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Empirical spds tight-binding calculation for cubic semiconductors:
General method and material parameters
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An empirical tight-binding method for tetrahedrally coordinated cubic materials is presented and applied to
group-1V and Ill-V semiconductors. The preseids’ method extends existing calculations by the inclusion
of all five d orbitals per atom in the basis set. On-site energies and two-center integrals between nearest
neighbors in the Hamiltonian are fitted to measured energies, pseudopotential results, and the free-electron
band structure. We demonstrate excellent agreement with pseudopotential calculations up to about 6 eV above
the valence-band maximum even without inclusion of interactions with more distant atoms and three-center
integrals. The symmetry character of the Bloch functions atXhpoint is considerably improved by the
inclusion ofd orbitals. Density of states, reduced masses, and deformation potentials are correctly reproduced.
[S0163-18208)01011-X]

I. INTRODUCTION minima atX and L.* However, transverse masses at these
points and the second conduction band are in poor agreement

Over the last decades, the tight-bindifig3) method has  With experiment? so that thesp®s* TB model is only of
received considerable attention, both because of its intuitivémited value for the calculation of optical properties involv-
simplicity and its realistic description of structural and di- INd points at the surface of the Brillouin zone. _
electric properties in terms of chemical bortd3 Since the Following the recognltlpr:%of the'|mpor_tance «bfstatgs n
approach uses small sets of basis functions, the computRS€udopotential calculationsthe inclusion of d-excited
tional effort is smaller than that required by methods base tates of thee, (I s) representation ofy in a TB basis was

| herefore. it all o | ttempted, leading to the development of apd? TB
on plane waves. Therefore, it allows one to consider largén,qell3 while several band properties are better described

systems(e.g., structured interfaces, molecular clusters, methan in a minimal basis, this approach turns out to be insuf-
soscopic structurg¢swith unit cells containing hundreds of ficient because the,(I",)-like d orbitals are of crucial im-
atoms, where plane-wave methods come to the limits of apportance both for th&, states al” and for the lowest con-
plicability with present computers. The Slater-Kosterduction band at. and X. In both types of TB models, the
suggestioh to treat the TB approach as an interpolationevaluation of spectral functions turns out to be troublesome
scheme was extensively used in a wide range of compoundiecause all different angular momentum components of the
from transition metals to semiconductor crystals. Within aBloch functions would be required for quantitative

3,14
minimal sp® basis and interactions only between nearestagreement: _ . . .
neighbor atoms, the empirical Slater-Koster model can de- From the comparison of pseudopotential calculations with

] . : : . these existing TB models, the necessity to include thedull
scribe the valence-band energy dispersion satisfactotily, symmetry ne%r theX point is obvious:? 33/0 that it seems a

bUtJa"S o reprtl)lducc-: t?r(la@u(ndwe.cttgag ofdseTmongucéors iorhatural issue to develop a TB model based on the ten atom-
rectly, especially a point. Conduction bands of ‘jujive orbitals (s:x,y,z:Xy,yzxz X2~ y2,322—r%:s*) per
group-1V and -11I-V compounds, however, were extensively

, ) hod atom, corresponding to asp’d®s* basis. As will be dem-
and successfully analyzed with pseudopotential methods.  ngirated in this paper in some detail, most of the deficien-

These studies showed that the lowest conduction stafésat  gjes of smaller TB models can be overcome. In fact, this

not entirely antibonding, contrary to a TB description in aapproach can be regarded as the simplest Hamiltonian repro-
minimal basis} As a direct consequence, an erroneous posigucing the main features of the valence band and the two
tive pressure coefficient of the gdps,— X is calculated |owest conduction bands.
within ansp® model. Richardson and co-workér§ showed While TB methods based on extended atomic wave func-
that the free-electron character of the charge densities at thivyns depend on overlap matrices, Wannier functions of the
I', X, andL points is monitored by contributions df sym-  corresponding symmetries are orthogonal on different atomic
metry, stemming from unoccupied atondorbitals.I'sc and  sites. Actually, the calculation of such Wannier functions
Le. States have a similar electronic charge density concenwas performed only in special cas@gut we shall take their
trated near the atoms, but, at thepoint, symmetry imposes existence for granted without attempting their calculation.
a smalld component. AtXq., the d contribution is even Instead, we characterize them by their on-site energies and
larger*2 but contrary tol g, andT'g., the charge distribu- the two-center energy integrals between adjacent sites, the
tion is very delocalized® nondiagonal overlap elements being zero. We shall show in
To mimic the influence of the excitatistates, Vogl, Hjal- the following that accurate results can be obtained even with-
marson, and Dow added & orbital to thesp® basis, and out consideration of two-center energy integrals between
achieved the correct positions of the lowest conductiormore distant atoms and of three-center integrals.
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In Sec. ll, we review elementary group theoretical s,s* —T,
argument®!’ and relate them to the free-electron band
structure and the atomic symmetries of our basis set. With p—T,, (3)
the construction of symmetry-adapted Bloch functions, a
block-diagonal TB Hamiltonian can be obtainéd?In Sec. doT5+T,.

I, this block structure is used for the calculation of the TB

parameters of the empty lattice. Based on these starting val- opyiously, two representations fdrstates occur, and the
ues, we present our ngmencally de_termmed TB parameter@orresponding states will be labeld@l's) andd(T",) in the
in Sec. IV, together with the resulting band structures forg|iowing. Using standard textbook results, irreducible de-

group-1V semiconductors and Il1-V compounds. Some of thecompositions of sets of reciprocal-lattice vectors can be
ordering problems of consecutive conduction extrema at pizinedt’-2*

and X are resolved. In Sec. V we investigate uniaxial and

hydrostatic deformation potentials as a function of the dis- (0,0,0—T,

tance dependence of the TB parameters. All deficiencies of

former TB models are resolved, e.g., the erroneous sign of (1,1,)— 2T+ 2T, 4
the Xg. deformation potential. In Sec. VI, we summarize the

improvements obtained and outline some possible exten- (2,0,00—T,+T5+T,.

sions.

As the Hamiltonian has the highest possible symmEtry
Il. SYMMETRY ANALYSIS only bands of the same irreducible representations interact.
The decomposition of the 2020 spds’ TB Hamiltonian
yields the following submatrices for the different representa-
Before addressing details of the TB Hamiltonian, it istions: 4x4 for I';, two identical 2<2 blocks forI'3, and
useful to recall the free-electron band structure. It is derivedhree times a %4 block forI",. From the compatibilities of
from the potential-free Hamiltonian the atomic symmetries and the representations of the tetrahe-
dral group it can be derived that tihg block is composed of
two s and twos* orbitals, and each of thE; blocks of two
d(T";) orbitals. The thred', submatrices contain each tvgo
and twod(I',) states, e.0X,, Xc, YZy, andyz., and cyclic
wherem; is the free-electron mass. The translational sym-permutations of Cartesian directions.
metry of the crystal leads to parabolic free-electron bands, For the purposes of our TB model, it is instructive to
investigate the compatibilities with the representations of the

A. Free-electron band structure

H=2—, D

(k+G)? subgroupC,, along theA line betweerl” and X:20%
Ee(kK)=—— )
0
F1—>A1,
where the wave vectdr is confined within the first Brillouin
zone, andG is a vector of the reciprocal lattice. At tHe F3—A+A,, (5)
point, the lowest energies derive from the shortest vectors of
the reciprocal latticeG=(0,0,0),K(1,1,1), and K(2,0,0), Fy—A +(Az+Ay).

whereK=2s/a is the unit length in reciprocal space and

(---)'s denote sets of degenerate wave vectors. Energies at Comparing these compatibilities and the decomposition of
high symmetry points of the Brillouin zone can then be ex-the TB Hamiltonian ai’, we arrive at subblocks of dimen-
pressed in units of Ej09=%"K%2m,, e.g., Er  sion 10<10 for A;, 2x2 for A,, and 4x4 for A; and A,

=0,3,4,8...,andEx=1,2,5,6.... Theenergy unitf;; o9  The latter two contain equivalent matrix elements because

will be omitted in the following when discussing the free- they are degenerate. The small submatricesAfprand A

electron band structure. will be exploited below for the assignment of the parameters
involved.

