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Ab initio second-harmonic susceptibilities of semiconductors: Generalized tetrahedron method
and quasiparticle effects

B. Adolph and F. Bechstedt
Institut für Festkörpertheorie und Theoretische Optik, Friedrich-Schiller-Universita¨t, D-07743 Jena, Germany

~Received 29 August 1997!

We report numerical calculations of the frequency-dependent second-order optical susceptibility. The results
are based on anab initio treatment of the geometry and the electronic structure within the density-functional
theory in local-density approximation. The plane-wave-pseudopotential method is combined with a generalized
tetrahedron method to perform thek-space integration. The analytic linear tetrahedron method has to be
improved because of the energy-dependent prefactors of thed functions describing the energy conservation.
We also present results for spectra of the second-harmonic generation where many-body quasiparticle effects
are included beyond the scissors-operator approximation. Zinc-blende semiconductors are considered as model
substances.@S0163-1829~98!01911-0#
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I. INTRODUCTION

In recent years, there has been an increasing interest i
nonlinear optical properties of various materials includi
zinc-blende semiconductors. This development is motiva
by the rapid advances in electro-optical technology and
optical information technology. One important nonline
process is second-harmonic generation~SHG!. Since its dis-
covery in 1961,1 technical difficulties delayed the accura
calculation of the corresponding susceptibility for ma
years. On the other hand, the microscopic understandin
the nonlinear processes is extremely important for the
provement of the nonlinear materials and devices and
vides an opportunity to search for new materials.

Among the nonlinear-optical materials the III-V semico
ductors InAs, GaAs, InP, and GaP are of central importan
They belong to the structurally simplest substances for wh
SHG is already allowed in the bulk. The optical nonlinea
ties are relatively large2 and, moreover, can be increased
these materials are deposited in layered structures.3 Other
materials, like the group-IV compound SiC that also cryst
lizes in zinc-blende structure, show much low
nonlinearities.4 It is important to know in which way sligh
changes in the electronic structure and the size of the at
give rise to a remarkable variation of the nonlinear opti
properties.

The calculation of the frequency-dependent linear or n
linear optical properties of crystals requires the full inform
tion about its band structure and wave functions. Based
ab initio calculations the electronic structures of semico
ductors have been available for several years. They h
been used to describe the linear optical response from
principles.5–9 In contrast, there are only few calculations
the same level of approximations in the case of the nonlin
response.10–12 Huang and Ching10 described the electroni
structure of 15 semiconductors in the framework of t
density-functional theory~DFT!13 and the local-density ap
proximation ~LDA !.14 The wave functions have been e
panded in terms of orthogonalized linear combinations
atomic orbitals~OLCAO!. As in the linear case thek inte-
570163-1829/98/57~11!/6519~8!/$15.00
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gration over the Brillouin zone~BZ! is performed using the
‘‘traditional’’ linear-analytic tetrahedron method accordin
to Ref. 15. Levine11 uses a plane-wave-pseudopotential co
of the DFT-LDA. The special-points integration scheme
quires a restriction to low frequencies. However, local-fie
and quasiparticle effects are also discussed. Hughes
Sipe12 described the second-order optical response of
semiconductors GaAs and GaP using a combination of
full-potential linearized augmented plane-wave~FLAPW!
method and DFT-LDA. Self-energy corrections are includ
on the level of the scissors-operator approximation. T
k-space integration is performed by means of the traditio
tetrahedron method in combination with a random sampl
technique. The energies as well as the matrix elements
also linearized with respect to thek dependence.

The k-space integration in the nonlinear optical coef
cients is more complicated than in the case of the lin
response. Whereas the imaginary part of the linear opt
susceptibility is mainly characterized by optical matrix e
ments multiplied with Dirac’sd function representing the
energy conservation; rational functions of the optical tran
tion energies involved in the nonlinear processes occur
addition, in the case of the quadratic response. Thek depen-
dence of these functions remarkably influences the spe
behavior of the second-order susceptibilities. For that rea
Moss, Sipe, and van Driel16 extended the linear-analytic te
rahedron method for integrating linear-response function
the nonlinear case. In addition, the linear variation of the t
different optical transition energies appearing in the reson
prefactors due to the second-order nonlinear response
been taken into account. The electronic structures have b
calculated within a tight-binding scheme.

