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Empirical spds* tight-binding calculation for cubic semiconductors:
General method and material parameters

Jean-Marc Jancu, Reinhard Scholz,* Fabio Beltram, and Franco Bassani
Scuola Normale Superiore and Istituto Nazionale per la Fisica della Materia, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

~Received 17 July 1997!

An empirical tight-binding method for tetrahedrally coordinated cubic materials is presented and applied to
group-IV and III-V semiconductors. The presentspds* method extends existing calculations by the inclusion
of all five d orbitals per atom in the basis set. On-site energies and two-center integrals between nearest
neighbors in the Hamiltonian are fitted to measured energies, pseudopotential results, and the free-electron
band structure. We demonstrate excellent agreement with pseudopotential calculations up to about 6 eV above
the valence-band maximum even without inclusion of interactions with more distant atoms and three-center
integrals. The symmetry character of the Bloch functions at theX point is considerably improved by the
inclusion ofd orbitals. Density of states, reduced masses, and deformation potentials are correctly reproduced.
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I. INTRODUCTION

Over the last decades, the tight-binding~TB! method has
received considerable attention, both because of its intui
simplicity and its realistic description of structural and d
electric properties in terms of chemical bonds.1–5 Since the
approach uses small sets of basis functions, the comp
tional effort is smaller than that required by methods ba
on plane waves. Therefore, it allows one to consider la
systems~e.g., structured interfaces, molecular clusters, m
soscopic structures! with unit cells containing hundreds o
atoms, where plane-wave methods come to the limits of
plicability with present computers. The Slater-Kost
suggestion1 to treat the TB approach as an interpolati
scheme was extensively used in a wide range of compou
from transition metals to semiconductor crystals. Within
minimal sp3 basis and interactions only between neare
neighbor atoms, the empirical Slater-Koster model can
scribe the valence-band energy dispersion satisfactoril2,3

but fails to reproduce the indirect gap of semiconductors c
rectly, especially at theX point. Conduction bands o
group-IV and -III-V compounds, however, were extensive
and successfully analyzed with pseudopotential methods6–12

These studies showed that the lowest conduction state atX is
not entirely antibonding, contrary to a TB description in
minimal basis.3 As a direct consequence, an erroneous po
tive pressure coefficient of the gapG8v→X6c is calculated
within ansp3 model. Richardson and co-workers9,10 showed
that the free-electron character of the charge densities a
G, X, andL points is monitored by contributions ofd sym-
metry, stemming from unoccupied atomicd orbitals.G6c and
L6c states have a similar electronic charge density conc
trated near the atoms, but, at theL point, symmetry imposes
a small d component. AtX6c , the d contribution is even
larger,9,12 but contrary toL6c and G6c , the charge distribu-
tion is very delocalized.10

To mimic the influence of the excitedd states, Vogl, Hjal-
marson, and Dow added ans* orbital to thesp3 basis, and
achieved the correct positions of the lowest conduct
570163-1829/98/57~11!/6493~15!/$15.00
e

ta-
d
e
-

p-
r

ds

t-
e-

r-

i-

he

n-

n

minima at X and L.4 However, transverse masses at the
points and the second conduction band are in poor agreem
with experiment,13 so that thesp3s* TB model is only of
limited value for the calculation of optical properties invol
ing points at the surface of the Brillouin zone.

Following the recognition of the importance ofd states in
pseudopotential calculations,9 the inclusion of d-excited
states of thee1(G3) representation ofTd in a TB basis was
attempted, leading to the development of ansp3d2 TB
model.13 While several band properties are better describ
than in a minimal basis, this approach turns out to be ins
ficient because thet2(G4)-like d orbitals are of crucial im-
portance both for theG4 states atG and for the lowest con-
duction band atL and X. In both types of TB models, the
evaluation of spectral functions turns out to be troubleso
because all different angular momentum components of
Bloch functions would be required for quantitativ
agreement.13,14

From the comparison of pseudopotential calculations w
these existing TB models, the necessity to include the fud
symmetry near theX point is obvious,12 so that it seems a
natural issue to develop a TB model based on the ten at
iclike orbitals (s;x,y,z;xy,yz,xz,x22y2,3z22r 2;s* ) per
atom, corresponding to ansp3d5s* basis. As will be dem-
onstrated in this paper in some detail, most of the defici
cies of smaller TB models can be overcome. In fact, t
approach can be regarded as the simplest Hamiltonian re
ducing the main features of the valence band and the
lowest conduction bands.

While TB methods based on extended atomic wave fu
tions depend on overlap matrices, Wannier functions of
corresponding symmetries are orthogonal on different ato
sites. Actually, the calculation of such Wannier functio
was performed only in special cases,15 but we shall take their
existence for granted without attempting their calculatio
Instead, we characterize them by their on-site energies
the two-center energy integrals between adjacent sites,
nondiagonal overlap elements being zero. We shall show
the following that accurate results can be obtained even w
out consideration of two-center energy integrals betwe
more distant atoms and of three-center integrals.
6493 © 1998 The American Physical Society
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In Sec. II, we review elementary group theoretic
arguments16,17 and relate them to the free-electron ba
structure and the atomic symmetries of our basis set. W
the construction of symmetry-adapted Bloch functions
block-diagonal TB Hamiltonian can be obtained.18,19 In Sec.
III, this block structure is used for the calculation of the T
parameters of the empty lattice. Based on these starting
ues, we present our numerically determined TB parame
in Sec. IV, together with the resulting band structures
group-IV semiconductors and III-V compounds. Some of
ordering problems of consecutive conduction extrema aL
and X are resolved. In Sec. V we investigate uniaxial a
hydrostatic deformation potentials as a function of the d
tance dependence of the TB parameters. All deficiencie
former TB models are resolved, e.g., the erroneous sig
theX6c deformation potential. In Sec. VI, we summarize t
improvements obtained and outline some possible ex
sions.

II. SYMMETRY ANALYSIS

A. Free-electron band structure

Before addressing details of the TB Hamiltonian, it
useful to recall the free-electron band structure. It is deriv
from the potential-free Hamiltonian

H5
p2

2m0
, ~1!

wherem0 is the free-electron mass. The translational sy
metry of the crystal leads to parabolic free-electron band

EG~k!5
~k1G!2

2m0
, ~2!

where the wave vectork is confined within the first Brillouin
zone, andG is a vector of the reciprocal lattice. At theG
point, the lowest energies derive from the shortest vector
the reciprocal lattice:G5(0,0,0), K^1,1,1&, and K^2,0,0&,
whereK52p/a is the unit length in reciprocal space an
^•••& ’s denote sets of degenerate wave vectors. Energie
high symmetry points of the Brillouin zone can then be e
pressed in units of E^1,0,0&5\2K2/2m0, e.g., EG

50,3,4,8, . . . , andEX51,2,5,6, . . . . Theenergy unitE^1,0,0&
will be omitted in the following when discussing the fre
electron band structure.

B. Representations ofTd and its subgroups

The following arguments will be based on the represen
tions of the tetrahedral groupTd , but the generalization to
the octahedral groupOh is straightforward. In order to use
unified notation throughout, we shall also use representat
of Td for the free electrons, where in principle the larg
group Oh applies. For the representations we shall use
conventions of Dresselhaus20 ~for correspondence with othe
notations see, e.g., Ref. 21!.

G is the point of highest symmetry in the Brillouin zon
therefore the full tetrahedral point group applies. The co
patibilities between the atomic symmetries and the repre
tations ofTd are17
l
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s,s*→G1 ,

p→G4 , ~3!

d→G31G4 .

Obviously, two representations ford states occur, and the
corresponding states will be labeledd(G3) andd(G4) in the
following. Using standard textbook results, irreducible d
compositions of sets of reciprocal-lattice vectors can
obtained:17,21

~0,0,0!→G1 ,

^1,1,1&→2G112G4 , ~4!

^2,0,0&→G11G31G4 .

As the Hamiltonian has the highest possible symmetryG1,
only bands of the same irreducible representations inter
The decomposition of the 20320 spds* TB Hamiltonian
yields the following submatrices for the different represen
tions: 434 for G1, two identical 232 blocks forG3, and
three times a 434 block forG4. From the compatibilities of
the atomic symmetries and the representations of the tetr
dral group it can be derived that theG1 block is composed of
two s and twos* orbitals, and each of theG3 blocks of two
d(G3) orbitals. The threeG4 submatrices contain each twop
and twod(G4) states, e.g.,xa , xc , yza , andyzc , and cyclic
permutations of Cartesian directions.

