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The dynamical properties of hole motion in an antiferromagnetic background are determined in one-
dimensional models in zero magnetic field, where spin isotropy holds, as well as in an external magnetic field.
The latter case is also relevant, via particle-hole transformation, to the problem of hole propagation in one-
dimensional “superconductors.” The singularities in the spectral function are investigated by means of
bosonization techniques and perturbation theories. Results are then compared with Bethe ansatz solutions and
Lanczos diagonalizations. The formalism also leads to interesting connections to the single impurity problem
in Luttinger liquids. A rich structure is found in the spectral function whenever spin isotropy is broken,
suggesting the presence of exotic momentum dependence in photoemission spegtasjofne dimensional
materials[S0163-18288)04808-3

I. INTRODUCTION two sublattices. The operato;gzcit,cig is the number op-
erator of a particle with spigr at the given siteé. This model
The spectral properties of a single hole in a quantum anis defined in a finite lattice with sites and standard periodic
tiferromagnet still represent an outstanding problem in thébsoundary conditions. When the total number of particles
physics of strongly correlated electron systems. AlthoughN.=N;+N; equals the number of site§,e., atp=N./L
more than 25 years elapsed since the seminal work of Brink=1) this Hamiltonian is believed to develop a gap in the
man and Rick(BR) there is still no consensus on the naturecharge excitation spectrum. This is actually rigorous in one
of hole motion(coherent or incoherenbr on the features of dimension where the exact Lieb and Wu solutigields a
the long-range distortion induced by the hole on the antiferfinite gap for arbitrary repulsiod >0 and magnetization per
romagnetic ordering. On the other hand, a full understandingite ,,=(N;—N,)/2L. A particle hole transformation
of the dynamics of a single hole is clearly required before the
problem of the hole-hole effective interaction, mediated by CiTTH(_l)iCiT (1.2
the magnetic background, can be addressed. This issue, rel-
evant in the low doping regime, is a key problem in themaps the half-filled Hubbard model d@t>0 and magnetiza-
framework of high-temperature superconductivity. Further-tion w into the same model gt’ =0, negative interaction
more, recent developments in angle-resolved photoemissiqiy’=—U) and densityp’=1—-2u. This mapping also
and inverse photoemission experimentshave made it pos-  shows that the problem of a single hole in an antiferromagnet
sible to extract the momentum-dependent spectral function iat nonzero magnetic field is relevant to understand the pho-
several compounds, including high-temperature supercorteemission spectra in superconductors: in fact, there is quite
ducting materials at stoichiometric composition, which arerobust numerical evidenté¢hat the negativés model is an
good quantum antiferromagnets. The photoemitted electrog-wave superconductor id=2, and in one dimension the
leaves a mobile hole in the spin background: therefore thesexact Bethe ansatz solution predicts quasi-long-range order
experimental studies directly address the problem of holén the ground stafe
propagation in systems where electron correlations play a Although the treatment of a single holeN{=L—1)
key role. might seem a major simplification, there are only few results
A widely accepted model to describe the physics of avalid and accepted in more than one dimension. The Na-
quantum antiferromagnet is the well-known Hubbard mddel gaoka theorem is a remarkable exception, stating thatl for
at half filling (one electron per sije >1 the ferromagnetic state with maximum total sgn
=1(L—1) is the unique ground state of the infinlteHub-
~ 1 1 bard model, apart for the trivial degeneracy of th&+21
A= —t(i% (I H.c.)+UEi (i — H(ni - 3), spin component.
(1.1 At strong coupling the Hubbard model at half filling is
mapped into a standard Heisenberg model with antiferro-
wherec! (c;,) is the creatiorfannihilation operator of an magnetic superexchande=4t%/U. The presence of a single
electron with spinr at the lattice sité and the symbolsi, ) hole modifies slightly this mapping: each site is singly occu-
indicate nearest-neighbor summations over a hypercubic bpied and the hole hops from site to site, weakening local
partite lattice in arbitrary spatial dimensiah Henceforth —antiferromagnetic correlations. This process is described by
even (odd values fori indicate conventionally one of the the so-called-J model:
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- L function can be understood by analyzing the strong coupling
H=—t > (c¢lcj,+HCc)+I> (S§-§—ininy, fixed point. Here, doubly occupied sites are strictly forbidden
ie oY (1.3 and the concept of a hole motion in a quantum antiferromag-
' net is easily defined.
where the constraint of no double occupancy is understood. A first study of the single hole Green function in quantum
The exact mapping from Hubbard teJ also includes a antiferromagnet§QAF) was performed by Brinkman and
three-site term, which is neglected here because it is believeRice' who calculated the Green function of thd model by
not to change the physics of the model, at least in on@eglecting quantum fluctuations, i.e., by replacing the spin
dimension®*! The last, density-dependent, contribution in exchange interaction by its Ising forrs; - §;— S/S7 in Eq.
Eq. (1.3) can be also dropped for our purposes because it i 3) |n the absence of holes, the dlestate is the classical
effective only when more than one hole is present in theyround state of the model, whereas the lowest spin excitation
system. _ has a gap~J. This Hamiltonian can be thought of as the
This work extends and develops the analysis presented igyyong coupling limit of a model characterized by a gap both
a previous Lgtté? about the spectral properties of hole mo-jy, the spin and in the charge sectésay the half-filled Hub-
tion in one-dlme_nsmnamodels of porrelated electrons. IN bard model with uniaxial spin anisotropyThe problem of
such a case, spin charge decoupling allows one to descriliie motion in this system has been studied in any dimen-
the low-energy physics with an effective Hamiltoni&h  sion, but its solution id=1 is particularly simple and in-
written as the sum of two commuting paHs=H ,+ |3|p, the  structive. When the hole hops in the lattice it leaves a defect
former governing the spin degrees of freed@pinong and in the Neel background. As a result, the spectral weight
the latter the charge oné€kolons. A(w,p)=(1/7)Im G(p,w) shows as-function contribution
This picture is by no means new in the field of one-at the lowest excitation energy with nonzero quasiparticle
dimensional electron systems: standard analytical treatmentgeight Z, together with an incoherent band separated by a
show that, if the excitation spectrum of the model is gaplessgap. A brief discussion of these results is contained in Sec.
the low-energy physics in both charge and spin sectors . The situation is similar in the limit of infinite
described by a Luttinger liquid modér ®for generic micro-  dimension$” where there is no incoherent contribution and
scopic Hamiltonians. The case is different in the Hubbardonly a series ofé-function peaks at higher energies is left.
model for positiveU at half filling or, for negativeJ, at zero  The inclusion of quantum fluctuations, however, drastically
magnetic field and arbitrary density: Only one of the twochanges this simple picture due to the presence of gapless
sectors is gapless and the renormalization gr@®@) equa-  excitations in the magnetic background. This is the subject of
tions of the generi¢the so calledg-ology) model flow to  the present study, which we organized as follows.
strong coupling. They-ology model parametrizes the most  In Sec. Il an extremely useful mapping between the one-
general low-energy interaction present in one-dimensionalole Hamiltonian and an effective spin problem is given in
translationally invariant systems of spin one-half electronssome detail. In Sec. IV we discuss an interesting relation-
The model depends on several coupling constaptswith  ship, which emerges from the previous formulation, between
i=1,...,4,which may also have a spin dependefi@ad.L hole dynamics and the impurity problem in Luttinger liquids.
for electrons interacting with the same or with oppositeThe main result of the present work can be summarized in
spins, respectivel}® Conventionally,g, refers to backward the general structure we find in the Green function of all the
scattering,g, and g, to forward scattering, ands to Um-  models we have examined:
klapp scattering, the latter present only in lattice models at 40
commensurate fillings. When the coupling constagitssgo
to strong coupling under the RG flow, they should cross the G(p.7)= J ZGh(p+Q'T)ZP(Q'T)’ (1.5
exactly solvable Luther-Emery line leading to a spin gap for
g1”<|gn| and a charge gap for 29,<|gs|. The Hubbard Where Gy(k,t) is just a free propagator for the holon:
model at half filling belongs to the first class at negative Im Gp(k,w)=76(w— €4(K)), €, being the holon dispersion
and to the second at positi\é, thereby providing a model energy. The functiorZ(Q,7) is completely determined by
Hamiltonian that encompasses the most general strong cothe spinon gapless excitations, and is highly nontrivial with
pling fixed points. Therefore, understanding the Hubbarcnomentum-dependent power-law singularities and branch
model at half filling and arbitrary magnetization would shedcuts. This decomposition is introduced in Sec. V, which also
light on the physical behavior at the Luther-Emery fixedcontains a discussion of the analytical properties of the func-
point. This would be particularly valuable for the dynamical tion Z(Q, 7). A few specific examples, i.e., theJxy model

properties because the retarded Green function and the Bethe ansatz soluble models, are presented in Secs.
VI and VII, respectively. A numerical evaluation of the non-
G (p,w):_<\p|cg (w—l:|+Eo+i7;)‘lcp K% universal features of the spectral function in the Hubbard

(1.4  modelis carried out in Sec. VIl while some conclusions are
drawn in Sec. IX.

of the Luther-Emery model is not exactly known, although a
Widespr_ead prejgdicig ascribes no interesting feature_s to this Il HOLE MOTION IN ISING ANTIFERROMAGNETS
correlation functiof'® due to the presence of a gap in the
excitation spectrum. According to a weak coupling RG ap- The problem of hole motion in an Ising antiferromagnet
proach, the Hubbard model at half filling flows towards thecan be solved exactly and provides the simplest model of
U—o limit and then the low-energy behavior of the Greenhole dynamics in a magnetic environment characterized by a
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discreteexcitation spectrum. This feature turns out to be re-where TR is the R sites translation operator. This identity
sponsible for the different behavior between the Ising and theeadily gives the matrix element appearing in E2.4) in
XY case, which will be discussed in Sec. VI. The Hamil- terms of the on-site value of the eigenfunctigg(r) corre-
tonian describing hole hopping in an Ising model is a simplesponding tds): (s, — p|Cpl|/\/>=%l//S(O). Therefore both the
generalization of thé-J model where only th&* component  energy levels and the matrix elements are independept of
of the spins is retained: This is due to the absence of fluctuations in the classical Ne
state, which leads to a Iog:l Green function, as already no-
N T T _ 202 ticed by Brinkman and Ricein the J—0 limit of this prob-
H t%’ [C"’C'H"JFC'“”C"’]JFJZ SSe @D o By substituting this result into E€2.4) and taking into
account the form of the energy spectrum we find that, in the

. q odic bound diti half fili h thermodynamic limit, the bound state is singled out because
sites and periodic boundary conditions. At half filling the ot s finite value of the on-site probability and gives rise to

ground stat.e IS a cIassma! Blestate|\). ,OUt of the two a o-function peak. Instead the other states merge into an
states obtained by translation of one lattice vector we Sele%coherent band:

the one with a spin down at the origin. The annihilation of

the spin-down electron at the origin defines our starting state

|0)=cq|NV). The Hamiltonian(2.1), when acting on/0), J

generates states, which, in the thermodynamic limit, can be A(p,w)= W&“H’ 332+ 1617

uniquely labeled by the position of the hdR). In fact, for

L—x, closed paths of the hole along the ring can be ne- 2 4t — w2
lected and the retraceable path approximation becomes B a——

gxact.l Then, it is easy to checl?that i ™ 4 16° - 4o

with J>0. We consider a chain with an even numheof

O(4t>—w?), (2.6

J where w is now measured from the reference valbg
IR)= §5R'°| R), + 3J andO(x) is the step function. The incoherent portion
(2.2 has several interesting properties: it is a regular, even func-
tion of w that vanishes at band edges=+2t for every
[ypnzero value of). At large J (J>4t) it shows a broad
Anaximum atw=0 while for J<4t it has a minimum aw
=0 and two symmetrical maxima appear ab=
. . . i%\/laz—Jz. In theJ— 0 limit the incoherent part develops
ponentially localized wave functiogy,(r). Above the bound 516 voot singularities at band edges in agfeement wit% the
state lies a continuum with energies labeled by the wavgg anaivsis. The shape of the spectral function for two rep-
vector g e (0,m): Eq=E~+ 3J—2tcogy. For everyq there  resentative values of the couplidgis shown in Fig. 1.
are two degenerate wave functiom§+ classified according In conclusion, the exact Green function of this problem is
to their parity. Odd states are unaffected by the perturbatiopurely local and then the hole does not propagate in the Ising
dro in Eq. (2.2) because the wave function vanishes on siteantiferromagnet. This is conventionally understood on the
while even states, which include the bound state, have abasis of the “string” defect that the hole creates in the anti-
on-site probability given by ferromagnetic ordering when it hopsdowever, the quasi-
particle weightZ is finite at all nonzero values df the hole
behaves as a free particle of infinite mass. This is due to the

I:||R)=—t[|R—1>+|R+1>]+(EN+%

whereE  is the energy of the N state. The corresponding
eigenvalue equation can be easily solved in this subspace:
the thermodynamic limit, the energy spectrum consists of

bound state with energg,=E + 3J— 1J%+16tZ and ex-

0 2_ , . . . .
|#5(0)] 37162 nature of the excitation spectrum of the Ising mpdel, which
(2.3  does not allow for gapless modes. In fact we will show that

32t%sirkq both features ofA(p,w) will be strongly modified in more

realistic models of hole dynamics.

