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Ab initio second-harmonic susceptibilities of semiconductors: Generalized tetrahedron method
and quasiparticle effects
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We report numerical calculations of the frequency-dependent second-order optical susceptibility. The results
are based on aab initio treatment of the geometry and the electronic structure within the density-functional
theory in local-density approximation. The plane-wave-pseudopotential method is combined with a generalized
tetrahedron method to perform thespace integration. The analytic linear tetrahedron method has to be
improved because of the energy-dependent prefactors af thactions describing the energy conservation.

We also present results for spectra of the second-harmonic generation where many-body quasiparticle effects
are included beyond the scissors-operator approximation. Zinc-blende semiconductors are considered as model
substanced.S0163-1828)01911-Q

[. INTRODUCTION gration over the Brillouin zon€BZ) is performed using the
“traditional” linear-analytic tetrahedron method according
In recent years, there has been an increasing interest in the Ref. 15. Levin&' uses a plane-wave-pseudopotential code
nonlinear optical properties of various materials includingof the DFT-LDA. The special-points integration scheme re-
zinc-blende semiconductors. This development is motivateduires a restriction to low frequencies. However, local-field
by the rapid advances in electro-optical technology and alland quasiparticle effects are also discussed. Hughes and
optical information technology. One important nonlinear Sipe*? described the second-order optical response of the
process is second-harmonic generai8hlG). Since its dis- semiconductors GaAs and GaP using a combination of the
covery in 1961 technical difficulties delayed the accurate full-potential linearized augmented plane-way/LAPW)
calculation of the corresponding susceptibility for manymethod and DFT-LDA. Self-energy corrections are included
years. On the other hand, the microscopic understanding an the level of the scissors-operator approximation. The
the nonlinear processes is extremely important for the imk-space integration is performed by means of the traditional
provement of the nonlinear materials and devices and praetrahedron method in combination with a random sampling
vides an opportunity to search for new materials. technique. The energies as well as the matrix elements are
Among the nonlinear-optical materials the IlI-V semicon- also linearized with respect to thkedependence.
ductors InAs, GaAs, InP, and GaP are of central importance. The k-space integration in the nonlinear optical coeffi-
They belong to the structurally simplest substances for whicltients is more complicated than in the case of the linear
SHG is already allowed in the bulk. The optical nonlineari-response. Whereas the imaginary part of the linear optical
ties are relatively lardeand, moreover, can be increased if susceptibility is mainly characterized by optical matrix ele-
these materials are deposited in layered structu@ter ments multiplied with Dirac’sé function representing the
materials, like the group-1V compound SiC that also crystal-energy conservation; rational functions of the optical transi-
lizes in zinc-blende structure, show much lowertion energies involved in the nonlinear processes occur, in
nonlinearities It is important to know in which way slight addition, in the case of the quadratic response. Rdepen-
changes in the electronic structure and the size of the atomdence of these functions remarkably influences the spectral
give rise to a remarkable variation of the nonlinear opticalbehavior of the second-order susceptibilities. For that reason
properties. Moss, Sipe, and van Dri¥lextended the linear-analytic tet-
The calculation of the frequency-dependent linear or nonfahedron method for integrating linear-response functions to
linear optical properties of crystals requires the full informa-the nonlinear case. In addition, the linear variation of the two
tion about its band structure and wave functions. Based odifferent optical transition energies appearing in the resonant
ab initio calculations the electronic structures of semicon-prefactors due to the second-order nonlinear response have
ductors have been available for several years. They haueeen taken into account. The electronic structures have been
been used to describe the linear optical response from firgalculated within a tight-binding scheme.
principles®=® In contrast, there are only few calculations of  In the present paper we combine this extended linear-
the same level of approximations in the case of the nonlineaanalytic tetrahedron method with an electronic structure de-
responsé® 2 Huang and Chinty described the electronic rived from anab initio pseudopotential-plane-wave method.
structure of 15 semiconductors in the framework of theThe advantage of the extension over the traditional tetrahe-
density-functional theoryDFT)'® and the local-density ap- dron method is shown. In addition, we discuss the effect of
proximation (LDA).}* The wave functions have been ex- quasiparticle corrections on SHG spectra. The wave-vector-
panded in terms of orthogonalized linear combinations ofand band-index-dependent quasiparticle shifts are calculated
atomic orbitals(OLCAO). As in the linear case thk inte- from a slightly simplified expression for the exchange-
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correlation self-energy. We investigate the prototypical Ill-V independent-particle approximation are negle¢tedn