B. Representations ofT 4 and its subgroups

The following arguments will be based on the representa- C. TB basis required for numerical completeness

tions of the tetrahedral groupy, but the generalization to A complete basis for the highest occupied states in iso-
the octahedral grou@,, is straightforward. In order to use a lated atoms consists of valence sheland p states only.
unified notation throughout, we shall also use representatiorBecause the interaction matrix elements between orbitals of
of T4 for the free electrons, where in principle the largeradjacent sites in the solid are not much smaller than the
group Oy, applies. For the representations we shall use thepacing of the atomic energy levels, one cannot expect that
conventions of Dresselhaigfor correspondence with other this basis remains close to complete for the valence bands.
notations see, e.g., Ref. 21 Instead, for each representatidh with occupied valence
I' is the point of highest symmetry in the Brillouin zone, statesat leasta second type of basis orbital is required for a

therefore the full tetrahedral point group applies. The combetter approximation to completeness. Comparing with the
patibilities between the atomic symmetries and the represemlecomposition of the sets of shortest reciprocal-lattice vec-
tations of T4 are'’ tors atl’, the following bases are the natural choice:
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Iq:{s,s*}, highest band included is not described correctly, but this up-
per limit of applicability of the parameters is now pushed to
'y:{p,d}. (6) aboutE=6 and 3 energy units from the poift,1,1) gov-

erning the surroundings of the direct gap in real materials.
Using instead arffective sorbital and nos* orbital for ~ The submatrix for thel ; bands reads
the I'; basis, a good description of the band structure re-
mains possible, but the correspondence with atomic wave Ep Vpp(Az) 0 nd(Asg)
functions and the transferability between different bulks are

* Cc ca
lost. Furthermore, important features like the anion-cation A )= Vop(da) By pd(d3) 0
character of"; wave functions give erroneous results in this 0 pd (A3) Eg Vag(Ag) |’
smaller basis; compare the discussion in Sec. IV.
P 2(A5) 0 VifAds) E

(11

. . . . _where the various abbreviations are explained in the Appen-

Before coming to real materials, we derive the interactiongix. Equation(11) allows us to estimate the on-sipeener-
parameters of the empty-lattice model by requiring consisyies Ep=ES=Eg in the empty-lattice model, because the
tency between the TB bands and the free-electr_on eNergyum over the fourd; bands described bii(As) is equal
spectrum. For this purpose, we use the submatrices of th@verywhere to the trace [M(A3)]=2E,+2E,4. For free
Hamﬂtoman |_dent|f|ed in Sec. Il. Coupling matrlf:es will be electrons, the sum over the four lowest bands of this symme-
given below in the general form for polar materials, but the»[ry varies between 18 & and X and 17 at the midpoint
free-electron TB parameters will be discussed in the NoNpPopanyeen them. This shows that our model cannot agree with
lar case. , thek dependence of this sum without additional overlap ma-

The energy zero will be taken at (0,0,0), and the energyyiy elements or interactions between more distant atoms. In

unit E(3 0 will not be given explicitly. For the interacg\lon order to have the correct value at the high-symmetry points,
parameters, we shall use the convention of Slater and Kostef o take E,+2E4=18, or

for the bare two-center parameters, egsg, while the

Hamiltonian matrix elements between basis states are de- E. =4 (12
: p="4.

noted withV, e.g.,Vs,=4 SSo.

Ill. MODEL SEMICONDUCTOR: FREE ELECTRONS

The two-center matrix elements of E(.1) are deduced
A. Subgroup C,, : representationsA, and A, for a diamond structure by equaling pairs of interaction pa-
rameters, e.g.p,d.oc=p.d,oc=pdo. For the free-electron
spectra, the energetic positions of the four low&gtbands
atX areEx=2, 5, 5, and 6. Since the highest valence band
ga Vdd(Az)> at X is known to have nearly 100% character in real

As discussed in Sec. Il, the line gives the most instruc-
tive block diagonalization. The submatrix fdr, reads

H(A,) :( ‘ . (7)  semiconductor®; we assume that andd bands decouple at
Vad(A2) Eg this point, so thaEx=2 and 6 arise fronp states alone, and

where Ex=5 and 5 fromd states. Because the energetic positions
of the latter coincide witte,, we deduce thal states do not

a interact with each other. Therefore, we arrive at the follow-
Vad(Ap)=3(2 ddm+ddé)cos . (8)  ing assignment of coupling parameters:
The angular argumerka/4 runs between zero dt and Vaa(Az,k=ky)=0, (13
/2 at theX point, withk=ky=2m/a. The comparison with
the analysis in Sec. Il demonstrates that the thyobands Vpd(A3,k=kx)=0, (14)
shall pass througf,2,0) at X and(2,0,0) and{2,2,0) atI".
First of all, this determines the on-siteenergy of the non- [Vpp(Ag, k=ky)|[=2=V,,=2. (19

polar empty latticefg=Eg=Eg. It can be determined atthe The o equation10) and (13) are not sufficient to deter-
X point, where the off-diagonal matrix elements of K@ mine the three two-center integrals amodgstates,dda,
vanish: ddw, anddds. The third restriction is found bgssuming
E—E _5 o) that the bondingl state atl” shall pass througk=4. This
d— =120~ - energetic position occurs in the free-electron band structure,

The asymmetric splitting of thd, bands cannot be ob- but. it will be changed later by the inc!gsion of tped intgr-
tained in our simple nearest-neighbor overlap-free TBAction atl'. From the assumed position of the bondidg
model. Nevertheless, the analysis of the lower band allow§tat¢ atl’, we obtain a third equation for the interactions
the assignment of the parametéyy(A,): betweend states,

Vga(Az,k=0)=5(2 ddm+ddé)=E 20— E(og=1, Vad(I's) =Vga(A3,k=0)=~1, (16)

(10 which is found from considering only thet submatrix in Eq.
wheredd7= —ddsé>0 (Ref. 3 was used to set the sign of (11). Equations(10), (13), and(16) yield the two-center in-
Vg4d(A,,k=0). As usual in overlap-free TB models, the tegrals amongl states:
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1

ddo= 7 17
3

dd?T:Z , (18

3
dds= 7 (19

Equation(14) gives the ratio ofpdo and pd:

pdm=— \/§de. (20

In the free-electron spectra, the two lowest bands arising

from the A; symmetry are degenerate Btwith the eigen-
valueE(I'4) =3. This gives two restrictions for the-p and
p-d interactions:

Vpp(Ag,k=0)=V,,=—1,

V6

|Vpd(A3 k= 0)| = |Vpd(r4)| = o

(21)

(22

Solving Egs.(15) and(21) for the p-p interactions, and Egs.
(14) and (22) for the p-d interactions, we obtain

ppor=r. (23
ppr=—7 (24)
pdo=— g, (25)
pdm= %. (26)

This demonstrates that the analysis of thg bands in
their limits atI" and X fully determines the on-sitp andd

energies and their two-center integrals for a free electron. |
real materials, the interaction parameters are modified by thg,
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s*do to zero. All interactions among* ands states vanish
at X by symmetry, so thaEy=6 can be used to assign

Ee=6. (28)

For Eg, the only restriction we can derive i€£2>3, which
corresponds to the sum of the lowest tWg energies. A
good choice turns out to be

Es=2. (29)

The two-center integrals are then derived from the three low-
estI'; energies. With the usual phase conventiove obtain

5
swz—E, (30
fsrrm 31)
s*s*o= 16" (
ss* o= —/27/16. (32)

C. Interactions between{s,s*} and {p,d}

The four undetermined matrix elements of the free-
electron Hamiltonian concern the interaction of thands*
states withp andd. The smaller twos* po ands*do, have
already been assumed to vanish. For the other two, we fix the
ratio spo/sdo=— 2, so that only one matrix element re-
mains to be determined. We derive it from the lowest energy
of the A; bands aiX, Ex=1, yielding

spo=0.6468, (33

sdo=—0.4312. (34)

D. Resulting free-electron band structure

The parameters derived above are given in Table I. In Fig.
1, we illustrate the influence of the various interaction pa-
rameters on the free-electron band structure, and in the upper
row, subsets of the atomic symmetrigss*}, p, andd are
Lhown separately. ThEs,s*} bands in Fig. 8 give only
e correct positions of thE, states, while at all other points

atomic pseudopotentials, lifting some of the degeneraciegys the Brillouin zone, they are coupled into larger submatri-

e.g., of the two energetic positiofgI';)=3.