¥ (O =775 Tesitq)

The spectral function easily follows from the aforementioned
properties of the eigenfunctions. In fact, the Lehmann de-
composition ofA(p,w) gives In the following we consider thé-J Hamiltonian (1.3
defined onL sites with periodic boundary conditions. Our
_ _ 2 _ task is to derive an effective spin Hamiltonian describing
Alp.w) Es (s, =plep | MFo(0=EB), (24 how the hole hopping processes perturb the antiferromag-
netic background in the particular case of single hole doping.
In classical physics this would correspond to a Galileo trans-
formation from the laboratory frame to the reference frame
locally at rest with respect to the hole. This transformation
"Can be easily generalized to quantum mechafiaad the
derivation can be performed in arbitrary dimension. As a first
step we naotice that thelJ Hamiltonian(1.3) is translation-
p)= iz elPRTR[s), (2.5 ally invariant and then any one hole state with definite mo-
LR mentumk and spin] can be written as

Ill. THE EFFECTIVE HOLE HAMILTONIAN

where the sum is over all the one-hole stdtes-p) of mo-
mentum—p (modulo 7= due to the doubling of the cell in-
duced by the antiferromagnetic ordering j\)). These

of eigenstatess) of the Hamiltonian(2.1):

s~



57 THEORY OF HOLE PROPAGATION IN ONE- ... 6447

I A vention to set the spin at the origin with down orientation:
o5 | | Sg=— 3. Notice that the magnetic part, proportional Xp
041_ : . : ] represents a Heisenberg_ model wipen bo_undary cqndi- _
' | | tion, since all the magnetic bonds connecting the spins with
0s | '] the hole are obviously suppressed. Instead the hole kinetic
g r ! ! E termK (i.e., the first term irH,) is written in terms of the
021_ | 1] translation operatofl ,, which enforces periodic boundary
' | : conditions on the squeezed chain. In this way we effectively
| ] traced out, with no approximations, the charge degree of
0‘1:_ | | B freedom reducing the one hole problem to a purely, non-
C [— I translationally invariant, spin model. The effective Hamil-
°F o T ﬁ i tonian Hy explicitly depends on the momentufn of the
05 [ ] state, showing that the distortion of the antiferromagnetic
r : | ] ordering does depend in a nontrivi@nd nonlocgl way on
0.4 : =Rt ] hole motion.
a | I Also the hole dynamics can be conveniently expressed in
3080 | ! = terms of the eigenstates bf,. The spectral function of &
= ! : ] hole is written, in Lehmann representation, as
0.2 —
g : ] 1 ,
oib | ' A(p,w) = —ImG(p,0)= 2 [(s|cp | ¥)[28(0—Est Eo),
: l(’\—/w ] (3.9
ottt L

—4 -2 ot C 2 where| V) is the ground state of the model with no holes and
|s) represents a complete set of one-hole intermediate states.
FIG. 1. Exact spectral functioA(w) (in units of the hopping) The corresponding energies are, respectiv@ély, and Eg
for the single hole in the Ising model for two valueslofThe heavy ~ while the momentum space annihilation operator is defined
line represents thé contribution and its height is proportional to by
the quasiparticle weight.

1 .
L-1 Cp=—=2>, ePRcg,. (3.5
[t = \/—2 e *RTRco o), 3.9 LR
Note that with the adopted definitions, the Heisenberg
where| o) is asuitablespin state with the spin at the origin ground statd¥) has total momentunNz, whereN is the
R=0 fixed to | and T, is the spin translation operator de- number of spins up in the squeezed chidis S,+ /2, and

fined by the transformation property S, is thez component of the total spin. As a consequence, the
S = intermediate statefs) must have momenturNz—p. By
T SRT. "=Sgy1s (3.2  using the general representati@hi) of one-hole states with

where periodic boundary conditiof®BC) over thelL sites momenturrk, Eq. (3.4) becomes

are assumed in order to define the effect of translation at the

rightmost site. The latter relation determines the unitary op- A(p,w)=> [{o¢lng | ¥)|?8(w—Es+Ep), (3.6
eratorT,_ only up to an arbitrary phase factor. In order to fix s
the phase ofT, it is enough to specify the action of the
operator on a referendévacuum”) state|F). Here we fol-
low the convention to impose that tHerromagnetic state
|F) is translationally invariantT, |F)=|F). By substituting
the representatiofB.1) of the one-hole state into the eigen-
value equation for the-J Hamilltonign we find thalt‘m is an Equation(3.3), specialized to the case of a hole of mo-
exact eigenstate of theJ H"’.‘m"ton'a”. if qnd onIy.|f| 7o) is mentump, can be equivalently written in a form that makes
an eigenstate of the following effectiapin model: explicit connection with the problem of a Heisenberg model
/-1 with alocal perturbation. In fact, by adding and subtracting
> S:-Seiil, (3.3 the additional bond operatar=JS,-S,, the magnetic part
R=1 of the Hamiltoniarﬂg can be made translationally invariant
where the hole-translation operafby is defined exactly as (on thesqueezeahain:

T, (3.2 but with PBC on a squeezed chainff L — 1 sites,
without the originR=0 where the hole sitsH, is indeed f
defined on/ sites since the hole at the origin is decoupled
from the other sites, namel{, commutes with the spin

operator§o at the origin. In the following we take the con- —-JS;- §/. (3.7

where now the sum runs over all the eigenstéites of Hy

with k=N —p. This expression shows that the quasiparti-
cle weight of the hole is simply expressed as the modulus
square of the overlap between the Heisenberg ground state
and eigenstates of the effective hole Hamiltonian.

H=t[e T, +H.c]+J

AN

=K+H,-3=t(—1)N[ePT,+H.c]+J
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The only extensive, i.eQ(L), term in the total hole Hamil- By use of Eqs(3.9) and (3.11) we can express the Hamil-

tonianf, is H,,, which coincides with the usual Heisenberg tonian of a spin-down hole of momentuprin thet-J model,
model, while the other two contributions indu1) cor-  H (3.7), in terms of spinless fermion operators:
rections to the total energy. Therefore, the physics of the

bulk of the spin system is not affected by the presence of the. L T
hole, which, at most, acts asaundary ternon the Heisen-  Hp=teX Ip+lzk Kby
berg antiferromagnet. This can be simply understood in two
limiting cases: for a static hole, sinte=0 the Hamiltonian

N 1t Nl ot
H, becomes a Heisenberg model withenboundary condi- +Ji21 GG = diadivg)- (3.1
tions, while, forJ—0, the last termJ is irrelevant and the

eigenstates ollFA-Ip are those of a Heisenberg model wib-
riodic boundary conditions on ari-site chain. A close con-
nection between the presence of the hole and a change
boundary conditions on the magnetic Hamiltonian thu
emerges quite naturally, in every dimension, within this for
malism.

In one dimension we can proceed further by mapping thi

y-1
+H.c— 521 (l i1+ H.C)

/-1

This concludes our formal manipulations on the original
problem. We now have an interacting fermion system that
can be studied by means of the powerful techniques devel-
Hbed in the framework of one-dimensional physics, ranging
Strom renormalization-group approaches to bosonization
“methods- However, before addressing these issues, it is in-
structive to dwell on the similarities between the problem of
hhole motion and the effects of local perturbations in Lut-

spin; model m;o a spinless fermlon.Hamntonl.an via ;tan— tinger liquids, which emerge naturally from the structure of
dard Jordan-Wigner transformatibnit is convenient to in- the effective Hamiltonian3.7)

troduce an additional phase factor in the fermion creation
operatorsdxﬁ .in order to obtain the usual sign of the kinetic IV. RELATIONSHIP TO THE IMPURITY PROBLEM
energy term:
In this section we investigate the close relationship be-
. - 2 " tween the physics of a single hole in thd model and the
Sp =(—1)"¢nex '7721 o i |- (3.8 impurity problem in Luttinger liquids. The connection be-

= tween these two different problems becomes apparent when

we take advantage of the previously discussed Galileo trans-

formation. The Hamiltonian:lp governing the dynamics of
37 the hole represents a Heisenberg model with open boundary
Ao=—= > (4l +H.C) conditions plus the hole kinetic contribution, which involves
2 the translation operatdf,. Furthermore, note that the ma-
trix elements appearing in the spectral functi@mb) are re-
(i— l//;rlﬁi)(%— l//;rﬂlﬂwl), (3.9 lated, through Eq(3.1), to the overlaps between the ground

1 state|G) of the unperturbed Hamiltonian) K =0) on L

. : ' ... sites and that of the perturbed on&#0) in the squeezed
\é)vrhza?[i;)r:iobc?igr}g?rgv(é?lng:r“ggz '\r/]afngsf'giﬁ”?earzpenodmcha!n of/’_/ sjtes. The difference in the number of sites of the
—(—1)NLyy. As usual,N is the number ,of. fémﬁgrﬁs chain defining the pertL_ered state can also be thought of as
which is relalfed to the t'otal magnetization of the ori ir,1althe local pertu_rbatlon m_dyc_ed by t_he ! emoval of the two

) 9 - .g bonds connecting the origin in thesite ring.
spin model byS,=N—//2. Analogously, the bond terthis Let us focus our attention on the Hamiltonian of a hole of

written as momentump in the L-site t-J model with XY spin anisot-
ropy: thet-Jyy chain. In fermion representatid%llp is

The magnetic paﬂf—l(r of the Hamiltonian(3.7) becomes

+J

-

L
3= = S-DM g HHe) HIG - e G- yly,).

A J 4
(310  Hp=t exr{ipHEk k| +H.c. = 52 [¥/dh.1+He)

In order to express the hole kinetic teftin terms of the '

spinless fermion operators we have to relate the spin trans-  + 5(— DN yly +H.cl, 4.7)

lation operatorT . to the usual fermion translation operator

T;, which leaves invariant the fermionic vacuum state andvherel’ =J represents the perturbation induced by the hole.

satisfiesszpiT;rz i+ 1. Keeping track of the phase factors in In order to be specific, we consider the model witk-2v

the definitions we hav& ,=(—1)NT;. The fermion transla- +1 fermions(spinon$ in a lattice of L—1=/" sites. The

tion operator is then conveniently expressed in terms of thginetic operatoik commutes with the magnetic term hh,,

Fourier transformed operatoys=/ 1/2_EJ'=1,/¢J'9IkJ where  and therefore, al’ =0, the eigenvectors ¢, coincide with

the momentak are quantized according to the choice of y,qe of thex Y model on/ sites with PBC while the eigen-

boundary condition values are shifted byt2cosp+Q) whereQ is the momen-
tum of the spin state. The physics of hole motion is con-

T.=(—1NT.=exd i K+ tonl. 31 tained in the perturbation term proportionalltg therefore it
=D F{ Ek ( W)lﬂkwk} (313 is convenient to study the effects of the local perturbation as
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a function of its strengthl’. In the static limit (=0) the o PBC: /q;=2mj. A change in boundary conditions in-
hole kinetic termK is suppressed and we recover the Hamil-volves the introduction of certain momentum-dependent
tonian of anXY model with a weak bond. This problem has phase shiftss,. Therefore, we take as the perturbed state
been extensively studied in the pa%t°the last term in Eq. another Slater determinant of plane wavggr) with the
(4.1 is a relevant perturbation and at long wavelengths thegeneralized following momentum quantization rulek;
system behaves as a chain with a missing bond. As a conse=27(j + &;). Here and in the following, the phase shifts will
guence, the overlap between the state with’ =0 and the be measured in units of 2 For weak perturbations, the
state with finiteJ’ goes to zero in the thermodynamic limit phase shifts will be small and we can keep 0Dl§5,) terms
with a universal exponerX independent of the strength of in the expansion of the state in the unperturbed basis. As
the perturbation: usual, to linear order, only a single particle-hole excitation

|k,q) is allowed and the weight of the corresponding contri-

{=(J'|G)L ™. (4.2 bution turns out to be

According to conformal field theory, the exact value of the
exponentX can be found analytically by taking the differ-

ence between the size corrections of the open and the peri- . S
odic chain and dividing by Zvg, wherevg is the spinon /'sin(k—q)/2
Fermi velocity. In theXY model we getX= u?/4+1/16
whereu € (— 1/2,1/2) is the magnetization of th€Y model

’7T5k

(4.5

alona thez direction for k#q. Again, we see that a change in boundary conditions
Tﬁ . ' Lo S leads to singularities only for forward scattering as in the
N € r_ecf’" of the hole, erpboghed in the hole kinetic term hole problem when the effect of the recoil is taken into ac-
K, qualitatively changes this picture as we already antici-count. The comparison can be made quantitative by lineariz-
pated. The perturbatiodt is now marginal: it does not drive jng the momentum dependence about the Fermi points in
the model towards open boundary conditions but instead iEgs. (4.5 and (4.3) and matching the two expressions. The
changes the boundary conditions of the fermionic model insffective phase shifts induced by the perturbatiérat long

Eq. (4.1) introducing phase shifts for right and left moving wavelength in the Hamiltonia#.1) are then given t@©(J’)
spinons, which depend on the strength of the perturbation by

and vanish ag’'—0.
The effect of the kinetic term can be understood by use of
first-order perturbation theory in the parametErin Eq. J' cokg
(4.1). ForJ'=0 the ground statéG) is nondegenerate and 2Mo =i — (4.6)
; 2tsinp+ Jsinkg
can be represented by a Slater determinant of plane waves
with PBC. At first order, the ground state becomes

, + at the Fermi points. The two signs refer to the right and left
13)=|G)+ 3_2 (eik+e,iq)<k:Q|¢k¢q|G> Ik, q) moving spinons, which in general have different phase shifts.
2/%& €k, e Notice that the resulting phase shifts depend, in general, on
(4.3  the density as well as on the total momentprof the hole.

here th h ta of particle-hol Following the well known analysis of Anderson’s orthogo-
where theé sum runs over the momenta of particle-nole exClp v, catastrophé we then find that the overlap between
tations of the unperturbed system aeg, are the corre-

. o o> the states before and after the perturbation should vanish in
sponding excitation energies: the thermodynamic limit with an exponeKt= (52 + 62)/2.

Few details are reported in Appendix A.
4 In conclusion, we can interpret the effects of the presence

of a hole in an antiferromagnetic background as a change of
The matrix element in Eq4.3 (k,q|¢l¢q|G) is unity pro-  boundary conditions in the corresponding spin problem. If
vided g belongs to the Fermi sea while lies outside the the recoil of the hole is neglectgde., t=0) both forward
Fermi surface. Perturbation theory fails in the thermody-and backward scattering between the holon and the spinons
namic limit due to low-energy excitations that may be ofare relevant. In this case, the hole effectively breaks the spin
“forward” (i.e.,q~ = kg andk~ *kg) or “backward” type  ring and at low energy the model becomes equivalent to an
(i.e., g~ =k and k~=kg). However, for anyt#0 the open spin chairin the hole reference framelnstead, fort
backward scattering is cut off by the recoil and does not#0 the backward scattering channel is cut off and the per-
introduce singularities in perturbation theory, as can be eagurbation induced by the hole becomes marginal. The pres-
ily checked by use of Eq4.4). Instead, forward scattering is ence of the holon introduces, via the forward scattering chan-
always singular, leading to the vanishing of the overfap nel, phase shifts in the boundary conditions of the spin chain.
(4.2) in the thermodynamic limit. Spinons can then propagataoughthe site where the hole

In order to better understand the change in the state irsits.

duced by the boundary terdY, let us consider a different These results have been obtained analytically foiXah
problem, namely, the way the ground state changes due toraodel but, in view of the universality of the Luttinger liquid
weak modification of the boundary conditions. Let us take aglescription of one-dimension&lD) correlated systems, we
the unperturbed state a Slater determinant of plane wavesxpect that our picture remains valid for genexaZ spin
(;bq(r):e'qr/'*l’2 with momentum quantization appropriate chains, including the isotropic Heisenberg point.

