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Heavy-hole intersubband scattering by confined optical phonons in a Si/ZnS superlattice
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The confinement of optical modes of vibration in a superlattice consisting of polar and nonpolar materials is
described by a continuum model. Specifically, the structure under investigation is the Si/ZnS superlattice.
Optical phonon modes in Si and ZnS layers are totally confined within their respective layers since both layers
can be treated as infinitely rigid with respect to the other layer. Since there are no associated electric fields with
nonpolar optical phonons in Si layers, only a mechanical boundary condition needs to be satisfied for these
nonpolar optical modes at the Si-ZnS interface. The optical phonons in Si layers can be described by guided
modes consisting of an uncoupledrO mode and a hybrid of LO ang-TO modes with no interface modes.

In ZnS layers, a continuum model hybridizing the LO, TO, and IP modes is necessary to satisfy both the
mechanical and electrostatic boundary conditions at the heterointerface. A numerical procedure is provided to
determine the common frequency between LO, TO, and IP modes. This is a procedure for obtaining the
eigenmodes of a mixed polar-nonpolar heterosystem. Analytical expressions are obtained for the ionic dis-
placement and associated electric field as well as scalar and vector potentials. The established model for the
confined optical phonons is used in calculating the intersubband heavy-hole scattering rate by optical phonons
in the Si/ZnS superlattice. Our results indicate that contributions to the intersubband scattering rate from Si or
ZnS confined optical phonons depend strongly on the distribution of envelope wave functions over the respec-
tive layers within which different types of optical phonons are confifig8163-1828)00312-9

[. INTRODUCTION ments, although the effect of the monolayer on the offsets
has not been determined.

The demonstration of the InGaAs/AllnAs intersubband The possibility of population inversion and the operation
guantum cascade laser B=4.2 um (Refs. 1 and Rhas  of intersubband lasers depend critically on the lifetimes of
spurred interest in the use of silicon as the lasing materiahe involved subbands. The subband lifetimes in turn are
because of its integrability with advanced silicon determined by nonradiative phonon scattering processes. The
microelectronics:* There is also interest in moving the las- purpose of the present paper is to study the optical phonon
ing from the far- and mid-infrared range to the near-infraredmodes and their interaction with carriers in the Si/ZnS sys-
optical communications wavelengths=1.3 or 1.55um?>  tem since the optical phonon scattering is considered to be
Since the latter wavelength corresponds to a photon energ§ominant in the phonon scattering processes. This combina-
of 800 meV, the Si_,Ge /Si heterosystem is inadequate tion of materials is different, since it consists of both a non-
because a maximum practical valence band offset of onlpolar and polar semiconductor. Previous studies in carrier

~500 meV can be obtained for pseudomorphig_SGe, scattering by confined optical phonons in heterostructures

layers atx=0.5~0.6. Therefore, alternative Iarge-bandgap,h"’“’e 5?2‘?39” focused ﬁg'}’ on one type of phonon, either
lar®~23or nonpola”*~2"In the current situation involving

nearly lattice-matched barrier materials for Si quantum well . ; .
y q oth polar and nonpolar materials, carrier scattering by both

must be sought; materials with sufficiently large band offset ;
with respect to silicon. Possible candidates include Znsﬁypes of phonons needs to be considered. To the best of our

. . s . knowledge, there has not been any reported investigation on
BeSeTe, Caf; SIG;, 8192 the Si/SiQ superlattice, and this mixed nature of optical phonons, their confinement ef-
y-Al,0,, among others:

. . _fect, and their interaction with carriers in a heterostructure.
The Si/ZnS heterosystem has received the most attentiop, this paper, we will present a theoretical study based on the

as current advances in epitaxy technology have allowed thg,acroscopic continuum model to describe the confined opti-
growth of heterostructures consisting of polar and nonpolaga| phonon modes and will use this model to calculate the
materials’® The lattice mismatch of cubic ZnS with respect gptical-phonon scattering of heavy holes in a heterostructure
to Si is only 0.3%. The valence band offset has been preconsisting of polafZnS) and nonpolar materiakSi), as we
dicted theoretically®* while recent experiments show  are interested in the feasibility of constructing an intersub-
that the value is close to 1.5 eV, sufficiently large to giveband laser within the valence band of the Si/ZnS heterostruc-
intersubband energy differences in the desired 800 meVure. This valence intersubband laser will likely be a
range. Molecular beam epitaxBE) growth of ZnS upon quantum-parallel superlattice la$éor a quantum cascade
Si, and Si upon ZnS have been demonstrdteith the use laser. Our latest thinkirfd is that each of thé\ laser periods