B. I'; representation: interactions amongs, s*

The I point is most instructive for calculating the inter-
action parameters amorggand s* states, because they de-
termine thel'; coupling matrix

E":S1 VSSU’ 0 Vgg*rr
| Ve B Voo O 22
Ylo VEDEL Vee, |
ac C
VE 0 Vee, ES

where V¢o,=4 sso, etc. In the free-electron spectra, the
lowest energies of this symmetry &¢I';)=0, 3, 3, and 4,
but the highest of them is related to the nexshell not

included in our basis, so that only the lower three can be
used for assigning the coupling and on-site parameters. One

of the A; bands starting aE(I';)=3 shall end atEx=6.
Assuming that thes* state is only weakly coupled to and
d states, we set the corresponding interactishpo and

ces influenced by and d. For our special choices* po
=s*do=0, the only exception is the correct positicy

=6. The twice degenerafebands in Fig. b) decouple aX

for the p-d parameters we use, but this feature depends on
the parameter choice, so that, generally speaking, pthe
bands have nowhere a point where they remain uncoupled to
the states ok and d symmetry. Nevertheless, the highest
valence band will present wave functions with a dominant
contribution. In fact, the loweA; and A; bands obtained
from p states alone are already close to the final band posi-
tions. Thed bands in Fig. {c) determine the\, bands, and
the lower one(0,2,00—(1,2,00 approximately reproduces
the free-electron band. A remarkable feature of dhieands

is the very low bonding state . Its bonding character will

be of crucial importance for the deformation potential of the
conduction-band minimum a€ (see Secs. IV and V belgw
The splitting of thed bands atX can be shown to be

(AEd)xzsg—\E(ddw—ddﬁ), (35)

which is equal to 4/3/3=2.3 for our model parameters. The
symmetry character of the corresponding wave function of
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TABLE I. Free-electron parameters in units Bf; g . First ss® a () d ()
column: analytically derived values; second column: fitted values. 7 7 I \—></
The third column shows universal parameters ofgpenodel(Ref. 6 H < 6& T <O\ 69 Y
22) for comparison. 5 \ s > 3 <<\>>
4> 4 — — 4§ 4><
Analytic Fitted  sp model(Ref. 22 K P 37 7] 3 T T
2 —<\>—< 2 /] 2
E 2.0 1.9378 1.5 (‘)\ \ (‘) ;
Ep 4.0 3.9491 3.5 L T XWKLW r L r VK LWXK TI' L T XWKLW T
Ed 5.0 4.9823 +d (d)  sts*+p+d s+5™+p+d {f)
Eg 6.0 6.0733 ; \> d >% ; ]
5 3 6§ /E N4 ) )
sso > _ 03125 -03214 ——_0375 £ INEZ }g /
16 8 4 \; 7] 3 3
s*s*¢  —15/16=—0.9375 —0.9317 Zé }5 47 2 é
N 1 < 1
ss'o —\27/16=-0.3248 —0.3093 I
0 0
0L T XWKL K I L T VK L W L T XWKLWXK T
spo 0.6468 0.5836  \/15/8=0.4841
s*po 0 0.2199 FIG. 1. Empirical TB band structure approaching the free-
sdo —0.4312 —0.3837 electron bands(a)—(e) calculated with the analytically derived pa-
s*do 0 —0.0198 rameters in Table I{a) {s,s*} only, without interactions with the
other symmetries(b) same forp; (c) same ford; (d) including all
7 7 interactions within thg p,d} subset;(e) with all interactions(thick
ppo f I . : -
8_0'875 0.8526 8_0'875 lines) and free-electron bands superimposgdn lines. (f) Bands
with the parameters in Table | obtained from the numerictHitk
ppm 5 1 lines), with free-electron bands superimposiglin lines. The en-
—z=-0. -05977  —Z=-o0. » W
g~ 0625 3= 7025 ergy unit isE; g o =%2K?/2m, (see Sec. Il A
pdo —\6/8=—-0.3062 —0.1849 o . . _ _
pdm 3,2/8=0.5303 0.6230 some significant discrepancies, as can be seen in the regions
aroundg, =2.75 andE,,=3.25.
ddo 1 ~0.2311 In order to improve the free-electron band structure, we
—z7- 025 optimized the TB parameters by a conjugate gradient
ddm 3 0.7309 scheme. The resulting parameters are given in Table I, and
2-0.75 the corresponding bands are shown in Fiff).IThe agree-
dds 3 —0.7248 ment with the superimposed free-electron band structure is
7= 075 improved, in particular for the solution of the discrepancies

mentioned above arourtd, =2.75 andg\,=3.25. The main
residual deficiencies up t&=5 are a missings** band

this lowestd state atX is half d(I'3) (e;) and halfd(I",) starting at(2,0,0), the third A; band which remains much
(t,). Except forVa e ,=—2 derived from Eq.(31), Eq. too high neal’, and the somewhat low values of the bands at
(35) gives the largest interaction parameter of our TB model which should pass through, =4.75.

at any of the high-symmetry poinis, L, andX. Obviously, Comparing the fitted values with the analytically derived
such an extremely large interaction matrix element cannot bparameters in Table I, one finds generally good agreement
derived in a perturbative approach, so that the analysis of theith a few exceptions. From the two preset val&po
free-electron bands is required for an estimate of its magni=s*do=0, only the former suffers a large change, while
tude. the latter remains very small. A further significant change

In Fig. 1(d) we show the bands determined by the subsebccurs forpdo andpda, which is responsible for the better
{p,d}. In addition to theA, bands already given by states agreement nedy=3.25.
alone, this subset determines entirely the double degenerate- The parameters in th&p model according to Froyen and
bands ofA ; andA; symmetry. Atl", the lower two coincide Harrison are given in Table | for compariséhSome of the
with the required energ(I",) =3, but the upper two occur old features are reproduced in our model, like, &g Es
atE(I'y))=5.5 and 6.5 instead d&(I',)=4,8. These devia- =2, and in general parameters are similar, exceppfor.
tions are due to the inherent limitations of our nearest-The shift of the on-site energi&s, andEg by 0.5 upwards in
neighbor TB model mentioned above, and the requirementthe largerspds’ basis can be understood from the fact that
for the X point on the analytic determination of parameters.the valence bands are pushed down by additional interactions
For real materials, the error for the thift,-position will be  with the higher-lying stated ands*, resulting in the same
smaller by a factor of abouy valence-band positions as in tee model. The strongly dif-