€x,q=J[ cogy— cok]+ 2t[cog p+k—q)—cop].
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V. FIELD THEORETICAL ANALYSIS contribute a finite amount to the excitation energy and a low
. . , energy excitation in the spin channel would not correspond
ln_th'sf section we.addretc,s 'the problem (.jefmed by th‘?o a low-lying excitation of the total Hamiltonian. In other
HamiltonianH; (3.12) in fermionic representation by use of \yords, the low-energy spin excitations described by the ef-
the bosonization method. The bulk tei, (3.9) just repre-  fective spinon Hamiltonian with skew boundary conditions
sents a Heisenberg model with periodic boundary conditiongiepresent the physical excitation spectrum at fixed holon mo-
which has been extensively studied in the pdsfhe  mentumk,. The same low-energy theory also describes cor-
renormalization-group approach applied to such a problemnelated electron models when we release the constraint of
shows that both backward scattering and Umklapp scatteringingle occupancy, as in the Hubbard model. In fact, at half
terms are marginally irrelevant: at long wavelength thefilling, the constraint of single site occupancy is known to be
model is characterized only by the interactions of the for-irrelevant at long wavelengths in the renormalization-group
ward type with nonuniversal coupling constants renormalsense, leading to the same low-energy excitation specttum.
ized by the RG flow. This fixed-point Hamiltonian represents  The overall picture of the low-energy physics of the one-
a Luttinger model that can be exactly mapped into a freehole problem is confirmed by the exact solution of Bethe
bosonic system following the procedure of Mattis andansatz models, which also allows for a quantitative analysis
Lieb,” the bosons representing density fluctuations. As sugef their long-wavelength properties, as will be shown later.
gested by the analysis of Sec. IV, the additional terms As a first step, we now generalize the bosonization pro-
present iri:|p slightly modify this picture, appropriate for the cedure in Luttinger models with skew boundary conditions

undoped antiferromagnet. The combined effeckoand] ~ (S€c. VA, then we analyze in some detail the form of the
on the long-wavelength physics is equivalent to a change ifole kinetic operator present in the effective Hamiltonian,

the boundary conditions of the Luttinger model from peri- "€ Possibleboundary conditions that may occur in micro-
odic to skew: Although the original problerf8.7) is not scopic models and the corresponding finite-size corrections
to the ground-state energy of this effective mo&sc. V B.

gﬁgrslat'f?;ﬂ}/ é?:talgzrr]r:ilij:rﬁatr? ;Qseﬂogde?e:‘i?i\tzebéouvr\:;jar Finally we discuss some implication of the previously ob-
gy P P Ytained results including the expected asymptotic form of the

conditions that depend on the nonuniversal parameters Chaﬁble Green functioiSec. V Q
acterizing the microscopic model. In particular we expect ' '
that the boundary conditions will continuously evolve from
periodic at smalll/t to generally skew at finitd/t with the A. The long-wavelength Hamiltonian: bosonization
exception of the zero magnetic field case where the boundary At low energy, the important degrees of freedom for a
conditions at the fixed point remain periodic for a0 many fermion system are those close to the Fermi momenta
due to the presence of the additional (@Uspin symmetry,  k* for the left and right movers, i.ek~+k; in the right
as will be shown later. The only singular point ,i\St&tO (+) branch anck~ —k¢ in the left (—) branch. As usual,
where the hole kinetic contribution vanishes aHg de-  the two branches are extended to infinity, within the assump-
scribes a Heisenberg model with open boundary conditionsion that the low-energy physics is not affected by this
In the following, we will exploit this picture extracting quan- approximation:> This extension allows one to define two
titative predictions that will be later compared with the exactfields i, (x) and_(x) representing, in the continuum limit,
solution in specific models. the annihilation operators for spinless fermions on the right
On this basis we are led to consider a low-energy problemand left branch. The continuum limit of the original fermi-
defined by a long-wavelength effective Hamiltoniélg sum onic field '(x) is then given by the linear combination
of two commutingterms: a Luttinger model with skew

boundary conditions plus the hole kinetic term w‘r(x)oceik;xlp:(x)_}_e—ikgxwi(x), (5.3
Rzeh(kh), (5.2 where we have kept the distinction between right and left
Fermi momentég , which may in principle differ. The ori-
k,=p+0Q. (5.2 gin of the fermionic fieldx=0 has been chosen to match

with the first sitei = 1 of the squeezed chain of length As

Here we have definekl, as theholon momentunandQ is giated before, the fieldg.. (x) obey skew boundary condi-
the spinon momentum, which obeys the quantization rule s

appropriatefor the skew boundary conditions Bf(,. Equa-

tion (5.2 therefore represents momentum conservation of e (X+ /) =20y (X) (5.4

the charge and spin excitations. Generally, we expect that the B -

renormalization-group flow modifies the effective hole bandwith arbitrary phase shifts.. .

in a nonuniversal way: 2osk;,)— €,(k)- The Luttinger model is defined by right and left moving
Clearly, such a form of the long-wavelength Hamiltonian fermions with kinetic term and interactions of the forward

may describe only the low-energy part of the excitation spectype. This allows one to express the effective low-energy

trum of the effective hole Hamiltonia(8.12. Therefore, an  theory in terms of two bosonic fields defined as bilinear com-

elementary spin excitation that changes the total spinon mainations of the fermionic operators. More precisely, follow-

mentumQ must be accompanied by a corresponding variaing Mattis and Liet#? the Fourier transformN. (q)

tion of the total momentunp so that the holon momentum = fdxe "N, (x) of the operatorsN. (x)= % () (X)

ky, is not modified. Otherwise the hole kinetic tenwould ~ + const satisfies nontrivial commutation rules:
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/q these operators. At fixed total number of fermiagnse., at
[N=(@) N (=) ]=+5_. (5.5  fixed magnetization in the original modeA® is uniquely
determined. A low-energy excitation in this model corre-
The above equations suggest the definition of the boson fielgponds to moving a fermion from the left to the right branch.

®(x) and its conjugate momentubfi(x) via This changes the value 6F* by an even multiple of/7. On
oy t the other hand, by varying the total magnetization by inte-
N () = 5 (%) 1 ) = (¢ (X) 4. (X)) gers, A® changes by integer multiples of while the
1 model preserves a nondegenera@tegenerateground state
= ——[II(x)+ 3, P(x)], for even(odd) / due to a change in the boundary conditions
Va (5.6 associated with the Jordan-Wigner transformation. Therefore

; ; we conclude that the possible valuesAob andIl* are
N_(X)=¢L(X) - (X) = (L (X) (X))

‘ Ad=m(n+7y), (5.10
=— —W[H(x)—&XQJ(X)],

N I1* =2\m(m+5).

where the averagg ), taken on the reference ground state ofHerem andn are integers whiley and & are two nonuniver-

the Luttinger model, is introduced in order to regularize thesal real quantitie§defined mogL)], which characterize the

divergences. These operators obey the following canonicajround state of the model. Their precise value is determined

commutation relations: by the renormalization-group flow, which connects the mi-

) , ) croscopic model to the Luttinger Hamiltonian. The bosoniza-

[P(x),II(x")]=18(x—x"). (5.7 tion procedure alone does not fix these quantities uniquely,

Notice that the densitiedl. (x) satisfy periodic boundary except when additional symmetries are present in the micro-

conditions independently of the phase shifts, being bilin-  Scopic model. _

ear combinations of fermionic operators. As a consequence NOW we are ready to introduce the normal modes that

the fieldsa,®(x) andTI(x) obey periodic boundary condi- dllagonahze.th(_e qgadratlc forigd.8). It is convenient to de-

tions and the Luttinger Hamiltonian, which can be entirelyfine the periodic field

expressed in terms of the bosonic fie[db(x),I1(x)], has

;xg(;:élﬁ/ the same Gaussian structure as for a pure Heisenberg W(x)=d(x)— ;Adb. (5.1

By substituting into Eq(5.8) we get

1
K II%(x)+ K—(axfl))z +const, (5.8

.~ Us (7
H,=—= f dx
2J)o i . ve ,
wherev s andK , are the renormalized Fermi velocity and the Ho 2 Jo dx 2/K,,(Aq)) '
dimensionless interaction parameter which characterize the (5.12
long-wavelength behavior of the Heisenberg mddel. ] ] ] o
This simple quadratic Hamiltonian can be diagonalized b)}\lext we define canonical creation and annihilation boson
introducing normal modes and this procedure leads to th@Perators:
familiar Luttinger liquid energy spectrum of the one- 1
dimensional Heisenberg model. However, here we are inter- _ / ik o, _t
ested in the change in the finite-size corrections to the energy qfk_\/_f/fo dx¥ (x)e = W(akJr a1,
spectrum induced by the presence of the hole. Therefore, the (5.13
normal modes must be carefully defined in thesite chain.

As a first step note that two quantum numbers labeling the Hk:if/dxl‘[(x)eikx:i A /ﬁ(aw‘ —ay)
eigenstates can be defined: the two operators \/7 0 2K, '

_ s

+

K200+ —(3,0)?
AT+ = (0)

. / / where the values ok#0 correspond to periodic boundary
1= 0 () dx= 7 o [N+ ()= N-_(x)]dx, conditions and are quantized in units ofr2”. Finally we
(5.9 get the low-energy HamiltoniaﬁU in diagonal form;
/
A¢=[<I>(/)—<I>(0)]=\/;f [N (X)+N_(x)]dx . vs [ (AD)? :
0 Ho=Eo+ 5| —— T K (I1)?| +0: > |Klajay.
- k#0

commutewith each other and also commute wih, , being (5.149
related to the total number of fermions on the two branches, ]

which are conserved quantities in the Luttinger model.HereEy is the reference energy of the nondegenerate ground
Therefore the diagonalization of the quadratic fa8) can ~ State of the model withy= 6=0, which is known, from con-

be performed in each sector defined by the pair of quanturfPrmal field theory’ to depend on the lattice siz€ as

numbers A®, IT*). In particular, the choicd®=I1*=0
identifies the reference state introduced in E5.6). The

ar
quantization rules directly follow from the definitiq5.9) of Bo=eo/ 055 (5.19
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if e is the Heisenberg ground-state energy per site. Noticg,_ﬂeikgw_ (5.16), in order to take into account the phase

that wheneveis or y acquires nonzero values only the’l/ factors in Eq.(5.3. The correct form ofT; is then T,
finite-size corrections to the ground-state enef@yl2 are =T, T, where

modified. The quantum numbefsand § then correspond to
energy contributions induced by a change in the boundary
conditions of the model. This remark will be made more

7
T1=GXW’ i fo dx ke pLOO Y, () —ke IJIT(X)I//_(X)]] :

precise in the following. (5.16
. - /
B. Spinon momentum and skew boundary conditions T2=exp[ _f dx wi(x)axw+(x)+ lp*(x)axw(x)]}.
In the previous section we investigated the bosonization 0 51
of the bulk part of the spin Hamiltonian in some detail. At (5.17)

the Luttinger fixed point the Hamiltoniafl, can be ex- There is no overall constant in the definition of the transla-

pressed in terms of bosonic operators in the standard forfon operator since the expressithl17) acts as the identity
(58) independently of the presence of skew boundary Conon the fermionic vacuum state. Note tﬁ-qthas been already
ditions (5.4). However, the energy spectrum depends on twd?0sonized via Eq5.6). The other factofT, is just a conven-
quantum numbersX®,IT*), which should be somehow re- tional translation of the fieldg . (x) and acts on the bilinear
lated to the particular choice of boundary conditions. In or-forms N.(x) as the bosonic translation operator:
der to make this relationship more transparent, let us analyzd (X) > ToIL(X)T; '=1I(x+1) and ®(x)—P(x+1).
the bosonization form of the momentum operata., of the  Therefore
translation operatgmappropriate to the chosen boundary con- i
ditions. o , _ _ T2=exp[—f dX{I1(X) 9D + 3, PI(x)]}.  (5.18
The fermionic translation operator is defined by 2Jo
Tf‘.ﬁ(x)ﬂ:‘ﬁ.(x"'l_)- This unitary transformation can be prom the previous analysis is clear how to represent the
split conveniently into two steps: first a conventional trans-yransjation operatof; within bosonization. By use of the
lation of left and right movergy.. (x) — ¢ (x+1) +(5-17) and  explicit expressions of the terms iy, T, and Eq.(5.6) we
then a rescaling of the fields:y,—e Fy, and get

Tf:e y
P=Q +k;+kFH*+k;_kFA<b+lf/d TI(X) 0, ® + 3, BTI(X)]= Qo+ | ki + k= +2 (n+7) (m+8)
= = | dxII(x x)]= —](m
0 2\/; 2\/; 2 0 [ X X ] 0 F F ™ /
—kr 1/
+ (n+y)+§f AX[TT(X) 3% + W TT(X)], (5.19
0

where in the last equality we took advantage of the canonica¢énergy Hamiltonian. The elementary excitation that changes
transformation5.11) and we expressed* andA® by use the value ofll* corresponds to moving a fermion from the
of Egs.(5.10. The additive constar®, represents a finite left to the right branch. In fermionic representation, this ex-
contribution, which depends on the bandwidth cutoff of thecitation carries momenturkg + kg + (27//) (8, —5_). In-
Luttinger model but not on the chain length and is ob- stead, in bosonic representation, this corresponds=t®
tained by the substitution of Ed5.6) into Eq. (5.16. Its andm=1. In order to match the change in total momentum
value is determined by requiring that in the ground state ( due to such an excitation we have to identify

=m=0) the spinon momentum, in thé—« limit, tends to

ke, i.e., to the momentum of the translationally invariant y=86,—6_ mod1l). (5.20
case without perturbation induced by the hple=K=0 in

Eq. (3.7)]. This givesQy=kg(1—25) for odd /. The total Analogously, a low-energy and low-momentum excitation

momentum operatd® commutes with the bulk Hamiltonian that chqnges the total spin corresponds to adding one fermion
0 d th h spi tate is ch terized b . to the right branch and one fermion to the left branch. The
» and then each spinon state is characterized by a sping ange in momentum is theky: — kg + (27//) (8, +5.)

momentumQ that is related to the total momentymand to while the quantum numbers are=2 andm=0. Matching

the holon momenturk,, by Eqg.(5.2). the two expressions gives
Through the bosonized form of the fermion translation P 9

operator it is also possible to relate the phase shifts
which define the boundary condition of the microscopic 5= o4 +d mod1) (5.21)
model to the effective parameters,f) entering the low- 2 ' ’
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This concludes the bosonization of the long-wavelength I ——— —
effective Hamiltonian, which includes the bulk contribution I
H, and the hole kinetic teri, which is written in terms of i ]
T;. Collecting the various terms together our final expres- -
sion for the low-energy spectrum of one hole at momentum %951 —
p is [~ ]
L = ‘N*
E,=E,+Ej, (5.22 I el
N 0.9l T~ =
, m  27ve (n+y)? ) 3 Tt~
EU—EO/—USW'FT K +K,,(m+5) , : ~ 4
(5.23 L |
0.85 —
En=en(kn), (5.24 ; ‘
kn=p+Q, (5.25 i
/-y Ry P8
1/L

(@, +n+ ) (m+8)+ ~(n+ 'y)},
(5.26) FIG. 2. Overlap squarg between the Heisenberg ground state
on a (/=L—1)-site ring and the ground state of the effective spin
where we have defined.. = (kg =kg)(/72m)(mod 1). In Hamiltonian(3.7) corresponding to a single hole in thesite t-J
the thermodynamic limit, the quantization rule of the spinonmodel atJ=4t andp= #/2. Lanczos diagonalization has been per-
momentum reduces to the noninteracting result, which, foformed on even chains with=<26. The dashed line is a guide to the
odd /, reads eye.

