!

sinh~q0dZnS/2!

2p1 sin~qLdZnS/2!
sinh~qxz!

cosh~qxdZnS/2!J ,
~22!

uz52BeiqxxqLH cos~qLz!2
qx

2

qLq0
@12p1tanh~qxdZnS/2!#

3sin~qLdZnS/2!
cosh~q0z!

sinh~q0dZnS/2!

2
qx

qL
p1 sin~qLdZnS/2!

cosh~qxz!

cosh~qxdZnS/2!J ,

and for the second type



s,

he

ar
or

lu
ne
tte

th

on

y
er

by

Å
-

6554 57G. SUN, Y. LU, L. FRIEDMAN, AND R. A. SOREF
ux52BeiqxxqxH cos~qLz!

2@12p2 coth~qxdZnS/2!#cos~qLdZnS/2!
cosh~q0z!

sinh~q0dZnS/2!

2p2 cos~qLdZnS/2!
cosh~qxz!

sinh~qxdZnS/2!J ,
~23!

uz52iBeiqxxqLH sin~qLz!1
qx

2

qLq0
@12p2 coth~qxdZnS/2!#

3cos~qLdZnS/2!
sinh~q0z!

sinh~q0dZnS/2!

1
qx

qL
p2 cos~qLdZnS/2!

sinh~qxz!

sinh~qxdZnS/2!J ,

where

p15
cosh~qxdSi/2!cosh~qxdZnS/2!

d
,

p25
sinh~qxdSi/2!sinh~qxdZnS/2!

d
,

~24!

d5r sinh~qxdSi/2!cosh~qxdZnS/2!

1sinh~qxdZnS/2!cosh~qxdSi/2!,

r 5
ep1

ep2
,

andep1 andep2 are the permittivities in Si and ZnS layer
respectively, with

ep25e`

v22vLO
2

v22vTO
2 . ~25!

To illustrate the patterns of ionic displacements in t
ZnS layers given in Eqs.~22! and ~23!, we need to first
determine values forqx , qL , and q0 . To do so, we will
follow the numerical procedure described in Sec. III by
bitrarily fixing a value for the in-plane phonon wave vect
qx5p/(5aZnS), whereaZnS is the lattice constant of ZnS. In
calculating the carrier-optical phonon interaction, the va
of qx is actually determined by the conservation of in-pla
momentum between the initial and final states of the sca
ing process. For a given value ofqx , typically, a set of
hybridized modes can be obtained. Here, we show only
mode pattern with frequency close tovLO .

We obtained \v541 meV, qL50.463108/cm, and
q050.483108/cm. Substituting these values into Eqs.~22!
and~23!, we obtained Figs. 2~a! and 2~b! showing the mode
patterns of ionic displacement of both the first and sec
types, respectively, in a ZnS layer ofdZnS520 Å. It can be
seen from Figs. 2~a! and 2~b! that the mechanical boundar
condition, vanishing of the ionic displacements at the int
faces of Si and ZnS layers, is satisfied.
-

e

r-

e

d

-

III. DISPERSION RELATIONSHIP

The phonon frequency in the ZnS layers is determined
the following set of equations:

H v5vLO2bL~qx
21qL

2!,

v5vTO2bT~qx
22q0

2!,
t11t2 cos~qLdZnS!1t3 sin~qLdZnS!50,

~26!

where

t154p sinh~qxdSi!14pr sinh~qxdZns!,

t2524pa, ~27!

t358p2r sinh~qxdZnS!sinh~qxdSi!24p2a2

14p2r 2 sinh2~qxdZnS!14p2 sinh2~qxdSi!11,

with

p5
qx

4qLrsd
~28!

and

FIG. 2. Vibration patterns in a ZnS layer with a width of 20
for ~a! the first type and~b! the second type solutions of the hybrid
ized LO, TO, and IP modes.
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s5
v22vTO

2

vLO
2 2vTO

2 . ~29!