In Fig. 1(e), we show the complete band structure accordferent values fop p are related to the requirekl; bands at
ing to the above parameters; compare Table I. The overall and X: the sp model results inE(I';)=3 and 4 and
agreement with the free-electron band structigieown by E(Xs)=2 and 5, while we try to reproduckoth I ,-like
the thin lines in Fig. le)] is good. Nevertheless, there remain bands atE(I',) =3. The sp model reproduces only half of
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TABLE II. Empirical TB parameters for group-IV semiconduc- ing band energies from various reference values is mini-
tors. The lattice constard and energy unitE; o are given at  mized numerically’’ The parameters resulting from our nu-
room temperaturéRef. 27; all other parameters are intended to be merical procedure are listed in Table Il for C, Si, and Ge, and
low-temperature values, in units of eV, with the energy zero at thg, Taple 11l for AIP. GaP. InP. AlAs. GaAs. InAs. AISb
valence maximum. GasSb, and InSb. The corresponding energy eigenvalues and
effective masses are summarized in Tables IV-VII and com-

c S Ge pared with experimental and quasiparticle results. Band
a(A) 3.5668 5.430 5.6563 structures are shown in Fig. 2 for diamond and silicon, and in
Evo0 11.823 51016 4.7014 Fig. 3 for germanium an_d gallium arsenld(_e as a prototype
example of a polar material. One of the main deficiencies of
E, —1.0458 — 20196 —3.2067 smaller nearest-neighbor TB models is that the transverse
E 7.0850 4.5448 4.6560 masses aK andL become too large or even infinite when
EZ 27 9267 14.1836 13.0143 only ﬁnteractipns among nearest neighbors are included. We
E. 38.2661 19.6748 191725 con_S|der the |mprove_d band shape on the surface of the Bril-
s louin zone as a crucial test for the quality of our TB model,
Ssr —4.3882 —1.9413 —1.5003 and this is the reason why we have included in the figures the
s*'s*o —2.6737 —3.3081 —3.6029 part of the wave-vector pathway connecting several of these
s*so —2.3899 —1.6933 —1.9206 surface pOIntSX—>W—>K—>L—>W—>X
spo 5.4951 2.7836 2.7986 Following the work of Chadf® spin-orbit interactions
s*po 5.1709 2.8428 28177 were added to the present model, including only the contri-
sdo —2.7655 —2.7998 —2.8028 bution from thep valence states, while the much smaller
stdo —2.3034 —0.7003 —0.6209 splittings of excitedd states were neglectéflAs in smaller
TB models, the spin-orbit splittings in the crystal are larger
ppo 75480 4.1068 4.2541 than the atomic reference values by a factor of abou?°L.5.
ppm — 26363 —1.5934 —1.6510 The data presented in Tables IV-VII demonstrate that our
results are in good agreement with experimental and quasi-
pdo 21621 21073 52138 particle calculations. The ma_in features of the valence bands
pdar 3.9281 1.9977 1.9001 and the lowest two conduction bands are we!l reproduced,
especially atl’ and X. For GaSb, the inversiofE(Xg)
ddo 41813 12327 _ 12172 r>eE(>é7c), dLlénown from pseudopotential calculations, is
ddor 4.9779 2 5145 2 5054 produced. At the L point, deV|at|o_ns aro_qnd the optlcglly
relevant gaps occur for the energetic positions of the highest
dds —3.9884 —2.4734 —2.1389 valence band and second conduction band.atVe believe
A 0.0 0.0195 0.1325 this systematic deviation cannot be overcome in a nearest-

neighbor TB model, because an important invariant of fourth
order in the wave number with symmetry K§¢-kj+k3)

—k* cannot be produced correctly. Its quantitative construc-
tion within a TB model would require interactions among
more distant atoms. The adjustment of this invariant was

The TB parameters of the emptlyshell demonstrate that found to be important for good agreement of k-p

extendedd-wave functions cannot coincide with those of model with pseudopotential bandfs. This K-p model is
. based onI" states arising from the wave vectors (0,0,0),

deepd orbltals..As a Q|rect consequence, O;” results_are "21,1,1}, and(2,0,0), so that it should have properties similar
contrast to earlier estimates for methbands* For the in- to our empirical TB model covering the same points, with

teractions amongl states, the most striking feature is that the exception of a missing** band arising from(2,0,0),

dc:." IS the ;m:;lles_t of the;f&re% éwc.)(—jcdegiei gntjg_rallszs Thebut including instead some approximate bands corresponding
fatio given by rarmson wasido-ddam.ddo="—90:4." 1, to higher reciprocal-lattice vectors. The masses calculated in
while our result is—1:3:— 3. For the interactions betwegn our TB model agree with measurements except for the

andd, the ratio —pdw/pdo=3.37 is extremely large, con- o5y hole effective masses whose values are actually con-
trary to transition-metal compounds, whet@dn/pdo=<1 troversial even in experiments

would be expected As we will show below, the large ratio "5 perfect cubic crystal, the on-site integrals evolve from

above never occurs in real semiconductors: It is only réy,e free.atomic term values corrected by the crystal-field po-
quired for good agreement with the free-electron bands. tential. The differences between csiand p energies agree
well with atomic reference calculations, especially for the
IV. MATERIAL PARAMETERS AND BAND STRUCTURES nonpolar semiconductofé. For 1I-V semiconductors, the
FOR GROUP-IV AND llI-V SEMICONDUCTORS s-p splitting is up to 7% higher than in the corresponding
atoms, with the exception of Sb, which deviates by 2%,
This demonstrates that the chemistry of the highest occupied
The starting values of the TB parameters for real materiorbitals of the atoms is well conserved, as in smaller TB
als are derived from the free-electron results in Table |, andnodels?? Conversely, the on-sitd energies in Tables II
atomic energies. In a second step, the deviation of the resulénd Ill scale with the energy unit of the reciprocal lattice, not

theT'; andT', bands resulting fron{1,1,1), but the corre-
sponding interaction parametppm=— 3 is quite realistic
for real materials; see below.

A. Parameters and band structures
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TABLE Ill. Empirical TB parameters for 11I-V semiconductors. The energy zero is taken at the valence-band maximum. The lattice
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constanta and the energy uni o are given at room temperatu(Ref. 27; all other parameters are intended to be low-temperature
values, in units of eV, with the energy zero at the valence maximum.

AIP GaP InP AlAs GaAs InAs AISb GaSh InSh
aA) 5.4635 5.4509 5.8687 5.660 5.6532 6.0583 6.1355 6.0959 6.4794
E(100 5.0391 5.0624 4.3673 4.6953 4.7065 4.0982 3.9957 4.0478 3.5828
E2 —5.3355 —5.3379 —5.3321 —5.9819 —5.9819 —5.9801 —4.9565 —4.9586 —4.9527
Eg 0.9573 —0.4005 0.3339 0.9574 —0.4028 0.3333 0.9521 —0.4003 0.3389
Eg 3.3471 3.3453 3.3447 3.5826 3.5820 3.5813 4.0739 4.0735 4.0797
Eg 6.3392 6.3844 6.4965 6.3386 6.3853 6.4939 6.3386 6.3801 6.4919
Eq 14.1717 14.0431 12.7756 13.0570 13.1023 12.1954 11.4691 11.5944 11.2647
Egx 20.5963 20.3952 18.8738 19.5133 19.4220 17.8411 16.4173 16.6388 16.1664
SSor —1.7403 —1.7049 —1.4010 —1.7292 —1.6187 —1.4789 —-1.6179 —-1.3671 —1.1290
s*s*o —3.6444 —-3.5704 —3.6898 —3.6094 —3.6761 —-3.8514 —3.3145 —3.2355 —3.2248
sg Sco —1.6448 —1.6034 —1.8450 —1.6167 —1.9927 —2.1320 —1.6983 —1.9813 —2.0042
sasé‘o —1.4307 —1.6358 —1.2867 —1.2688 —1.5648 —1.2219 —1.2097 —1.6622 —1.8819
SaPco 2.6146 2.8074 2.1660 2.5175 2.4912 2.3159 2.5918 2.5624 2.5362
ScPao 2.7804 2.9800 2.6440 2.7435 2.9382 2.8006 2.9334 2.7093 2.6980
SN 2.0632 2.3886 2.5652 2.1190 2.1835 2.6467 2.4649 3.0164 2.7380
sé pPao 2.3361 2.1482 2.0521 2.1989 2.2086 1.9012 1.8889 2.4596 2.3471
Sdco —2.5253 —2.7840 —2.5559 —2.5535 —2.7333 —2.5828 —2.7920 —2.6143 —2.5635
s.dao —2.1687 —2.3143 —2.2192 —2.3869 —2.4095 —2.4499 —2.0008 —2.4274 —2.3085
skd.o —0.7810 —0.6426 —0.7912 —0.8064 —0.6906 —0.8497 —0.7307 —0.8557 —-0.7371
sédaa —-0.7211 —0.6589 —0.8166 —0.7442 —0.6486 —-0.8371 —0.7878 —0.8007 —0.8144
ppo 4.0355 4.1988 4.0203 4.2460 4.4094 4.1188 4.1042 4.4500 4.1830
ppm —1.3077 —1.4340 —1.2807 —1.3398 —1.4572 —1.3687 —1.5273 —1.6809 —1.4688
padco —1.6750 —-1.7911 —1.9239 —1.7240 —1.7811 —2.1222 —1.9819 —2.0377 —2.1487
p.d,o —1.8239 —1.8106 —1.8851 —1.7601 —1.8002 —2.0584 —-1.9726 —2.2429 —2.1652
padem 1.8760 1.8574 1.5679 1.7776 1.7821 1.5462 2.1292 1.9790 1.8462
pdam 2.1848 2.1308 1.7763 2.0928 2.0709 1.7106 1.8364 1.8670 1.8491
ddo —1.3479 —1.2268 —1.2482 —1.2175 —1.1409 —1.2009 —1.1395 —1.2492 —1.3052
ddw 2.3750 2.2752 2.1487 2.1693 2.2030 2.1820 2.1206 2.1970 2.0784
ddé —1.8464 —2.0124 —1.6857 —1.7540 —1.9770 —1.7788 —1.7260 —1.7451 —1.4118
A,/3 0.0196 0.0301 0.0228 0.1721 0.1824 0.1763 0.3912 0.4552 0.4495
AJ3 0.0073 0.0408 0.1124 0.0072 0.0408 0.1248 0.0079 0.0432 0.1230