and IV-IV compound semiconductors GaP, GaAs, InP, INAs3(2)(—24: w,w) occur only interband energies

and SiC crystallizing in zinc-blende structure. The paper is

organized in the following way. In Sec. Il we describe the Enn(K)=gn(K)—&p (k) (1)
computational method including the extension of the tetrahe-

dron integration. Our results for the frequency-dependen@nd matrix elements of the momentum operator

SHG signals are presented in Sec. Ill and compared with

other calculations and experimental data available. The effect Prn (K)=(nk|p,|n"k). 2

of quasiparticle shifts deviating from the findings in the lin- )

ear case and the convergence problems are discussed. 'Ageneral, the appearance of the momentum operator instead

summary is given in Sec. IV. of the velocity operator indicates an approximation. Correc-
tions due to spatially nonlocal potentials in the Sclinger-
Il. COMPUTATIONAL METHOD like equation for the. Bloch _elect.rons and dug to the incom-
pleteness of the basis functions in the expansion of the Bloch
A. Second-harmonic coefficient functions are neglected.

An expression for the second-order optical susceptibility. " the cubic case the tensor expression for

¥P(w,:w,,ws) is obtained from the quadratic-responseX (~2®i@,w) may be remargably simplified. Only the
theory!” One of the most important processes, the second€NSOr components of the typ‘éx_yz(_2“’;“"“’) with X, y,
harmonic generation, is characterized by the tensofNdZ as tr;e cubic axes are different from zero. Only one
YP(—20;0,0) with  as the frequency of the incident function X )(“’)EX§<y)z(_2f"3“"“’) has to be considered.
light. When the light-matter interaction is described by the aking into account the time-reversal symmetry, it can be
coupling of the vector potential with the current density Op_shown that the r_eal an(_j mgaglnary part of this function fulfil
erator of the electrons, i.e., the so-called Coulomb or velocitf Kramers-Kronig relation’ e.g.,
gauge, the tensor is related to a correlation function of three )

current operators. In the single-particle picture the correla- _ ., o ,

tion function can be expressed in terms of Bloch eigenfunc- Re x(w)= ;fo do 02— 2 Im x#(0"). (@)
tions|nk) belonging to the band index, the wave vectok

in the first Brillouin zone (BZ), and the Bloch energy Following the derivation of Aspné¥the imaginary part is
en(k).1"1® Excitonic and other effects beyond the given by

!

| eh
Im X(z)(w)= — E(_

m

) 16
< % Y p? Eq,(K)— 24
V; E {p}cple P: U}| E;(k)[zEC,U(k)—Ecv(k)f[ (k)—2fhw]

2E./,(K) —E, (k)
r— N Eey(K)— 0] @
E2, (K[ Ecu(K)+ Ecr,(K) ][ 2Ecy (k) — Egry(K)]

with positive frequencies, are written in expressidhsince only
those frequencies are necessary in the Kramers-Kronig rela-
tion (3).

1.

X Y z — = X y z
{PucPee P, =Im 3!P(pvc(k)pccr(k)pc,u(k)) - ©® B. Brillouin-zone integration
R In the explicit calculations we first calculate the imaginary
whereP indicates all permutations with respect to the Car-part of the SHG susceptibiliti4) in a wide range of frequen-
tesian components/ stands for the sample volume. cies. In a second step its real part is obtained by means of the