The third equation in expression~26! is obtained from the
requirement of a nonzero solution for the eight simultane
equations discussed above, and Eq.~27! is arrived at under
the approximation, tanh(q0dZnS)'1.

The numerical procedure for determining a phonon f
quency is the following: given a value ofqx , we can deter-
mine those oft1 , t2 , and t3 from Eq. ~27!. Then v is
scanned fromvTO to vLO . For a given value ofv, qL and
q0 are obtained from the first two equations in Eq.~26!.
Those values are then substituted into the third equatio
Eq. ~26! to determine if the particular value ofv is a solu-
tion.

IV. SCALAR AND VECTOR POTENTIALS

Associated with the two types of ionic displacement
Eqs. ~22! and ~23!, the scalar potentials in ZnS layers a
given as, for the first type,
s

-

in

f5H 2r0Beiqxxsin~qLZ1!, uz1u,
dZnS

2
ZnS layer

0, uz2u,
dSi

2
Si layer,

~30!

and for the second type,

f5H 22ir0Beiqxx cos~qLz1!, uz1u,
dZnS

2
ZnS layer

0, uz2u,
dSi

2
Si layer.

~31!

Note that we have used two different coordinatesz1 andz2
for layers ZnS and Si, respectively, with their origins plac
at the centers of the respective layers.

The vector potentials can be obtained, for the first typ
Ax5H 2sr0qx

v
Beiqxxp1 sin~qLdZnS/2!

sinh~qxz1!

cosh~qxdZnS/2!
, uz1u,

dZnS

2
ZnS layer

4qxr0

v
BeiqxxV1 sinh~qxz2!, uz2u,

dSi

2
Si layer

~32!

Az5H 2isr0qx

v
Beiqxxp1 sin~qLdZnS/2!

cosh~qxz1!

cosh~qxdZnS/2!
, uz1u,

dZnS

2
ZnS layer

4iqxr0

v
BeiqxxV1 cosh~qxz2!, uz2u,

dSi

2
Si layer

~33!

and for the second type,

Ax5H 2
2isr0qx

v
Beiqxxp2 cos~qLdZnS/2!

cosh~qxz1!

sinh~qxdZnS/2!
, uz1u,

dZnS

2
ZnS layer

4iqxr0

v
BeiqxxV2 cosh~qxz2!, uz2u,

dSi

2
Si layer

~34!

Az5H 2
2sr0qx

v
Beiqxxp2 cos~qLdZnS/2!

sinh~qxz1!

sinh~qxdZnS/2!
, uz1u,

dZnS

2
ZnS layer

4qxr0

v
BeiqxxV2 sinh~qxz2!, uz2u,

dSi

2
Si layer,

~35!
are
s
in

dis-
are
where

V15
r sin~qLdZnS/2!cosh~qxdZnS/2!

2d
,

~36!

V25
r cos~qLdZnS/2!sinh~qxdZnS/2!

2d
,

andp1 , p2 , andd are given in Eq.~24!.
The scalar potentials associated with the LO modes

strictly confined within the ZnS layers. Their distribution
are shown in Fig. 3 for the first and second types given
Eqs.~30! and ~31! with qL50.313108/cm, dZnS520 Å, re-
spectively.

The vector potential associated with the IP modes are
tributed in both Si and ZnS layers, even though Si layers
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treated as infinitely rigid and do not contain ZnS ionic d
placements. The profiles for the two components of the v
tor potentials given in Eqs.~32!–~35! for the first and second
types with dSi540 Å, dZnS520 Å are shown in Figs. 4~a!
and 4~b!, respectively.

It can be seen from Figs. 3 and 4 that both scalar
vector potentials are not continuous across the interfa
However, as pointed by Ridley,16 the energy of interaction
with an electron traveling coherently with the optical phon
is continuous. The electric field can be obtained as

FIG. 3. Scalar potential distribution associated with the L
modes in a period of the Si/ZnS superlattice withdSi540 Å and
dZnS520 Å for both the first and second types of the vibrati
modes.