For the purposes of our TB model, it is instructive
investigate the compatibilities with the representations of
subgroupC2v along theD line betweenG andX:20,21

G1→D1 ,

G3→D11D2 , ~5!

G4→D11~D31D4!.

Comparing these compatibilities and the decomposition
the TB Hamiltonian atG, we arrive at subblocks of dimen
sion 10310 for D1, 232 for D2, and 434 for D3 andD4.
The latter two contain equivalent matrix elements beca
they are degenerate. The small submatrices forD2 and D3
will be exploited below for the assignment of the paramet
involved.

C. TB basis required for numerical completeness

A complete basis for the highest occupied states in i
lated atoms consists of valence shells and p states only.
Because the interaction matrix elements between orbital
adjacent sites in the solid are not much smaller than
spacing of the atomic energy levels, one cannot expect
this basis remains close to complete for the valence ba
Instead, for each representationG i with occupied valence
states,at leasta second type of basis orbital is required for
better approximation to completeness. Comparing with
decomposition of the sets of shortest reciprocal-lattice v
tors atG, the following bases are the natural choice:
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G1 :$s,s* %,

G4 :$p,d%. ~6!

Using instead aneffective sorbital and nos* orbital for
the G1 basis, a good description of the band structure
mains possible, but the correspondence with atomic w
functions and the transferability between different bulks
lost. Furthermore, important features like the anion-cat
character ofG1 wave functions give erroneous results in th
smaller basis; compare the discussion in Sec. IV.

III. MODEL SEMICONDUCTOR: FREE ELECTRONS

Before coming to real materials, we derive the interact
parameters of the empty-lattice model by requiring con
tency between the TB bands and the free-electron en
spectrum. For this purpose, we use the submatrices of
Hamiltonian identified in Sec. II. Coupling matrices will b
given below in the general form for polar materials, but t
free-electron TB parameters will be discussed in the non
lar case.

The energy zero will be taken at (0,0,0), and the ene
unit E^1,0,0& will not be given explicitly. For the interaction
parameters, we shall use the convention of Slater and Ko1

for the bare two-center parameters, e.g.,sss, while the
Hamiltonian matrix elements between basis states are
noted withV, e.g.,Vsss54 sss.

A. Subgroup C2v : representationsD2 and D3

As discussed in Sec. II, theD line gives the most instruc
tive block diagonalization. The submatrix forD2 reads

H~D2!5S Ed
a Vdd~D2!

Vdd~D2! Ed
c D , ~7!

where

Vdd~D2!5 4
3 ~2 ddp1ddd!cos

ka

4
. ~8!

The angular argumentka/4 runs between zero atG and
p/2 at theX point, withk5kX52p/a. The comparison with
the analysis in Sec. II demonstrates that the twoD2 bands
shall pass througĥ1,2,0& at X and^2,0,0& and^2,2,0& at G.
First of all, this determines the on-sited-energy of the non-
polar empty lattice,Ed

a5Ed
c5Ed . It can be determined at th

X point, where the off-diagonal matrix elements of Eq.~7!
vanish:

Ed5E^1,2,0&55. ~9!

The asymmetric splitting of theD2 bands cannot be ob
tained in our simple nearest-neighbor overlap-free
model. Nevertheless, the analysis of the lower band allo
the assignment of the parameterVdd(D2):

Vdd~D2 ,k50!5 4
3 ~2 ddp1ddd!5E^1,2,0&2E^2,0,0&51,

~10!

whereddp*2ddd.0 ~Ref. 3! was used to set the sign o
Vdd(D2 ,k50). As usual in overlap-free TB models, th
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highest band included is not described correctly, but this
per limit of applicability of the parameters is now pushed
aboutE56 and 3 energy units from the point^1,1,1& gov-
erning the surroundings of the direct gap in real materia
The submatrix for theD3 bands reads

H~D3!5S Ep
a Vpp~D3! 0 Vpd

ac~D3!

Vpp* ~D3! Ep
c Vpd

ca~D3! 0

0 Vpd
ca* ~D3! Ed

a Vdd~D3!

Vpd
ac* ~D3! 0 Vdd* ~D3! Ed

c

D ,

~11!

where the various abbreviations are explained in the App
dix. Equation~11! allows us to estimate the on-sitep ener-
gies Ep5Ep

a5Ep
c in the empty-lattice model, because th

sum over the fourD3 bands described byH(D3) is equal
everywhere to the trace Tr@H(D3)#52Ep12Ed . For free
electrons, the sum over the four lowest bands of this sym
try varies between 18 atG and X and 17 at the midpoint
between them. This shows that our model cannot agree
thek dependence of this sum without additional overlap m
trix elements or interactions between more distant atoms
order to have the correct value at the high-symmetry poi
we take 2Ep12Ed518, or

Ep54. ~12!

The two-center matrix elements of Eq.~11! are deduced
for a diamond structure by equaling pairs of interaction p
rameters, e.g.,padcs5pcdas5pds. For the free-electron
spectra, the energetic positions of the four lowestD3 bands
at X areEX52, 5, 5, and 6. Since the highest valence ba
at X is known to have nearly 100%p character in real
semiconductors,12 we assume thatp andd bands decouple a
this point, so thatEX52 and 6 arise fromp states alone, and
EX55 and 5 fromd states. Because the energetic positio
of the latter coincide withEd , we deduce thatd states do not
interact with each other. Therefore, we arrive at the follo
ing assignment of coupling parameters:

Vdd~D3 ,k5kX!50, ~13!

Vpd~D3 ,k5kX!50, ~14!

uVpp~D3 ,k5kX!u52⇒Vxy52. ~15!

The two equations~10! and ~13! are not sufficient to deter
mine the three two-center integrals amongd states,dds,
ddp, and ddd. The third restriction is found byassuming
that the bondingd state atG shall pass throughE54. This
energetic position occurs in the free-electron band struct
but it will be changed later by the inclusion of thep-d inter-
action atG. From the assumed position of the bondingd
state atG, we obtain a third equation for the interaction
betweend states,

Vdd~G4!5Vdd~D3 ,k50!521, ~16!

which is found from considering only thed submatrix in Eq.
~11!. Equations~10!, ~13!, and~16! yield the two-center in-
tegrals amongd states:
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dds52
1

4
, ~17!

ddp5
3

4
, ~18!

ddd52
3

4
. ~19!

Equation~14! gives the ratio ofpds andpdp:

pdp52A3pds. ~20!

In the free-electron spectra, the two lowest bands aris
from the D3 symmetry are degenerate atG with the eigen-
valueE(G4)53. This gives two restrictions for thep-p and
p-d interactions:

Vpp~D3 ,k50!5Vxx52 1
2 , ~21!

uVpd~D3 ,k50!u5uVpd~G4!u5
A6

2
. ~22!

Solving Eqs.~15! and~21! for the p-p interactions, and Eqs
~14! and ~22! for the p-d interactions, we obtain

pps5
7

8
, ~23!

ppp52
5

8
, ~24!

pds52
A6

8
, ~25!

pdp5
3A2

8
. ~26!

This demonstrates that the analysis of theD3 bands in
their limits atG andX fully determines the on-sitep andd
energies and their two-center integrals for a free electron
real materials, the interaction parameters are modified by
atomic pseudopotentials, lifting some of the degenerac
e.g., of the two energetic positionsE(G4)53.

B. G1 representation: interactions amongs, s*

The G point is most instructive for calculating the inte
action parameters amongs and s* states, because they d
termine theG1 coupling matrix

H~G1!5S Es
a Vsss 0 Vss* s

ac

Vsss Es
c Vss* s

ca 0

0 Vss* s
ca Es*

a Vs* s* s

Vss* s
ac 0 Vs* s* s Es*

c

D , ~27!

where Vsss54 sss, etc. In the free-electron spectra, th
lowest energies of this symmetry areE(G1)50, 3, 3, and 4,
but the highest of them is related to the nexts shell not
included in our basis, so that only the lower three can
used for assigning the coupling and on-site parameters.
of the D1 bands starting atE(G1)53 shall end atEX56.
Assuming that thes* state is only weakly coupled top and
d states, we set the corresponding interactionss* ps and
g

In
he
s,

e
ne

s* ds to zero. All interactions amongs* ands states vanish
at X by symmetry, so thatEX56 can be used to assign

Es* 56. ~28!

For Es , the only restriction we can derive is 2Es.3, which
corresponds to the sum of the lowest twoG1 energies. A
good choice turns out to be

Es52. ~29!