Expression(4) describes three-photon processes with theKramers-Kronig transformatiof8). The introduction of the
initial states of the electrons in an occupied valence band permutations of the Cartesian coordinates in £&y.corre-
=p and the final states in an unoccupied conduction bandponds to the construction of an invariant against all point
n=c or n=c’. Intermediate states may occur in valence agyroup operations. Together with the time-reversal symmetry
well as conduction bands. However, the virtual-hole contri-such invariants allow the restriction of the BZ integration to
butions of a band combinatiomv’c are found to be the irreducible part, i.e., g&th wedge of the BZ of the fcc
negligible’®® and are therefore omitted in E@4). Only the  structure.
virtual-electron contributions of the typec’c or vcc’ are The appearance of Dirac&functions in expressio(¥) is
taken into account. Intraband processes do not play any role. consequence of the energy conservation during the SHG
Their vanishing may be shown using the time-reversal symprocess. These functions indicate thatkhgpace integration
metry. Only terms, which fulfil the energy conservation for should be performed by means of the linear-analytic tetrahe-
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dron metho®?°as well known from the linear optical prop- They are used although they slightly underestimate the ex-
erties. The prefactors of thé functions are replaced by the perimental valuég and, hence, enlarge somewhat the DFT-
average over the four corners of a tetrahedron. However, theDA transition energies. These transition energies are calcu-
situation is more complicated in the case of the nonlineatated according to Eq1). The single-particle energies,(k)
optics. Besides momentum matrix elements the prefactorare replaced by the eigenvalues of the Kohn-Sham equation.
contain energy denominators and nominators. Consequently, In order to account for the excitation aspect, exchange and
in expression4) for the imaginary part of the SHG suscep- correlation have to be treated more carefully. At least quasi-
tibility “double resonances” may occur. In both contribu- particle (QP) shifts A,(k), which account for the differences
tions, the 2 and thew term, this coincidence happens when between the exchange-correlation self-energy and the corre-
2hw=E (k) andho=E. (k) (c#c'). sponding potential used in the DFT-LDA?® have to be
Because of the possibility of double resonances the varigdaken into consideration. The QP corrections to the DFT-
tion of the prefactors of thé functions cannot be ignored. LDA eigenvalues are computed within theGW
This can be only done in the case of the momentum matrisapproximatiorf®?° according to a slightly simplified scheme
elements to a good approximation. Tkevariation of the developed by Cappellini and co-workefs’! We determine
interband energies has to be taken into account, at least alsoch band-index- and wave-vector-dependent QP shifts ex-
in a linear approximation. The details of this integration areplicitly and discuss their influence in detail for zinc-blende
described in Ref. 16 The basic idea is to replacekifspace  SiC3 In addition we compare the results including QP shifts
integral over a tetrahedron by a finite energy integral ovewithin the GW approximation with those using a scissors-
the fraction of the isoenergy face lying within the tetrahe-operator approximation as suggested in Ref. 12. In the case
dron. This isoenergy face is defined by the transition energyof the 11I-V compounds we restrict ourselves to the scissors-
which governs the$ function. Because of the occurrence of operator approximation. The scissors operators are deter-
two different optical transition energies due to the secondmined from the comparison of calculated and measured lin-
order nonlinear process, a second integration has to be anear optical spectra.
lytically performed. It gives the length of a line segment. Itis We know already from the treatment of the linear optical
defined as the intersection of the isoenergy plane related tproperties that the inclusion of the QP effects requires physi-
the second interband energy in the prefactor with the planeal consideratiorfsand cannot be restricted to a replacement
of intersection defined by thé function. In analogy to the of all transition energies in Eq4) by differences ofe (k)
linear case, the line segment may be written in terms of thet A, (k). When QP effects are included, the spatial nonlo-
known energies at the tetrahedron vertices. cality of the self-energy influences the optical transition op-
There are limits that require special care. As in the lineaerator in the same manner as other nonlocal potential contri-
case, if the energies at the vertices of the tetrahedron beconbeitions. However, we neglect this influence. Another
degenerate, one must analytically calculate the area of inteproblem arises from the fact that only the single-particle en-
section to avoid large numerical errors. In the nonlinear casergies in expressiof4) which are introduced from the spec-
there are also complications when the interband energietsal properties should be shifted. In the linear case this prob-
E., (k) andE, (k) are parallel irk space. This case may be lem is now solve@®33within the assumption of nearly equal
formally treated by using the formula in E@) and perform- DFT-LDA and QP wave functions. Which energies should
ing the BZ integration over thé functions as in the linear be shifted is related to a derivation of the optical susceptibil-
case. ity starting from a longitudinalscalaj perturbation. In the
electric-dipole approximation and neglecting nonlocal contri-

butions one uses the relation
C. Structure, electronic states, and quasiparticle shifts