2
Q=kpg(2m+1)+ va

Qm=ke(2m+1) (5.27 (5.10, the ground state corresponding to the chaite 0.
but the finite-size corrections of energy and momentum exFor every” the ground state is unique and excited states with
plicitly depend on the phase shifts. We stress that both thepposite momentum are degenerate, giviflg0 by Eq.
parameters entering the effective, long-wavelength Hamil{5.23 while for odd 7 the ground state has finite momen-
tonian @, K,, ki) and the phase shiftss() cannot be tum, which implies a twofold degeneracy due to parity. Such
trivially related to the bare lattice Hamiltonian because thea degeneracy is compatible with the form of the energy spec-
RG flow renormalizes all the couplings not protected by contrum (5.23 only for 6=1/2.
servation laws. Their value can, however, be uniquely deter- As an example of the previous analysis, we plot in Fig. 2
mined in the Bethe ansatz soluble model by matching théhe overlap squarg between the Heisenberg ground state on
form of the finite-size corrections of the one-hole energy anch /=L —1 site ring and the ground state of a hole of mo-
momentum. This program will be pursued in the following mentump= /2 in thelL site t-J model atJ=4t and van-
sections. More information can be gained at zero magnetizashing magnetization. The results have been obtained by
tion. In this case, the effective spin mod8l3) has the ad- Lanczos diagonalizations in chains with eves<26. Ac-
ditional SU?2) spin rotational symmetry, which limits the cording to our analysis we expect that at long wavelengths
possible boundary conditions of the Luttinger model. In factthe single-hole problem in agvenchain is described by an
in spin isotropic models, the allowed boundary conditionseffective Heisenberg Hamiltonian with=y=1/2, which
are either open or periodic: nontrivial phase shifts are notorrespond tgperiodic boundary conditions oh—1 sites,
compatible with the requirement of spin isotropy. Therefore Jeading to a finite overlap in the thermodynamic limit. Actu-
according to our basic assumption the hole kinetic term staally, the numerical results provide quite strong evidence in
bilizes the periodic boundary conditions in the effective spinfavor of this picture showing an overlap that increases
Hamiltonian. This observation leads to a unique determinawith the size of the system.
tion of the phase shifté. at zero magnetization, which only In conclusion we see that spin isotropy determines the
depend on the parity of the number of sitésWe first note  quantization constant while the occurrence of periodic
that thez component of the total spif” is simply related to  boundary conditions in the effective long-wavelength Hamil-
the total number of fermions and then the spin excitations aréonian fixes the value of. At finite magnetization, spin isot-
labeled by the quantum numberin (5.10. By definitonn  ropy is broken and we expect the occurrence of generic,
=0 corresponds to the ground state. Moreover, in zero magnomentum-dependent values feand §. These phase shifts
netic field, states with opposite values $f are degenerate. will play an important role in determining the singularities of
For even/, the ground state is a singlet and then excitedthe Green function. This subject will be discussed in the
states labeled by and —n are degenerate: this implies  following section.
=0 through Eq(5.23. For odd/” the ground state itself is a For completeness let us briefly extend the previous dis-
spin doublet that givey=1/2 (mod 1 by the same argu- cussion of the energy spectrum of the model to the case of
ment. For periodic boundary conditions also the total mo-openboundary conditions. According to our assumption this
mentum is a good quantum number. At fixed magnetizationgase is relevant only when the hole effective hopping ampli-
excited states of definite momentum are labeledrbyn Eq.  tudet vanishes. The general form of the bulk Hamiltonian
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I3|U (5.8) does not depend on the choice of boundary condi- 27U,
tions and is therefore unaltered. However, after having per- AEy= /
formed the canonical transformatio(s.11), the normal

modes are now defined by use of standing waves rather than +tzo_(y+n)]. (5.39
the previously introduced plane wavés13):

[a+(6+m)(y+N)+w (5+m)

On the other hand, the spinon term, being described by the

2 (1 K cgnforr_nal figld theory.that qharacterizgs the Luttinger !iq—
v,= \/;J sSin(k, X)W (x) = /ﬁ(alﬁ akn)' _wds, gives rise to the finite-size corrections already obtained
~Jo n (5.29 in Eq. (5.23.
5 ” In conclusion, at fixed holon momentuky,, the finite-
B . [ Ke size corrections of the enerdg, of the single-hole problem
= \[7J05|n(knx)l'[(x)—| Z_KU(a"n_akn)’ give rise to a tower of states that depends on two quantum
o ) numbers (,m) and have total momentunp=k,—Q,,
where nowk,=(2n+1)m/2/" with n=0. The bulk Hamil- (5 59 The size corrections are uniquely determined by three
tonian for open boundary conditions then reads bulk properties of the systemv{, vs, K,) and four addi-

v tional constants that determine the boundary conditions of
H,=Eg+vs> knalnakﬁ 2/_:((n+ y)2. (5.29 the effective spin Hamiltoniand(-. , v, d):
n=0 2 o

The final expression for the energy spectrum of the hoIeAEpzzmC a+(5+m)(y+n)+w,(5+m)

problem att=0, i.e., when open boundary conditions apply, ’
is then 1 27_”}5{ , ,
2m0, 1 i +§w,(7+n) +7 Ky (8+m)c+ 4K(r(y+ n)
E=E0+74—Ko(n+7) , (5.30 _
where now the size scaling of the reference enery is e/ (5.39

T Through this equation we can in principle evaluate the elu-
EOZeO/_UsW- (5.3)  sive spinon phase shift8. by computing the easily acces-
) sible finite-size corrections of the one-hole energy. This

Again, in the spin isotropic case the values of the phasequation has been obtained in the framework of the
shifts are constrained by the &) symmetry, which gives model where no double occupancy is allowed but we will
y=0 for even/ and y=1/2 for odd/". show that the same structure persists also in the one-

Now we conclude this section by expressing the expectedimensional Hubbard model at finitd. Therefore we be-
finite-size corrections to the one-hole energy that emergéieve that this form of the finite-size scaling is a general
from our picture. On the basis of the discussion at the beginfeature of one-dimensional correlated models.
ning of this section, it is particularly convenient to work at
fixed holon momentunk, extracting the size corrections of ¢ orthogonality catastrophe and the hole Green function

the low-energy excitation spectrum obtained by varying the ) . _ )

spinon momentum and the magnetization of the model. In this section we relate the previously introduced phase
These results will be later compared with the exact form ofShifts with the behavior of physical quantities and specific
the energy in two Bethe ansatz soluble models. The sizdynamical correlation functions of the one-hole problem. In
dependence of the hole kinetic contributié®24 can be particular, we will address first the evaluation of the hole
obtained by direct substitution of the explicit form of the duasiparticle weight at holon momentuky and then the

spinon momentunt5.26), giving a term proportional to the calculation of the asymptotic behavior of the Green function.
charge velocity The quasiparticle weight is defined as the square of the

modulus of the matrix element:
den(kp)
vekn) = 5

(5.32 {=(knlcp, [W), (5.3

where|ky,) is the exact one-hole ground state at holon mo-
mentumk;,, | W) is the ground state of the Heisenberg model
and we have chosen the convention of creating a hole ith
spin projection. Momentum conservation implies that in the
2ma ground statek,,=p=* kg, wherekg is the spinon Fermi mo-
P=Pot —— (5.3  mentum. By use of the Galileo transformation on the hole
. problem and a further Jordan-Wigner transformation on the
valid up too(1//) terms. The constant depends on the *“up” spins, the problem is reduced to the evaluation of the
adopted sequence of lattice sizes. By the conservation lawverlap between the two fermionic states corresponding to
kn=p+Q [Eq. (5.25] the holon momentum acquires the the Heisenberg ground stat#) on aL site ring and the
finite-size corrections op [Eq. (5.33] andQ [Eq. (5.26].  ground statgk;) of the effective spin Hamiltonian defined
Therefore, the holon kinetic ter(®.24 will contribute to the  on the lattice of/'=L —1 sites and the same number of up
O(1//) size corrections of the ground-state energy as spins. In order to study the behavior of the quasiparticle

Hereky, is related taQ,, and to the total momentum by the
conservation lav(5.25. We also allow for a size dependence
of the total hole momentum:
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weight for L—, we can limit our attention to the long- =07
wavelength form of the effective spin Hamiltonian. The I
problem is therefore to compute the overlap of two eigen-

states of the same bosonic Hamiltoni@n8), with different —0.8
boundary conditions: while the reference stak® has stan-
dard periodic boundary conditiorige., [1* =A®=0), the
one-hole ground staték,) is defined by nonuniversal,
momentum-dependent, values of the phase shifts:

I R R

-0.9

LI L N B
|

In Z

H* =2Jmé=\m(5,+5_),

(5.37 -1
AD=\my=\m(8,-65.).

In the continuum limit this overlap is strictly zero because 1.1
the two states are eigenstates of the bosonic Hamiltonian i
with different eigenvalues foA® andIl*. This orthogonal- -
ity is, however an artifact of the Luttinger extension to a 12l
system containing an infinite number of particles and it is

clear that in a finite system the overlap between two states
with different boundary conditions will be in general finite.
The solution is to “regularize” the Luttinger branches, in
order to be consistent with a tight-binding model where th
same phase shift$, ands_ at the Fermi energy are induced

[V}

FIG. 3. Overlap squarg between the Heisenberg ground state
on anL-site ring and the ground state of the effective spin Hamil-
tonian (3.7) of a single hole in the. site t-J model att=0 (static

qimit). Lanczos diagonalization has been performed on even chains

b | | botential that i tribution to the back with L<26. The dashed line is a parabolic fit of Lanczos data. The
y aloca pq ential that gives nq contribution 1o the back~ jine shows the expected asymptotic slope of the curve on the
ward scattering. In a free Fermi gas,=1 and the tWo |.qis of conformal field theory (2,=3/8).

states can be written as Slater determinants of plane waves

with suitable phase shifts. In this case, the overlap can bg,e noyndary conditions are unchanged. The effective phase

easily calculated giving an asymptotic power-law behavioigpiis of the parent noninteracting case then follow immedi-
that only depends on the value of the phase shifts at thSter:

Fermi energy of the right and left branches:

1 1
1 ff_ —
gz(kh|\lf>ocex;{—§(6i+52)ln/ ~L %, (5.38 o71=7 2K, o+ T
(5.41
1 Y g 1 1
=_(82+8%)=| 82+ = =" 2K, 6———
Xo 2(5++5,) o+ ik (5.39 > \/K—U?’
where the last equality in E¢5.39) follows from Eq.(5.37.  leading to the general expression:
The formal calculation of the overlap is contained in Appen-
dix A. This formula generalizes the exact result valid for _ 2 2
5,.=05_ (Refs. 11 and 28and agrees with the prediction of XO_[Kga Ak (542

conformal field theory relating the finite-size corrections of ) ) o )

the energy to the exponent of the boundary operdfors. ~ again consistent with the finite-size corrections to the energy

fact, the explicit expressiof6.39 coincides with the term  (5.39. _ - .

proportional to 2rv¢// in the final formula Eq(5.35 for The relation between the finite-size corrections to the en-

the finite-size corrections of the one-hole energy. ergy and the exponeiX, of the orthogonality catastrophe is
This formalism can be easily generalized to the dése & general property of all conformal field theoriand holds

#1: In fact, the overlap does not change upon unitary trans@lSo in other cases. For instance, the exponent associated to

formations and it is known that the scaling of the bosonicthe open boundary fixed point can be determined in terms of

fields the finite-size corrections obtained in £§.30):
2
I’ (x) = VK, T (x), _r .1
(5.40 Xo 4Kg'+ 16’ (5.43

' (x)= iq)(x) where use has been made of the known additional contribu-
VK, tions to the ground-state energy with periodi15 and
open (5.3) boundary conditions om.- and /-site chains,
maps the interacting problem witki,# 1 to the one with respectively*® This expression, which applies in the limit of
K,=1. By the same transformation, the boundary conditiora static hole, yields the exact exponeqt=3/16 in the iso-
for the one-hole state are modified due to EGs9 and tropic case, whenK,=1/2 and y=1/2. This has been
(5.10: y' = y/JK,, 8'= 5K, while for the reference state checked numerically in Fig. 3 by Lanczos diagonalization of
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the hole problem in the limit of vanishing hopping amplitude limit.1*?®* Here, however, nontrivial dynamics of the spins

t. _ are induced by{, as long av#0.
Now we can proceed to the study of the asymptotic be- [ et us first discuss the calculation of the matrix element
havior of the retarded single-hole Green function: Z(x,7) in the noninteracting limit. In a free Fermi gas with