of an As monolayer to satisfy the local bonding require-will consists of one square Si quantum well containing two
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active heavy-hole subbands. Due to the nonparabolicity ophonons in nonpolar materiafs® is used. Here double hy-
these subbands, we believe that a population inversion, Idridization of the LO and TO modes is used to give the
calized ink space, can be engineered between the subbandgbration patterns of the guided modes. Since the ZnS layers
In this investigation, we will consider a simple superlatticeare infinitely rigid with respect to the vibrations of the Si
comprised of alternating layers of Si and ZnS, much like thdayers, only the mechanical boundary condition, the vanish-
flat-band superlattice of the quantum parallel Id$eg. 2(b) ing of the displacements at the interfaces, has to be satisfied.
of Ref. 2§. The results of this study will provide the basis  For the polar ZnS layers, the situation is more complex
for the calculation of subband lifetimes required to determineand an alternate continuum motfel” consisting of an inter-
laser gain and threshold. mixing of confined LO, TO, and IP modes is needed in order
As described below in greater detail, since the opticako satisfy both the electrostatic and mechanical boundary
dispersions(frequency versus wave vecjoof the silicon conditions. The boundary conditions which must be satisfied
(hwg=64 meV) and zinc sulphideilwZnS=43 meV) have are(1) the continuity ofE,, the component of electric field
no overlap, the optical phonons are assumed to be totallparallel to the interface2) the continuity ofD,, the com-
confined in both materials. In the silicon layers, a continuumponent of the displacement vector normal to the interface,
model with double hybridization of the longitudinal optical and (3) the vanishing of the vector displacemantat the
(LO) and transverse opticdlTO) modes is used to describe interface.
the vibration patterns of the guided mod&sThe only
boundary condition that needs to be satisfied in the Si layers A. Modes in Si layers
is the vanishing of the displacements at the Si-ZnS interface,
since the ZnS layers can be considered as infinitely rigid
with respect to the vibrations of the Si layer. Hence, there i
no interface mode in the Si layers. The situation on the Zn
layers is more complex. Following the work by RidiE*’
here a continuum model is employed with hybridization o

the optical LO, TO, and interface polaritofi) modes Xibrations has two components: one is the hybrid of the LO

needed to satisfy both the mechanical and electrostati ) .
boundary conditions at the interfaces. Specifically, the elecandp-polarized TO(p-TO) modes, and the other is the un-

trostatic boundary conditions are the continuity Bf, the EOUSIEd?pI?Ia”Z_?fd TO(S'T_Od) mode. Tlhese mod(_es_ arehde—
electric field parallel to the interface, and the continuity of M€ a;s ohowls. we anf]' erha<(z) plane contamr:ngt e
D,, the displacement field normal to the interface. The meltormal to the layers and the phonon wave veQothen

chanical boundary condition is again the vanishing of the Q=08 +q,2 0

optical displacements since the Si layers can be considered X e

as infinitely rigid with respect to the vibrations of the ZnS where e, and e, are unit vectors. Th@-TO mode has its

layers. displacements normal @ and in the plane, while the-TO
Our current work provides a complete set of analyticaldisplacements are normal @ and perpendicular to the

expressions for the optical phonon dispersion relations, optiplane {Iéy).

cal displacements, and associated scalar and vector poten-The form of the ionic displacement, scalar, and vector

tials. These expressions are subsequently used in calculatipgtentials in one superlattice period differs from that in a

the interaction of heavy holes with the confined opticalneighboring period only by a phase factor proportional to the

phonons. In Sec. I, we establish a continuum model for théBloch superlattice wave vectgg, . Their expressions given

optical displacement modes in Si and ZnS layers satisfyindpelow are obtained by takings, =0. A description of the

both mechanical and electrical boundary conditions. In Secs-TO mode is

lll, we outline a numerical procedure for determining the _ _ _

frequency of a ZnS optical mode inducing the intersubband uy=e'9(Ag 10€'97"+ Bg 108 '97%), @

scattering. In Sec. IV, we describe the scalar and vector pQ; hiie the hybrid of the LO ang-TO modes is given by
tentials associated with the ZnS ionic displacement modes.

As discussed above, since the ZnS layers can be treated as
nfinitely rigid, the boundary condition to be satisfied in the

i layers is the vanishing of the ionic displacement of all
confined vibration modes. This is an assumption of strict
fconfinement yielding only the guided modes. As pointed out
in the continuum theor$/ the ionic displacement of confined

In Sec. V, we calculate the intersubband scattering rate due Uy = €' g, (A €'+ B e~ '9L?)

to the emission of Si and ZnS optical phonons since the ) )

emission process is rather significant compared to the scat- +0a7(Ap.To€' T+ Bp.roe ) ], 3
tering process of optical phonon absorption. In Sec. VI, we , , . ®)
summarize and discuss our results and conclusions. u,=e'%[q (A oe'I*—Boe ')

- QX(Ap—TOeiqTZ_ Bp—TOe_iqTZ)]a

which are confined within the Si layer with a width d§;,

A continuum model for the optical modes in the Si/ZnS0<z<ds;. Thez components of the LO and TO wave vec-
superlattice is employed. Both mechanical and electricalor have been distinguished loy andqy, respectively.
boundary conditions are satisfied at the heterointerfaces. Since the LO and TO modes must have the same fre-
Since the optical dispersion relatioffeequency versus pho- quency to be effectively coupled, we must satisfy the condi-
non wave vectorin the two bulk materials have no overlap, tion
the phonons are taken to be confined in their respective ma- s 2 2, 2. 2 e
terials. For the Si layers, the continuum model for optical 0= w5~ (0 *qp) = wp— at(dx+a7), 4