The two-center integrals are then derived from the three lo
estG1 energies. With the usual phase convention,3 we obtain

sss52
5

16
, ~30!

s* s* s52
15

16
, ~31!

ss* s52A27/16. ~32!

C. Interactions betweenˆs,s* ‰ and ˆp,d‰

The four undetermined matrix elements of the fre
electron Hamiltonian concern the interaction of thes ands*
states withp andd. The smaller two,s* ps ands* ds, have
already been assumed to vanish. For the other two, we fix
ratio sps/sds52 3

2, so that only one matrix element re
mains to be determined. We derive it from the lowest ene
of the D1 bands atX, EX51, yielding

sps50.6468, ~33!

sds520.4312. ~34!

D. Resulting free-electron band structure

The parameters derived above are given in Table I. In F
1, we illustrate the influence of the various interaction p
rameters on the free-electron band structure, and in the u
row, subsets of the atomic symmetries$s,s* %, p, andd are
shown separately. The$s,s* % bands in Fig. 1~a! give only
the correct positions of theG1 states, while at all other point
of the Brillouin zone, they are coupled into larger subma
ces influenced byp and d. For our special choices* ps
5s* ds50, the only exception is the correct positionEX
56. The twice degeneratep bands in Fig. 1~b! decouple atX
for the p-d parameters we use, but this feature depends
the parameter choice, so that, generally speaking, thp
bands have nowhere a point where they remain uncouple
the states ofs and d symmetry. Nevertheless, the highe
valence band will present wave functions with a dominanp
contribution. In fact, the lowerL3 and D3 bands obtained
from p states alone are already close to the final band p
tions. Thed bands in Fig. 1~c! determine theD2 bands, and
the lower one^0,2,0&→^1,2,0& approximately reproduce
the free-electron band. A remarkable feature of thed bands
is the very low bonding state atX. Its bonding character will
be of crucial importance for the deformation potential of t
conduction-band minimum atX ~see Secs. IV and V below!.
The splitting of thed bands atX can be shown to be

~DEd!X5
8A3

9
~ddp2ddd!, ~35!

which is equal to 4A3/352.3 for our model parameters. Th
symmetry character of the corresponding wave function
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this lowestd state atX is half d(G3) (e1) and halfd(G4)
(t2). Except for Vs* s* s52 15

4 derived from Eq.~31!, Eq.
~35! gives the largest interaction parameter of our TB mo
at any of the high-symmetry pointsG, L, andX. Obviously,
such an extremely large interaction matrix element canno
derived in a perturbative approach, so that the analysis of
free-electron bands is required for an estimate of its ma
tude.

In Fig. 1~d! we show the bands determined by the sub
$p,d%. In addition to theD2 bands already given byd states
alone, this subset determines entirely the double degene
bands ofL3 andD3 symmetry. AtG, the lower two coincide
with the required energyE(G4)53, but the upper two occu
at E(G4)55.5 and 6.5 instead ofE(G4)54,8. These devia-
tions are due to the inherent limitations of our neare
neighbor TB model mentioned above, and the requireme
for the X point on the analytic determination of paramete
For real materials, the error for the thirdG4-position will be
smaller by a factor of about13.

In Fig. 1~e!, we show the complete band structure acco
ing to the above parameters; compare Table I. The ove
agreement with the free-electron band structure@shown by
the thin lines in Fig. 1~e!# is good. Nevertheless, there rema

TABLE I. Free-electron parameters in units ofE^1,0,0& . First
column: analytically derived values; second column: fitted valu
The third column shows universal parameters of thesp model~Ref.
22! for comparison.

Analytic Fitted sp model ~Ref. 22!

Es 2.0 1.9378 1.5
Ep 4.0 3.9491 3.5
Ed 5.0 4.9823
Es* 6.0 6.0733

sss 2
5

16
520.3125 20.3214 2

3
8

520.375

s* s* s 215/16520.9375 20.9317
ss* s 2A27/16520.3248 20.3093

sps 0.6468 0.5836 A15/850.4841
s* ps 0 0.2199
sds 20.4312 20.3837
s* ds 0 20.0198

pps 7
8

50.875 0.8526
7
8

50.875

ppp
2

5
8

520.625 20.5977 2
1
4

520.25

pds 2A6/8520.3062 20.1849
pdp 3A2/850.5303 0.6230

dds
2

1
4

520.25
20.2311

ddp 3
4

50.75
0.7309

ddd
2

3
4

520.75
20.7248
l

e
he
i-

t

te-

t-
ts
.

-
ll

some significant discrepancies, as can be seen in the reg
aroundEL52.75 andEW53.25.

In order to improve the free-electron band structure,
optimized the TB parameters by a conjugate gradi
scheme. The resulting parameters are given in Table I,
the corresponding bands are shown in Fig. 1~f!. The agree-
ment with the superimposed free-electron band structur
improved, in particular for the solution of the discrepanc
mentioned above aroundEL52.75 andEW53.25. The main
residual deficiencies up toE55 are a missings** band
starting at^2,0,0&, the third D3 band which remains much
too high nearG, and the somewhat low values of the bands
L which should pass throughEL54.75.

Comparing the fitted values with the analytically deriv
parameters in Table I, one finds generally good agreem
with a few exceptions. From the two preset valuess* ps
5s* ds50, only the former suffers a large change, wh
the latter remains very small. A further significant chan
occurs forpds andpdp, which is responsible for the bette
agreement nearEW53.25.

The parameters in thesp model according to Froyen an
Harrison are given in Table I for comparison.22 Some of the
old features are reproduced in our model, like, e.g.,Ep2Es
52, and in general parameters are similar, except forppp.
The shift of the on-site energiesEp andEs by 0.5 upwards in
the largerspds* basis can be understood from the fact th
the valence bands are pushed down by additional interact
with the higher-lying statesd ands* , resulting in the same
valence-band positions as in thesp model. The strongly dif-
ferent values forppp are related to the requiredD3 bands at
G and X: the sp model results inE(G4)53 and 4 and
E(X5)52 and 5, while we try to reproduceboth G4-like
bands atE(G4)53. Thesp model reproduces only half o

FIG. 1. Empirical TB band structure approaching the fre
electron bands.~a!–~e! calculated with the analytically derived pa
rameters in Table I:~a! $s,s* % only, without interactions with the
other symmetries;~b! same forp; ~c! same ford; ~d! including all
interactions within the$p,d% subset;~e! with all interactions~thick
lines! and free-electron bands superimposed~thin lines!. ~f! Bands
with the parameters in Table I obtained from the numerical fit~thick
lines!, with free-electron bands superimposed~thin lines!. The en-
ergy unit isE^1,0,0&5\2K2/2m0 ~see Sec. II A!.

.
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the G1 and G4 bands resulting from̂1,1,1&, but the corre-
sponding interaction parameterppp52 1

4 is quite realistic
for real materials; see below.

The TB parameters of the emptyd shell demonstrate tha
extendedd-wave functions cannot coincide with those
deepd orbitals. As a direct consequence, our results are
contrast to earlier estimates for metald bands.23 For the in-
teractions amongd states, the most striking feature is th
dds is the smallest of the three two-center integrals: T
ratio given by Harrison wasdds:ddp:ddd526:4:21,23

while our result is21:3:23. For the interactions betweenp
andd, the ratio2pdp/pds53.37 is extremely large, con
trary to transition-metal compounds, where2pdp/pds&1
would be expected.23 As we will show below, the large ratio
above never occurs in real semiconductors: It is only
quired for good agreement with the free-electron bands.

IV. MATERIAL PARAMETERS AND BAND STRUCTURES
FOR GROUP-IV AND III-V SEMICONDUCTORS

A. Parameters and band structures

The starting values of the TB parameters for real mat
als are derived from the free-electron results in Table I, a
atomic energies. In a second step, the deviation of the re

TABLE II. Empirical TB parameters for group-IV semiconduc
tors. The lattice constanta and energy unitE^1,0,0& are given at
room temperature~Ref. 27!; all other parameters are intended to
low-temperature values, in units of eV, with the energy zero at
valence maximum.