The electronic-structure calculations underlying the com- « =i m K — e (k K K 6
putations of the SHG susceptibility are based on the P (K) Ih[sn( )= en () J(nk|x,[n"k) (©)

DFT-LDA.?! The many-body electron-electron interaction is L , , ,
described within the Ceperley-Alder schéhas param- to avoid ill-defined matrix elements of the dipole operator.

etrized by Perdew and Zung&The electron-ion interaction The energies arising from this rewriting should not be cor-

is treated by norm-conservingb initio, fully separable rected by QP effects. Consequently, because of the three ma-

pseudopotentials in the Kleinman-Bylander fdthihey are  UiX élements of the momentum operator in E4), we in-

based on relativistic all-electron calculations for the free atiroduce a renormalization factdren(k)+An(k) = en: (k)

oms by solving the Dirac equation self-consistently. In the~ An'(K)J/[&n(K) —&n/ (k)] for each of the matrix elements

beginning the pseudopotentials were generated according tife €xpression(4). The renormalization factor increases the

Bachelet-Hamann-Schter schemé® The carbon potential is oscillator strengths acc_ordl_ng to the increase of the gaps.

softened by carefully choosing the core rZ8ii. _The_re are fur_ther complications due to the screening dynam-
The electronic wave functions are expanded in terms ofcS included in the QP self-energy. For a discussion of the

plane waves. The energy cutoffs for the plane-wave eXpa“.gynamlcal effects the reader is referred to Ref. 34.

sion are chosen to 15 Ry for the 1llI-V compounds and 34 Ry

in the case of silicon carbidésiC). They are sufficient for Ill. RESULTS AND DISCUSSION

converged energy and lattice calculations. The total-energy

optimizations within the zinc-blende structure give rise to

theoretical cubic lattice constants a&5.36 A (GaP, 5.57 From the calculation of the linear optical properties we

A (GaAs, 5.67 A(InP), 5.86 A (InAs), and 4.29 A(SiC).  know that in the zinc-blende case about 30 bands are suffi-

A. BZ sampling
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FIG. 1. Imaginary part of the dielectric function for IlI-V com-
pounds(a) and cubic SiC(b) calculated with 50% points in the
linear tetrahedron method.

o

—
=S
42]
(D]
L
]
15 - 1 — 4
_—
0 1 L 8
/_\\-/
)
=
E

1
=

cient for a converged calculation of the imaginary part of the
optical susceptibility. The real part calculated via the
Kramers-Kronig transformation does not show significant
changes after increasing the number of bands. Therefore, we
restrict ourselves in the calculation of the SHG coefficient to

24 bandgwithout spin, four valence bands, and the first 20 L ! -
conduction bands. However, we increase the numbek of — 1 -4
points and, hence, the number of tetrahedrons. Whereas ir 0 1 2 3 4

the linear case reasonable results may be obtained wikh 89

points? in the nonlinear case the mesh should be finer be- Photon energy [eV]

cause of prefactors in expressiéf). Figure 1 shows the ) o
linear results obtained with 505 mesh points for GaP, GaAs, F'(%' 2. Imaginary part of the second-order susceptibility
InP, InAs, and SiC. In the SiC case the effect of the increasg_“8)é t()wl)\l of 2648(‘)AS fOI:I dlffSe(;:nt ngn;beNrN_k ;lf 6k go'l.nc}sl'. @ I:lkt
of the k-point density is weak. The low-energy peak witp o2 (o) Ni=240, (©) N =505, and(d) Ni=916. Solid line, tet-

dE. ch ¢ I the high K vith rahedron method as in the linear case; dashed line, generalized tet-
ar,1 1 character as well as the high-energy pea 1 rahedron method.
Ey, and E,+ 6 character are hardly influenced, where we

follow the denotations of Yu and CardoffaThe effect is h fruct di idelv. Th ke struct i th
larger in the case of the low-ener&y peak in the spectra of ese structures disappear widely. The Spike structures in the

the IlI-V compounds. Because of the nearly parallel emptySpetEtrz flcalct?uI?ted tﬂslﬂi thg tcomm?n I|r11_eh§r .tedt_rahtedron
and occupied bands, the increase of the density iktheint tmhe' 0 huc _uale V\t” R '510'” tﬁamp Ing. lat '(Sj tm tlf(:a es
mesh gives rise to a more pronoundedpeak. The intensity €ir unphysical nature. Rather, th€y are related o the previ-