with the energy separatioBy— E, of the free atomé® The
very high on-sited energies can be understood by startingunderstood from the presence of occupgdrbitals in the
with realistic extended atomi-wave functions. These wave core of the heavier atoms, pushing the empty free-electron-
functions would yield interaction matrix elements with more like d states to higher energies. For #feorbitals, the renor-
distant sites, and correspondingly nonvanishing overlap mamalization of the expected free-electron valig«—Eg

trix elements. Diagonalizing everything except the nearest=4E., 5 is

neighbor interactions, the new on-sileenergies of the or-
thogonal Wannier functions are renormalized and pushed uphe increased influence of the core can be understood from
in energy by the elimination of interactions with the atomic the smaller valu& .« — E; compared to the energetic separa-
orbitals at more distant positions and all overlap matrix eletion of empty and occupied states, if the latter are present

ments.

The on-sited energies are about three energy uEitg o
above the average energy, as expected from Sec. Ill. The is the only material with the opposite trend compared to the
chemical trend among AIP witley—Es=3.25 ;9 and

INSb with Eq—Es=3.7% 1,09 IS monotonous, and can be

more pronounced: amongEg —Eg

=4.5E 10 for AIP and Egx —Es=5.16E1 9 for InSb.

at all. The nonpolar semiconductors Si and Ge show renor-
malizations similar to AIP and GaAs, respectively. Diamond

free-electron referenceEy—Es=2.4% ;9 and Eg —Eg
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TABLE IV. Comparison of energetic positions and masses obtained in the present(Wdyrkwith
experimental valuegexpt and pseudopotential calculations in the GW approximatii® (Ref. 11, for Si,
Ge, and C. All energies are in eV, and the reference energy is taken at the maximum of the valence band. The

experimental data are from Ref. 27 unless indicated otherwise. Bands are assigned with representations in the
double-group notation, except for the conduction bands, athere the simple-group notation is also given

for clarity.
C Si Ge

B expt PP B expt PP B expt PP
I, —20.50 -21. —-21.35 —1224 -125 -12.04 —-1268 —12.6 —12.84
—A 0.00 0.00 00 —0.044 —0.044 00 —029 -030 00
Tee 13.9 15.3 1454  4.15 4.15 3.83 0.90 0.9 0.65
Iz 7.35 7.3 7.63 3.36 3.35 3.39 304 301 321
ge 7.35 7.3 7.63 3.41 3.35 3.39 337 321 321
Xs, —6.49 -6.69 —-3.15 -290° -298 -337 -315 -3.16
Xsc 6.05 Xs, +125 6.3 1.35 1.13 1.47 1.12 1.3 1.74
Le, —-2.76 -298 -112 -12 -124 -137 -14 -147
Lis —-2.76 -298 -108 -12 —-124 -112 -14 -147
Lec(Lie) 973 Lys +125 1063 214 240  2.26 0.74 074 098
Lac(L3) 930  Lys +12.0 10.23 4.39 41% 433 3.99 4.3 457
m(Cge) 0.038  0.038
m(Am)  0.33 0.36 0.22  0.1905 0.280
my(Lg.) 0.16 0.083  0.081
Apin 5.50 5.48 5.67 1.17 1.17 1.31 1.00

8Reference 28.

=3.3F 10,9 » both below the expected values. Nevertheless, B. Total and local density of states

the general laws derived for the free electrons dominate the we calculated the electronic density of statB®©S) and

expected ordering of the atomic levels even for diamondthe local density of stated DOS) projected on the atomic

Ex =E3>E4=E3q. basis functions. Our results for GaAs are presented in Fig. 4.
The energetically lowest peak from13 to —10 eV arises

TABLE V. Comparison of energetic positions and masses obtained in the present(Trkwith
experimental valuegexpt (Ref. 27 and pseudopotential calculations in the GW approximate® (Ref.
30), for AIP, GaP, and InP. All energies are in eV, and the reference energy is taken at the maximum of the
valence band. Bands are assigned with representations in the double-group notation, and the origin is chosen
on the anion site.

AlP GaP InP

B expt PP B expt PP B expt PP
s, —11.823 —12.07 —-12365 —123 —1283 —-11.084 -11.0 -—11.75
—Ay —0.040 0.0 —0.080 —0.080 0.0 —-0.108 -0.108 -0.11
| PSS 3.630 3.63 4.38 2.895 2.895 2.85 1.424 1.424 1.44
'z 4.525 5.72 4.460 4.87 5.03 4.592 4.72 5.08
| IPY 4.553 5.72 4.553 4.87 5.03 4.794 4.72 5.08
Xev —2.484 —231 -—-2849 -27-30 -—-278 —-2468 —-23 —238
X7, —2.466 —231 -—-2845 -—-27-30 -—-278 —2407 -22 —238
Xec 2504 2505 259 2.349 2.350 2.55 2.405 2.38 2.58
X7¢ 2.936 3.56 2.701 2.75 2.81 2.767 3.08
Le, —0.986 -085 —-1.133 -12-09 -116 -0974 -123 -1.02
Lys —0.957 -08 —-1.069 -12-09 -116 -0875 -112 -1.02
Lec 3.121 3.90 2.556 2.563 2.67 1.946 2.03 2.28
Lec 5.166 6.05 5.244 5.50 5.87 5.148 5.83
m(Igc) 0.187 0.128 0.074 0.0765
my(Xec) 0.247 0.212 0.255 0.254 0.285
my(Lgc) 0.189 0.150 0.135

8Reference 27, calculated.
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TABLE VI. Like Table V, but for AlAs, GaAs, and InAs.