FIG. 4. Vector potentials associated with the IP modes dist
uted in a period of the Si/ZnS superlattice withdSi540 Å and
dZnS520 Å for ~a! the first type and~b! the second type of the
vibration modes.
-
c-

d
s.

E52¹f2
]A

]t
. ~37!

The continuity ofEx and Dz5e(v)Ez implies that at the
boundaries,

vAxuz256dSi/2
52qxfuz157dZnS/21vAxuz157dZnS/2 ,

~38!

Azuz256dSi/2
5rAzuz157dZnS/2 ,

where A1x and A1z are x and z components of the vecto
potential in Si layers. The interaction in the Si layer
e(A1xvx1A1zvz) and in the ZnS layere(2f1Axvx
1Azvz), which are equal when the electron velocityvx
5v/qx and vz50. Thus, the coherent interaction energy
continuous across the interfaces.

The electric field distributions forEx and e~v! in Si
(dSi540 Å) and ZnS (dZnS540 Å) layers are shown in Figs
5~a! and 5~b! for the first and second types, respectively. T
continuity of Ex and Dz across the Si and ZnS interfac
according to Eq.~38! is clearly demonstrated.

V. INTERSUBBAND SCATTERING

Since the optical modes in the Si/ZnS superlattice con
of confined nonpolar Si and polar ZnS optical phonons,
calculation of carrier scattering by optical phonons in suc
structure needs to include contributions from both types

-

FIG. 5. The field distributionsEx andDz derived from the scalar
and vector potentials, in a period of the Si/ZnS superlattice w
dSi540 Å anddZnS520 Å for ~a! the first type and~b! the second
type of the vibration modes.
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phonons. The Hamiltonian that describes the carrier inte
tion with the nonpolar Si optical phonons is given by30

H5
1

2
D•u, ~39!

where D is the optical deformation potential. This Hami
tonian obviously vanishes outside of the Si layers in the
ZnS superlattice since the Si optical displacement modes
strictly confined within the Si layers. However, the carr
interaction with the confined polar ZnS optical phonons
tends over both ZnS and Si layers. The electrical interac
Hamiltonian can be obtained using the scalar and vector
tentials

H52ef1
e

m
A•p, ~40!

where p is the momentum operator,e and m are the free
electron charge and mass, respectively. Although the sc
potentialf associated with the LO mode vanishes in Si la
ers, theA•p interaction exists in both layers since the vec
c-

i/
re

-
n
o-

lar
-
r

potential associated with the interface modes in the ZnS
ers as shown in Fig. 4 propagates into the Si layers as w

A. Scattering due to Si phonons

The displacement patterns described in Eqs.~5!–~7! all
contain an arbitrary constant for the mode amplitude wh
can be normalized by equating the energy of the vibrat
mode with that of a simple harmonic oscillator16

x25
S

V E
0

dSi
u* •udz, ~41!

whereS is the sample surface area@in (x,y) plane#, V is the
volume of the unit cell, andx is the normal coordinator o
the oscillator. The heavy-hole state can be characterized
uk,n& with the in-plane momentumk and subband indexn.
In the approximation of constant effective mass for hea
holes, the matrix element for the transition from stateuk,n&
to uk8,n8& due to the emission of a nonpolar Si optical ph
non is
t

s the

lly,

by the

,

^k8,n8uHuk,n&55A
\@n~v0!11#

2rSiv0SdSiDA~qz!
dk86qx ,kDyGnn8

y
~qz! ~s-TO!