Il. MODE PATTERNS



6552 G. SUN, Y. LU, L. FRIEDMAN, AND R. A. SOREF 57

wherewg is the bulk Si optical phonon frequencylapoint, 1.0
a anda+ are the sound velocities of LO and TO dispersions
in Si, respectively. 0.8¢
Using the boundary condition that=0 at the interfaces
gives for thes-TO mode 2 06+
. c
uy=Ae% sin(q,z), _g 04l
with <
-5
nwT 021 (a) s-TO
a) s-
=, ©)
9= dg 0.0 ; : =
wheren=1,2, ..., andA is a mode coefficient. This mode 0 10 200 %0 40
does not mix with other modes. Z(A)
The hybrid LO andp-TO modes admit two classes of 20
solutions. The sin solution is '
15+
u,=2B€%q,[ codq,z) —codqr2)], © 1.0
% @ 051
u,=2iBe*x| q, sin(q,z)+ — sin(q72) |, S o0l
ar 5
and the cos solution is s 03
S 1.0+t
L . . i b) si
U, = 2iBe™ q, sin(q.2) + " sin(gr2)|, sy O
q)( 2.0 : ) ’
@) "o 10 20 30 4
. 0
u,=2B€%*q [cogq.z) - cogqr2)], Z A)
where
0.25
q N 0.20t
bodg 0.15¢
and @ 0.107
=
nem 2 0.05-
dr=—g- ) & 0.00
Si 5
-0.05+
wheren, =1,2,...,ny=34,...,ny—n =2,4,6..., and .
B is a mode coefficient. No interface modes exist in the Si 0107 (c) cosine
layer because of the boundary conditio#0. -0.15 : : :
The lowests-TO mode pattern in EQ5) for g,= /dg; is 0 10 20 30 40
shown in Fig. 1a) within a Si layer ofdg;=40 A, while the Z(A)

hybrid patterns of the lowegi-TO and LO modes withy,

= 7/dg; andgy=37/dg; are shown in Figs. (b) and Xc) for
the sin and cos solutions given in Eq8) and (7), respec-
tively, within the same Si layer. The strict confinement

which requires t.he vam;hmg of ionic displacements at th.‘%he optical deformation potential interaction. We need con-
boundaries of Si layers is clearly demonstrated for both Visider only the displacements, andu,, sinceu, associated
Z» y

bration modes. with the s-TO mode has no related electric field and there-
_ fore does not interact with carriers electrically. Once again,
B. Modes in ZnS layers the expressions are obtained by taking the Bloch superlattice
The boundary conditions are the continuity Bf, D,, wave vectormgs = 0.
and the vanishing af at the interfaces. These conditions can  For the LO mode, the ionic displacements are
be satisfied by a unique linear combination of LO, TO, and (g wt) i, 2 gz
IP modes with common frequency and common in-plane Uy = e Vg (A e+ B e L), (10
wave vector,,

FIG. 1. Vibration patterns in a Si layer with a width of 40 A for
(a) the guideds-TO mode, (b) the sin solution, andc) the cos
solution of the guide@-TO and LO modes.

u,= ei(qxxfwt)qL(ALeiqu_ BLefiqLZ)

U=UioF Uro* U ©  which is confined within the Zns layer with a width 0f,s,

We will use this hybrid expression to calculate the electrical— d,d2<z<d,d42.
interaction with carriers which is considerably stronger than The associated electric fields are
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Ex=—poUx, E;=—pou,, (11)
where
o*
Poe= i’ (12)
with the effective ionic charge
o2 MQwEoeg(é— é) , (13

whereM is the reduced masgg is the permittivity of free

spaceg,, andeg are the high-frequency and static permittivi-
ties, and(} is the volume of primitive unit cell. The scalar

potential ¢ associated with the electric fieH=—V¢ is in
turn given as

d=—ipe B V(A IZ+B e 197), (14)
For the TO mode
u :ei(qxxfwt) A eiqu+B efiqu ,
X ar(Ar T ) (15)

u,=— ei(qxxf wt)qL(ATeiqu_ BTefiqTZ)_

The electric fields associated with this mode are negligible.

For the IP mode

T ei(qxx—wt)qp(Apeiqu+ Bpe_iqu),

(16)
u,=ie' @~ eg (A e~ B e 1?).
The associated electric fields are
Ex=—ppux, E;=—ppuz, 17)
where
2 2
W T wro
Pp=Po 77> (18
P W o~ Wro

6553

the experimental bulk phonon dispersions for the entire Bril-
lioun zone. The requirement for common frequency vyields

w=w 00— BLG;+0]) = wro— Br(ai+a)
_ i@+ ap)

€(w) o 20

where 8, =0.808 THz £ and B;=2.194 THz R are ob-
tained from curve fitting the bulk ZnS optical phonon disper-
sions, ¢ is the velocity of light in vacuum, ang., is the
permittivity of free space. In the above expressions, the fre-
quency in the ZnS layers lies between the ZnS LO and TO
zone center frequencies. Sinego<w o, in order for the
TO frequency to be equal to a LO frequengy must be
imaginaryqgr=iqgq, corresponding to a TO interface mode.
The modes which interact most strongly with carriers are
those with frequencies near the LO branch. For these modes,
the value ofqy is large, and we can take the approximation

tanh(qodzag) ~ 1. (21)

In the unretarded limit¢—), q2+qg3=~0 for the IP mode.
Hence,qy~iqy.