P : ously mentioned double resonances, which should be
,?(: tg: Itzr;sg:g;usrefh:g?hggf;ke dhuigﬁg.r Iltr? Zzzl:gezslshf:;?davoided by the described generalization of the method. Fig-

influenced by the sampling, ure 2 shows two conclusiongi) The density of the used

Figure 2 represents two effects, the dependence of the @ o .
SHG spectra on the density of thepoints in the sampling ~ TABLE I. Convergence ok**(0) of GaAs in units of 10° esu
and the comparison of the analytic linear tetrahedronVith the number ofk points Ny, for two different numbers of
method®2° with its generalization for nonlinear optical bands, 8 and 24. The values are calculated by means of the
coefficientd® described in Sec. Il B. The principal behavior Kramers-Kronig relation(3) and by a direct calculation after per-
and the most important peak structures appear already for gg;ﬂgg it:e ;La:]r?heerss)ézromg integral by using Diracfunctions
k points. This is related to the fact that the general behaviof P

(o) i - i i

of Im x'“(w) is a!ready given by the combined densny of Bands N,=89 N,=240 N,=505 N,=916
states and the optical matrix elements. However, there is alsa

an influence of the energy denominators in the prefactors o8 30 15 22 31
the 2» and w terms. In the case of the generalized tetrahe- 37 (39 (40 (39
dron method one observes an increasing number of fing4 47 22 30 39
structures. Their physical relevance is low. After introduc- (44) 47 (48) (46)

tion of lifetime broadening effects by a Lorentz convolution
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TABLE II. Low-frequency SHG coefficientg(?(0) (in 1078 1.5 . . ; .
esy calculated by two different methods for IlI-V compounds. ]
They are compared with results from other calculatidRefs. 10, 0.5 GaAs |
12, 16, and 1Bor measurementdRefs. 2, 39, and 40 25 ) . . ]
" C T T T i 1.0
Reference GaP GaAs InP InAs ]
Present 15 30 14 32 = _ cap § 92
resen = ]
2 3.0 : ——t -2.0
(16 (48 (17 (39 9;’ ]
12 13 23 = 00 InAs |
10 32 60 28 174 3 W I“ S ]
16 38 96 450 5 -3.0 ot ———— 1.0
18 24 38 64 ()
(v - 1 -0.5
39 52 90 200 W
40 20 43 : i : -2.0
2 32 91 69 05 1 ]
0.5 | SiC 1
) ) ] ) _1 -5 1 I 1
k-point meshes should be increased in the nonlinear case 0 2 4 6 8
with respect to the sampling used for linear optical coeffi- Photon energy [eV]
cients. In the following we use 506 points in the irreduc- FIG. 4. Real part of¢'? () for five different materials crystal-

ible part of the fcc BZ(ii) When the whole SHG spectrum is |izing in zinc-blende structure. 506points and 24 bands have been
calculated from the imaginary part and the Kramers-Kronigysed in the calculation.

transformation, the analytic linear tetrahedron method has to

be improved. Therefore, all of the following spectra are com-

puted using 50% points. 3.0
For two different numbers of bands, 8 and 24, the conver-

gence of the zero-frequency SHG coefficient is shown in

Table | with respect to the number &fpoints. The values 1.5
for x?)(0) obtained from a diredt-space integration, where
the Kramers-Kronig transformation is analytically performed 0 0

by using Dirac’sé functions in the imaginary part, are al-
ready converged for 89 mesh points. The nonmonotonous
variation of the values derived from the Kramers-Kronig
analysis indicates the need of mdeepoints in this type of
integration. In contrast to other zinc-blende materials GaAs