In the present paper we combine this extended line
analytic tetrahedron method with an electronic structure
rived from anab initio pseudopotential-plane-wave metho
The advantage of the extension over the traditional tetra
dron method is shown. In addition, we discuss the effect
quasiparticle corrections on SHG spectra. The wave-vec
and band-index-dependent quasiparticle shifts are calcul
from a slightly simplified expression for the exchang
6519 © 1998 The American Physical Society
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6520 57B. ADOLPH AND F. BECHSTEDT
correlation self-energy. We investigate the prototypical III
and IV-IV compound semiconductors GaP, GaAs, InP, In
and SiC crystallizing in zinc-blende structure. The pape
organized in the following way. In Sec. II we describe t
computational method including the extension of the tetra
dron integration. Our results for the frequency-depend
SHG signals are presented in Sec. III and compared w
other calculations and experimental data available. The ef
of quasiparticle shifts deviating from the findings in the li
ear case and the convergence problems are discusse
summary is given in Sec. IV.

II. COMPUTATIONAL METHOD

A. Second-harmonic coefficient

An expression for the second-order optical susceptibi
x̂ (2)(v1 ;v2 ,v3) is obtained from the quadratic-respon
theory.17 One of the most important processes, the seco
harmonic generation, is characterized by the ten
x̂ (2)(22v;v,v) with v as the frequency of the inciden
light. When the light-matter interaction is described by t
coupling of the vector potential with the current density o
erator of the electrons, i.e., the so-called Coulomb or velo
gauge, the tensor is related to a correlation function of th
current operators. In the single-particle picture the corre
tion function can be expressed in terms of Bloch eigenfu
tions unk& belonging to the band indexn, the wave vectork
in the first Brillouin zone ~BZ!, and the Bloch energy
«n(k).17,18 Excitonic and other effects beyond th
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independent-particle approximation are neglected.19 In
x̂ (2)(22v;v,v) occur only interband energies

Enn8~k!5«n~k!2«n8~k! ~1!

and matrix elements of the momentum operator

pnn8
a

~k!5^nkupaun8k&. ~2!

In general, the appearance of the momentum operator ins
of the velocity operator indicates an approximation. Corr
tions due to spatially nonlocal potentials in the Schro¨dinger-
like equation for the Bloch electrons and due to the inco
pleteness of the basis functions in the expansion of the Bl
functions9 are neglected.

In the cubic case the tensor expression
x̂ (2)(22v;v,v) may be remarkably simplified. Only th
tensor components of the typexxyz

(2) (22v;v,v) with x, y,
and z as the cubic axes are different from zero. Only o
function x (2)(v)[xxyz

(2) (22v;v,v) has to be considered
Taking into account the time-reversal symmetry, it can
shown that the real and imaginary part of this function fu
a Kramers-Kronig relation,16 e.g.,

Re x~2!~v!5
2

pE0

`

dv8
v8

v822v2
Im x~2!~v8!. ~3!

Following the derivation of Aspnes18 the imaginary part is
given by
Im x~2!~v!52
p

2 S e\

m D 3
2

V(
k

( 8
v,c,c8

$pvc
x pcc8

y pc8v
z %H 16

Ecv
3 ~k!@2Ec8v~k!2Ecv~k!#

d@Ecv~k!22\v#

1
2Ec8v~k!2Ecv~k!

Ecv
3 ~k!@Ecv~k!1Ec8v~k!#@2Ecv~k!2Ec8v~k!#

d@Ecv~k!2\v#J ~4!
ela-
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$pvc
x pcc8

y pc8v
z %[ImF 1

3!
P̂„pvc

x ~k!pcc8
y

~k!pc8v
z

~k!…G , ~5!

where P̂ indicates all permutations with respect to the C
tesian components.V stands for the sample volume.