_ : . arbitrary boundary conditions, the long-wavelength Hamil-
Gu(p,m)=i(¥|c, e "7, |¥)  (5.449  tonian reduces to the sum of the kinetic terms for the two
branches of right and left moving fermions. In the continuum

. . i
valid for >0 with 7=0" as convergence factor. As usual, limit the Hamiltonian and the momentum operator are given

by performing the Galileo transformation and then a Jordan
Wigner transformation we can map the problem of the evalu-
ation of the Green functpn to the calculation of the purely H=vy(P,—P_)+const,
fermionic matrix element:

Gi(p.)=i(¥|e P " w),  (5.45 P=P.tP-., (5.59

. / /
G, (p,n)=i(¥[e " 1"7(1—ng)|¥),  (5.46 ﬁftkpfo dxip L (X) i (X) +i JO dxp L (X) dyip- (X).
\;v:grfhfehieifr;?gavzrﬂjirgtliltt)%nIgsgr:todr:)freﬂf E(ql(frﬁ) This particular form of the Hamiltonian shows a close rela-
T X - 070 0/ tionship between energy and momentum operators that is
= Yo force the spin at the origin of the chain to point a4y valid only in the noninteracting limit. However, the
upwards or downwards, respectively. In the following, we o6 general interacting Luttinger liquid can be mapped to
will first carry out the calculatlo_n of the asymptotic behavior ihe free Fermi gas by the previously defined canonical trans-
of the trace of the Green function matrix: formation (5.40 leading to the conservation of the number
] CiBminyr of right and left moving fermions at long wavelength. As a
G(p, 1) =G (p,)+G(p,7)=i(W|e o™ "7 W), consequence, all eigenstates would factorize in the product
(5.47 of two states, one for each branch and, via E950, also
which is expected to show all the singularities present in théhe functionZ(x, 7) would split in the product of two terms
two separate spin projections. Z*(X+v¢7) defined in each branch. However, in the micro-

The long-wavelength form of the Hamiltoniaﬁp has Scopic model, defined on a lattice, higher-order terms allow
been already studied in the previous secti&g.depends on the excitation of a fermion from one branch to anotferen

the total momentunp via a functione,(ky,), which repre- quKq=1). Thereforg., the funﬁt'?]z(x’ﬂ will contain ﬁ?nr;
sents the holon dispersion: tributions corresponding to all these excitations, which we

label by the numbem (—m) of extra fermions on the right
(left) branch:

Hp=en(p+P)+H,. (5.48
H, is a Luttinger liquid Hamiltonian characterized by suit- i - 5y .m
ak;le boundar? con?jitions and commuting with theyspinon Z(X’T):m;m /(O Emf)z(++ )(X_UsT)
momentum operatoP defined on the chain df —1 sites. (5_.—m)
Note that the Heisenberg stal@) instead refers to the XZ_ (X+vs)
L-site ring with periodic boundary conditions and therefore %
is not an exact eigenfunction of the spinon momentum op- _ E ei(mefEm7)<ei(I5+7Q+(m))(vasr)>+
eratorP. It is then convenient to express the stal® as the m=—

sum of all its projections into subspaces of definite momen-
tum P=Q and substitute this representation into the form
(5.47: where the average labeled By (—) is taken on the ground
state of the rightleft) branch in the undoped system and the
intermediate states are constrained to havé—m) addi-
tional particles on the rightleft) branch. Q,,=Q.(m)
+Q_(—m) andE,=v{ Q. (m)—Q_(—m)] represent the

;o reference momentum and energy of the intermediate states
Z(Q,T)Zf e 'YZ(x,7)dx, with m-particle excitations, which are explicitly given in

0 terms of the Fermi momentum of the spinons ®y (m)
By ) =kg(m+1) and Q_(—m)=—kg(—m). The functions

Z(x,m)=(V¥le 7| ¥). (550 Z(= =My 1y introduced in Eq(5.52 are well defined also

This is the general form of the one-hole Green function,n the long-wavelength limit where the spinon Hamiltonian
which shows the effects of spin-charge decoupling on théd, can be written in the bosonized for(8.8). As discussed
dynamics of the hole. The spinon functid@fQ, r) provides in Secs. V A and V B the quantum number, which char-
a generalization of the quanti®(Q), which characterizes acterizes the interbranch excitations, appears in the low-
the form of the single-hole Green function in tlle~0  energy Hamiltonian only through the quantiy* and can be

X<ei(ﬁ>,—Q,(fm>)<X+vsT>>_ , (5.52

G(p,T)z%% Z(Q,T)e*i[fh(wQ)*in]T, (5.49
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absorbed in the definition of the phase shif&si=5,+m,  A(pP,®) will show singularities along the lines= €,(p

5_=5_+m[see Eqgs(5.10, (5.20, and(5.21)]. The calcu- *+Qm) vgith momenturr;—depg_nd_ent efxpr?nem;@ f i
lation of Z(x,t) then reduces to the evaluation of the contri- _~\NOther unexpected prediction of the present formalism

@tion appropriate for each branch with arbitrary phase shif oncerns the behavior of the spectral function in a neighbor-

. . . . . ood of the singularity: by a direct evaluation of the prefac-
9. . The technical details are discussed in Appendix B, her_e[or we find different results according to whether the charge

we Just rePO” the asymptotic behavior in the thermodynam@,elociw is larger or smaller than the spin velocity. In fact, if
limit (B22): lv.|<vs, there are divergences only fab=e,(p+ Q)

5 7R while the spectral weight vanishes on the other side of the
ZE(X)oe(Fix) ™7 (553 singularity lineAw,=0 as there are no states with lower

By substituting this result into Eq45.50, the spectral weight energy contributing to the spectral weight:

A(p,w)=(1/7)Im G(p,w) is written in terms of the Q, w)

. |A @ PXm™2
Fourier transform of: A(p,w)= m

, 55
(05+00) (s ve) ™ (559

A(D,w)=jg—(?Z[Q,w—Eh(p+Q)], (5.54  Instead if[v¢|>vs the spectral function diverges on both
m sides of the singularity with the same exponeit,2-1 but
different prefactor:

Z(Q,w)zf_ f_ drdxe '*Q~e7Z(x, 1) - (A1
A(p, @) >

. . (5.59
SINT&2) |ostvd los—vdl &

where the upper sign and the lower one referto . Aw
>0, respectively. The amplitude ratio can be evaluated from

=§ Cr®lo+v(Q—Qm)]

XO[w—vs(Q—Qm)] Eq. (5.59:

Xvl P o+ o (Q-Qu)]% ! A(Aw) sin(mé%) 560
= = 5.6

X[0—vgQ=Qu)] %L (5.59 Ahe) sin(rs?)

This simple expression, which shows the asymmetry of the
butions have been include@.(x) represents the step func- spgctral weight abov_e and below the. singularity, is strictly
tion whose presence is a direct consequence of the Fourié’f”‘“d. on_ly for the L“tF'”ger model, but is also expected. to be

Gualitatively correct in more general cases. In fact this fea-

positivity (negativity) of the functionZ, (Z_), as discussed - X ]
in Appendix B. This property has a simple physical meaning:ture originates from the different energy spectrum of the ex

the particle hole excitations within the right branch of a Lut- Citations on the Ie_ft and_ right branches, which is a common
tinger model can only increase the total momentum Withproperty of one-dimensional correlated systems. Notice also

respect to the ground state, while the excitations on the Ieftthat the prefactors in Eq5.58, (5.59 are strongly en-

branch can only decrease the total momentum of the Sys'tenqanced close to the instability, which sets in when the charge

Therefore the spinon spectral function@t-0 has contribu- velocity equals .the Spin veIOC|_ty. .
. . o : . When we switch on interactions among spinons the above
tions coming only from excitations in the right branch and

) . expressiong(5.54), (5.55, (5.58, (5.59] remain formally
vice versa The constaptsCm, wh|ch'only dgpend on the unchanged if the phase shifts are suitably renormalized by
phase shiftss, and §_ in a symmetric fashion, can be ex-

plicitly calculated in the free Fermi gas with skew boundaryKo analogously to Eq(5.41) where 65— 6. and 5.—>(5 .
conditions as shown in EqB24) of Appendix B. However, ~+M). As a consequence, the exponent of the leading singu-
we expect that in the interacting models these coefficientirity (i-e., that corresponding tm=0) X, exactly repro-
will be renormalized in a nonuniversal way that depends orfluces the exponent already obtained in the calculation of the
the physical cutoff present in the microscopic model. overlap ¢ (5.42. Moreover, the full set of exponents,

By inserting Eq.(5.59 into Eq. (5.54, the contribution —agdrees with the term proportional tor2s// in the finite-
coming from each excited state gives a divergence in the Size correction to the energy of the modél35 for the

spectral function as long a}i+7£<1. The singularities Eg:lt'ﬁu_l"g ;:Shg'lj:: t%f ttr:]: glé?r;;l;rptﬂg?nﬁgfn?é;;i rsetzttrtlacs-a i
are located along the lines - P

pearing in the rotational invariant Green functit®47) do

In the Fourier transform oZ(x,r) only the singular contri-

. _ not have definite spin and then, at fixeg the leading sin-
Awon=w=e(p+Qm =0 (559 gularity is related to the smallest phase shift, which corre-
in the (p,w) plane and show the asymptotic behavior sponds tn=0. It is, however, clear how to generalize these
expressions for the calculation of the spin (@p spin down
A(p, )% |Awp|PXm L, (5.5  Green function: the sum over intermediate states in Eq.

(5.49 has to be restricted to the states with the correct spin
where X,= %(E +T£). In general, we expect that the projection. Within bosonization it means states with the ap-
phase shift$.. that characterize the singularities of the spec-propriate value of the quantum numbmer which is in fact
tral function depend on the holon momentim Therefore, related to the total spin of the one-hole intermediate state
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through Eqgs(5.9) and(5.10. This procedure in fact repro- fermions from the left to the right branch of the Fermi sur-

duces the full set of critical exponents, , that appear in face. The energy of these excited states can be easily calcu-

Eqg. (5.35. lated by taking the expectation value of the magnetic term on
Finally, if we want to evaluate the singularities in the hole the appropriate spinon Slater determinant. Energy and mo-

density of states we just have to integrate the leading momentum are therefore given by

mentum dependence of the spectral funciibrb?):

/_ v+n+m 277 1
dp E,=2tcogp+Q)—J—— E CO{T j+—) ,
N(w =f—A ) Y, Cro2Xm0 =124 const, 7 j==n+m ’ 2
(@)= | 5 AP.0)* 2 cn ©3
(5.63 vintmo 1
wherec,, are finite amplitudesy is measured from the bot- Q= _77 i+, (6.4)
tom of the band, and the exponefy,(0) coincides with the j==7=n+m 7 2

previously introduced critical exponedt,, evaluatedat the These expressions, being based on perturbation theady in

bottom of the holon band.e., at a total momenturp such <t, are exact taO(J/t) and toO(1), respectively. By car-

thatky=p+Qp sits at the minimum okp(ky). In fact this rying out the summations and expanding upQ¢l1//) at
region of integration in momentum space gives rise to th%ixedp=N/L we find :

leading singularity in the density of states. Note that a diver-
gence in the density of states occurs onl¥jf(0)<1/4 for

, sinmp
somem. Ep=—J3(/— 1)T—J(n+p)COSJTp+2tCOE{p+Q)
VI. SINGLE HOLE IN THE XY MODEL 2mJsinmp 121 ) ) T
. _ . _ +T[(m+ 3)°+ z(n+p) ]—J5|n7rp6—/,
Here we analyze in some detail the dynamical properties g g
of a single hole in theXY model on the basis of the Hamil- Jcosmp
tonian already introduced in Sec. IV in the limit of small + 7 (n+p), (6.5

hole massJ’=J<t. The aim of this study is to check, in a
simple model, all the general features of hole motion already 20
discussed in Sec. V and to carry out the quantitative evalua- Q=2mp(m+ 3)+ 7(n+p)(m+ ). (6.6)
tion of exponents and amplitudes for this system. g
The Hamiltonian of a hole of momentumin thet-Jxy  In the thermodynamic limit, besides the extensive magnetic
model(4.1) has been previously derived in some detail andcontribution, the energy of the state depends on the holon

reads momentumk,=p+ Q through the form of the holon band
en(k) =2tcogk;,. The spinon momentum is instead given by
|:|p=t ex;{ipﬂz k! |+ H.c. Q=2k,:(m+.%)_when we recognize that the spinon Fermi
K momentum is juskg=mp. The O(1//) size corrections to
/-1 momentum and energy can be also compared to the general

6.1) expressiong5.26 and (5.39 if we recall that the spinon
velocity isv = Jsinke.=Jsinmp andK ,=1 in the XY model.

. . ) Equations(6.5 and (6.6) correctly reproduce the predicted

Here we consider apin downhole of momentunp in a  gyrycrure of the size corrections, showing that the hole dy-

chain with an even number of sitésand an odd number of amics is described by an underlying conformal field theory.

up spinsli.e., an odd number of fermions in the representa-ryis comparison allows one to determine, to lowest order in

tion of Eq.(6.1)] N=2v+1 corresponding to a-axis mag-  y/¢  the values appropriate for thely, model of the non-

netization u=— 3+ N/L. According to the discussion in universal parameters entering €§.35:

Sec. lll, the appropriate boundary conditions of the fermi-

onic problem are thereforantiperiodic N+L being odd, 5=3(8,+0.)=3, y=(8,—90_)=p (6.7

and the quantization rule for the momenta is

J
-5 ;l (¢ i1 +H.Cl.

for the phase shifts and

L) P 6.2 / /
=173 6.2 0 =5 (ki +ke)=0, o =—(ki—kz)=0()
with /=L —1 as usual. The states that diagonalize the hole (6.8

kinetic term are states of given spinon momentQmin the  for the shifts of the right and left Fermi wave vectors.