2.0
1.0

seems to be an exceptional case with respect to the conver = OO
2 4.0
gence of the SHG coefficient calculated by means of the ¢ .
O
2-5 ' ' ' 1 g 2-0
0.0 J\MNW‘ =
Gans | 3 0. 2,
-25 : : : 1 2.0 @v 0 0 0
1 0.0 =
—_ GaP ] 1.0
z 3.0 ————t——] 2.0
2 05F : 0.0
3 InAs 2.0
s 4.0 : : : 1 2.0
£ J/\»W 0.0 1.0
InP ]
25 [+t 2.0 0.0 . . .
0.5 %‘,\, 0 2 4 6 8
] Photon energy [eV]

-1.5 : : :
0 2 4 6 8§ FIG. 5. Module ofy{®(w) for five different materials crystal-
Photon energy [eV] lizing in zinc-blende structure. 505points and 24 bands have been
FIG. 3. Imaginary part of¢®(w) for five different materials used in the calculation. Experimental data are also shown. GaP:
crystallizing in zinc-blende structure. 505 points and 24 bands Ref. 36. GaAs: dottedRef. 37, dashed(Ref. 38. InAs: dotted
have been used in the calculation. (Ref. 37, dashedRef. 38.



6524 B. ADOLPH AND F. BECHSTEDT 57

Kramers-Kronig transformation. This is related to the band
structure. There are band pairs and BZ regions where similar
shapes exist, reducing the convergence as also seen from Fig.
2. That means that a tendency already known for Ehe
region in the linear spectra is much more pronounced in the
nonlinear case.

Al®)

B. Spectral behavior of SHG coefficients

The SHG coefficients for GaP, GaAs, InP, InAs, and SiC )
are plotted in Figs. 3, 4, and 5. Figures 3 and 4 show the_ F_IG. 6. Che_ck of Miller’s rule for InAs, GaAs, InP, GaP, and
imaginary and real part, respectively. The module of the totaPiC in decreasing order.
coefficient is plotted in Fig. 5. The calculations are per-ierms of the imaginary parts.
formed using 505k points and 24 bands. In Fig. 5 also  The comparison of the module of the total SHG coeffi-
experimental dafd~*® are shown for comparison. The cients with experimental datrs®for GaP, GaAs, and InAs
prominent structures in all spectra are limited to a region ofFig. 5) indicates a reasonable description of the SHG spectra
5 (7) eV for the 1lI-V compoundgSiC). That means that the by the presented theory. This holds especially for the order
fact that y(?)(w) is related to three optical transitions and of magnitude and the principal spectral behavior. In the case
that only the imaginary part of the product of the three ma-of GaAs there are also certain indications that the peak ob-
trix elements occurs has remarkable consequences. served for photon energies around 1.3 eV by Parson and

The simplified picture of superposing two combined den-Chang’ may be interpreted mainly by optical transitions
sity of states at @ and w according to the contributions to along thel'L line nearI" in the BZ.

Eq. (4) is not valid. First, the @ term dominates the SHG

coefficient. Second, the spectral behavior of }##(w) C. Low-frequency limit

(Fig. 3 can be explained by the two promined categories of The corresponding spectra are already plotted in Figs. 4
optical transitionsE; andE,, in the linear absorption of, at and 5. From these figures we derive the values 0@&P,
least, the I1l-V compounds. However, matrix-element effectsn. 30 (GaAs, 0.14 (InP), and 0.32(InAs) 10° esu for

are much Stronger in the nonlinear case. In Comparison to th (2)(0) Because of the Strong frequency variation of the
linear absorption the peaks are sharpened and the sign coyidaginary part including positive and negative contributions
be negative in accordance to the prefactor. The sign of thehe accuracy of the obtained values is limited. In the
imaginary part of the product of three momentum matrixkramers-Kronig transformation the calculation of the exact
elements is not fixed. spectral weights of these positive and negative peaks is very