Expression~4! describes three-photon processes with
initial states of the electrons in an occupied valence bann
5v and the final states in an unoccupied conduction b
n5c or n5c8. Intermediate states may occur in valence
well as conduction bands. However, the virtual-hole con
butions of a band combinationvv8c are found to be
negligible18 and are therefore omitted in Eq.~4!. Only the
virtual-electron contributions of the typevc8c or vcc8 are
taken into account. Intraband processes do not play any
Their vanishing may be shown using the time-reversal sy
metry. Only terms, which fulfil the energy conservation f
-

e

d
s
-

le.
-

positive frequencies, are written in expression~4! since only
those frequencies are necessary in the Kramers-Kronig r
tion ~3!.

B. Brillouin-zone integration

In the explicit calculations we first calculate the imagina
part of the SHG susceptibility~4! in a wide range of frequen
cies. In a second step its real part is obtained by means o
Kramers-Kronig transformation~3!. The introduction of the
permutations of the Cartesian coordinates in Eq.~5! corre-
sponds to the construction of an invariant against all po
group operations. Together with the time-reversal symme
such invariants allow the restriction of the BZ integration
the irreducible part, i.e., a1

48th wedge of the BZ of the fcc
structure.

The appearance of Dirac’sd functions in expression~4! is
a consequence of the energy conservation during the S
process. These functions indicate that thek-space integration
should be performed by means of the linear-analytic tetra
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57 6521AB INITIO SECOND-HARMONIC SUSCEPTIBILITIES . . .
dron method15,20as well known from the linear optical prop
erties. The prefactors of thed functions are replaced by th
average over the four corners of a tetrahedron. However
situation is more complicated in the case of the nonlin
optics. Besides momentum matrix elements the prefac
contain energy denominators and nominators. Conseque
in expression~4! for the imaginary part of the SHG susce
tibility ‘‘double resonances’’ may occur. In both contribu
tions, the 2v and thev term, this coincidence happens whe
2\v5Ecv(k) and\v5Ec8v(k) (cÞc8).

Because of the possibility of double resonances the va
tion of the prefactors of thed functions cannot be ignored
This can be only done in the case of the momentum ma
elements to a good approximation. Thek variation of the
interband energies has to be taken into account, at least
in a linear approximation. The details of this integration a
described in Ref. 16 The basic idea is to replace thek-space
integral over a tetrahedron by a finite energy integral o
the fraction of the isoenergy face lying within the tetrah
dron. This isoenergy face is defined by the transition ene
which governs thed function. Because of the occurrence
two different optical transition energies due to the seco
order nonlinear process, a second integration has to be
lytically performed. It gives the length of a line segment. It
defined as the intersection of the isoenergy plane relate
the second interband energy in the prefactor with the pl
of intersection defined by thed function. In analogy to the
linear case, the line segment may be written in terms of
known energies at the tetrahedron vertices.

There are limits that require special care. As in the lin
case, if the energies at the vertices of the tetrahedron bec
degenerate, one must analytically calculate the area of in
section to avoid large numerical errors. In the nonlinear c
there are also complications when the interband ener
Ecv(k) andEc8v(k) are parallel ink space. This case may b
formally treated by using the formula in Eq.~4! and perform-
ing the BZ integration over thed functions as in the linea
case.

C. Structure, electronic states, and quasiparticle shifts

The electronic-structure calculations underlying the co
putations of the SHG susceptibility are based on
DFT-LDA.21 The many-body electron-electron interaction
described within the Ceperley-Alder scheme22 as param-
etrized by Perdew and Zunger.23 The electron-ion interaction
is treated by norm-conserving,ab initio, fully separable
pseudopotentials in the Kleinman-Bylander form.24 They are
based on relativistic all-electron calculations for the free
oms by solving the Dirac equation self-consistently. In t
beginning the pseudopotentials were generated accordin
Bachelet-Hamann-Schlu¨ter scheme.25 The carbon potential is
softened by carefully choosing the core radii.26