AlAs GaAs InAs

B expt PP TB expt PP B expt PP
Te, —12.020 —-1241 -12910 -13.1 —13.03 -12.188 -—-12.3 -12.10
—Aq -0.300 -030 -0.27 -—-0.340 -0.341 -034 -0.380 -0.38 -0.38
e 3.130 3.13 2.88 1.519 1.519 1.22 0.418 0.418 0.31
| 4.569 4.54 5.14 4.500 4.53 4.48 4.252 4.39 451
g 4.725 4.69 5.14 4.716 4.716 4.48 4.580 4.39 451
Xew -2.760 -241 -244 —-3.109 -288 —291 2654 —-24 249
X7, —-2565 —-241 -244 —2929 -280 —291 -2546 -—-24 249
Xee 2.223 2.229 2.14 1.989 1.98 1.90 2.176 2.01
X7¢ 2.584 2.579 3.03 2.328 2.35 2.47 2.441 2.50
Le, —-1.191 -099 -1330 -142 -128 -1124 -09 -113
Las —0.983 -099 -1084 -120 -128 -0830 -09 -113
Lec 2.581 2.54 291 1.837 1.85 1.64 1.691 1.43
Lec 5.069 5.59 5.047 5.47 5.40 4,723 5.32
m(Igc) 0.156 0.067 0.067 0.024 0.023
mi(Xee) ~ 0.237 0.19 0.237 0.27 0.278
m(Ls)  0.155 0.117 0.075 0.110

from the As & state with a small contribution from the cat- =54%). This is in contrast with the oldeip TB result giv-

ion's, p, andd states. The threshold at7 eV is the absolute ing a larger cation contributions{=70%) 3 but agrees well
minimum of the second valence band, and the correspondingith pseudopotential calculatiofis? Using a smallerspd
wave functions havep-bonding character, arising from the basis, the improvement of the conduction-band wave func-
mixing of Ga 4s and As 4 states. At—4.1 eV the absolute tion is lost, and the oldp result is reproduced. The change
minimum of the third valence band on the surface of theof E,—Eg by about 2 eV (0.B(; ) needed in thespd
Brillouin zone occurs, and the peak neaB eV corresponds basis destroys the correspondence with atamicbitals and

to the position of the two highest valence bandsXatin  the transferability.

agreement with experiment. These bands are mainly com- At higher energies, the DOS of the conduction band dis-
posed ofp andd states, and at the valence maximum, she plays a free-electron-like character all around the surface of
contribution vanishes for symmetry reasons. The lowest corthe Brillouin zone, reflected by the strong admixture of all
duction band af” consists mainly of antibonding combina- atomic symmetries, p, andd. Compared to self-consistent
tions of s orbitals with a marked anion charactes, ¢ s} pseudopotential calculations, the calculated DOS and LDOS

TABLE VII. Like Table V, but for AlSb, GaSh, and InSb.

AlSb Gasb InSh

TB expt PP B expt PP B expt PP
s, —11.242 —-11.10 -11.838 -11.74 —-11.72 —-11.435 -11.73 -10.91
—Ag —-0.673 -0.673 —-0.673 -—-0.756 —0.756 —-0.76 —0.803 —0.803 -—0.80
I, 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
| PSS 2.384 2.384 2.23 0.811 0.8113 0.62 0.235 0.235 0.08
'z 3.663 3.740 3.52 3.437 3.20 3.11 3.503 3.37 3.16
Igc 3.913 4.00 3.82 3.839 3.54 3.32 4.000 3.74 3.55
Xeo -2.691 -2.80* -254 —-3401 -3.10 -—-273 -—-2722 24 —2.56
X7, —-2.263 —2.40* -254 —-2931 -286 —297 -2317 -24 —2.24
Xec 1.692 1.69 1.64 1.392 1.40 1.50 1.756 1.79 1.50
X7¢ 1.901 1.84 1.226 1.24 1.15 1.864 1.57
Le, —-1.13 —148 —1480 -153 -156 —1.30 —-14 —1.46
Lys —0.67 -106 -0930 -110 -114 -0.701 -0.9 —0.96
Lec 2.44 2.33 1.84 0.897 0.897 0.79 1.227 0.76
Lec 3.983 4.29 4.005 4.36 4.11 4.059 4.09
m(Lgc) 0.109 0.041 0.041 0.012 0.0136
my(Xec) 0.223 0.23 0.207 0.22 0.218
my(Lgc) 0.120 0.081 0.11 0.082 0.09

8Reference 31.
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FIG. 2. Band structure for @diamond and Si. The model pa- 05 d’\ M A 05
rameters are given in Table Il, and some values of band energies 0.0 et = : = 00
and masses in Table IV. 04 Ga,d Asd 04
. . 0.2 0.2
show good agreer_nent an(_j undgrllne the quality of the wave- T A oo

function symmetries obtained in the present mdferhe 0 5 0 5 0 5 0 5

total bond character summed over all valence bands is ap- £ 4. Total and partial density of statéBOS) for GaAs.

proxm_1ate_lysl'4lp2'37d°'22, which is nearly invariant for all  ypper jeft panel: Total density of states, upper right panel: relative
materials investigated. As chemical trends are weak, this cagos of the corresponding symmetries 6olid line; p: dashedg:

be considered as an intrinsic property of the tetrahedral bongbtted. Other panels: DOS divided into contributionsspp, andd
configuration, so that thep® symmetry always mentioned is symmetries, and catiofieft) and anion(right), as labeled. The DOS
only approximately correcisp® bonding does not occur in s calculated without spin-orbit splitting.

any energetic region when averaging over each energy shell.

Using this expression and E@6), we can relate each eigen-

C. Dependence of band energies on TB parameters valueE(k) linearly to the model parameters:
In order to investigate the dependence of the band ener- JE(K)
gies on the model parameters, we compute the partial deriva- E. (k)= 2 E, (;I‘E (39)
[ [

tives of some energies with respect to the on-site energies,

a H .
€.9.,0E(I'sc)/JEs , and W'th_ resp_ect to two-cent(_a_r integrals, While this relation is strictly valid for each semiconductor,
€.9.,0E(I'sc)/d(ss0). The first give the composition of the e can use it for interpolating between different types of
wave function directly, and, because two represer_1tat|ons fqul-v materials. Assuming that the partial derivatives in Eq.
d states occur, we calculate also the_correspondlng decon@38) show only a weak material dependence, we calculate
position. Results for GaAs are found in Table VIII, and theam for the reference material Gakompare Table Vi)
decompositions of the wave functions are in good agreemenf, § se the TB parameteks for the other types of ser;wi-
with pseugopottlalntlal caIcuIauoﬁ%.h he followi conductors. This procedure works surprisingly well, and it is

_From the He mann—F_eyn_man t eorem, the following re- ,sefy| to relate chemical trends in band positions to the cor-
lation between the Hamiltonian matrix elemehtg and the responding trends in the TB parameters.

resulting eigenvalueg,(k) can be deduced, The conduction minimuni’. shows a monotonous de-

JE,(K) crease with increasing cation or anion size. The main part of
E. (k)= E Hij - (36)  the chemical trend is already recovered with the three largest
] IHi; derivatives,

wheren,k andi,j label, respectively, the band states and the
symmetry of the Bloch functions. Within the Slater-Koster IE(Iqc) n IE(I'qc) S*s. ot IE(Dg) .