Since the spectra for the four Ill-V compounds are veryjmportant. They cancel each other partially during the inte-
similar, we discuss Iny®)(w) (cf. Fig. 3 in more detail gration. More exact values follow when the Kramers-Kronig
Only for GaAs taklng the transition energies from the DFT'integra| is ana|ytica||y performed by means of Diracds
LDA calculation. In the 2 contribution a pronounced posi- fynctions in Imx®@(w) in Eq. (4) and thek-space integra-
tive E; peak appears atido~2.7 eV. In the same frequency tjon is done directly. The values resulting for 505 mesh
region a smalleflE, peak related to thes contribution is points and 24 bands are 0.(8aP), 0.48(GaAs, 0.17(InP),
observed neafiw~1.4 eV. TheE, peak in the & term  and 0.35(InAs) 10~ ° esu.
possesses a negative sign. It occurs around24.4 eV. A In Table Il the values calculated for 11I-V compounds are
similar behavior follows for theE; peak at about 2w  compared with results of other calculations and measure-
=5.6 eV. In thew contribution to the imaginary part one ments. In the limitw—0 the SHG coefficientg®(0) also
finds weakelE; andE, peaks atiw with an opposite sign. describe the electro-optic susceptibility. There are remark-
Their peak positions follow from the linear absorption spec-able fluctuations in the values. However, considering the dif-
tra plotted in Fig. 1. The corresponding values for Inis  ferent methods and approximations used and the difficulties
P.GaR are 2.6(3.1,3.4 eV for E;, 4.2(4.5,4.6 for E;, and  in the measurements, we state a reasonable overall agree-
5.2(5.7,5.8 eV for E; . The situation is more complicated in ment. Only in the case of InAs are the discrepancies really
the case of cubic SiC. The low-energy peak wijhandE; large.
character and the high-energy peak wih, E}, and E, We have seen from the peak structure in the spectra that
+ & character, which occur near energiee=7.0 eV and are some similarities with those known from the linear op-
8.4 eV in the linear absorption spectrum, appear both in th&cs. For that reason Millét suggested that the SHG suscep-
2w and thew contribution. Thereby the high-energy peak tibility x?(w) of a crystal should be related to the linear
changes the sign as already discussed for the 111-V semicorsusceptibility x(*)(w) by
ductors.

The interpretation of the real part§ig. 4) of the SHG Aw)=x?(2o){x(20)[x (@)1}, @)
coefficients is more complicated than those of theThe functionA(w) is expected to be a slowly varying func-
Im x®(w) spectra. However, according to the Kramers-tion of w. A(0) should be a certain universal constant. The
Kronig transformation the spectra are smoother and look likéunction A(w) is plotted in Fig. 6 versus photon energies
the superposition of the spectra of more or less four probelow the important resonances for several IlI-V semicon-
nounced oscillator spectra with resonance frequencies clogiictors and zinc-blende SiC. There is a clear chemical trend
to the E;- andE,-like structures appearing in thev2and with the lattice constant of the considered materidléw)

Photon energy [eV]
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FIG. 7. Influence of quasiparticle corrections: imaginary and real part of the SHG coefficient fotaBiResults within DFT-LDA
(dotted ling and within theGW approximation(solid ling), (b) results within theGW approximation(solid line) and using a scissors
operator(dotted ling.