C Si Ge

a~Å! 3.5668 5.430 5.6563
E^1,0,0& 11.823 5.1016 4.7014

Es 21.0458 22.0196 23.2967
Ep 7.0850 4.5448 4.6560
Ed 27.9267 14.1836 13.0143
Es* 38.2661 19.6748 19.1725

sss 24.3882 21.9413 21.5003
s* s* s 22.6737 23.3081 23.6029
s* ss 22.3899 21.6933 21.9206

sps 5.4951 2.7836 2.7986
s* ps 5.1709 2.8428 2.8177
sds 22.7655 22.7998 22.8028
s* ds 22.3034 20.7003 20.6209

pps 7.5480 4.1068 4.2541
ppp 22.6363 21.5934 21.6510

pds 22.1621 22.1073 22.2138
pdp 3.9281 1.9977 1.9001

dds 24.1813 21.2327 21.2172
ddp 4.9779 2.5145 2.5054
ddd 23.9884 22.4734 22.1389

D/3 0.0 0.0195 0.1325
in

e

-

i-
d
lt-

ing band energies from various reference values is m
mized numerically.24 The parameters resulting from our nu
merical procedure are listed in Table II for C, Si, and Ge, a
in Table III for AlP, GaP, InP, AlAs, GaAs, InAs, AlSb
GaSb, and InSb. The corresponding energy eigenvalues
effective masses are summarized in Tables IV–VII and co
pared with experimental and quasiparticle results. Ba
structures are shown in Fig. 2 for diamond and silicon, and
Fig. 3 for germanium and gallium arsenide as a prototy
example of a polar material. One of the main deficiencies
smaller nearest-neighbor TB models is that the transve
masses atX and L become too large or even infinite whe
only interactions among nearest neighbors are included.
consider the improved band shape on the surface of the B
louin zone as a crucial test for the quality of our TB mod
and this is the reason why we have included in the figures
part of the wave-vector pathway connecting several of th
surface points,X→W→K→L→W→X.

Following the work of Chadi,25 spin-orbit interactions
were added to the present model, including only the con
bution from thep valence states, while the much small
splittings of excitedd states were neglected.26 As in smaller
TB models, the spin-orbit splittings in the crystal are larg
than the atomic reference values by a factor of about 1.525

The data presented in Tables IV–VII demonstrate that
results are in good agreement with experimental and qu
particle calculations. The main features of the valence ba
and the lowest two conduction bands are well reproduc
especially atG and X. For GaSb, the inversionE(X6c)
.E(X7c), known from pseudopotential calculations,
reproduced.10 At the L point, deviations around the opticall
relevant gaps occur for the energetic positions of the high
valence band and second conduction band atL. We believe
this systematic deviation cannot be overcome in a near
neighbor TB model, because an important invariant of fou
order in the wave number with symmetry 3(kx

41ky
41kz

4)
2k4 cannot be produced correctly. Its quantitative constr
tion within a TB model would require interactions amon
more distant atoms. The adjustment of this invariant w
found to be important for good agreement of a 15315 k•p
model with pseudopotential bands.32 This k•p model is
based onG states arising from the wave vectors (0,0,0
^1,1,1&, and^2,0,0&, so that it should have properties simila
to our empirical TB model covering the same points, w
the exception of a missings** band arising from̂ 2,0,0&,
but including instead some approximate bands correspon
to higher reciprocal-lattice vectors. The masses calculate
our TB model agree with measurements except for
heavy-hole effective masses whose values are actually
troversial even in experiments.33

In a perfect cubic crystal, the on-site integrals evolve fro
the free-atomic term values corrected by the crystal-field
tential. The differences between ours and p energies agree
well with atomic reference calculations, especially for t
nonpolar semiconductors.34 For III-V semiconductors, the
s-p splitting is up to 7% higher than in the correspondi
atoms, with the exception of Sb, which deviates by 12%.35,36

This demonstrates that the chemistry of the highest occu
orbitals of the atoms is well conserved, as in smaller
models.4,25 Conversely, the on-sited energies in Tables II
and III scale with the energy unit of the reciprocal lattice, n

e
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TABLE III. Empirical TB parameters for III-V semiconductors. The energy zero is taken at the valence-band maximum. The
constanta and the energy unitE^1,0,0& are given at room temperature~Ref. 27!; all other parameters are intended to be low-tempera
values, in units of eV, with the energy zero at the valence maximum.

AlP GaP InP AlAs GaAs InAs AlSb GaSb InSb

a ~Å! 5.4635 5.4509 5.8687 5.660 5.6532 6.0583 6.1355 6.0959 6.47
E^1,0,0& 5.0391 5.0624 4.3673 4.6953 4.7065 4.0982 3.9957 4.0478 3.58

Es
a 25.3355 25.3379 25.3321 25.9819 25.9819 25.9801 24.9565 24.9586 24.9527

Es
c 0.9573 20.4005 0.3339 0.9574 20.4028 0.3333 0.9521 20.4003 0.3389

Ep
a 3.3471 3.3453 3.3447 3.5826 3.5820 3.5813 4.0739 4.0735 4.07

Ep
c 6.3392 6.3844 6.4965 6.3386 6.3853 6.4939 6.3386 6.3801 6.49

Ed 14.1717 14.0431 12.7756 13.0570 13.1023 12.1954 11.4691 11.5944 11.2
Es* 20.5963 20.3952 18.8738 19.5133 19.4220 17.8411 16.4173 16.6388 16.1

sss 21.7403 21.7049 21.4010 21.7292 21.6187 21.4789 21.6179 21.3671 21.1290
s* s* s 23.6444 23.5704 23.6898 23.6094 23.6761 23.8514 23.3145 23.2355 23.2248
sa* scs 21.6448 21.6034 21.8450 21.6167 21.9927 22.1320 21.6983 21.9813 22.0042
sasc* s 21.4307 21.6358 21.2867 21.2688 21.5648 21.2219 21.2097 21.6622 21.8819

sapcs 2.6146 2.8074 2.1660 2.5175 2.4912 2.3159 2.5918 2.5624 2.53
scpas 2.7804 2.9800 2.6440 2.7435 2.9382 2.8006 2.9334 2.7093 2.69
sa* pcs 2.0632 2.3886 2.5652 2.1190 2.1835 2.6467 2.4649 3.0164 2.73
sc* pas 2.3361 2.1482 2.0521 2.1989 2.2086 1.9012 1.8889 2.4596 2.34

sadcs 22.5253 22.7840 22.5559 22.5535 22.7333 22.5828 22.7920 22.6143 22.5635
scdas 22.1687 22.3143 22.2192 22.3869 22.4095 22.4499 22.0008 22.4274 22.3085
sa* dcs 20.7810 20.6426 20.7912 20.8064 20.6906 20.8497 20.7307 20.8557 20.7371
sc* das 20.7211 20.6589 20.8166 20.7442 20.6486 20.8371 20.7878 20.8007 20.8144

pps 4.0355 4.1988 4.0203 4.2460 4.4094 4.1188 4.1042 4.4500 4.18
ppp 21.3077 21.4340 21.2807 21.3398 21.4572 21.3687 21.5273 21.6809 21.4688

padcs 21.6750 21.7911 21.9239 21.7240 21.7811 22.1222 21.9819 22.0377 22.1487
pcdas 21.8239 21.8106 21.8851 21.7601 21.8002 22.0584 21.9726 22.2429 22.1652
padcp 1.8760 1.8574 1.5679 1.7776 1.7821 1.5462 2.1292 1.9790 1.84
pcdap 2.1848 2.1308 1.7763 2.0928 2.0709 1.7106 1.8364 1.8670 1.84

dds 21.3479 21.2268 21.2482 21.2175 21.1409 21.2009 21.1395 21.2492 21.3052
ddp 2.3750 2.2752 2.1487 2.1693 2.2030 2.1820 2.1206 2.1970 2.07
ddd 21.8464 22.0124 21.6857 21.7540 21.9770 21.7788 21.7260 21.7451 21.4118

Da/3 0.0196 0.0301 0.0228 0.1721 0.1824 0.1763 0.3912 0.4552 0.44
Dc/3 0.0073 0.0408 0.1124 0.0072 0.0408 0.1248 0.0079 0.0432 0.12
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with the energy separationEd2Ep of the free atoms.26 The
very high on-sited energies can be understood by starti
with realistic extended atomicd-wave functions. These wav
functions would yield interaction matrix elements with mo
distant sites, and correspondingly nonvanishing overlap
trix elements. Diagonalizing everything except the neare
neighbor interactions, the new on-sited energies of the or-
thogonal Wannier functions are renormalized and pushed
in energy by the elimination of interactions with the atom
orbitals at more distant positions and all overlap matrix e
ments.