J—0 limit the spectrum of the Hamiltoniat6.1) can be According to Sec. V C the phase shifi8.7) completely
obtained by diagonalizing the magnetic term in the subspaceetermine the singularities of the Green function. As a check,
of fixed spinon momentun®. This procedure gives rise to let us explicitly evaluate the overlap(5.36) in this model.
spinon Slater determinants of plane waves. The ground stata fermionic representation this amounts to calculating the
is doubly degenerate and corresponds to a sét ofcupied overlap between the ground state of Hamilton{érl) and
orbitals of momenta centered aroukw O, while low-energy  the ground state of th¥Y model on aL-site ring with the
excitations can be obtained either by changing the number &fame number of fermiorld=2v+ 1. In fermion representa-
fermions(i.e., the magnetizatigrN— N+ n or by movingm tion the latter state is just a Slater determinant of plane waves
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o L L B B B spinon term, which is eigenstate of tie' Hamiltonian on
z : the squeezed chain. Therefore, at fixed total momernyum
A 0 u=1/4 1 the Green function reads
T 0.35 -
~ F 1
v 1 [ : :
SR SO ] G(p,=-2 X e Qe 1Pt Q7z(R, 1), (6.13
r o3 T T T~ - /Q R
I r #=0 -
<ot ] where the spinon term, implicitly depending on the total mo-
055G 6T —0.62 '/' 03 o0 005 mentump, is
1/N

— —iH, TR/ 1 _

FIG. 4. Leading exponenX, of the size dependence of the Z(R,m)=(Ve T7(1—ng)|¥). (6.14
overlap{ in the t-Jyy model as a function of the numbbtk of up Here |:|(r and T, respectively represent thXY spinon
spins. Lines represent the numerical evaluation of the determinarlllamiltonian and the translation operator of one lattice spac-
of the matrix(6.11). Dots are the analytical prediction based on Eq. ing on the squeezed ring af=L — 1 sites(origin excluded
6.7 while |¥) is the ground state of th&Y model on thel-site
ring. Notice that, for the special case of tKer model at
J—0, the decoupling of the Green function in holon and
spinon factors,

with momentum quantization corresponding feeriodic
boundary conditions on k-site ring:

quZT”j_ 6.9 G(R,71)=Z(~R,1Gy(R,7)
= dk . .
:Z(—R,T)if S—We'kRe*'fh(k”, (6.15

-

Therefore{ is simply the overlap of two Slater determinants
of plane waves with different quantization rulé.2), (6.9).

Such an overlap can be calculated as the determinant of the exact at all distances while, in general, we expect this
NXN matrix of the overlaps of the two sets of plane wavesdecoupling is valid only at low energy and long wavelength,

defined on the squeezed chain: i.e, forR,=>1.
The evaluation of the matrix element in E§.14) can be
{p, =deH, (6.10  performed because in the spinon representation the two
states are Slater determinaifiathout phase shifjsand the
@k eiks/2 co$q,/2] 610 unitary operator actir(lg on) themI is a rc])ne-t;]ody operator. The
H.= =i - , (6.1 projection operator (% ng) implies that the origin is an
e\ JL(L-1) sin(ks—q,)/2] empty site that amounts to exclude the origin in the evalua-

tion of the overlap matrix. Therefor&(R,7)=detA(R,7)
where the overlap matri¢of linear dimension 2+ 1) can be
easily calculated by inserting a complete set of orbitals that
do not place particles in the origin. A useful choice is the set

277( 1] ) of eigenstates of the spinon Hamiltoniﬁrg corresponding

with r ands belonging to the intervadl— »,v]. Notice that
the quantization rule of the wave vectdgscan be naturally
interpreted in terms of a momentum-dependent phase shift

i+ §+ L (6.12  to an odd number of spinons, i.e., with mome(@i2). The

resulting form of the overlap matrix is

Near the Fermi points the phase shifts are then given by

6+=(1%=p)/2 in agreement with their determination based A(R,7)= €04 q,/2)co3 q5/2)

on the structure of the finite-size corrections to the energy L(L-1)

(6.7). The known tr(_eatmeﬁ]t of the orthogonality catastro- Li2—1 i (K R+ rJcok;)

phe problem thus gives the critical exponent in terms of the % E _ . _
phase shift at the Fermi pointsXg= 5> + 62 , which agrees j=-"Th+1 sin{(kj—q,)/2]sin (k; —ds)/2]
with the expressiorf5.39 derived in Sec. V C. This result (6.16

can be also checked numerically by evaluating the determi-
nant(6.10 for fairly large system sizes. The size scaling of The sum can be performed analytically only in the static
InZ as a function of IN is shown in Fig. 4 for two magneti- limit 7=0 where the numerical computation A{R,0) and
zations =0 andu=1/4) corresponding to the densities of of its Fourier transfornZ(Q) can be pushed to fairly large
spin upp=1/2 andp=23/4. The analytical value of the ex- system sizes. A comparison between two different sizes at
ponentX, is also shown in the figure. The exponent for thefixed magnetization =0 and w=1/4) is shown in Fig.
p=1/2 case also agrees with an independent calculation by(a) where we can see tha(Q) does not vanish outside the
Pencet al?* “spinon Fermi surface” even if it is strongly suppressed.
The next task is the evaluation of the spin-down GreenThe singularity at the Fermi momentukg = 7p appears to
function (5.44), which, via Galileo transformation, takes the be present on both sides of the spinon Fermi surface. A loga-
form (5.46). In theJ— 0 limit, the energy levels can be writ- rithmic plot of the singularity oZ(Q) whenQ approaches
ten as the sum of a holon pa#,(p+Q)=2tcosp+Q), ke is shown in Fig. Bb) where it is compared to the analyti-
which just depends on the spinon moment@n and a cal value of Eqs(6.7) and (B24). The ratio of the two am-
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FIG. 6. Asymptotic behavior of the dynamical quasiparticle
S T T ] weight Z(R,7) in the t-Jyy model atu= —1/4 calculated as the
(b) ] determinant of the matriXC7) in a system of 201 particles.
Zy(R,7) is defined in Eq(6.18. Data refer to more than a thousand
T-a i different points in the R, 7) plane.

- ] where vs=Jke and this expression is valid fdws7r|<R.
T T T~ From this analysis we expect that the functid(R,r) at
S A long wavelength behaves as

In | Q/_kt -1 7 (R cogkgR)
. O( ’7-)0( (R_ )1/4(R+ )1/4'

FIG. 5. (a) Spinon termz(Q) for thet-Jyy model computed as UsT UsT
the determinant of the mat_ri66.16) at =0 for magnetizatiqm In Fig. 6 we plot the numerically evaluated ratio
=0 (squaresand u=1/4 (triangles. Two cases corresponding to Jd A(R, 7)|/Zo(R7) as a function oR— v .7 for N=100 and
about 400 and 800 particles are shown by open and full symbol = — 1/’4 which belongs to the Iow-dsensity regime. This
respectively (b) Logavithmic plot ofZ(Q) near the singularity. The ratio has’no oscillationgmeaning that the phase factc.)r has
lines indicate the slope predicted on the basis of the finite Siz%een correctly determingaind it is approximately constant

tions to th 7). . .

corrections to the energlp.) over a wide range of values ®—uvg7. Clearly the region

. . . L R~v47 cannot be well represented by the bosonized form
plitudes on both sides of the singularity is in rather goody,a¢ would predict a spurious divergence in the Green func-
quantitative agreement with e>(<jpre§|5|€hﬁqG®. i 1 ftion, which instead is bound to have modulus less than unity.
h Now we e’;a”!'”e n somef etail t efasg/mptotm orr‘? O' " The analysis of this section shows in a simple example
the dynamical spinon Green function o the-Jxy dee that all the features of hole propagation in a magnetic back-
(6.14. As noted before, the exact calculationZ(iR,7) ina  gr5nd derived with field theoretical formalism are contained
finite system reduces to the evaluation of the determinant gf, ¢,,ch a microscopic model. This detailed calculation sup-
the matrixA (R, 7) defined in Eq(6.16. The exact calcu-  hqts the assumptions introduced in our general study of the
lation can be performed only numerically and the direct 'n'long—wavelength hole dynamics. At=0 the samet-Jyy
terpretation of the data is obscured by finite-size effectsygqe| has been studied in Ref. 26 where consistent results
However, we can address the problem of the long distancgaye peen obtained by a different method. More interesting

and long time behavior ofZ(R,7) by performing the systems can now be investigated.
asymptotic expansion of the matrix elemeAts themselves.

This expansion can be carried out rather easily in the low-
density limit where, according to expectations of conformal
field theory, it should be characterized by phase shifts In this section we consider two Bethe ansatz solvable
=5_=1/2(6.7). The details are reported in Appendix C. models, the repulsive Hubbard motiehd thet-J model at
According to bosonization, the spinon Green functionJ=2t,%” where the finite-size corrections to the energy can

(6.18

VII. BETHE ANSATZ MODELS

should behave as E(.53), be found analytically, leading to a formal expression for the
critical exponent that appears in the one-hole Green function.
oikeR o ikeR We analyze both models at arbitrary magnetization so that
Z(R,7) + . our results can be extended to the attractive Hubbard model
(R—vsnY4(R+ver) ¥ (R—ver)Y4R+ven)V4 via the well-known canonical transformation.

(6.17 The calculation of the finite-size corrections to the
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ground-state energy closely follows the original derivationcompatible with the quantization rules fdy,. Instead,D.

by Woynarovich for the Hubbard model at finite dendfty. =1,+L/2 for the Hubbard model arid =1}, for t-J, where

Here we consider a chain df sites andL—1 electrons, |, defines the position of the hole in the distribution of

among whichN | have spin down. The Bethe ansatz solutioncharge rapidities and is related to the momentum of the ho-

is characterized by two sets of rapidities: for the Hubbardon. Following Woynarovich, we define the four “densities”

case we havéls=N, rapiditiesh, andN =L —1 rapidities  as theL— o limit of v¢=N¢) /L and ¢sy=D¢(s /L, SO

ki, while for thet-J model(in Sutherland representatiowe  that D) — d¢s)L andN¢) — v(s) are finite forL—o. If a

haveNs=N, +1 rapiditiesv , andN =1 rapidityw,. These hole of momentump and spin down is created, the total

rapidities are related to the quantum numbégsand |;, momentum of the state is given by

respectively, through the Bethe ansatz equations. In the

ground state, the two sets of quantum numbers define two 20

compact distributions bounded @y and 1=, respectively. —p=—po+ T[(NS_ veL)(Dg— 8L)+(N.—vcl)

The explicit expressions af* and| ™ are

I —J"=N, J*+1-=2D,, . X (Do 8L, (7.2
where —pg=2m(D;N;+DgNg)/L is the momentum in the

+ -— + -_

I I"=Ne, 17+17=2Dc, thermodynamic limit. Analogously, the size corrections to
where Ng and N. have been previously defined while the the ground-state enerdy for the single-hole problem can be
“centers” of the distributionsD4 and D specify the spin expressed in terms of the above-defined quantities, the
and charge state, respectively. In the ground state, at fixecharge (spin velocity v, the elements of the dressed
total momentunp, D is the smallest integedpr half integey ~ charge matrix; and of the additional matri¥;; as

v

LE-Le)=—7¢

vt 27U Xet 2T0 X, (7.3
(Ng—vsk) —&1(N—vcl)
282

(Ng=wsl) = 12N —vcl)
282

Xe=—(Nc=wvcl)| (D= 8cL) + €19 Ds— 65k ) —AZy,

2
X= 8] (Dg— dsL) = ZyoNe— vcL) 12+

wheree,, is the ground-state energy per site of the model at o= — (Ng— v L)(Dg— 8sL)— (N.— vcL)(D¢— 6.L),
half filling and N.— v.L=—1 for the Hubbard casevhere

N,=L—-1) andN.—v.L=1 for thet-J model (where N, 1

=1). The diagonal element of the dressed charge matrix is m=Ds— 7

simply related to the correlation exponent of the Heisenberg
model introduced in Sec. V by the well-known expression

K ,= &5,.1¢ This general formula is valid both in the Hubbard n=(Ns=wsl),

and in thet-J model. The basic steps for the formal deriva- 1

tion of Eq. (7.3 together with the precise definitions of the S= E_le(Nc_ vel), (7.9
guantities appearing in it are reported in Appendix D. Here

we only stress the decoupling of the charge and the spin

terms in the finite-size corrections, in agreement with our y=—&ANc—vcl),

starting assumptions: The long-wavelength Hamiltonian is

the sum of a charge part that does not give any singularity in w,=0,

the correlation functions and a spin part, which instead gives

rise to critical exponents. Most importantly, this rather com- AZ5(N.—vcl)

plicated, exact, expressi¢n.3) perfectly matches the predic- S +2Z1(Nc—vcl),

tions of the bosonization methd8.35.

From Eq.(7.2) we find that the size scaling of the total where we used that in the ground st&le=1/2 and then
momentum is characterized by the amplitu@e33 o= 6s=0. Note the vanishing ob . that occurs in all the mod-
—(Ng—vsL)(Dg— 8sL) — (N;—v.L)(D.— &.L) while from  els we have examined and is probably related to a sort of
the magnetic contribution in E¢7.3) we easily identify the  Luttinger theorem that forces the volume of the spinon Fermi
guantum numbersnf,n) and the phase shifts§(y). The surface to be unaffected by interactions. This exact corre-
other parameters appearing in E§.35 then follow from  spondence between bosonization and Bethe ansatz demon-
the charge part of E(7.3) leading to strates the validity of our approach in the Hubbard &id
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FIG. 7. Critical exponent, (full square$ and X_, (open FIG. 8. Loci of the singularities of the spectral function in the

squarefas a function of the momentum of the haiefor several ~ (P.®) plane(5.56 for the Hubbard model a =4t. Energies are
magnetizationg.= — 0.4, 0.3~ 0.2,—0.1,0.1,0.2,0.3,0.4 frorfa) measured from the bottom of the holon band. Two magnetizations

to (h), respectively, in the Hubbard model ldt=4t. are shown:u=0 and u=1/4. Full (dashedl lines correspond to
critical exponentsX smaller (largep than 1/2. In the latter case,

models and allows for the analytical determination of the2ccording to Eq(5.57), the divergence disappears.

phase shiftss.. governing the singularities of the one hole
Green function. the occurrence of the divergence is predicted by our theory
In general, the coefficients appearing in Eg3) are non-  are instead shown in Fig. 8 for a couple of choices of the
universal quantities that depend on the coupling constants d¢farameters. The presence df2zero-energy excitations in
the model as well as the average magnetization persite the spinon spectrum gives rise to a remarkable symmetry
and the holon momentum. Therefore, we expect that the exproperty of these curves: at a given enewgyif a singularity
ponentX is a function of all the parameters that define theoccurs at momenturp it will also show up, with possibly
hole Hamiltonian, including the total momentum How- different exponents, at momentump+ 2k .
ever, some important exceptions must be mentioned. At zero As a check on the theory of Sec. V we have numerically
magnetic field the spin Hamiltonian possesses the additiong&valuated the overlap of E¢5.36) by Lanczos diagonaliza-
SU(2) symmetry both in the Hubbard amel models. At this ~ tion in the t-J model atJ=2t in chains up to 32 sites at
particular point, the exponent is universal. In fact, the el- magnetizationu=*=1/4. The results are well fitted by a
ements of the matricesandZ acquire analytic values inde- power-law behavior inL (5.38 with an exponentX that
pendent of the total momentum of the state and of the couclearly depends on the momentum of the hole, in agreement
pling constants£,,= 112, &,=1/2, andZ;,=0. Another ~ With the bosonlzanpn analysis. A comparison _be_tween the
simple case is th&)— o limit of the Hubbard model where numerically determined exponent and the prediction of Eq.
Z1,=0 and the dressed charge matrix can be expressed [ff-3 is shown in Fig. €. An analogous computation has
terms of the magnetization per sige=(N;—N)/2L: &, also been performed in tie] model at the generic noninte-
=1/2— ., while K= £, as a function ofx is shown in Fig. grable pointJ=t andu = 1/4. The numerical results are also
1 of Ref. 12. Also in this limit the exponents do not dependShoWn in Fig. 1Qb) but in this case the comparison with the
on the total momentum of the state. Finally, when the holgdnalytical predictions based on the Bethe ansatz solution is
sits at the bottom of the band, i.e., if we are at the one-hol&0t available. However, a quite similar momentum depen-

ground state, the equations simplify because the holon mdience of the overlap exponeXtemerges, showing that the
mentum is always,= and sov.=0. Again Z;,=0 and above features are not special to the exactly integrable

our expression for the finite-size corrections coincides withP0!Nts-
the zero dopindimit of the known form valid at finite den-
sity. This proves the continuity between the physics of the
single-hole problem and that of finite doping in 1D.