decreases with the lattice constant. Such a decrease seemsStdG coefficients we expect another complication. We know
be a general tendency for wide-gap materials with small latthat such QP shifts somewhat overestimate the opening of
tice constant and a remarkable ionic contribution to theoptical gaps. Smaller values of the many-body shifts are
chemical bond? The corresponding bond-charge model necessary,due to the presence of excitonic effects.
seems to be also able to explain the chemical trend in In Fig. 7(b) the influence of the QP corrections on the
x®(0) values and even the sign change for compounds corSHG spectra is compared for two different approximations,
taining first-row elements by ionicity of chemical bonds andon the one hand the scissors-operator approximation, and on
atomic sizes. In the case of compounds like GaAs withthe other hand, the fulb W approximation discussed in Fig.
nearly equally sized atoms the “covalent” contribution to 7(a), i.e., taking into account wave-vector- and band-index-
x'?(0) vanishes. Only the “ionic” contribution determines dependent shifts. The value used for the scissors operator is
the value ofy(®(0). With increasing difference in the size of not uniquely defined. We assume a rigid shift of the excita-
the atoms, especially when elements like C or N are presention energies of 1.68 eV, which corresponds to the energeti-
the “covalent” contribution will be important. Since its sign cal distance of the maina contributions in DFT-LDA and
is reversed, the total quantity is remarkably lowered or everiull QP approximation in Fig. @. The difference between
the sign of the SHG coefficient could be changed in certairthe two approximations of the QP effects can be clearly seen
wide-gap semiconductors. In any case, the valué¥(0)|  from the comparison of the main peaks around 4.5 eV. We
are smaller than for conventional I1I-V semiconductors.  find the spectra within th&W approximation to contain less
pronounced structures in comparison with the ones calcu-
D. Quasiparticle effect !ated using the scissors operator. The wave-vector- gnd band-
index-dependent QP shifts seem to cause a smoothing of the
The influence of QP effects within tf@W approximation  structures and a partial annihilation of the contributions of
on the SHG intensity is shown in Fig(d for SiC. On afirst  the 2w andw term as a result of the complicated structure of
view, there seems to be the main influence similar to thghe energy denominators in the prefactors, whereas the rigid
situation in the linear optical caSeDespite the inclusion of ghift within the scissors-operator approximation does not.
the band-index and wave-vector dependence of the QP shift$his happens especially in the energy region above the main
Ap(k), the spectra are more or less rigidly shifted towardspeak. The situation in the high-energy region is somewhat
higher photon energies. The shift of the main peaks in thonfusing due to the simultaneous occurrence @fghd
low-energy region of Imy®)(w) amounts to 0.84 eV. This contributions. Due to the use of one rigid shift the partial
value is exactly half the one derived in the linear édfse  compensation of the two different types of contributions is
the main absorption peak with; , E;, andE,+ & character.  different. For that reason, pronounced structures appear
This indicates again that the main peaks in the low-frequencyground 6 and 7 eV in one spectrum but not in the other one.
region are related to the«® contributions. In the high- Our observation holds not only for the imaginary part but
frequency region the interpretation of DFT-LDA and the QPalso for the real part. In the spectral region above the half of
spectrum is more complicated because of the superpositicine energy of the main absorption peaks, the scissors-
of 2w and w contributions. In comparison with measured operator approximation is less successful than in the case of
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the linear optical spectra. In the region below the main strucmatrix elements are more important than in the linear case.
tures the spectra are only influenced by the sensitivity of th&hey are able to change the sign of a certain contribution that
prefactors to the actual transition energies resulting in smalk related to pronounced optical transitions. The main fea-
variations of the graph. The discrepancy between the two QRires observed in the experimental SHG spectra available
approximations practically vanishes for zero frequency. Theseem to be described by the presented theory. Describing the

value of the second-order nonlinear coefficient changes frorfow-frequency SHG coefficient, thie integration has to be

6.2<10 8 esu, as for the result of the DFT-LDA to 5.3
x 10 8 esu (5.4<10 8 esy), taking into account QP correc-
tions within theGW (scissors-operatpapproximation.

IV. SUMMARY

We have studied the influence of two different types of
tetrahedron methods to perform tkespace integration over
Dirac’s 6 functions in the imaginary part of the second-order

performed more carefully to account for the partial cancella-
tion of the 2v and w contributions in the second-order sus-
ceptibility. The resulting valueg®(0) approach the calcu-
lated and measured data in the average. Miller's rule is not
fulfilled with a universal constant. Rather, there is a clear
chemical trend in the values for several compounds.

In order to include also the excitation aspect in the elec-
tronic band structure usually described within DFT-LDA, we
have also taken into account wave-vector- and band-index-

energy dependence the prefactors of éhieinctions have to

dependent prefactors of Dirac&functions in the imaginary

be properly treated. This is in contrast to the linear casgayt of the SHG susceptibility, the quasiparticle effects give

where the prefactors are only governed by optical transitiojse to spectral changes that cannot be discussed within a
matrix elements. Moreover, for the same reason it turns ouimpiified picture of a scissors operator.

that the density of th&-point mesh has to be increased with
respect to the linear findings.
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