The electronic wave functions are expanded in terms
plane waves. The energy cutoffs for the plane-wave exp
sion are chosen to 15 Ry for the III-V compounds and 34
in the case of silicon carbide~SiC!. They are sufficient for
converged energy and lattice calculations. The total-ene
optimizations within the zinc-blende structure give rise
theoretical cubic lattice constants ofa55.36 Å ~GaP!, 5.57
Å ~GaAs!, 5.67 Å ~InP!, 5.86 Å ~InAs!, and 4.29 Å~SiC!.
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They are used although they slightly underestimate the
perimental values27 and, hence, enlarge somewhat the DF
LDA transition energies. These transition energies are ca
lated according to Eq.~1!. The single-particle energies«n(k)
are replaced by the eigenvalues of the Kohn-Sham equa

In order to account for the excitation aspect, exchange
correlation have to be treated more carefully. At least qua
particle~QP! shiftsDn(k), which account for the difference
between the exchange-correlation self-energy and the co
sponding potential used in the DFT-LDA,28,29 have to be
taken into consideration. The QP corrections to the DF
LDA eigenvalues are computed within theGW
approximation,28,29 according to a slightly simplified schem
developed by Cappellini and co-workers.30,31 We determine
such band-index- and wave-vector-dependent QP shifts
plicitly and discuss their influence in detail for zinc-blend
SiC.32 In addition we compare the results including QP shi
within the GW approximation with those using a scissor
operator approximation as suggested in Ref. 12. In the c
of the III-V compounds we restrict ourselves to the scisso
operator approximation. The scissors operators are de
mined from the comparison of calculated and measured
ear optical spectra.

We know already from the treatment of the linear optic
properties that the inclusion of the QP effects requires ph
cal considerations9 and cannot be restricted to a replaceme
of all transition energies in Eq.~4! by differences of«n(k)
1Dn(k). When QP effects are included, the spatial non
cality of the self-energy influences the optical transition o
erator in the same manner as other nonlocal potential co
butions. However, we neglect this influence. Anoth
problem arises from the fact that only the single-particle
ergies in expression~4! which are introduced from the spec
tral properties should be shifted. In the linear case this pr
lem is now solved6,9,33within the assumption of nearly equa
DFT-LDA and QP wave functions. Which energies shou
be shifted is related to a derivation of the optical suscepti
ity starting from a longitudinal~scalar! perturbation. In the
electric-dipole approximation and neglecting nonlocal con
butions one uses the relation

pnn8
a

~k!5 i
m

\
@«n~k!2«n8~k!#^nkuxaun8k& ~6!

to avoid ill-defined matrix elements of the dipole operat
The energies arising from this rewriting should not be c
rected by QP effects. Consequently, because of the three
trix elements of the momentum operator in Eq.~4!, we in-
troduce a renormalization factor@«n(k)1Dn(k)2«n8(k)
2Dn8(k)#/@«n(k)2«n8(k)# for each of the matrix element
in expression~4!. The renormalization factor increases th
oscillator strengths according to the increase of the ga
There are further complications due to the screening dyn
ics included in the QP self-energy. For a discussion of
dynamical effects the reader is referred to Ref. 34.

III. RESULTS AND DISCUSSION

A. BZ sampling

From the calculation of the linear optical properties w
know that in the zinc-blende case about 30 bands are s
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6522 57B. ADOLPH AND F. BECHSTEDT
cient for a converged calculation of the imaginary part of
optical susceptibility.9 The real part calculated via th
Kramers-Kronig transformation does not show significa
changes after increasing the number of bands. Therefore
restrict ourselves in the calculation of the SHG coefficien
24 bands~without spin!, four valence bands, and the first 2
conduction bands. However, we increase the number ok
points and, hence, the number of tetrahedrons. Wherea
the linear case reasonable results may be obtained withk
points,9 in the nonlinear case the mesh should be finer
cause of prefactors in expression~4!. Figure 1 shows the
linear results obtained with 505 mesh points for GaP, Ga
InP, InAs, and SiC. In the SiC case the effect of the incre
of thek-point density is weak. The low-energy peak withE0

and E1 character as well as the high-energy peak withE18 ,
E08 , and E21d character are hardly influenced, where w
follow the denotations of Yu and Cardona.35 The effect is
larger in the case of the low-energyE1 peak in the spectra o
the III-V compounds. Because of the nearly parallel em
and occupied bands, the increase of the density in thek-point
mesh gives rise to a more pronouncedE1 peak. The intensity
of theE2 structure is slightly reduced. Its shoulder is relat
to E08 transitions. TheE18 peak higher in energy is hardl
influenced by the sampling.