At arbitrary magnetization and momentum no analytical In this section we finally discuss the global shape of the
expression for the phase shifts is available. However, thepectral function of one hole in a correlated background. In
integral equations reported in Appendix D can be solvedact, the bosonization method developed in Sec. V only con-
numerically. Few examples are reported in Fig. 7 where weerns the long-wavelength, critical properties of the Green
show the critical exponentX,, (5.42 as a function of the function and gives no information on its short-wavelength
momentum for several magnetizations in the Hubbardeatures. The exact calculation of a Green function in an
model. The locim=€,(p+Q,,) in the (p,w) plane where interacting system, at all length scales, has been achieved

VIIl. THE SHAPE OF THE SPECTRAL FUNCTION
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proximation has been discussed by Pehal 2 in the strong

coupling limit of the model. For clarity, we introduce the
method in the framework of the previously discussely
Hamiltonian in thel— 0 limit (see Sec. Vjlleaving the study
of the Hubbard model as a final example.

The starting, exact, expression for the 1D Green function
of the t-Jyy model is Eq.(6.13 where the spinon function
Z(R,7) is defined by Eq(6.14). The spinon tern¥ in fact
contains all the interesting correlation effects as previously
pointed out. However, its direct evaluation proved rather
hard even in the simple case of t& model where the
exact ground state is a Slater determinant, while the more
realistic case of a Hubbard model cannot be tackled by these
methods. As an approximate way to evaluate the matrix ele-
ment(6.14 we can assume that the most relevant contribu-
tion to the intermediate states comes from siegle spinon

states i.e., from the exact eigenstatesidf, in the squeezed
chain with only one spinon excitation. In fact, with, being

an antiferromagnetic Hamiltonian defined in an odd chain

with periodic boundary conditions, it gives rise to a frus-

! trated problem. Then, its ground state contains a free spinon
p. Data refer to tha-J model atu=*1/4 andJ=2t in panel(@  anq it s rather natural to assume that a set of low-energy
andJ=t in panel(b). Solid lines: analytical results obtained from states can be built by giving a finite moment@rto such a

the finite-size corrections to the energy in the Bethe ansatz SOIUtiOn‘quasiparticle.” These single spinon staﬂ@) can be there-

Full (open dots: Power-law fit of Lanczos data far=1/4 (u= fore labeled by the momentur®, which lies outside the

—1/4). Numerical dat&full square$ obtained with the same fit for . . .

the nonintegrable point=t, are shown for comparison only in the sp!non Fermi surface, and have eneegyQ) given by the
u=1/4 case. The dashed line connecting these points is a guide fPINON band:,(Q)=Jco for the XY model, where Q|

the eye. Diagonalizations have been performed on rings with — Kr @ndke=p is the spinon Fermi momentum. The single
=8,16,24,32. spinon approximation to the functid®(R, r) therefore reads

FIG. 9. Leading exponenX,, of the finite-size scaling of the
overlap¢ defined in Eq(5.36) as a function of the hole momentum

only recently® by use of extremely sophisticated methods
for the Calogero-Sutherland modelwnhile no results are
available in other interacting systems. Our task is twofold: to
understand the physical nature of the low-lying excitations
that contribute to the spectral function and to develop a use-
ful numerical method for th roxim rmination of .
tﬁe ;peitr;?funi;ioorg\(g, wt) ,ev%ﬁshocanatt)ee (;?s”ed 3;[ (g)ge-o where_|\lf> is the grounq state of t_he un@oped model and we
neric one-dimensional models. The purpose is to overcomgave introduced the spinon functia{Q):

the severe finite-size effects present in Lanczos

diagonalization&3 without resorting to the delicate ex-
trapolations of simulation dathnecessary for the computa-
tion of dynamical correlation functions.

1 . .
— —i€,(Q)7xIQR| _ 2
Z(R,7) /‘ngpe e'OR(Q[(1~ng)| W)

1 : .
—2 3 el weRz(Q), ®.2
/|Q§k|:

Z<Q>=§e*‘QR<\P|T5<1—no>|\P>. (8.2

This approximation therefore entirely resides in the assump-

hol';eé?éewneﬂz?]rcrzglnaﬁa? Csz'imﬁjl fegiﬁgz):'g?iﬂgr}gg{uﬁi 8??r;tion that only the single spinon intermediate states give a
P finite contribution toZ(R,7). As a consequence, the time

exact result and can be usefully applied to interesting corre

. ) . i - dependence ofZ(R,7) is greatly simplified but still not
lated models, in one dimension, like Hubbard. A similar ap trivial due to the complex structure that can be present in

Z(Q).

- ] The value of this approximation is that the time depen-
T~ pet/e dence ofZ(R, 7) is given analytically in terms of the known
~. | spinon excitation spectrum of the model and that only a

N 1 small O(/) number of matrix elements is necessary for the
~ ] evaluation of the fullZ(Q). The exact calculation in fact
would require the insertion of a complete set of intermediate
~o 1 states leading to an exponentially large number of terms in
~o the sum of Eq.(8.1). A consequence of the single spinon
‘ approximation is the presence of a sharp Fermi surface in the
function Z(Q), which is in fact predicted to vanish identi-
cally for |Q|<kg . This property is well satisfied in the qua-
siparticle weight for thed— 0 limit of the t-J model**even
if both the numerical calculation &f(Q) in thet-Jyy model

|
o
[N
—
/
1

In £ 2(Q) / (L-1) (1-p)
s
>
T
=
n/
o
/
1

|
o b
>

T

N
'S
[=2]
o]

In L

FIG. 10. Breakdown of the completeness condit{Br8) in the
single spinon approximation for theJyy model at two magnetiza-
tions.L is the length of the chain.
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[see Fig. $a)] and its density matrix renormalization-group one-spinon states between the weak and the strong coupling
evaluation in the strong coupling limit of the Hubbard modellimit. At U—< the one-spinon statf) is in one-to-one
show that this is not an exact feature of one-dimensionatorrespondence with the ground state of momenuof the
systems?> Heisenberg chain in an/(=L—1)-site ring. This follows

We now proceed to the evaluation @{(Q) in single- from the factorization property of the Hubbard eigenfunc-
spinon approximation for the exactly solubldyy model, in  tions discussed in Refs. 10 and 11. These spinon states can
order to provide a check on the quality of this approximation.be therefore identified by performing Lanczos diagonaliza-
The completeness condition of the intermediate states that t®on on the/-site Heisenberg model in the symmetry sub-
obeyed by the exact quasiparticle weight reads space of total momentur®. Now, having determined the
one-spinon states &t=«, we adiabatically lower the inter-
action parametet (in practice this is quite an easy proce-
dure within the Lanczos methpébllowing the “evolution”
of the eigenstate of spinon momentupnfrom U=c down
In order to comput&(Q) in thet-Jxy model on a_-site ring  to the desired value dfi. In this way, starting from an exact
and 2v+ 1 spinons, we first recall that the ground state of thegigenstate of the Heisenberg model we first find an eigenstate
XY model is a Slater determinant o2 1 plane waves with  of the Hubbard model i =« and then a sequence of eigen-
momentum quantizatiof6.9) and then the occupied orbitals states of the/-site Hubbard model corresponding to smaller
are |qs) with se[—»,v]. The intermediate states are also and smaller interaction parameters. This procedure has been
Slater determinants of plane waves but with different quandevised because the spinon momen®@ris a good quantum
tization rule (6.2). If the spinon momentum iQ,=(27/  numberonly at U=2 and then we need a method to select
/)(r+ 3), the first 2v single-particle intermediate statds) ~ the exact one-spinon states out of the full set of eigenstates
fill the spinon Fermi sege[ — v,v— 1] while the remaining  of the Hubbard Hamiltonian. As usual, a simple check on the
spinon is placed outside this interval, jatr. As noted be- Validity of the single-spinon approximation comes from the
fore, the overlap between two Slater determinants is just theompleteness condition of the intermediate states, analogous
determinant of the matrix of the overlajgis;=(qsk;) and 10 Eq.(8.3), which now reads
the quasiparticle weig#(Q),) is the modulus square of such 1
a determinant. The numerical evaluation of the completeness _ + _
sum rule(8.3) in single spinon approximation is plotted in 7% Z(Q)—(‘lf|cp‘lcp,l|\1’>=nl(p), 8.5
Fig. 10 for two magnetizations. The data show that the sum
rule is violated in the thermodynamic limit and therefore thei.e., the momentum distribution of the spin-down electrons at
single spinon states do not represent a complete set of intefalf filling. The amount of violation of this sum rule quanti-
mediate states as expected. However, Fig. 10 also shows tHats the weight of all the other states in the Hilbert space that
the breakdown of the sum rule is very small and shows up atave been neglected in our approximation.
considerably large system size. This approximation accu- In Figs. 11 and 12 we show results from Lanczos diago-
rately reproduces the short-wavelength properties of thaalization in chains up to 16 sites. The functidgQ) for
model while it fails in catching the long-wavelength featurestwo values of the momentum of the hole and of the mag-
(i.e., critical exponents and amplitudesvhich we already netizationu is reported. In all the cases we have considered
discussed by use of bosonization methods in Sec. V. Theré¢he completeness conditid8.5) is very well satisfied, show-
fore, we expect that the single-spinon approximation can bég that one-spinon states account for more than the 98% of
successfully applied to the study of the global shape of théhe weight of the full Hilbert space of intermediate stafes.
one-hole spectral function in one-dimensional models. As afThis allows one to reconstruct the full spectral function for
example we now briefly discuss the case of the Hubbardhe Hubbard model. On the other hand, the available data
model. also show weak size dependence, suggesting that finite-size

Analogously to thet-Jyy model, the Green function is effects are not relevant at high energies. A plot of the pre-
expressed in terms of the dynamical quasiparticle weight bylicted spectral function is shown as a functioneoin Fig.
Eq. (6.13), which is approximately evaluated as in £§.1): 13 for a typical, intermediate couplindJ&4t) and a two

hole momenta.

% Z(Q)=/(1-p). (8.3

G(p,r)=i2 e—ieh(p+Q)re—ieg(Q)T|<Q|Cp‘l|\p>|2_
Q
(8.9

IX. SUMMARY AND DISCUSSION

In this work we have analyzed in some detail the dynami-
The remaining problem is to compute the functidgQ) cal properties of a hole in an antiferromagnet. Due to the
=/|{Q|c,,|¥)|? for the Hubbard model. The numerical mapping between the attractive Hubbard model at arbitrary
calculation can be carried out by Lanczos diagonalizationslensity and the half-filled repulsive Hubbard model in a
by exploiting the negligible size dependence of this quantitymagnetic field, our analysis directly applies also to the more
already verified in the previous examples. The ground statgeneral case of hole propagation in correlated one-
| of the half-filled Hubbard model at magnetizatipr= dimensional models with a gap either in the charge or in the
—3+4(2v+1)/L can be numerically obtained in chains up to spin spectrum. Most of the known quasi-one-dimensional
L=16 sites. The remaining problem is to select the onematerials in fact belong to these classes and then the present
spinon state$Q), which contribute t&Z(Q). The procedure study may be helpful in the interpretation of the available
we have adopted takes advantage of the continuity of thphotoemission spectra of quasi-1D systéfsirst we found
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FIG. 11. Spinon functiorZ(Q) for the Hubbard model ag FIG. 13. Hole spectral function in the Hubbard modellat

=0 according to the single spinon approximatiéa. refers toU =4t as a function 01_‘ fr_eque_ncy measured_ from the bottom _of the
=4t andp=pr; (b) to U=8t andp=pr; (c) to U=4t and hole holon band. Energy is |n_un|ts of_the hopplngnd t.he calculation
momentump=0; (d) to U=8t andp=0. The hole Fermi momen- has been performed in single-spinon approximation. Pa)elor-
tum pe= /2 corresponds to the bottom of tikdown) hole band.  "€SPOnds top=0 and x=0, (b) to p=0 and u=1/4, (c) to p
Z(Q) vanishes inside the spin-up Fermi sphere. Symbols represer Pr @nd#=0, (d) to p=p¢ and u=1/4. Vertical lines show the

Lanczos data for different system sizds=6 (open circles L location of singularities. Dashed lines identify the divergences in-
=10 (open squardsL =14 (full circles). duced by band-structure effects; dotted lines show the frequencies

of the nontrivial singularities reported in Fig. 8.

the exact spectral function of a single hole in the Isingjiquid which gives rise to the typical critical exponents of

model, which is characterized by a gap both in the chargene-dimensional physics that show up in the hole dynamical

and in the spin channel. As a result, the quasiparticle weighgroperties. Among the results we have obtained, we stress a

is finite also ind=1 andA(p,») has aé contribution. How-  few general features @(p, ) that characterize hole propa-

ever, due to the absence of spin fluctuations the hole dispegation in one dimension:

sion relation is flat and the hole cannot propagate. Then, we (1) The main singularities in the spectral function occur

focused on the singularities of the hole spectral functiona|0ng lines in the 1§, ) plane with the dispersion relation

which occur because of the presence of otfsglessdegrees  determined by the form of the holon bana(p)= e,(p

of freedom(spinons. This spinon gas behaves as a Luttinger + ke), while the spinon excitation induced by the hole is
created at the Fermi points ke . This is a consequence of

i spin charge decoupling, which occurs in one dimension and

| gives rise to divergences i(p, w) also above the bottom of

: the band. In this case, the divergence may occur on both

| - sides of w(p) with different amplitudes. The existence of

|

|

|

|

|

|

(a) | (v)

) two branches of singularities in the spectral functicee
Fig. 8 can be interpreted as due to the presence of a shadow
band?