A \@n~v0!11#

2rSiv0SdSiDC~qL ,qT!
dk86qx ,k@DxGnn8

x
~qL ,qT!1DzGnn8

z
~qL ,qT!# ~hybrid!,

~42!

for the s-TO mode and the hybrid of the LO andp-TO mode, respectively.n(v0) is the number of Si optical phonons a
thermal equilibrium, andrSi is the density of Si. The three components of the optical deformation potentialDx , Dy , andDz

are assumed equal toD05D/A3 in the calculation, in view of the assumption of isotropy. The Kronecker symbol indicate
in-plane (x,y) momentum conservation. The normalization factors are given by

DA~qz!5
1

dSi
E

0

dSi
uy* uydz ~s-TO!,

~43!

DC~qL ,qT!5
1

dSi
E

0

dSi
~ux* ux1uz* uz!dz ~hybrid!.

TheGnn8 functions contain envelope wave functions,cn andcn8 from which interference effect can be obtained. Specifica

Gnn8
y

~qz!5E
0

dSi
cn* cn8uydz, ~44!

for the s-TO mode, and

Gnn8
x

~qL ,qT!5E
0

dSi
cn* cn8uxdz,

~45!

Gnn8
z

~qL ,qT!5E
0

dSi
cn* cn8uzdz,

for the hybrid of the LO andp-TO modes. The heavy-hole energy levels and envelope wave functions are obtained
finite square well model for the superlattice with the heavy-hole band offset taken to be 1.5 eV.14

Applying the Fermi golden rule, we obtain the scattering rate due to the emission of a nonpolar Si optical phonon
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Wnn855
mhh* @n~v0!11#D0

2

2\2r1v0dSi
(
qz

uGnn8
y u2

DA
~s-TO!,

mhh* @n~v0!11#D0
2

2\2r1v0dSi
(

qL ,qT

uGnn8
x

1Gnn8
z u2

DC

~hybrid!,

~46!
ce
o

e

nS
e
g
.
rg
e

le

ye

on

pe

e

L

IP
nd
can

on-

scat-

-
ies

nS
nsi-
b-
1.

e Si

ma-
Si

f Si
where we have assumed that for the intersubband pro
(nÞn8) the heavy holes are scattered from the bottom
their original subbands~k50!, and the sum is over thos
participating modes of Eq.~8! that, according to Eq.~4!,
yield values of qx satisfying the in-plane momentum
conservation.24

B. Scattering due to ZnS phonons

The normalization of the amplitudes of the confined Z
displacement modes can be carried out by equating the
ergy of a hybrid, a mixture of mechanical and electroma
netic energies, with that of a simple harmonic oscillator16

Since only the IP mode contributes electromagnetic ene
which is small in magnitude when compared with the m
chanical energy, neglecting it entirely will introduce litt
error in evaluating the energy of a hybrid ZnS mode. W
therefore can use Eq.~41! for the normalization of a ZnS
mode except that now the integral is over the ZnS la
dZnS. The matrix element for the transition from stateuk,n&
to uk8,n8& due to the emission of a polar ZnS optical phon
is

^k8,n8uHuk,n&5Ae2\@n~vZnS!11#vZnS

2SdZnSePD1,2

3dk86qx ,kS 2Gnn8
f

1
\kx

m
Gnn8

x
2

i\

m
Gnn8

z D
~47!

for both the first and second types.n(vZnS) is the number of
ZnS optical phonons at thermal equilibrium, and

1

ep
5

1

e`
2

1

es
. ~48!

The normalization factors for both the first and second ty
can all be calculated by

D1,25
1

dZnS
E

0

dZnS
~ux* ux1uz* uz!dz ~49!

with optical displacements given in Eqs.~22! and ~23!. The
Gnn8 functions containing the interference effect betwe
two subband envelope wave functionscn andcn8 are given
specifically as

Gnn8
f

5
1

r0
E

0

dZnS
fcn* cn8dz, ~50!

for the scalar potential scattering associated with the
modes, and
ss
f

n-
-

y
-

e

r

s

n

O

Gnn8
x

5
1

r0
E

0

dZnS
Axcn* cn8dz,

~51!