Figure 2 represents two effects, the dependence of
SHG spectra on the density of thek points in the sampling
and the comparison of the analytic linear tetrahed
method15,20 with its generalization for nonlinear optica
coefficients16 described in Sec. II B. The principal behavi
and the most important peak structures appear already fo
k points. This is related to the fact that the general beha
of Im x (2)(v) is already given by the combined density
states and the optical matrix elements. However, there is
an influence of the energy denominators in the prefactor
the 2v andv terms. In the case of the generalized tetra
dron method one observes an increasing number of
structures. Their physical relevance is low. After introdu
tion of lifetime broadening effects by a Lorentz convolutio

FIG. 1. Imaginary part of the dielectric function for III-V com
pounds~a! and cubic SiC~b! calculated with 505k points in the
linear tetrahedron method.
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these structures disappear widely. The spike structures in
spectra calculated using the common linear tetrahed
method fluctuate with thek-point sampling. This indicates
their unphysical nature. Rather, they are related to the pr
ously mentioned double resonances, which should
avoided by the described generalization of the method. F
ure 2 shows two conclusions:~i! The density of the used

FIG. 2. Imaginary part of the second-order susceptibil
Im x (2)(v) of GaAs for different numbersNk of k points. ~a! Nk

589, ~b! Nk5240, ~c! Nk5505, and~d! Nk5916. Solid line, tet-
rahedron method as in the linear case; dashed line, generalize
rahedron method.

TABLE I. Convergence ofx (2)(0) of GaAs in units of 1028 esu
with the number ofk points Nk , for two different numbers of
bands, 8 and 24. The values are calculated by means of
Kramers-Kronig relation~3! and by a direct calculation after per
forming the Kramers-Kronig integral by using Dirac’sd functions
~values in parentheses!.

Bands Nk589 Nk5240 Nk5505 Nk5916

8 30 15 22 31
~37! ~39! ~40! ~38!

24 47 22 30 39
~44! ~47! ~48! ~46!



a
ffi

is
ni
s
m

e
i

e
ed
l-
o
ig

A
v
th

n

n
aP:

s.

57 6523AB INITIO SECOND-HARMONIC SUSCEPTIBILITIES . . .
k-point meshes should be increased in the nonlinear c
with respect to the sampling used for linear optical coe
cients. In the following we use 505k points in the irreduc-
ible part of the fcc BZ.~ii ! When the whole SHG spectrum
calculated from the imaginary part and the Kramers-Kro
transformation, the analytic linear tetrahedron method ha
be improved. Therefore, all of the following spectra are co
puted using 505k points.

For two different numbers of bands, 8 and 24, the conv
gence of the zero-frequency SHG coefficient is shown
Table I with respect to the number ofk points. The values
for x (2)(0) obtained from a directk-space integration, wher
the Kramers-Kronig transformation is analytically perform
by using Dirac’sd functions in the imaginary part, are a
ready converged for 89 mesh points. The nonmonoton
variation of the values derived from the Kramers-Kron
analysis indicates the need of morek points in this type of
integration. In contrast to other zinc-blende materials Ga
seems to be an exceptional case with respect to the con
gence of the SHG coefficient calculated by means of

FIG. 3. Imaginary part ofx (2)(v) for five different materials
crystallizing in zinc-blende structure. 505k points and 24 bands
have been used in the calculation.

TABLE II. Low-frequency SHG coefficientsx (2)(0) ~in 1028

esu! calculated by two different methods for III-V compound
They are compared with results from other calculations~Refs. 10,
12, 16, and 18! or measurements~Refs. 2, 39, and 40!.

Reference GaP GaAs InP InAs

Present 15 30 14 32
~16! ~48! ~17! ~35!

12 13 23
10 32 60 28 174
16 38 96 450
18 24 38 64
39 52 90 200
40 20 43
2 32 91 69
se
-
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e

FIG. 4. Real part ofx (2)(v) for five different materials crystal-
lizing in zinc-blende structure. 505k points and 24 bands have bee
used in the calculation.