approachH;; depends linearly on the on-site enerdigsand d(sso) S (s sc0) a > 3(S,8% o) aSc 7
two-center integralsj « (all labeledE, for brevity), (39
dH;; while the derivatives with respect to the on-site energies
Hij:Z E'a_E|' 37) make a much smaller contribution to the material depen-
dence ofl'g.. The general feature that interaction matrix
Ge GaAs elements have a stronger influence than the on-site energies
RN < TR\ is also observed for other band positions, underlining that the
10 10
Kﬁ %‘ \/f dependence of energy bands on volume effects can be de-
’ N J TINNNE~ scribed by considering only the variation of the two-center
0 PEMP K integrals in the strain Hamiltonian, neglecting the on-site en-
s \47\47 _57¥‘47\’<7 ergy changes. The dependence of ¥ag conduction mini-
o DK o T 1 mum on the TB parameters is already rather complicated. As
NIRRT TN the 10< 10 coupling matrices for th&; bands decompose
L T XWKLWXK I' L T WKL WXK T

into two 5X5 subblocks foiXg. and Xy, only s,, sk, pc,
FIG. 3. Band structure for Ge and GaAs. The model parameterfa(I's), and dc(I'4) contribute to theXg-state. The main

are given in Tables Il and Ill, and some values of band energies angart of the dependence of th€;, conduction minimum

masses in Tables IV and VI. comes from the interaction parameters amdeg*} and



S7 EMPIRICAL spd¢ TIGHT-BINDING CALCULATION ... 6503

TABLE VIII. Partial derivatives of valence and conduction energies with respect to on-site energies and
interaction parameters, for GaAs. Entries vanishing due to symmetry restrictions are denoted with

FSU l_‘6(: X6C LGc ng FSC X6v L4,Ev
E(eV) —12.910 1.519 1.989 1.837 0.0 4716 —2.929 —1.084
EZ 0.564 0.411 0.029 0.145 - - - -
Eg 0.303 0.456 - 0.297 - - - -
Ei* 0.065 0.128 0.025 0.043 - - - -
Eg* 0.068 0.005 - 0.003 - - - -
Eg - - - 0.147 0.553 0.290 0.580 0.589
Eg - - 0.458 0.239 0.234 0.510 0.416 0.350
E3 - - 0.325 0.090 0.084 0.169 0.001 0.022
ES - - 0.163 0.037 0.129 0.032 0.002 0.038
da(T'3) - - 0.325 - - - - 0.007
de(T'3) - - - - - - - 0.013
da(T'4) - - - 0.090 0.084 0.169 0.001 0.015
de(Ty) - - 0.163 0.037 0.129 0.032 0.002 0.025
sso 3.308 —3.463 - —0.830 - - - -
s*s*o 0.532 0.200 - —0.046 - - - -
S 1.122 1.934 - 0.450 - - - -
S.Se o 1.568 —0.359 - 0.085 - - - -
SaPco - - 0.529 0.743 - - — -
ScPao - - - 0.836 - - - -
Skpeo - - —0.497 —0.403 - - - -
Sy Pac - - - —0.085 - - - -
Sadco - - 0.315 0.291 - - - -
Scdao - - - 0.653 - - - -
sydeo - - —0.296 —0.158 - - - -
sidao - - - —0.067 - - - -
ppo - - - —0.250 —0.959 1.008 —-1.310 -—1.212
ppm - - - 0.998 —-1.917 2.007 1.310 —0.606
p.dco - - — —0.098 0.712 0.214 0.100 0.325
pcdao - - - —0.194 0.374 0.818 0.060 0.195
padcm - - - —0.226 —-0.822 —0.247 0.058 —0.379
pcdam - - —2.058 —-0.451 -0432 -0.945 0.034 -0.219
ddo - - - 0.076 0.278 —0.174 0.005 0.052
ddmr - - —0.708 —0.102 0.185 —-0.116 —0.002 0.086
ddé - - 0.708 —0.204 0.371 —-0.233 —-0.003 -—0.021

{p,d} and fromE,. We note that bottd(I'3) andd.(I",) ings Xg.<Lg.<I'g: (AIP, AlAs, AISh, GaP andI'g.<Lg.
basis states contribute significantly to #&g. wave function, <Xg. (GaAs, GaSb, InP, InAs, In$loccur.

underlining the necessity to include both typeddtates in The valence bands show nearly 10@%tcharacter al

the TB basis when modeling surface points of the Brillouinand X, while atI", thed admixture of 21% is in good agree-
zone. For thel g, conduction minimum, the dependence onment with pseudopotential calculatiolfsThese composi-
the material parameters is so complicated that no evidentons of the valence wave functions are typical of all semi-
chemical trends can be extracted. Even in this very compliconductors investigated, so that tbecontribution of about
cated case, where all partial derivatives contribute, the agreg-to the valence maximum can be regarded as an intrinsic
ment of Eq.(38) using the derivatives for GaAs and the TB property of the diamond and zinc-blende semiconductors.
parameters of the other materials, with the correspondigg The smalld contributions aX andL are the reason why the
energies, is remarkablieg, is never the absolute conduction positions of the highest valence barXig, andL, 5, depend
minimum in the IlI-V materials investigated: Only the order- mainly on thep-p interactions and the on-sifeenergies. As
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the material dependencies of these quantities are not very 1 9E(Xge) 4 Vip
pronounced, the corresponding band energies show much a(X60)=§ 7 In(d) =73 E(Xeo)— E(Xe.)
smaller chemical trends than the conduction minima, espe- 6e 6v
cially I'g,.

0. (45

Normalizing these deformation potentials with the bulk
modulusB,, yields a positive pressure coefficient for the in-
direct gap,

To achieve a complete description of the interaction pa-
rameters, we scale the Hamiltonian matrix elements by cal- d B a(Xge)—a(I'g,)
culating the dependence of energy bands on volume effects. %[E(Xﬁc)_ E(Tg,)]=— B—0> 0, (46
In a TB Hamiltonian, strain effects can be included by scal-

ing the matrix elements with respect to the bond-angle disy, sharp contrast with the sign obsenfédPartly, these de-
tortions and bond-length changes, allowing for the calculaficiencies can be overcome in apst model including more
tion of strain effects for any wave vector with the samegpphisticated distance laws thap .= 2 3° However, owing
accuracy. Bond-angle distortions are determined by elasticity, the larged component of the conduction-band wave func-
theory and incorporated into the Hamiltonian matrix €le-tion atx, any agreement would be fortuitous. Including the
ments via the phase factors in the Slater-Koster definitionssiates, the required change of signagis.) and the corre-
. . . . . l C

The influence of changes of the on-site Hamiltonian matrixs,nging pressure coefficient is simply related to the fact that
elements on the resulting band structure is difficult to evaluy,o corresponding wave function contains a large contribu-
ate because two different terms contribute: the energy levg|,,, of states(compare Table VI, which has entirely

of the free atom and the crystal field. As mentioned abovebonding character as shown in Fig. 1: The surroundings of
the variation of the band energies with the one-center integ, o y point have the lowest bondingl states. The
gralsE, is weak, so that the main dependence on volume sy mmetric part of the<s, wave function will therefore be

effects short:lddbe redcoveredf, rl]<eeping the Qn'Sif[?menergi%shed down in energy under pressure, yielding a negative
constant. The dependence of the two-center integraidn  reqqure coefficient kg, and a negative pressure coeffi-
bond length is considered using a generalization of Harmiient of the indirect gap

son'sd”? law,* In order to overcome the inherent limitations of smaller
d TB models, we shall derive the distance laws of our empiri-
ij(d)=ij K(do)(go , (40) cal TB parameters in thepds' basis from various deforma-
tion potentials of several band positionslgtX, andL. In a
whered (do) is the strainedunstrainedl interatomic dis- nearest-neighbor approximation, shear deformation poten-

tance.n;; . are orbital-dependent exponents reflecting the |odials are notn;;, dependent. Uniaxigl001] strain induces a
calization of the atomic wave functiorisand j near the tetragonal crystal field which lifts the degeneracy of #ye

nuclei. In a minimak p basis, Harrison chose all coefficients (2) @1dxz yz (x, y) atomic levels. For convenience, we
n;;, equal to 2, consistent with the free-electron spectra. Th&onsider only thel states, and assuming a linear dependence

strain Hamiltonian obtained this way provides a fairly good©f the on-site energies on the strain tenspwe obtain
description of the positive pressure coefficiedE(T g