Applying, at the two interfaces between layers Si and ZnS
in a period of the superlattice, the conditions thatandu,
equal to zero along with the continuity &, andD,, leads
to eight simultaneous equations involving the eight unknown
mode coefficientdA,, B.; A, Bt; Ap, Bp; and Apy,
Bp1). The following two ionic displacement mode patterns
emerge for the hybrid in Eq9) taking the Bloch superlattice
wave vectorgg =0 and the approximation tantgdd,,s)
~1. Both ionic displacement patterns are confined within the
ZnS layer,—d;,d2<z<d,,42. For the first type,

and w o and wtg are bulk ZnS LO and TO optical phonon
frequencies at th& point, respectively. The electric fields
associated with the interface modes propagate into the Si
layers although they are treated as infinitely rigid and do not

Uy= 2i Beiqqux Sir(qLZ) - [1_ P1 tanhqdenElz)]

contain ZnS ionic displacement. X Sin(q dyng2) — sinh(qo2)
Being a transverse electromagnetic wave, there is a vector " sinh(qodzng/2)
potential A associated with the electric fielH=— dA/dt. sinh(0,2)
X

Within the ZnS layers, — Py sin(q dznd2) coshadpg?) |’
XYZn

p (22
A=i Ep ei(qxxfwt)qp(APeiqu_‘_ Bpeiiqu),

a9 | @
o , . u,=2Be9q | cogq,z) - —— [1—pstani(q,dzg2)]
A,=— Ep el(qxx—wt)qp(APelqu_ Bpe"qu), dLqo
. costiqoz)
while in the Si layers, a similar expression can be obtained X sin(gydzng/2) sinh(qodznd2)
with another set of mode coefficients,; andB,; .
Since large in-plane wave vectors are likely to be in- Ox costidyz)

volved when dealing with carrier transitions due to optical q. ™ Sin(qdzng/2) coshaxdznd2) )’
phonons between two subbands separated with a relatively

large energy, we have endeavored to obtain analytical dis-

persions of the LO and TO optical branches by curve fittingand for the second type
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. 0.4
ux=2Be€%"q,) cogq.2)
0.3
1 dyng2 dyng/2 cosido2) 0.2
—[1—p, coth(gydz,d2) Jcog g dznd )m g
S 0.1
q.dyd2) coshg,z) i
—p, €O —
P2 CORACs™ SinRq 7092 9 £ o
]

2 -0.15
L . Ax
uzzZlBequXqL S”‘(qLZ)'i” E [1_p2 COt“qdendz)]

(a) first type

sinh(qoz) 0.3 | . .
X cogq dznd2) SN Qytyrg2) 0 5 1oA 15 20
Z (A)

o sinh(g,2)
+ 2 P2 €08 qLdznd2) ot
a P2 cogqLdzng2) sinh(g,dzn42) °

where

0.4
coshgydsi/2) coshq,dzng/2) @
P1= d ; E p2d
S
g
sinh(q,ds/2)sinh(g,dzd2) L 04
p2= q , 5
(24) 05
+ sinh(g,dz,g2) coshaydsi/2), 0.4 | T T
0 5 10 15 20
Z A
e (A)
r= €p2’ FIG. 2. Vibration patterns in a ZnS layer with a width of 20 A

for (a) the first type andb) the second type solutions of the hybrid-
and ey, and ey, are the permittivities in Si and ZnS layers, ized LO, TO, and IP modes.
respectively, with
Ill. DISPERSION RELATIONSHIP

2_ 2
€ —e W " ®o (25) The phonon frequency in the ZnS layers is determined by
P2 WP —wig the following set of equations:
To illustrate the patterns of ionic displacements in the w=wLo—[3L(Q§+QE),
ZnS layers given in Eqs(22) and (23), we need to first wszo—ﬁT(Cﬁ—qg), (26)
determine values fon,, q,, andqg. To do so, we will t,+t, cogq, dz,g) +ts SiN(Q dzng) =0,

follow the numerical procedure described in Sec. Il by ar-
bitrarily fixing a value for the in-plane phonon wave vector where
0x= 7/ (5az,9, Whereaz,gis the lattice constant of ZnS. In

calculating the carrier-optical phonon interaction, the value t;=4p sinh(q,dg;) +4pr sinh(qydzs),
of q, is actually determined by the conservation of in-plane
momentum between the initial and final states of the scatter- t,=—4pa, (27)

ing process. For a given value of, typically, a set of

hybridized modes can be obtained. Here, we show only the —an2r o i N An2.42

mode pattern with frequency close ég . t3=8p?r sinh(q,dzngSiNN(q,ds) — 4p2a
We obtained Aw=41 meV, g, =0.46x10°/cm, and +4p2?r2? sint?(qydzng) +4p? sinkP(q,dg) + 1,

o= 0.48x 10°/cm. Substituting these values into EG482) _

and(23), we obtained Figs.(2) and 2b) showing the mode With

patterns of ionic displacement of both the first and second

types, respectively, in a ZnS layer d§,s=20 A. It can be 0 Ox

seen from Figs. @) and Zb) that the mechanical boundary P= 4q,rsd

condition, vanishing of the ionic displacements at the inter-

faces of Si and ZnS layers, is satisfied. and

(28)
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2 2
0w o d
s= . (29 2p0BEYSINGZy), |2|<—5" ZnS layer
Wo™ ®ro

The third equation in expressidi26) is obtained from the
requirement of a nonzero solution for the eight simultaneous
equations discussed above, and Ezy) is arrived at under (30
the approximation, tanbgd,,o) ~ 1.