The on-sited energies are about three energy unitsE^1,0,0&
above the averages energy, as expected from Sec. III. Th
chemical trend among AlP withEd2Es53.25E^1,0,0& and
a-
t-

up

-

InSb with Ed2Es53.79E^1,0,0& is monotonous, and can b
understood from the presence of occupiedd orbitals in the
core of the heavier atoms, pushing the empty free-electr
like d states to higher energies. For thes* orbitals, the renor-
malization of the expected free-electron valueEs* 2Es
54E^1,0,0& is more pronounced: amongEs* 2Es
54.52E^1,0,0& for AlP and Es* 2Es55.16E^1,0,0& for InSb.
The increased influence of the core can be understood f
the smaller valueEs* 2Es compared to the energetic separ
tion of empty and occupiedd states, if the latter are presen
at all. The nonpolar semiconductors Si and Ge show ren
malizations similar to AlP and GaAs, respectively. Diamo
is the only material with the opposite trend compared to
free-electron reference:Ed2Es52.45E^1,0,0& and Es* 2Es
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TABLE IV. Comparison of energetic positions and masses obtained in the present work~TB! with
experimental values~expt! and pseudopotential calculations in the GW approximation~PP! ~Ref. 11!, for Si,
Ge, and C. All energies are in eV, and the reference energy is taken at the maximum of the valence ba
experimental data are from Ref. 27 unless indicated otherwise. Bands are assigned with representatio
double-group notation, except for the conduction bands atL, where the simple-group notation is also give
for clarity.

C Si Ge
TB expt PP TB expt PP TB expt PP

G6v
1 220.50 221. 221.35 212.24 212.5 212.04 212.68 212.6 212.84

2D0 0.00 0.00 0.0 20.044 20.044 0.0 20.29 20.30 0.0
G6c

2 13.9 15.3 14.54 4.15 4.15 3.83 0.90 0.9 0.65
G7c

2 7.35 7.3 7.63 3.36 3.35 3.39 3.04 3.01 3.21
G8c

2 7.35 7.3 7.63 3.41 3.35 3.39 3.37 3.21 3.21
X5v 26.49 26.69 23.15 22.90a 22.98 23.37 23.15 23.16
X5c 6.05 X5v

2112.5 6.3 1.35 1.13 1.47 1.12 1.3 1.74
L6v

2 22.76 22.98 21.12 21.2 21.24 21.37 21.4 21.47
L4,5v

2 22.76 22.98 21.08 21.2 21.24 21.12 21.4 21.47
L6c

1 (L1c
1 ) 9.73 L4,5v

2112.5 10.63 2.14 2.40a 2.26 0.74 0.74 0.98
L6c

1 (L3c
1 ) 9.30 L4,5v

2112.0 10.23 4.39 4.15a 4.33 3.99 4.3 4.57
m(G6c

2 ) 0.038 0.038
mt(Dmin) 0.33 0.36 0.22 0.1905 0.280
mt(L6c

1 ) 0.16 0.083 0.081
Dmin 5.50 5.48 5.67 1.17 1.17 1.31 1.00

aReference 28.
s
th

nd
. 4.
53.33E^1,0,0& , both below the expected values. Neverthele
the general laws derived for the free electrons dominate
expected ordering of the atomic levels even for diamo
Es* 5E3s.Ed5E3d .
s,
e
:

B. Total and local density of states

We calculated the electronic density of states~DOS! and
the local density of states~LDOS! projected on the atomic
basis functions. Our results for GaAs are presented in Fig
The energetically lowest peak from213 to 210 eV arises
of the
chosen
TABLE V. Comparison of energetic positions and masses obtained in the present work~TB! with
experimental values~expt! ~Ref. 27! and pseudopotential calculations in the GW approximation~PP! ~Ref.
30!, for AlP, GaP, and InP. All energies are in eV, and the reference energy is taken at the maximum
valence band. Bands are assigned with representations in the double-group notation, and the origin is
on the anion site.

AlP GaP InP
TB expt PP TB expt PP TB expt PP

G6v 211.823 212.07 212.365 212.3 212.83 211.084 211.0 211.75
2D0 20.040 0.0 20.080 20.080 0.0 20.108 20.108 20.11
G6c 3.630 3.63 4.38 2.895 2.895 2.85 1.424 1.424 1.44
G7c 4.525 5.72 4.460 4.87 5.03 4.592 4.72 5.08
G8c 4.553 5.72 4.553 4.87 5.03 4.794 4.72 5.08
X6v 22.484 22.31 22.849 22.7,23.0 22.78 22.468 22.3 22.38
X7v 22.466 22.31 22.845 22.7,23.0 22.78 22.407 22.2 22.38
X6c 2.504 2.505 2.59 2.349 2.350 2.55 2.405 2.38 2.58
X7c 2.936 3.56 2.701 2.75 2.81 2.767 3.08
L6v 20.986 20.85 21.133 21.2,20.9 21.16 20.974 21.23 21.02
L4,5v 20.957 20.85 21.069 21.2,20.9 21.16 20.875 21.12 21.02
L6c 3.121 3.90 2.556 2.563 2.67 1.946 2.03 2.28
L6c 5.166 6.05 5.244 5.50 5.87 5.148 5.83
m(G6c) 0.187 0.128 0.074 0.0765
mt(X6c) 0.247 0.212a 0.255 0.254 0.285
mt(L6c) 0.189 0.150 0.135

aReference 27, calculated.



1
1
1

57 6501EMPIRICAL spds* TIGHT-BINDING CALCULATION . . .
TABLE VI. Like Table V, but for AlAs, GaAs, and InAs.

AlAs GaAs InAs
TB expt PP TB expt PP TB expt PP

G6v 212.020 212.41 212.910 213.1 213.03 212.188 212.3 212.10
2D0 20.300 20.30 20.27 20.340 20.341 20.34 20.380 20.38 20.38
G6c 3.130 3.13 2.88 1.519 1.519 1.22 0.418 0.418 0.3
G7c 4.569 4.54 5.14 4.500 4.53 4.48 4.252 4.39 4.5
G8c 4.725 4.69 5.14 4.716 4.716 4.48 4.580 4.39 4.5
X6v 22.760 22.41 22.44 23.109 22.88 22.91 22.654 22.4 22.49
X7v 22.565 22.41 22.44 22.929 22.80 22.91 22.546 22.4 22.49
X6c 2.223 2.229 2.14 1.989 1.98 1.90 2.176 2.01
X7c 2.584 2.579 3.03 2.328 2.35 2.47 2.441 2.50
L6v 21.191 20.99 21.330 21.42 21.28 21.124 20.9 21.13
L4,5v 20.983 20.99 21.084 21.20 21.28 20.830 20.9 21.13
L6c 2.581 2.54 2.91 1.837 1.85 1.64 1.691 1.43
L6c 5.069 5.59 5.047 5.47 5.40 4.723 5.32
m(G6c) 0.156 0.067 0.067 0.024 0.023
mt(X6c) 0.237 0.19 0.237 0.27 0.278
mt(L6c) 0.155 0.117 0.075 0.110
t-
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from the As 4s state with a small contribution from the ca
ion s, p, andd states. The threshold at27 eV is the absolute
minimum of the second valence band, and the correspon
wave functions havesp-bonding character, arising from th
mixing of Ga 4s and As 4p states. At24.1 eV the absolute
minimum of the third valence band on the surface of
Brillouin zone occurs, and the peak near23 eV corresponds
to the position of the two highest valence bands atX, in
agreement with experiment. These bands are mainly c
posed ofp andd states, and at the valence maximum, thes
contribution vanishes for symmetry reasons. The lowest c
duction band atG consists mainly of antibonding combina
tions of s orbitals with a marked anion character (sa1sa*
ng

e

-

n-

554%). This is in contrast with the oldersp TB result giv-
ing a larger cation contribution (sc570%),3 but agrees well
with pseudopotential calculations.9,12 Using a smallerspd
basis, the improvement of the conduction-band wave fu
tion is lost, and the oldsp result is reproduced. The chang
of Ep2Es by about 2 eV (0.5E^1,0,0&) needed in thespd
basis destroys the correspondence with atomics orbitals and
the transferability.

At higher energies, the DOS of the conduction band d
plays a free-electron-like character all around the surface
the Brillouin zone, reflected by the strong admixture of
atomic symmetriess, p, andd. Compared to self-consisten
pseudopotential calculations, the calculated DOS and LD
8
6
5

0

TABLE VII. Like Table V, but for AlSb, GaSb, and InSb.