Gnn8
z

5
1

r0
E

0

dZnS
Azcn*

]

]z
cn8dz,

for the vector potential scattering associated with the
modes. Applying the Fermi golden rule, the intersubba
scattering rate due to the emission of a polar ZnS phonon
then be obtained by taking summation over contributing c
fined ZnS optical modes

Wnn85
e2mhh* @n~vLO!11#vLO

2\2dZnSep

3 (
qL

u2Gnn8
f

1~\kx /m!Gnn8
x

2~ i\/m!Gnn8
z u2

D1,2
,

~52!

where we have again assumed that the heavy holes are
tered from the bottom of subbandn ~k50!, and have taken
the approximation ofvZnS5vLO since the modes which in
teract most strongly with carriers are those with frequenc
near the LO branch.

C. Intersubband scattering rates

The scattering rates due to the emission of Si and Z
optical phonons were calculated for the intersuband tra
tion ~2-1! originated from the bottom of the heavy-hole su
band 2 with zero kinetic energy to heavy-hold subband
Figure 6 shows the 2-1 scattering rates as a function of th
well width while fixing the barrier width atdZnS540 Å in the
Si, ZnS superlattice. The total scattering rate is the sum
tion of contributions from the heavy-hole interaction with

FIG. 6. Intersubband scattering rates due to the emission o
and ZnS optical phonons as a function of Si well width (dSi) for a
barrier width ofdZnS540 Å.
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and ZnS optical phonons. In the small well width regi
(dSi,30 Å), the heavy-hole scattering due to the ZnS opti
phonons is stronger than that due to the Si optical phon
This is attributed to the fact that when the Si well width
small there is significant envelope function overlap betwe
subbands 1 and 2 in the ZnS barrier region where the
LO phonons are confined. As the well width increases,
distribution of envelope functions in the barrier decreas
As a result, the scattering due to the ZnS LO phonons
duces considerably and the ZnS phonon scattering is mo
through IP modes which propagate throughout the supe
tice structure. As the well width continues to increase,
energy separation between subband 1 and 2 decreases
intersubband scattering between these two subbands req
an emitted ZnS phonon with a small in-plane wave vec
(qx) in order to satisfy the in-plane momentum conservat
for the scattering process to take place. This leads to
increased intersubband scattering rate since polar op
phonons with smaller wave vectors interact more stron
with carriers to induce intersubband transitions as sugge
by the well-known 1/(qx

21qz
2) dependence of the interactio

Hamiltonian in polar material quantum wells.15 A similar
dependence of the intersubband scattering rate of Eq.~52!
due to the confined ZnS optical phonons is implicitly i
cluded in the normalization factor (D1,2) given by Eq.~49!.
Further increasing the well width todSi.82 Å causes the
energy separation between the two subbands to be less
the ZnS optical phonon energy~43 meV! and the heavy
holes at the bottom of subband 2 cannot emit ZnS opt
phonons to make a transition to subband 1, resulting in z
scattering rate due to the emission of ZnS optical phon
The scattering rate due to the emission of Si optical pho
confined within the Si well demonstrates a steady decreas
the well width (dSi) increases, which suggests that the fac
1/dSi in Eq. ~46! dominates the small increase in the interfe
ence effectGnn8 function. As the well width increases be
yond 62 Å, the energy separation between the two hea
hole subbands becomes less than the Si optical pho
energy~64 meV!. As a result, the scattering rate due to t
emission of Si optical phonons reduces to zero, in which c
the heavy-hole lifetime of subband 2 can be enhanced
matically since the significant scattering process of opt
phonon emission is suppressed although the weaker op
phonon absorption and acoustic phonon scattering proce
are still possible.