The numerical procedure for determining a phonon fre-and for the second type,
guency is the following: given a value of,, we can deter-
mine those oft;, t,, andt; from Eq. (27). Then o is

dSi .
0, |zz|<7 Si layer,

scanned fronwg t0 w . For a given value oy, g, and —2ipoBE* cogq,z;) |Zl|<dLnS ZnS layer
go are obtained from the first two equations in Eg6). ' 2

Those values are then substituted into the third equation in ¢= ds;

Eq. (26) to determine if the particular value @f is a solu- 0, |22|<7I Si layer.

tion.

(3D
IV. SCALAR AND VECTOR POTENTIALS . .
Note that we have used two different coordinatgsand z,
Associated with the two types of ionic displacement infor layers ZnS and Si, respectively, with their origins placed
Egs. (22) and (23), the scalar potentials in ZnS layers are at the centers of the respective layers.

given as, for the first type, The vector potentials can be obtained, for the first type,
25poUyx i . sinh(gyzy) dzns
X gdlaxx S . —4ns
- B€'9%*p, sin(q, d;42) cosh 00,02 |z, < > ZnS layer
A= (32
40xpo

_ ds;
“w B9V, sinh(gyz,), |zz|<§ Si layer

' . coshgyz,) dzns
QxX - - - ==
Be'9%*p, sin(q dz,d2) oSNy yd2) |z, < 5 ZnS layer

4i . dg;
% Be'9*V; coshq,z,), |22|<7SI Si layer

2ispoUy
w

and for the second type,

i coshayz;) dzns
QqxX -~ - ==
Be'9%p, cogq, dz,42) SN0 0,92 |z, < > ZnS layer

Ax= (34)

_ 2ispqQy
w

4i . de
% B9V, coshq,z,), |zz|<§ Si layer
2spoQyx _ | sinh(0yz;) dzns
- AxX [ el d—
” Be*p, cogq.dz,d2) SN Oudyng?) |z, < > ZnS layer

A= (39

% BV, sinh(q,z,), |zz|<% Si layer,
|
where andp,, p,, andd are given in Eq(24).
The scalar potentials associated with the LO modes are
r sin(q,d,ng2)cosh q,dzng2) strictly confined within the ZnS layers. Their distributions
1= 24 ; are shown in Fig. 3 for the first and second types given in
(36)  Egs.(30) and(31) with g, =0.31x10*/cm, dz,s=20 A, re-
) spectively.
_ I codqudznd2)sin(q,dzng/2) The vector potential associated with the IP modes are dis-

2 2d tributed in both Si and ZnS layers, even though Si layers are



6556 G. SUN, Y. LU, L. FRIEDMAN, AND R. A. SOREF 57
- 0.20
L Si ZnS .
2 2 o1sl Si— EDX ZnS
,’«_-"’j\ A second type —§- S o0l ,
= |
= 8 0.05f
m N
= 2 L
8 -1t first type — ZE 0.05
g £ -0.10)
c“g 2r E 0151 (a) first type
< T T— ‘ H 020l :
-40 -30 20 -10 0 10 20 -40 -30 20 -10 0 10 20
Z(A) Z(A)
FIG. 3. Scalar potential distribution associated with the LO 0.2
modes in a period of the Si/ZnS superlattice witg=40 A and —_ Si — E ZnS|
dz,s=20 A for both the first and second types of the vibration 2 — Dx
modes. S o1t .
£
treated as infinitely rigid and do not contain ZnS ionic dis- =
placements. The profiles for the two components of the vec- & 00
tor potentials given in Eq$32)—(35) for the first and second Z
types with dg;=40 A, d;,s=20 A are shown in Figs. (4 El
and 4b), respectively. 8 01
It can be seen from Figs. 3 and 4 that both scalar and = (b) second type
vector potentials are not continuous across the interfaces. = g0 X X . ,
However, as pointed by Ridl€y,the energy of interaction -40 -30 -20 -10 0 10 20

with an electron traveling coherently with the optical phonon
is continuous. The electric field can be obtained as

1.00
0.75¢
0.50
0.25F

0.00 pem

Si — A
- A
z

-0.25¢
-0.50
-0.75¢

Vector Potential ( arb. units )

(a) first type

ZnS

-1.00
-40

30 20 10 0
Z(A)

0.20
0.15
0.10
0.05 |

0.00 p=me -

Si — A,
oase AZ

-0.05
-0.10
-0.15

Vector Potential( arb. units )

(b) second type

ZnS

-0.20
-40

FIG. 4. Vector potentials associated with the IP modes distrib-
uted in a period of the Si/ZnS superlattice wit;=40 A and

30 20 -10 0
Z(A)

10

Z(A)

FIG. 5. The field distribution&, andD, derived from the scalar
and vector potentials, in a period of the Si/ZnS superlattice with
dsi=40 A andd,,s=20 A for (a) the first type andb) the second
type of the vibration modes.