FIG. 5. Module ofx (2)(v) for five different materials crystal-
lizing in zinc-blende structure. 505k points and 24 bands have bee
used in the calculation. Experimental data are also shown. G
Ref. 36. GaAs: dotted~Ref. 37!, dashed~Ref. 38!. InAs: dotted
~Ref. 37!, dashed~Ref. 38!.
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6524 57B. ADOLPH AND F. BECHSTEDT
Kramers-Kronig transformation. This is related to the ba
structure. There are band pairs and BZ regions where sim
shapes exist, reducing the convergence as also seen from
2. That means that a tendency already known for theE1
region in the linear spectra is much more pronounced in
nonlinear case.

B. Spectral behavior of SHG coefficients

The SHG coefficients for GaP, GaAs, InP, InAs, and S
are plotted in Figs. 3, 4, and 5. Figures 3 and 4 show
imaginary and real part, respectively. The module of the to
coefficient is plotted in Fig. 5. The calculations are p
formed using 505k points and 24 bands. In Fig. 5 als
experimental data36–38 are shown for comparison. Th
prominent structures in all spectra are limited to a region
5 ~7! eV for the III-V compounds~SiC!. That means that the
fact that x (2)(v) is related to three optical transitions an
that only the imaginary part of the product of the three m
trix elements occurs has remarkable consequences.

The simplified picture of superposing two combined de
sity of states at 2v andv according to the contributions t
Eq. ~4! is not valid. First, the 2v term dominates the SHG
coefficient. Second, the spectral behavior of Imx (2)(v)
~Fig. 3! can be explained by the two promined categories
optical transitions,E1 andE2, in the linear absorption of, a
least, the III-V compounds. However, matrix-element effe
are much stronger in the nonlinear case. In comparison to
linear absorption the peaks are sharpened and the sign c
be negative in accordance to the prefactor. The sign of
imaginary part of the product of three momentum mat
elements is not fixed.

Since the spectra for the four III-V compounds are ve
similar, we discuss Imx (2)(v) ~cf. Fig. 3! in more detail
only for GaAs taking the transition energies from the DF
LDA calculation. In the 2v contribution a pronounced pos
tive E1 peak appears at 2\v'2.7 eV. In the same frequenc
region a smallerE0 peak related to thev contribution is
observed near\v'1.4 eV. TheE2 peak in the 2v term
possesses a negative sign. It occurs around 2\v'4.4 eV. A
similar behavior follows for theE18 peak at about 2\v
55.6 eV. In thev contribution to the imaginary part on
finds weakerE1 andE2 peaks at\v with an opposite sign.
Their peak positions follow from the linear absorption spe
tra plotted in Fig. 1. The corresponding values for InAs~In-
P,GaP! are 2.6~3.1,3.4! eV for E1, 4.2 ~4.5,4.6! for E2, and
5.2 ~5.7,5.8! eV for E18 . The situation is more complicated i
the case of cubic SiC. The low-energy peak withE0 andE1

character and the high-energy peak withE18 , E08 , and E2

1d character, which occur near energies\v57.0 eV and
8.4 eV in the linear absorption spectrum, appear both in
2v and thev contribution. Thereby the high-energy pea
changes the sign as already discussed for the III-V semic
ductors.

The interpretation of the real parts~Fig. 4! of the SHG
coefficients is more complicated than those of t
Im x (2)(v) spectra. However, according to the Krame
Kronig transformation the spectra are smoother and look
the superposition of the spectra of more or less four p
nounced oscillator spectra with resonance frequencies c
to theE1- andE2-like structures appearing in the 2v andv
d
ar
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terms of the imaginary parts.
The comparison of the module of the total SHG coe

cients with experimental data36–38 for GaP, GaAs, and InAs
~Fig. 5! indicates a reasonable description of the SHG spe
by the presented theory. This holds especially for the or
of magnitude and the principal spectral behavior. In the c
of GaAs there are also certain indications that the peak
served for photon energies around 1.3 eV by Parson
Chang37 may be interpreted mainly by optical transition
along theGL line nearG in the BZ.