V. DEFORMATION POTENTIALS

Nij k

—TI'g,)/dp of the direct gap, but it predicts an erroneous Exy=Edl1+2bg(€,,— €],

positive pressure coefficient of the indirect gafE(Xg, (47)
—TI'g,)/dp, which should be negative. This failure is easily

understood _When cons@erlng tisg expressions qf thd’ Exr=Eyz=Ed[1—bg(€,— €3],

andX energies for the diamond structure, neglecting the de-

pendence of the spin-orbit splitting on strdin: where by is the shear parameter of th states fitted to

reproduce the uniaxial deformatidm of the valence-band
edge. The averagd(I',) energy in Eq.(47) remains un-
> changed, i.e., we do not consider volume effects. The nu-
E(Xge X ):Es+ Ep + /( Ep—Es 12 (42) merical values derived are given in Table IX together with
b 8o 2 2 s the exponents of the interaction parameters. Anion-cation
and cation-anion interactions of the same type are assumed
The dependence on pressure is then determined by the fulfill the same distance law, e.q, 0.0=Ns p o= Nspo-
increase of the interaction parameters with decreasing intefq, the numerical fitting procedure, we achieve good agree-
atomic distance: The lower bonding state of each pair will benen; with pseudopotential calculations and experimental de-
pushed down in energy, while the higher antibonding statg,mation potentialgsee Table X. Pressure coefficients of
will be pushed up. We obtain the following volume defor- \51ence and conduction states were fitted separately, when
mation potentials: available, but only the pressure dependence of the gaps is
1 9E(T}) shown. The pressure coefficiefE(I'g, —'g.)/ Ip fo_r Siis
a(lg,)== — 8l 2y >0, (43  in close agreement with pseudopotential restiltshile, on
*> 3 dIn(d) ansporsps' basisa(I'.) has the opposite sign a{I'g,);
compare Eqs(43) and(44). Another point to be emphasized
a(l'g)=—a(lg,), (44 s that the TB calculation gives for all 1ll-V semiconductors

E(F;C’ng):EinXX! (41)




EMPIRICAL spds TIGHT-BINDING CALCULATION ...

6505

TABLE IX. Empirical distance laws;;,, of the TB parameters for Si, Ge, and Ill-V semiconductors,
fitted to various deformation potentials as explained in the text. The expomgnisandngs ¢, Were set to
zero, andnyg, , Ngdr» Nads. @andng 4, Were fixed to the free-electron value of 2.

ijKk Si Ge AIP GaP InP AlAs GaAs InAs AISb GaSb InSbh

sso 3.672 3.631 3.041 3.379 3.113 3.120 3.640 3.348 3.245 4.041 3991
spo 2488 3713 3.408 3.360 3582 3564 3582 3.662 3702 3.644 3.671
ppo 2.187 2.030 2.138 2124 1.825 2.051 2.045 1.498 1763 1.524 1.348
ppm 3.711 4.025 3.871 3.927 4.153 3.869 4.126 4.259 4.152 4.203 4.297
sdo 1.869 1931 1956 1971 1993 1.871 1954 1776 1.721 1.799 1.778
s*po 1919 1830 1.816 1819 1692 1.799 1.712 1762 1.772 1.770 1.755
pdo 1.830 1759 1.843 1832 1772 1858 1827 1740 1.797 1.753 1.734
pdm 2.093 1872 1864 1837 1732 1874 1651 1696 1557 1.642 1.675
by 0.443 0.243 0.660 0.649 0572 0536 0.655 0.488 0.420 0.370 0.302

deformation potentiala(Xg.)>a(X;.) for the lowest two ing orbitals (see Sec. IV B The corresponding exponents
conduction states aX, in agreement with pseudopotential turn out to be very high, of the order 3—4.5, values which are
results® in rough agreement with exponents derived in cluster
The distance laws can be divided into four groups. For thealculations'® Because the electron densities of thandp
first, the exponents were set to zero because we do not expestates are localized much more closely to the nuclei than the
a large influence of the corresponding parameters on our rdree-electron-liked and s* states, the corresponding two-
sults, or because reliable information on high bands is misseenter interaction matrix elements within the subgep}
ing. The corresponding exponents amgy,=hng,=0.  should in fact have the steepest distance dependence, as ob-
The second group concerns the high bands, and their expserved in our results.
nents were fixed to Harrison’s free-electron distance law:
Ngdoe=Ndd== Ndds= Nsxde= 2. These interactions guarantee
that the high-energy parts of the band structure scale with
E(100 as the free electrons. For the third group, the expo- With an empiricalsp®d®s* nearest-neighbor TB model,
nents are still of the order of 2, but show pronounced chemiwe obtained a quantitatively correct description of the va-
cal trends; compare Table IX. They apply to TB parameterdence bands and the lowest two conduction bands, both in
describing the interaction among one of the low-lying stategerms of energetic positions and band curvatures. @he
s or p and one of the high-lying statesor s*. The fourth  states were found to be of crucial importance for the lowest
group contains the interactions within the sudsgp}. They  two conduction bands af, and the composition of the cor-
are known to be responsible for the main chemical trends foresponding wave functions was in good agreement with
the valence bands, as they contribute about 94% to the bon@seudopotential results. The distance dependences of the in-

VI. CONCLUSION AND OUTLOOK

TABLE X. Pressure coefficients of band gaps for Si, GaAs, and GaSbh, given in meV/Kbar, and defor-
mation potentiald andE,(X) in eV. E, is calculated at the absolute minimum of the conduction band along
A for Si, and atX for GaAs and GaSh.

Si GaAs GaSh

TB expt PP B expt PP B expt PP
dEo(I)/dp 12.0 122 114 113 10.3 135 148 143
dEH(T)/dp 0.53 0.53
dE,(L)/dp 5.4 5.2 68 7.2 72 735
dE,(X)/dp 2.0 2.9 40 56 6.44  6.08
dEj“(Tg,~Xe)/dp —1.8 —16 -168% -24 -18 -22° 36 —-3.4P
dEjY(Tg,—X7)/dp  * “ “ -0.1 -03>  -20 -1.8°
dEg(T'g,~Le)/dp  4.32 4088 46 55 3.9 48 50 42
b -211 -210 -235° —-169 —1.7 —1.90° -1.95 -2.0
E,(A) or Ex(X) 9.0 87 916 62 65 86%63° 65

8Reference 29.
bReference 35.
‘Reference 38.
dReference 45.

®Reference 27, calculated.
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teraction parameters were derived from various deformation APPENDIX
potentials. A major improvement compared to smaller TB - . . I
models was the correct sign and magnitude of the deforma':| Zhe. atébre\i|i\t|oqlsbusgd mb t?e .couphng Hamiltonian
tion potential of the conduction band 4t directly related to (&) in Eq. (11) will be given below:

the larged component of the wave function. Because all ka
deformation potentials investigated have reasonable magni- Vgd(A3)=35(3ddo+ 2ddm+4ddd)cos;-
tudes, a generalization of the present model to strained su-

perlattices is straightforward and has already been applied to 4 _ka

AlAs/GaAs superlatticed! —i5(3ddo—ddm—2ddd)sin,-, (A1)
A further extension concerns the combination of the

present achievements withb initio TB methods, where 4 2 ka

atomiclike wave functions are uséd*® The necessity to VEE(A3)=—§( Pa__Padc'”')COSZ

choose unusual on-site energies in the present work, and the V3

5-like potentials used in muffin-tin methodemonstrate 4
that the on-site energies of models based on atomiclike wave +im
functions do not necessarily coincide with the atomic energy 3
levels. This can be possibly exploited to achieve further im-

1 ~ka
P,d.oc+ —=P,d.7 |sin—, (A2)

J3 4

provements for the conduction bands. This would yield the ca 4 q 2 d ka
possibility to use realistic sets of parameters where the wave Vpd(As) -3 Pcdao— ﬁpc a™ COSZ

functions areab initio and on-site parameters are empirical.
A better modeling of crystallization processes, surface recon-

4 1 ka
struction, and optical properties of clusters can be expected. +i§ Pcdao+ ﬁpcdaﬂ') Sinz, (A3)
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