AlSb GaSb InSb
TB expt PP TB expt PP TB expt PP

G6v 211.242 211.10 211.838 211.74 211.72 211.435 211.73 210.91
2D0 20.673 20.673 20.673 20.756 20.756 20.76 20.803 20.803 20.80
G8v 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
G6c 2.384 2.384 2.23 0.811 0.8113 0.62 0.235 0.235 0.0
G7c 3.663 3.740 3.52 3.437 3.20 3.11 3.503 3.37 3.1
G8c 3.913 4.00 3.82 3.839 3.54 3.32 4.000 3.74 3.5
X6v 22.691 22.80a 22.54 23.401 23.10 22.73 22.722 22.4 22.56
X7v 22.263 22.40a 22.54 22.931 22.86 22.97 22.317 22.4 22.24
X6c 1.692 1.69 1.64 1.392 1.40 1.50 1.756 1.79 1.5
X7c 1.901 1.84 1.226 1.24 1.15 1.864 1.57
L6v 21.13 21.48 21.480 21.53 21.56 21.30 21.4 21.46
L4,5v 20.67 21.06 20.930 21.10 21.14 20.701 20.9 20.96
L6c 2.44 2.33 1.84 0.897 0.897 0.79 1.227 0.76
L6c 3.983 4.29 4.005 4.36 4.11 4.059 4.09
m(G6c) 0.109 0.041 0.041 0.012 0.0136
mt(X6c) 0.223 0.23 0.207 0.22 0.218
mt(L6c) 0.120 0.081 0.11 0.082 0.09

aReference 31.
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show good agreement and underline the quality of the wa
function symmetries obtained in the present model.36 The
total bond character summed over all valence bands is
proximatelys1.41p2.37d0.22, which is nearly invariant for all
materials investigated. As chemical trends are weak, this
be considered as an intrinsic property of the tetrahedral b
configuration, so that thesp3 symmetry always mentioned i
only approximately correct.sp3 bonding does not occur in
any energetic region when averaging over each energy s

C. Dependence of band energies on TB parameters

In order to investigate the dependence of the band e
gies on the model parameters, we compute the partial de
tives of some energies with respect to the on-site energ
e.g.,]E(G6c)/]Es

a , and with respect to two-center integra
e.g.,]E(G6c)/](sss). The first give the composition of th
wave function directly, and, because two representations
d states occur, we calculate also the corresponding dec
position. Results for GaAs are found in Table VIII, and t
decompositions of the wave functions are in good agreem
with pseudopotential calculations.12

From the Hellmann-Feynman theorem, the following
lation between the Hamiltonian matrix elementsHi j and the
resulting eigenvaluesEn(k) can be deduced,37

En~k!5(
i , j

Hi j

]En~k!

]Hi j
, ~36!

wheren,k andi , j label, respectively, the band states and
symmetry of the Bloch functions. Within the Slater-Kost
approach,Hi j depends linearly on the on-site energiesEl and
two-center integralsi j k ~all labeledEl for brevity!,

Hi j 5(
l

El

]Hi j

]El
. ~37!

FIG. 2. Band structure for C~diamond! and Si. The model pa-
rameters are given in Table II, and some values of band ene
and masses in Table IV.

FIG. 3. Band structure for Ge and GaAs. The model parame
are given in Tables II and III, and some values of band energies
masses in Tables IV and VI.
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Using this expression and Eq.~36!, we can relate each eigen
valueEn(k) linearly to the model parameters:

En~k!5(
l

El

]En~k!

]El
. ~38!

While this relation is strictly valid for each semiconducto
we can use it for interpolating between different types
III-V materials. Assuming that the partial derivatives in E
~38! show only a weak material dependence, we calcu
them for the reference material GaAs~compare Table VIII!,
and use the TB parametersEl for the other types of semi
conductors. This procedure works surprisingly well, and i
useful to relate chemical trends in band positions to the c
responding trends in the TB parameters.

The conduction minimumG6c shows a monotonous de
crease with increasing cation or anion size. The main par
the chemical trend is already recovered with the three larg
derivatives,

]E~G6c!

]~sss!
sss1

]E~G6c!

]~sa* scs!
sa* scs1

]E~G6c!

]~sasc* s!
sasc* s,

~39!

while the derivatives with respect to the on-site energ
make a much smaller contribution to the material dep
dence ofG6c . The general feature that interaction matr
elements have a stronger influence than the on-site ene
is also observed for other band positions, underlining that
dependence of energy bands on volume effects can be
scribed by considering only the variation of the two-cen
integrals in the strain Hamiltonian, neglecting the on-site
ergy changes. The dependence of theX6c conduction mini-
mum on the TB parameters is already rather complicated
the 10310 coupling matrices for theD1 bands decompose
into two 535 subblocks forX6c andX7c , only sa , sa* , pc ,
da(G3), and dc(G4) contribute to theX6c-state. The main
part of the dependence of theX6c conduction minimum
comes from the interaction parameters among$s,s* % and

ies

rs
nd

FIG. 4. Total and partial density of states~DOS! for GaAs.
Upper left panel: Total density of states, upper right panel: rela
DOS of the corresponding symmetries (s: solid line; p: dashed;d:
dotted!. Other panels: DOS divided into contributions ofs, p, andd
symmetries, and cation~left! and anion~right!, as labeled. The DOS
is calculated without spin-orbit splitting.
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TABLE VIII. Partial derivatives of valence and conduction energies with respect to on-site energie
interaction parameters, for GaAs. Entries vanishing due to symmetry restrictions are denoted with2.

G6v G6c X6c L6c G8v G8c X6v L4,5v

E~eV! 212.910 1.519 1.989 1.837 0.0 4.716 22.929 21.084

Es
a 0.564 0.411 0.029 0.145 – – – –

Es
c 0.303 0.456 – 0.297 – – – –

Es*
a 0.065 0.128 0.025 0.043 – – – –

Es*
c 0.068 0.005 – 0.003 – – – –

Ep
a – – – 0.147 0.553 0.290 0.580 0.589

Ep
c – – 0.458 0.239 0.234 0.510 0.416 0.350

Ed
a – – 0.325 0.090 0.084 0.169 0.001 0.022

Ed
c – – 0.163 0.037 0.129 0.032 0.002 0.038

da(G3) – – 0.325 – – – – 0.007
dc(G3) – – – – – – – 0.013
da(G4) – – – 0.090 0.084 0.169 0.001 0.015
dc(G4) – – 0.163 0.037 0.129 0.032 0.002 0.025

sss 3.308 23.463 – 20.830 – – – –
s* s* s 0.532 0.200 – 20.046 – – – –
sa* scs 1.122 1.934 – 0.450 – – – –
sasc* s 1.568 20.359 – 0.085 – – – –

sapcs – – 0.529 0.743 – – – –
scpas – – – 0.836 – – – –
sa* pcs – – 20.497 20.403 – – – –
sc* pas – – – 20.085 – – – –

sadcs – – 0.315 0.291 – – – –
scdas – – – 0.653 – – – –
sa* dcs – – 20.296 20.158 – – – –
sc* das – – – 20.067 – – – –

pps – – – 20.250 20.959 1.003 21.310 21.212
ppp – – – 0.998 21.917 2.007 1.310 20.606

padcs – – – 20.098 0.712 0.214 0.100 0.325
pcdas – – – 20.194 0.374 0.818 0.060 0.195
padcp – – – 20.226 20.822 20.247 0.058 20.379
pcdap – – 22.058 20.451 20.432 20.945 0.034 20.219

dds – – – 0.076 0.278 20.174 0.005 0.052
ddp – – 20.708 20.102 0.185 20.116 20.002 0.086
ddd – – 0.708 20.204 0.371 20.233 20.003 20.021
in
on
e
p
re
B

n
r-

-

i-

sic
rs.
$p,d% and fromEd . We note that bothda(G3) and dc(G4)
basis states contribute significantly to theX6c wave function,
underlining the necessity to include both types ofd states in
the TB basis when modeling surface points of the Brillou
zone. For theL6c conduction minimum, the dependence
the material parameters is so complicated that no evid
chemical trends can be extracted. Even in this very com
cated case, where all partial derivatives contribute, the ag
ment of Eq.~38! using the derivatives for GaAs and the T
parameters of the other materials, with the correspondingL6c
energies, is remarkable.L6c is never the absolute conductio
minimum in the III-V materials investigated: Only the orde
nt
li-
e-

ings X6c,L6c,G6c ~AlP, AlAs, AlSb, GaP! and G6c,L6c
,X6c ~GaAs, GaSb, InP, InAs, InSb! occur.