C. Low-frequency limit

The corresponding spectra are already plotted in Figs
and 5. From these figures we derive the values 0.15~GaP!,
0.30 ~GaAs!, 0.14 ~InP!, and 0.32 ~InAs! 1026 esu for
x (2)(0). Because of the strong frequency variation of t
imaginary part including positive and negative contributio
the accuracy of the obtained values is limited. In t
Kramers-Kronig transformation the calculation of the exa
spectral weights of these positive and negative peaks is
important. They cancel each other partially during the in
gration. More exact values follow when the Kramers-Kron
integral is analytically performed by means of Dirac’sd
functions in Imx (2)(v) in Eq. ~4! and thek-space integra-
tion is done directly. The values resulting for 505 me
points and 24 bands are 0.16~GaP!, 0.48~GaAs!, 0.17~InP!,
and 0.35~InAs! 1026 esu.

In Table II the values calculated for III-V compounds a
compared with results of other calculations and measu
ments. In the limitv→0 the SHG coefficientsx (2)(0) also
describe the electro-optic susceptibility. There are rema
able fluctuations in the values. However, considering the
ferent methods and approximations used and the difficul
in the measurements, we state a reasonable overall ag
ment. Only in the case of InAs are the discrepancies re
large.

We have seen from the peak structure in the spectra
are some similarities with those known from the linear o
tics. For that reason Miller41 suggested that the SHG susce
tibility x (2)(v) of a crystal should be related to the line
susceptibilityx (1)(v) by

D~v!5x~2!~2v!/$x~1!~2v!@x~1!~v!#2%. ~7!

The functionD(v) is expected to be a slowly varying func
tion of v. D(0) should be a certain universal constant. T
function D(v) is plotted in Fig. 6 versus photon energie
below the important resonances for several III-V semico
ductors and zinc-blende SiC. There is a clear chemical tr
with the lattice constant of the considered materials.D(v)

FIG. 6. Check of Miller’s rule for InAs, GaAs, InP, GaP, an
SiC in decreasing order.
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FIG. 7. Influence of quasiparticle corrections: imaginary and real part of the SHG coefficient for SiC.~a! Results within DFT-LDA
~dotted line! and within theGW approximation~solid line!, ~b! results within theGW approximation~solid line! and using a scissors
operator~dotted line!.
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decreases with the lattice constant. Such a decrease see
be a general tendency for wide-gap materials with small
tice constant and a remarkable ionic contribution to
chemical bond.42 The corresponding bond-charge mod
seems to be also able to explain the chemical trend
x (2)(0) values and even the sign change for compounds c
taining first-row elements by ionicity of chemical bonds a
atomic sizes. In the case of compounds like GaAs w
nearly equally sized atoms the ‘‘covalent’’ contribution
x (2)(0) vanishes. Only the ‘‘ionic’’ contribution determine
the value ofx (2)(0). With increasing difference in the size o
the atoms, especially when elements like C or N are pres
the ‘‘covalent’’ contribution will be important. Since its sig
is reversed, the total quantity is remarkably lowered or e
the sign of the SHG coefficient could be changed in cert
wide-gap semiconductors. In any case, the valuesux (2)(0)u
are smaller than for conventional III-V semiconductors.

D. Quasiparticle effect

The influence of QP effects within theGW approximation
on the SHG intensity is shown in Fig. 7~a! for SiC. On a first
view, there seems to be the main influence similar to
situation in the linear optical case.9 Despite the inclusion of
the band-index and wave-vector dependence of the QP sh
Dn(k), the spectra are more or less rigidly shifted towa
higher photon energies. The shift of the main peaks in
low-energy region of Imx (2)(v) amounts to 0.84 eV. This
value is exactly half the one derived in the linear case9 for
the main absorption peak withE18 , E08 , andE281d character.
This indicates again that the main peaks in the low-freque
region are related to the 2v contributions. In the high-
frequency region the interpretation of DFT-LDA and the Q
spectrum is more complicated because of the superpos
of 2v and v contributions. In comparison with measure
s to
t-
e
l
in
n-

h

nt,

n
n

e

ts,
s
e

y

on

SHG coefficients we expect another complication. We kn
that such QP shifts somewhat overestimate the openin
optical gaps. Smaller values of the many-body shifts
necessary,9 due to the presence of excitonic effects.