E=-V A 3
=-V¢——-. 37
The continuity ofE, and D,=e(w)E, implies that at the
boundaries,

wa|22: *dgf2T T qx¢|zl: IdZnS/2+ wa|zl: Fdyd2: (39)

A 2,=+dgf2= rA,| 2,=Fdyd21

where A;, and A;, are x and z components of the vector
potential in Si layers. The interaction in the Si layer is
e(A vyt Av,) and in the ZnS layere(— ¢+Awy
+A,v,), which are equal when the electron velocity
=wl/qy, andv,=0. Thus, the coherent interaction energy is
continuous across the interfaces.

The electric field distributions folE, and e(w) in Si
(ds;=40 A) and ZnS @,,s=40 A) layers are shown in Figs.
5(a) and Jb) for the first and second types, respectively. The
continuity of E, and D, across the Si and ZnS interface
according to Eq(39) is clearly demonstrated.

V. INTERSUBBAND SCATTERING

Since the optical modes in the Si/ZnS superlattice consist
of confined nonpolar Si and polar ZnS optical phonons, the

dzns=20 A for (a) the first type and(b) the second type of the calculation of carrier scattering by optical phonons in such a

vibration modes.

structure needs to include contributions from both types of
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phonons. The Hamiltonian that describes the carrier interagotential associated with the interface modes in the ZnS lay-

tion with the nonpolar Si optical phonons is given*by ers as shown in Fig. 4 propagates into the Si layers as well.
1 . .
H= 3 D-u, (39 A. Scattering due to Si phonons

_ _ _ . _ . The displacement patterns described in Eg$—(7) all
where D is the optical deformation potential. This Hamil- contain an arbitrary constant for the mode amplitude which

tonian 0bVi0US|y vanishes outside of the Si Iayers in the Siban be normalized by equating the energy of the vibration
ZnS superlattice since the Si optical displacement modes ai@ode with that of a simple harmonic oscillator

strictly confined within the Si layers. However, the carrier

interaction with the confined polar ZnS optical phonons ex- S [(dg

tends over both ZnS and Si layers. The electrical interaction X2=5 f u*-udz, (42
Hamiltonian can be obtained using the scalar and vector po- 0

tentials whereS is the sample surface arfia (x,y) plang, Q is the

e volume of the unit cell, ang is the normal coordinator of

H=—-e¢+—=A-p, (400  the oscillator. The heavy-hole state can be characterized by

m . : i
|k,n) with the in-plane momenturk and subband indes.

wherep is the momentum operatog and m are the free In the approximation of constant effective mass for heavy
electron charge and mass, respectively. Although the scaldwoles, the matrix element for the transition from stiken)
potential ¢ associated with the LO mode vanishes in Si lay-to |k’,n’) due to the emission of a nonpolar Si optical pho-
ers, theA -p interaction exists in both layers since the vectornon is

A[N(wo) +1] y
\/2pSinSdSiAA(qz) O q, kDyGpp (dz)  (s-TO)

(k’,n"|H|k,n)= (42

filn(wo) +1] .
Ser+q k[DxGX  (a.,q7)+D,G2 (g, , (hybrid),
\/ZPSiWOSdSiAc(qL ;qT) k _qx,k[ nn (qL qT) nn (qL qT)]

for the s-TO mode and the hybrid of the LO anq@dTO mode, respectivelyn(wg) is the number of Si optical phonons at
thermal equilibrium, angg; is the density of Si. The three components of the optical deformation poténtjaD, , andD,

are assumed equal By,=D//3 in the calculation, in view of the assumption of isotropy. The Kronecker symbol indicates the
in-plane §,y) momentum conservation. The normalization factors are given by

1 dg; "
AA(qz):d_S_ Jo uyuydz (s-TO),
|
(43

1

ds; )
AC(QL-qT):_dS_ fo (U ux+uzu,)dz (hybrid).
I

The G, functions contain envelope wave functiogg, and ¢, from which interference effect can be obtained. Specifically,
y dsi .
Gnn/(CIz) = 0 lrbn l;bn’ ude, (44)

for the s-TO mode, and

« dsi
Gnn’(quqT)z o ‘/’n‘//n’uxdza
(45)