The valence bands show nearly 100%p character atL
andX, while atG, thed admixture of 21% is in good agree
ment with pseudopotential calculations.12 These composi-
tions of the valence wave functions are typical of all sem
conductors investigated, so that thed contribution of about
1
5 to the valence maximum can be regarded as an intrin
property of the diamond and zinc-blende semiconducto
The small-d contributions atX andL are the reason why the
positions of the highest valence bandsX6v andL4,5v depend
mainly on thep-p interactions and the on-sitep energies. As



ve
u
p

pa
ca
c
a
dis
la
e

ici
le
n

tri
lu
v
ve
te

m
gi

rr

lo

ts
Th
od

us

ily

de

t
te
b
a
r-

lk
n-

c-

that
bu-

of

tive
fi-

ler
iri-
-

ten-

e
nce

nu-
ith
tion
med

ee-
de-
f
hen
s is

d
rs

6504 57JANCU, SCHOLZ, BELTRAM, AND BASSANI
the material dependencies of these quantities are not
pronounced, the corresponding band energies show m
smaller chemical trends than the conduction minima, es
cially G6c .

V. DEFORMATION POTENTIALS

To achieve a complete description of the interaction
rameters, we scale the Hamiltonian matrix elements by
culating the dependence of energy bands on volume effe
In a TB Hamiltonian, strain effects can be included by sc
ing the matrix elements with respect to the bond-angle
tortions and bond-length changes, allowing for the calcu
tion of strain effects for any wave vector with the sam
accuracy. Bond-angle distortions are determined by elast
theory and incorporated into the Hamiltonian matrix e
ments via the phase factors in the Slater-Koster definitio
The influence of changes of the on-site Hamiltonian ma
elements on the resulting band structure is difficult to eva
ate because two different terms contribute: the energy le
of the free atom and the crystal field. As mentioned abo
the variation of the band energies with the one-center in
grals El is weak, so that the main dependence on volu
effects should be recovered, keeping the on-site ener
constant. The dependence of the two-center integralsi j k on
bond length is considered using a generalization of Ha
son’sd22 law,39

i j k~d!5 i j k~do!S do

d D ni j k

, ~40!

where d (d0) is the strained~unstrained! interatomic dis-
tance.ni j k are orbital-dependent exponents reflecting the
calization of the atomic wave functionsi and j near the
nuclei. In a minimalsp basis, Harrison chose all coefficien
ni j k equal to 2, consistent with the free-electron spectra.
strain Hamiltonian obtained this way provides a fairly go
description of the positive pressure coefficientdE(G6c
2G8v)/dp of the direct gap, but it predicts an erroneo
positive pressure coefficient of the indirect gapdE(X6c
2G8v)/dp, which should be negative. This failure is eas
understood when considering thesp expressions of theG
andX energies for the diamond structure, neglecting the
pendence of the spin-orbit splitting on strain:3

E~G8c
1 ,G8v

2 !5Ep6Vxx , ~41!

E~X6c ,X8v!5
Es1Ep

2
6AS Ep2Es

2 D 2

1Vsp
2 . ~42!

The dependence on pressure is then determined by
increase of the interaction parameters with decreasing in
atomic distance: The lower bonding state of each pair will
pushed down in energy, while the higher antibonding st
will be pushed up. We obtain the following volume defo
mation potentials:

a~G8v
2 !5

1

3

]E~G8v
1 !

] ln~d!
5 2

3 Vxx.0, ~43!

a~G8c
1 !52a~G8v

2 !, ~44!
ry
ch
e-
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ts.
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-
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a~X6c!5
1

3

]E~X6c!

] ln~d!
52

4

3

Vsp
2

E~X6c!2E~X6v!
,0. ~45!

Normalizing these deformation potentials with the bu
modulusB0 yields a positive pressure coefficient for the i
direct gap,

]

]p
@E~X6c!2E~G8v

2 !#52
a~X6c!2a~G8v

2 !

B0
.0, ~46!

in sharp contrast with the sign observed.27 Partly, these de-
ficiencies can be overcome in ansps* model including more
sophisticated distance laws thanni j k52.39 However, owing
to the larged component of the conduction-band wave fun
tion atX, any agreement would be fortuitous. Including thed
states, the required change of sign ofa(X6c) and the corre-
sponding pressure coefficient is simply related to the fact
the corresponding wave function contains a large contri
tion of d states~compare Table VIII!, which has entirely
bonding character as shown in Fig. 1: The surroundings
the X point have the lowest bondingd states. The
d-symmetric part of theX6c wave function will therefore be
pushed down in energy under pressure, yielding a nega
pressure coefficient ofX6c , and a negative pressure coef
cient of the indirect gap.

In order to overcome the inherent limitations of smal
TB models, we shall derive the distance laws of our emp
cal TB parameters in thespds* basis from various deforma
tion potentials of several band positions atG, X, andL. In a
nearest-neighbor approximation, shear deformation po
tials are notni j k dependent. Uniaxial@001# strain induces a
tetragonal crystal field which lifts the degeneracy of thexy
(z) and xz, yz (x, y) atomic levels. For convenience, w
consider only thed states, and assuming a linear depende
of the on-site energies on the strain tensore, we obtain

Exy5Ed@112bd~ezz2exx!#,

~47!

Exz5Eyz5Ed@12bd~ezz2exx!#,

where bd is the shear parameter of thed states fitted to
reproduce the uniaxial deformationb of the valence-band
edge. The averaged(G4) energy in Eq.~47! remains un-
changed, i.e., we do not consider volume effects. The
merical values derived are given in Table IX together w
the exponents of the interaction parameters. Anion-ca
and cation-anion interactions of the same type are assu
to fulfill the same distance law, e.g.,nsapcs5nscpas5nsps .
In the numerical fitting procedure, we achieve good agr
ment with pseudopotential calculations and experimental
formation potentials~see Table X!. Pressure coefficients o
valence and conduction states were fitted separately, w
available, but only the pressure dependence of the gap
shown. The pressure coefficient]E(G8v

2 2G8c
1 )/]p for Si is

in close agreement with pseudopotential results,29 while, on
ansp or sps* basis,a(G8c

1 ) has the opposite sign ofa(G8v
2 );

compare Eqs.~43! and~44!. Another point to be emphasize
is that the TB calculation gives for all III-V semiconducto
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TABLE IX. Empirical distance lawsni j k of the TB parameters for Si, Ge, and III-V semiconducto
fitted to various deformation potentials as explained in the text. The exponentsnss* s andns* s* s were set to
zero, andndds , nddp , nddd , andns* ds were fixed to the free-electron value of 2.

i j k Si Ge AlP GaP InP AlAs GaAs InAs AlSb GaSb InSb

sss 3.672 3.631 3.041 3.379 3.113 3.120 3.640 3.348 3.245 4.041 3.
sps 2.488 3.713 3.408 3.360 3.582 3.564 3.582 3.662 3.702 3.644 3.
pps 2.187 2.030 2.138 2.124 1.825 2.051 2.045 1.498 1.763 1.524 1.
ppp 3.711 4.025 3.871 3.927 4.153 3.869 4.126 4.259 4.152 4.203 4.

sds 1.869 1.931 1.956 1.971 1.993 1.871 1.954 1.776 1.721 1.799 1.
s* ps 1.919 1.830 1.816 1.819 1.692 1.799 1.712 1.762 1.772 1.770 1.
pds 1.830 1.759 1.843 1.832 1.772 1.858 1.827 1.740 1.797 1.753 1.
pdp 2.093 1.872 1.864 1.837 1.732 1.874 1.651 1.696 1.557 1.642 1.

bd 0.443 0.243 0.660 0.649 0.572 0.536 0.655 0.488 0.420 0.370 0.
al
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deformation potentialsa(X6c).a(X7c) for the lowest two
conduction states atX, in agreement with pseudopotenti
results.35

The distance laws can be divided into four groups. For
first, the exponents were set to zero because we do not ex
a large influence of the corresponding parameters on ou
sults, or because reliable information on high bands is m
ing. The corresponding exponents arenss* s5ns* s* s50.
The second group concerns the high bands, and their e
nents were fixed to Harrison’s free-electron distance la
ndds5nddp5nddd5ns* ds52. These interactions guarante
that the high-energy parts of the band structure scale w
E^1,0,0& , as the free electrons. For the third group, the ex
nents are still of the order of 2, but show pronounced che
cal trends; compare Table IX. They apply to TB paramet
describing the interaction among one of the low-lying sta
s or p and one of the high-lying statesd or s* . The fourth
group contains the interactions within the subset$s,p%. They
are known to be responsible for the main chemical trends
the valence bands, as they contribute about 94% to the b
e
ect
e-
s-

o-
:

th
-
i-
s
s

r
d-

ing orbitals ~see Sec. IV B!. The corresponding exponen
turn out to be very high, of the order 3–4.5, values which
in rough agreement with exponents derived in clus
calculations.40 Because the electron densities of thes andp
states are localized much more closely to the nuclei than
free-electron-liked and s* states, the corresponding two
center interaction matrix elements within the subset$s,p%
should in fact have the steepest distance dependence, a
served in our results.