Figure 7 shows the intersubband scattering rates betw
the same two heavy-hole subbands due to the emissio
both Si and ZnS optical phonons as a function of the bar
width (dZnS) in the Si/ZnS supperlattice. The well widt
(dSi) is fixed at 30 Å. The scattering rate due to the emiss
of Si optical phonons remains unchanged as the barrier w
varies since the subband energy levels are hardly shifted
the Gnn8 function for the Si phonon scattering has little n
ticeable change. The scattering rate due to the emission o
ZnS optical phonon, on the other hand, demonstrates a
creasing trend as the ZnS barrier width increases as
gested in Eq.~52! with the factor of 1/dZnS. The small dis-
continuous incremental steps in the ZnS-scattering curve
due to the discrete nature of the increase in the numbe
allowed LO modes confined in the ZnS barrier as it
creases.
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VI. SUMMARY AND DISCUSSION

We have provided an analytical model of optical modes
Si/ZnS superlattices consisting of polar and nonpolar opt
phonons. This is a procedure for obtaining the eigenmode
a mixed polar-nonpolar heterosystem. In the Si layers, a c
tinuum model with double hybridization of the LO and T
modes is used to describe the vibration patterns. Since t
is no electric field resulting from the nonpolar ionic displac
ments in Si layers, the only boundary condition that need
be satisfied in the Si layers is the vanishing of the displa
ments at the Si-ZnS interface, as the ZnS layers can be
sidered as infinitely rigid with respect to the vibrations of t
Si layer. Due to this strict confinement, only guided mod
emerge in the Si layers which consist ofs-TO and coupled
p-TO and LO modes, with no interface modes. These gui
modes have been illustrated. Their interaction with carri
in the superlattice can be calculated through the optical
formation potential for Si. The interaction Hamiltonian ca
be obtained by taking the product of this potential with t
normalized ionic displacement.

However, for the optical phonons in ZnS layers, we ne
to include the electrical interaction in calculating the carr
scattering by optical phonons, since there are electric fie
associated with the polar optical vibrations. As a result, b
mechanical and electrostatic boundary conditions need to
satisfied in the interfaces. A continuum model employing
linear combination of LO, TO, and IP~interface polariton!
modes with a common frequency is used to describe
ionic displacements in ZnS layers. A numerical proced
for determining a phonon frequency is provided. This h
bridized model is necessary to meet the simultaneous
quirement on the mechanical and electrostatic boundary c
ditions. The mechanical boundary condition is again
vanishing of the optical displacements since Si layers can
considered as infinitely rigid with respect to the vibrations
the ZnS layers. The electrostatic boundary conditions are
continuity of the electric field parallel to the interface, an
the continuity of the displacement field normal to the inte
face. Based on this set of boundary conditions, express
are obtained for the ionic displacements in ZnS layers c

FIG. 7. Intersubband scattering rates due to the emission o
and ZnS optical phonons as a function of ZnS barrier width (dZnS)
for a well width of dSi530 Å.
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sisting of LO, TO, and IP modes. There are scalar and ve
potentials associated with the LO and IP modes, resp
tively, but no electric field associated with the TO mode. T
scalar potential and its associated electric field due to the
mode are distributed only within the ZnS layers and are z
in the Si layers. But the vector potential and its associa
electric field due to the IP mode have distributions in bo
ZnS and Si layers even though there is no ZnS ionic d
placement mode in the Si layers. Examples of these m
characteristics have been demonstrated. Neither the s
nor vector potential is continuous across the Si-ZnS in
face, but the energy of coherent interaction with carriers
continuous due to the continuity of the electric field para
to the interface.
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The analytical model for the confined optical modes co
sisting of polar and nonpolar optical phonons is employed
calculating the carrier-phonon interaction. Our results in
cate that contributions to heavy-hole intersubband scatte
from confined Si and ZnS optical phonons strongly depe
on the well width since it varies the distributions of envelo
functions of involved subbands which ultimately determin
the intersubband scattering between them through the o
lapping interference effectGnn8 function. For small Si well
width ~,30 Å!, the scattering rate due to ZnS optical phon
is stronger than that of Si optical phonons. As the well wid
increases the scattering rate due to the Si optical phon
surpasses that of ZnS optical phonons. The scattering
dependence on barrier width is relatively weak.
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