2 dsi
Gnn’(qL ’qT): 0 ¢n ¢n’uZdZ’

for the hybrid of the LO an@-TO modes. The heavy-hole energy levels and envelope wave functions are obtained by the
finite square well model for the superlattice with the heavy-hole band offset taken to be 15 eV.
Applying the Fermi golden rule, we obtain the scattering rate due to the emission of a nonpolar Si optical phonon,
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M N(wo) + 110§ |Gy, 1° (T0)
W thpledSi q; Ap ' (46)
nn’ =
2h%proodsi g ar Ac ’
|
where we have assumed that for the intersubband process . 1 (dzns
(n#n') the heavy holes are scattered from the bottom of Gnn,=p— f Ay ardz,
their original subbandg¢k=0), and the sum is over those 0 (51)
participating modes of Eq(8) that, according to Eq(4), Z 1 (dys J
yield values of q, satisfying the in-plane momentum G, =— f A — Yndz,
conservatiorf* Po Jo 9z
for the vector potential scattering associated with the IP
B. Scattering due to ZnS phonons modes. Applying the Fermi golden rule, the intersubband

scattering rate due to the emission of a polar ZnS phonon can

~ The normalization of the amplitudes of the confined ZnSthen be obtained by taking summation over contributing con-
displacement modes can be carried out by equating the efined ZnS optical modes

ergy of a hybrid, a mixture of mechanical and electromag-

netic energies, with that of a simple harmonic oscilldfor. _e’mi[n(w o)+ 1w,

Since only the IP mode contributes electromagnetic energy = " 21%dzqs€p

which is small in magnitude when compared with the me-

chanical energy, neglecting it entirely will introduce little | =Gl + (fik /MG, — (iR/M)GY |2
error in evaluating the energy of a hybrid ZnS mode. We X o A, '

therefore can use Ed41) for the normalization of a ZnS

mode except that now the integral is over the ZnS layer (52

dzns. The matrix element for the transition from stéken)  where we have again assumed that the heavy holes are scat-
to |k’,n") due to the emission of a polar ZnS optical phonontered from the bottom of subbanm(k=0), and have taken

is the approximation ofv,,s=w o Ssince the modes which in-
teract most strongly with carriers are those with frequencies
. e’h[N(wzng)+1wzns near the LO branch.
(k’,n’|H|k,n)= 55 A
nsepAy 2 C. Intersubband scattering rates
< ot 4 fiky o - in G2 The scattering rates due to the emission of Si and ZnS
k’=a, .k "t m T’ m oo optical phonons were calculated for the intersuband transi-

tion (2-1) originated from the bottom of the heavy-hole sub-
(47) band 2 with zero kinetic energy to heavy-hold subband 1.
Figure 6 shows the 2-1 scattering rates as a function of the Si
well width while fixing the barrier width ati,,s=40 A in the
Si, ZnS superlattice. The total scattering rate is the summa-

for both the first and second type¥.w,g is the number of
ZnS optical phonons at thermal equilibrium, and

1 1 1 tion of contributions from the heavy-hole interaction with Si
= 4
€, €5 € (48)
1.0
The normalization factors for both the first and second types . ZnS layer thickness 40A
can all be calculated by g 0.8f %_/Zns
o 1
1 dzns N ;Q' 0.6}
A= d (uzu,tuzu,dz (49 T
ZnsS JO E 0.4F
with optical displacements given in Eq22) and (23). The g
G, functions containing the interference effect between g 02f
two subband envelope wave functio#rs and ¢,,, are given 8
specifically as @ 0.0r

30 40 50 60 70 80 90
o L [0S, Si layer thick A
G”“':p_o jo dY* dz, (50) i layer thickness (A)
FIG. 6. Intersubband scattering rates due to the emission of Si
for the scalar potential scattering associated with the LQind ZnS optical phonons as a function of Si well widthy) for a
modes, and barrier width ofd,,s=40 A.
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and ZnS optical phonons. In the small well width region )
(dgi<30 A), the heavy-hole scattering due to the ZnS optical — 187 s, Silayer thickness 30A
phonons is stronger than that due to the Si optical phonons. S 16t 7ZnS

This is attributed to the fact that when the Si well width is 2 /

small there is significant envelope function overlap between = 14r o,

subbands 1 and 2 in the ZnS barrier region where the ZnS 2 1ol

LO phonons are confined. As the well width increases, the o>
distribution of envelope functions in the barrier decreases. £ 10t e,
As a result, the scattering due to the ZnS LO phonons re- 2 Si

duces considerably and the ZnS phonon scattering is mostly § 0.8¢ /

through IP modes which propagate throughout the superlat- 0.6L_: ) ) ’ '
tice structure. As the well width continues to increase, the 20 25 30 35 40
energy separation between subband 1 and 2 decreases. The ZnS layer thickness (A)

intersubband scattering between these two subbands requires

an emitted ZnS phonon with a small in-plane wave vector FIG. 7. Intersubband scattering rates due to the emission of Si
(g,) in order to satisfy the in-plane momentum conservationand ZnS optical phonons as a function of ZnS barrier width,

for the scattering process to take place. This leads to afer a well width of ds=30 A.

increased intersubband scattering rate since polar optical

phonons with smaller wave vectors interact more strongly V1. SUMMARY AND DISCUSSION

with carriers to induce intersubband transitions as suggested

by the well-known 1/ +qz) dependence of the interaction  \ye have provided an analytical model of optical modes in

Hamiltonian in polar material quantum ‘_NEH%-A similar  gj/7ns superlattices consisting of polar and nonpolar optical
dependence of the intersubband scattering rate of(&8.  honons. This is a procedure for obtaining the eigenmodes of
due to the confined ZnS optical phonons is implicitly in- 3 mived polar-nonpolar heterosystem. In the Si layers, a con-
cluded in the normalization factoid ) given by Eq.(49). tinuum model with double hybridization of the LO and TO