In Fig. 7~b! the influence of the QP corrections on th
SHG spectra is compared for two different approximatio
on the one hand the scissors-operator approximation, an
the other hand, the fullGW approximation discussed in Fig
7~a!, i.e., taking into account wave-vector- and band-inde
dependent shifts. The value used for the scissors operat
not uniquely defined. We assume a rigid shift of the exci
tion energies of 1.68 eV, which corresponds to the energ
cal distance of the main 2v contributions in DFT-LDA and
full QP approximation in Fig. 7~a!. The difference between
the two approximations of the QP effects can be clearly s
from the comparison of the main peaks around 4.5 eV.
find the spectra within theGW approximation to contain les
pronounced structures in comparison with the ones ca
lated using the scissors operator. The wave-vector- and b
index-dependent QP shifts seem to cause a smoothing o
structures and a partial annihilation of the contributions
the 2v andv term as a result of the complicated structure
the energy denominators in the prefactors, whereas the r
shift within the scissors-operator approximation does n
This happens especially in the energy region above the m
peak. The situation in the high-energy region is somew
confusing due to the simultaneous occurrence of 2v andv
contributions. Due to the use of one rigid shift the part
compensation of the two different types of contributions
different. For that reason, pronounced structures app
around 6 and 7 eV in one spectrum but not in the other o

Our observation holds not only for the imaginary part b
also for the real part. In the spectral region above the hal
the energy of the main absorption peaks, the sciss
operator approximation is less successful than in the cas



uc
th
a
Q
h

ro
3
-

o
r
e
n

as
tio
o
th

e
e

se.
that
ea-
ble
the

lla-
s-
-
not
ar

ec-
e
ex-
rgy-

ive
in a

or-
ct

6526 57B. ADOLPH AND F. BECHSTEDT
the linear optical spectra. In the region below the main str
tures the spectra are only influenced by the sensitivity of
prefactors to the actual transition energies resulting in sm
variations of the graph. The discrepancy between the two
approximations practically vanishes for zero frequency. T
value of the second-order nonlinear coefficient changes f
6.231028 esu, as for the result of the DFT-LDA to 5.
31028 esu (5.431028 esu!, taking into account QP correc
tions within theGW ~scissors-operator! approximation.

IV. SUMMARY

We have studied the influence of two different types
tetrahedron methods to perform thek-space integration ove
Dirac’s d functions in the imaginary part of the second-ord
optical susceptibility. We found that because of their stro
energy dependence the prefactors of thed functions have to
be properly treated. This is in contrast to the linear c
where the prefactors are only governed by optical transi
matrix elements. Moreover, for the same reason it turns
that the density of thek-point mesh has to be increased wi
respect to the linear findings.

The mains structures in the SHG spectra may be
plained by the same optical transitions that already gov
the linear optical properties. In the case of the III-V com
pounds they are transitions of the typesE1 andE2. However,
ys

.

le
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-
e
ll
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m

f

r
g

e
n
ut

x-
rn
-

matrix elements are more important than in the linear ca
They are able to change the sign of a certain contribution
is related to pronounced optical transitions. The main f
tures observed in the experimental SHG spectra availa
seem to be described by the presented theory. Describing
low-frequency SHG coefficient, thek integration has to be
performed more carefully to account for the partial cance
tion of the 2v andv contributions in the second-order su
ceptibility. The resulting valuesx (2)(0) approach the calcu
lated and measured data in the average. Miller’s rule is
fulfilled with a universal constant. Rather, there is a cle
chemical trend in the values for several compounds.

In order to include also the excitation aspect in the el
tronic band structure usually described within DFT-LDA, w
have also taken into account wave-vector- and band-ind
dependent quasiparticle corrections. Because of the ene
dependent prefactors of Dirac’sd functions in the imaginary
part of the SHG susceptibility, the quasiparticle effects g
rise to spectral changes that cannot be discussed with
simplified picture of a scissors operator.
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