VI. CONCLUSION AND OUTLOOK

With an empiricalsp3d5s* nearest-neighbor TB mode
we obtained a quantitatively correct description of the v
lence bands and the lowest two conduction bands, bot
terms of energetic positions and band curvatures. Thd
states were found to be of crucial importance for the low
two conduction bands atX, and the composition of the cor
responding wave functions was in good agreement w
pseudopotential results. The distance dependences of th
defor-
ong
TABLE X. Pressure coefficients of band gaps for Si, GaAs, and GaSb, given in meV/Kbar, and
mation potentialsb andE2(X) in eV. E2 is calculated at the absolute minimum of the conduction band al
D for Si, and atX for GaAs and GaSb.

Si GaAs GaSb
TB expt PP TB expt PP TB expt PP

dE0(G)/dp 12.0 12.2a 11.4 11.3 10.3b 13.5 14.8 14.3b

dE08(G)/dp 0.53 0.53a

dE1(L)/dp 5.4 5.2 6.8 7.2 7.2 7.35
dE2(X)/dp 2.0 2.9 4.0 5.6 6.44 6.08
dEg

ind(G8v2X6c)/dp 21.8 21.6 21.68a 22.4 21.8 22.2b 23.6 23.4b

dEg
ind(G8v2X7c)/dp ‘‘ ‘‘ ‘‘ 20.1 20.3b 22.0 21.8b

dEg
ind(G8v2L6c)/dp 4.32 4.06a 4.6 5.5 3.9b 4.8 5.0 4.3b

b 22.11 22.10 22.35c 21.69 21.7 21.90c 21.95 22.0
E2(D) or E2(X) 9.0 8.7 9.16c 6.2 6.5d 8.6 c, 6.3e 6.5

aReference 29.
bReference 35.
cReference 38.
dReference 45.
eReference 27, calculated.
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teraction parameters were derived from various deforma
potentials. A major improvement compared to smaller
models was the correct sign and magnitude of the defor
tion potential of the conduction band atX, directly related to
the larged component of the wave function. Because
deformation potentials investigated have reasonable ma
tudes, a generalization of the present model to strained
perlattices is straightforward and has already been applie
AlAs/GaAs superlattices.41

A further extension concerns the combination of
present achievements withab initio TB methods, where
atomiclike wave functions are used.42,43 The necessity to
choose unusual on-site energies in the present work, an
d-like potentials used in muffin-tin methods,44 demonstrate
that the on-site energies of models based on atomiclike w
functions do not necessarily coincide with the atomic ene
levels. This can be possibly exploited to achieve further
provements for the conduction bands. This would yield
possibility to use realistic sets of parameters where the w
functions areab initio and on-site parameters are empiric
A better modeling of crystallization processes, surface rec
struction, and optical properties of clusters can be expec
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APPENDIX

The abbreviations used in the coupling Hamiltonia
H(D3) in Eq. ~11! will be given below:

Vdd~D3!5 4
9 ~3dds12ddp14ddd!cos

ka

4

2 i 4
9 ~3dds2ddp22ddd!sin

ka

4
, ~A1!

Vpd
ac~D3!52

4

3S Pa2
2

A3
Padcp D cos

ka

4

1 i
4

3S Padcs1
1

A3
Padcp D sin

ka

4
, ~A2!

Vpd
ca~D3!5

4

3S Pcdas2
2

A3
Pcdap D cos

ka

4

1 i
4

3S Pcdas1
1

A3
Pcdap D sin

ka

4
, ~A3!

Vpp~D3!5Vxxcos
ka

4
2 iVxysin

ka

4
, ~A4!

where

Vxx5
4
3 ~pps12ppp!,

Vxy5
4
3 ~pps2ppp!. ~A5!
1
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11M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B48, 17 791

~1993!.
12P. Boguslawsky and I. Gorczyca, Semicond. Sci. Technol.9,

2169 ~1994!.
13Y. C. Chang and D. E. Aspnes, Phys. Rev. B41, 12 002~1990!.
14M. Graf and P. Vogl, Phys. Rev. B51, 4940~1995!.
15B. Sporkmann and H. Bross, Phys. Rev. B49, 10 869~1994!.
16J. Callaway,Energy Band Theory~Academic, New York, 1961!.
17F. Bassani and G. Pastori-Parravicini,Electronic States and Op-

tical Transitions in Solids~Pergamon, London, 1975!.
18F. Herman, Phys. Rev.93, 1214~1954!.
s

ids

e-

19F. Bassani, inPhysics of III-V Compoundsedited by R. K. Wil-
lardson and A. C. Beer, Semiconductors and Semimetals Vol.
~Academic, New York, 1966!, p. 33.

20G. Dresselhaus, Phys. Rev.100, 580 ~1955!.
21P. Y. Yu and M. Cardona,Fundamentals of Semiconductors

~Springer, Berlin, 1996!.
22S. Froyen and W. A. Harrison, Phys. Rev. B20, 2420~1979!.
23W. A. Harrison and S. Froyen, Phys. Rev. B21, 3214~1980!.
24D. A. Papaconstantopoulos, A. Pasturel, J. P. Julien, and F

Cyrot-Lackmann, Phys. Rev. B40, 8844~1989!.
25D. J. Chadi, Phys. Rev. B16, 790 ~1977!.
26D. M. Bylander and L. Kleinman, Phys. Rev. B34, 5280~1986!.
27Semiconductors: Group IV Elements and III-V Compounds, ed-

ited by O. Madelung, Landolt-Bo¨rnstein, New Series, Group III,
Vol. 17, Pt. a~Springer, Berlin, 1982!; Semiconductors: Intrin-
sic Properties of Group IV Elements and III-V, II-VI and I-VII
Compounds, edited by O. Madelung, Landolt-Bo¨rnstein, New
Series, Group III, Vol. 22, Pt. a~Springer, Berlin, 1987!.

28D. Straub, L. Ley, and F. J. Himpsel, Phys. Rev. Lett.54, 142
~1985!.

29X. Zhu, S. Fahy, and S. G. Louis, Phys. Rev. B39, 7840~1989!.
30X. Zhu and S. G. Louis, Phys. Rev. B39, 7840~1991!.
31D. H. Ehlers, F. U. Hillebrecht, C. T. Lin, E. Scho¨nherr, and L.

Ley, Phys. Rev. B40, 3812~1989!.
32L.-W. Wang and A. Zunger, Phys. Rev. B54, 11 417~1996!.
33W. Nakawski, Physica B210, 1 ~1995!.
34 G. B. Bachelet and M. Schlu¨ter, Phys. Rev. B25, 2103~1982!.
35S.-H. Wei and A. Zunger, Phys. Rev. B39, 3279~1989!.



m

,

57 6507EMPIRICAL spds* TIGHT-BINDING CALCULATION . . .
36R. Magri, S. Froyen, and A. Zunger, Phys. Rev. B44, 7947
~1991!.

37S. B. Singh and C. A. Singh, Am. J. Phys.57, 894 ~1989!.
38C. G. Van de Walle, Phys. Rev. B39, 1871~1989!.
39S. Y. Ren, J. D. Dow, and D. J. Wolford, Phys. Rev. B25, 7661

~1982!.
40N. Lathiotakis and A. N. Andriotis, Solid State Commun.87, 871

~1993!.
41R. Scholz, J.-M. Jancu, and F. Bassani, Mat. Res. Soc. Sy

Proc.~to be published!.

p.

42D. Porezag, T. Frauenheim, T. Ko¨hler, G. Seifert, and R.
Kaschner, Phys. Rev. B51, 12 947~1995!.

43T. Frauenheim, F. Weich, T. Ko¨hler, S. Uhlmann, D. Porezag
and D. Seifert, Phys. Rev. B52, 11 492~1995!.

44U. Schmid, N. E. Christensen, and M. Cardona, Phys. Rev. B41,
5919 ~1990!.

45D. N. Mirlin, V. F. Sapega, I. Ya. Karlik, and R. Katilius, Solid
State Commun.61, 799 ~1987!.