Further Increasing the well width tds>82 A causes the modes is used to describe the vibration patterns. Since there
energy separation between the two subbands to be less than

the ZnS optical phonon energy3 meV) and the heavy IS no el_ectr_ic field resulting from the nonpol_a_r ionic displace-
holes at the bottom of subband 2 cannot emit ZnS opticag‘ents.m.SI I_ayers, the only poundary gon_dmon that n_eeds o
phonons to make a transition to subband 1, resulting in zer e safisfied in fche Sl_layers is the vanishing of the displace-
scattering rate due to the emission of ZnS optical phonorf€Nts at the Si-ZnS interface, as the ZnS layers can be con-
The scattering rate due to the emission of Si optical phonoﬁ'_dered as |nf|n|tely_ r|g|d. with re_spect to the wbrapons of the
confined within the Si well demonstrates a steady decrease &% layer. Due to this strict confinement, only guided modes
the well width (ds) increases, which suggests that the factoremerge in the Si layers which consist®fTO and coupled
1/ds; in Eq. (46) dominates the small increase in the interfer-P-TO and LO modes, with no interface modes. These guided
ence effectG,, function. As the well width increases be- modes have been illustrated. Their interaction with carriers
yond 62 A, the energy separation between the two heavyin the superlattice can be calculated through the optical de-
hole subbands becomes less than the Si optical phondarmation potential for Si. The interaction Hamiltonian can
energy(64 me\). As a result, the scattering rate due to thebe obtained by taking the product of this potential with the
emission of Si optical phonons reduces to zero, in which caseormalized ionic displacement.
the heavy-hole lifetime of subband 2 can be enhanced dra- However, for the optical phonons in ZnS layers, we need
matically since the significant scattering process of opticato include the electrical interaction in calculating the carrier
phonon emission is suppressed although the weaker opticgtattering by optical phonons, since there are electric fields
phonon absorption and acoustic phonon scattering processgssociated with the polar optical vibrations. As a result, both
are still possible. mechanical and electrostatic boundary conditions need to be
Figure 7 shows the intersubband scattering rates betweagyisfied in the interfaces. A continuum model employing a
the same two heavy-hole subbands due to the emission @fear combination of LO, TO, and Ifinterface polariton

both Si and ZnS optical phonons as a function of the barrief,qes with a common frequency is used to describe the
width (dzg) in the Si/ZnS supperlattice. The well width jonic gisplacements in ZnS layers. A numerical procedure

(?SS') IS ft'.xe(lj ar: 30 A. The s_catterlnr? rateddue ttr? trg)e e_mlss!gt or determining a phonon frequency is provided. This hy-
e e A e s e oty o adized model s necossry o meet the smulaneos re-
9y y uirement on the mechanical and electrostatic boundary con-

the G,,» function for the Si phonon scattering has little no- ditions. The mechanical boundary condition is acain the
ticeable change. The scattering rate due to the emission of an-ons- . . y ) . g
anishing of the optical displacements since Si layers can be

ZnS optical phonon, on the other hand, demonstrates a gdanis oo o 2
creasing trend as the ZnS barrier width increases as sug%on&dered as infinitely rigid with respect to the vibrations of

gested in Eq(52) with the factor of 1d,,c. The small dis- e ZnS layers. The elgctrpstatic boundary co_nditions are the
continuous incremental steps in the ZnS-scattering curve af@Pntinuity of the electric field parallel to the interface, and
due to the discrete nature of the increase in the number ¢he continuity of the displacement field normal to the inter-

allowed LO modes confined in the ZnS barrier as it in-face. Based on this set of boundary conditions, expressions
creases. are obtained for the ionic displacements in ZnS layers con-
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sisting of LO, TO, and IP modes. There are scalar and vector The analytical model for the confined optical modes con-
potentials associated with the LO and IP modes, respedcsisting of polar and nonpolar optical phonons is employed in
tively, but no electric field associated with the TO mode. Thecalculating the carrier-phonon interaction. Our results indi-
scalar potential and its associated electric field due to the L@ate that contributions to heavy-hole intersubband scattering
mode are distributed only within the ZnS layers and are zerdrom confined Si and ZnS optical phonons strongly depend
in the Si layers. But the vector potential and its associatedn the well width since it varies the distributions of envelope
electric field due to the IP mode have distributions in bothfunctions of involved subbands which ultimately determines
ZnS and Si layers even though there is no ZnS ionic disthe intersubband scattering between them through the over-
placement mode in the Si layers. Examples of these modkipping interference effeds,,,, function. For small Si well
characteristics have been demonstrated. Neither the scalafdth (<30 A), the scattering rate due to ZnS optical phonon
nor vector potential is continuous across the Si-ZnS interis stronger than that of Si optical phonons. As the well width
face, but the energy of coherent interaction with carriers isncreases the scattering rate due to the Si optical phonons
continuous due to the continuity of the electric field parallelsurpasses that of ZnS optical phonons. The scattering rate
to the interface. dependence on barrier width is relatively weak.
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