(2) The singularities are characterized by critical expo-
— nents that can be explicitly calculated in integrable models.
In the isotropic antiferromagnet the &) symmetry forces
the exponent to be exactiy= 1/4 for all microscopic Hamil-

1 tonians. Instead, when spin isotropy is broken, or when the
system has a spin gap, the critical expon&nin general
depends on the parameters of the made on the momen-

i tum of the hole.

(3) Away from the SW2) isotropic point, the tunneling
density of states has either a divergence or a zero at the
bottom of the spectrum according to the value of the critical
exponentX, i.e. according to the parameters of the model.

FIG. 12. Same as Fig. 11 at magnetizatjor 1/4 correspond- Remarkably, the density of states shows at most weak loga-
ing to pe= /4. Symbols represent Lanczos data for different sys-rithmic singularities in the isotropic case.
tem sizesL =8 (open circley L=12 (open squargsL =16 (full (4) At the bottom of the band the critical exponent coin-
circles. cides with the known exponent characterizing the spectral
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weight in doped systems when the zero doping limit is taken.

This provides a demonstration of the continuity of the physi- (d|= . d2|0>, (c.|=

cal behavior of the degrees of freedom which do not develop =0

a gap in the excitation spectrum as doping vanishes. on a given branch of a Luttinger liquid, here identified by
All these features should be experimentally detectable iff+). In order to simplify the notation we drop the label

quasi-one-dimensional materials. from the operators and d whenever it does not lead to
A problem posed by this analysis concerns the relationambiguities. The operatotsare defined with skew boundary

ship between our results and the zero doping limit of theconditions (i.e., with nonvanishing phase shiftsvhile the

generally accepted Luttinger liquid picture of the Hubbard oroperatorsc correspond to periodic boundary conditions:

t-J model. In fact, the continuity between the single hole and

the low doping physics apparently breaks down when the 1 (/2 .

hole momentum does not coincide with the Fermi momen- Cl=—,f el 2yt (x)

tum of the doped model, i.e., when we are above the bottom V7d-o

of the holon band. In this case, standard bosonization meth-

ods would predict singularities in the spectral function with dT_if/’z .

the momentum-independent critical exponent uniquely deter- n \/7 /2

mined by the physics at the Fermi poititahile the accurate

analysis of the single-hole problem reveals the presence ofherey..(x) identifies the fermion field in the right«) or

momentum-dependent critical exponents when we movéeft (—) branch. The relationship between the operatbrs

away from the Fermi level. andc is easily found using canonical anticommutation rules
From a methodological point of view, this study of the for the fieldsy .. :

single-hole motion demonstrates a close relationship be-

tween the physics of hole motion and the single impurity

problem in Luttinger liquids. This mapping is provided, at

strong coupling, by the Galileo transformation, which allows

one to eliminate the hole degree of freedom in favor of awhere

nontranslationally invariant spin system. The recoil of the

hole, embodied in the hole kinetic contribution of the effec- sin( o)

) : L a : ss(N)=(—1)"———=. (A5)
tive spin HamiltonianH,,, cuts off the backward scattering m(N+9)

terms in the impurity problem and generates effective bound- L .

ary conditions that allow the propagation of spinons througt]-rhe overlapO..(3) is given by the determinant of the over-

the impurity site. This idea can be extended to higher dimen-aP matrix Dp,m(8) =ss(n—m) with the restriction on the

sions. The Galileo transformation, in fact, is not restricted toallowed indicesn,m=0 for the left branch and,m=0 for

d=1 and the single-hole problem can be always mapped to gue'ri_g'ht one, which selects the occupied orbitals. From these
pure spin Hamiltonian. Generalizing what we found here, it efinitions we get the symmeiry property

is tempting to assume that alsod»1 the hole acts as an _ _

effective boundary condition placed at the origin of the 0.(8)=0-(-9), (A6)
d-dimensional spin lattice. The emerging picture resemblesvhich follows from the transformation rule of the matrix
and generalizes that of the dipolar distortion proposed by, ,(5) under the mapping n,m)—(—n,—m), which
Shraiman and Siggfa based on the semiclassical treatmentchanges the left into the right branch. A further property of
of a particular choice of boundary condition. More work the determinantsO.(8) derives from the definition of
along these directions may eventually clarify the propertieshe matrix D(8): Dy m(8)=ss(n—m)=s_s(m—n)

of hole motion in a correlated background in arbitrary spatial=D (- &), which gives

dimensions.

+N

clloy (A2
=0

@l )+ oxyT (), (A3)

[’

ch= > ss(n—myd!, (A%)

n=—ow

0.(6)=0+(-9) (A7)
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APPENDIX A: FORMAL CALCULATION sider a system with both left ang right branches with the
OF THE OVERLAP IN A LUTTINGER LIQUID same finite phase shifté§, =6_= 6, and finite but large

) . . o number of particlesN symmetrically distributed in the posi-
In this appendix we give a formal derivation of the over- e and negative branch. In this limit it is clear that the left
lap and right branch decouple and the total overf@aps) is
0.(6.)=(d.|c.) (A1) glvin by thE prod_uct of the two left and right component
(0)~0,(0)0_(). The overlapO(d) can be exactly
between two free particle states computed in a finite lattice with a giveflarge number of
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particlesN (Ref. 11 and is formally given by the previously wherek,=(27//)(n+ 8) and kg = +kg. Using the same
introduced determinant with matrix indices belonging to theparticle hole transformation discussed in Appendixiz.,

interval [ 1,N]: the transformatioon— —n) we obtain the analog of Eq.
_ (A6):
0(s)=d tﬂ AN (A8) s 5
= e — = s = : —

whereAj5 is a finite numerical constant. Then, by use of the _Having discussed the general symmetry properties of
relations(A6), (A7) and the previous result we finally get ~ Z%(X), we now turn to the explicit evaluation of the function

0.(5)2=|0_(3PP=0(H=AN"T,  (A9) Z°(x)=(W]e™|w) (B5)

in a free Fermi gas oN particles, wherg¥) is the ground

which gives |0 (8)|/~¥2% where we expressed the _ 9 it .
state with periodic boundary conditions while the momentum

number of particleN as a fractiorp of the number of sites

/. operatorf3 refers to a system witbkewboundary conditions.
Following Appendix A, we carry out the calculation for a

APPENDIX B: THE DYNAMICAL model of fermions with constant phase skéifthroughout the

QUASIPARTICLE WEIGHT Brillouin zone and then we relate the resultZf(x) by use

of the symmetry properties previously discussed. In particu-
In Eq. (5.52 we showed how the dynamical quasiparticle |ar, if we keep only the most relevant singularity, the factor-
weightZ(x,t) splits into the product of contributions coming ization property proved in Eq5.52) gives
from the right and left fermion branches. Now we have to ' '
evaluate the generic matrix element appearing in the formal  Z%(x)=e'®*z% (x)2% (x)=e'®*Z% (x)Z°(—x), (B6)
expression ofZ(x,t) for a noninteracting Fermi gas charac-

terized by given phase shif. at the two Fermi points: where use has been made of the symméBy) and Q

=Q,+Q_ is the reference momentum of the intermediate
s = ix(ﬁ’r_Qr) states.
Z:00=(czle e, B1) In a free Fermi gas, both the ground st{de) and the
where the statefc.) are defined in Appendix A an@. intermediate states are Slater determinants built with the dif-

represents the total momentum operator for the fermions if¢rent fermionic operators, andd,, respectivelysee Egs.
the right + or left — branch, defined in Eq5.51), with  (A2) and (A3)]. The translation operator exXxp&) with P
fermionic operatorsy,. andy_ obeying skew boundary con- =P, +P_ (B3) is a one-body unitary operator that maps the
ditions (5.4). Here Q. is the minimum momentum of the Slater determinant with plane waves single-particle orbitals
right branch ofd electrons(i.e., electrons with a defined
value of the momentun®), as excitations in the righd _ 1 iemom

branch can only increase the momentum byj2/, with ¢”(r)_\/76 (B7)
positive integelj. ConverselyQ_ is the maximum allowed '

momentum in the left branch af electrons, as excitations in into another Slater determinant with orbitals

the leftd branch can only decrease the momentum by/2”

with negative integej. Though in a Luttinger liquid) .. are 1 . :

infinite constants, the functior, (x) andZ_(x) are finite (1) = \/_72 ss(j —m)el i, (B8)

also in the continuum limit and have an important property, ‘

referred to in the following as the Fourier positivilgega- wheresg(n) is defined in Eq.(A5). The overlap between
tivity). By inserting a complete set of the mentioned excita-these two Slater determinants is just the determinant of the
tions with definite momentum in the right-hand side of Eq.NXN matrix M, of the overlaps between the occupied or-
(B1) we get bitals:

Zi(x)=n§0 2 [(C.4|d; n)|2€! @ Ox, (B2) Mam=2"2 ss(j—m)ss(j—n)Z (B9)

wherej in |dj,n> labels all the possible excited staﬂe§,H> giving explicitly
with momentumQ, +2=n//. Such a spectral decomposi-

tion of Z? implies that the Fourier coefficient&? (n)  sinmeZ"—Z"
=[({e 12™X7 7% (x)dx are nonvanishingand positive defi- (—1" me”TéT o for n¥m
nite) only for n=0 (Fourier positivity. Analogously M= ) (B10)
Z%(n)>0 only for n=<0 (Fourier negativity. 2 1+iueimss'n7”5 for n=m

In terms of thed operatorg/A3) the momentum on each T '

branchP. is diagonal and reads
where we have introduced the phase factere' with u
Isizz (kn+k|-::)drﬁdni (B3) =27Tx//. The matri.an.m can be written as the product
n three diagonal matricdsvith diagonal elements+{1)", z",
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and (—1)™], which contribute to the determinant with a
phase factor and the Toeplitz matfiy,_,, given by

2rd O

T- |
0

C(6)=1+0(u—6)(e?7-1),

C( 0)e7i0n,

2

(B11)

where0 is the step function. The leading singularity of the
determinant ofT might be extracted by means of Sz&go
theorent® which would give

detT=eXp[Ngo+Z ngngn] (B12)
n=1
with
_dea ~in? InC(6 B13
On= . >-€ nC(6). (B13

By performing the Fourier transform,, is simply evaluated:
go=14u,
g,=(8/n)(1—e """ for n#0. (B14)

However, this theorem holds only for continuo@¢6) and
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The Fourier positivity property ofj*(x) can be easily
proved by expanding the exponential in EB18). By com-
paring Eq.(B17) and Eq.(B6) we find

9" (/1Z3(0=g"(—x)/Z7°(=x),  (B2D)
where the left-hand side has the Fourier positivity property
(as the ratio of two function satisfying this property also
satisfies the Fourier positivity propejtywhile the right hand
side has the Fourier negativity property. Therefore both
terms of this equation have to be constank,mmplying that
Zi(x)ocg+(x). The overall proportionality constant can be
determined by noting that the=0 Fourier coefficient in Eq.
(B2) coincides with the square of the overla@_ (5)|%,
which has been explicitly calculated in EGA9). On the
other hand, then=0 Fourier component off"(x) can be
read off from Eq.(B18) yielding Z3 (x)=g™ (x).

In the thermodynamic limit{'— at fixedx and fixed
density of fermionsp=N/L) Eq. (B19) simplifies:

Z° (X)=Ay2mp) (—ix+e) (B22)
where e~0O(x?//?) is a vanishingly small positive term,
which defines the branch cut for the nonintegral exponentia-
tion of the complex number-{ix+ €). Taking the Fourier

does not apply directly to our case. However, one can followransform, we getfor 0< §<1)
the same regularization applied in an analogous calculation

for the Ising modéP by noting that the Hilbert matrix of
elementH,,_, defined by

sinmé
m—

7(n+6) (B15

has the same kind of singularity shown By In fact, the

coefficientsa1 that characterizeH are just given byg,
= 6/n for n#0 andgy=0. Therefore, following Ref. 25, we
can apply Szege theorem to the ratio of determinants:

=exp{ Ngo+ >, n
n=1

Finally, the determinant of a Hilbert matrix can be analyti-
cally evaluated, as shown in E¢A8), giving, to leading
order,

2

defl 26
g-nOnt ?

(detH)?

} . (B16)

Z°(x)=defT=e'¥*g* (x)g" (—x), (B17)

22 (k)= (2mp) " FA2sin w)T(1— 62O (k) (k) ¥ .
(B23)

The asymptotic evaluation of the two function$ (x) for
a Fermi gas with arbitrary phase shift also provides the lead-
ing singularity for z{’= ™ (x)=z="™(x) entering the
spectral function of the interacting model with different
phase shifts on the two branchés . In particular, fort
=0, the Fourier transform af(x,0) in Eq.(5.52 splits into
the sum of terms with different phase shﬁ$= é.+mand

6_=46_+m each given by
Z(Q+k)=Bsin(w &)k% =1 for k>0

Z(Q+K) =Bsin(# & )(—k) &+ 21 for k<0
(B24)

where the overall phase factor depends on the reference mg-q s the average spinon momentum. The prefactor can be

mentum of the intermediate stat®s= =k, (for k,<kg) and

g (x) =A5N52ex;{ 2> (B18)
n=1
=AJN(1—€e"]%. (B19)

A, is the same numerical constant appearing in(Bg§) and
is given explicitly by

©

INAy=—8%(1+C)+ >, j

2

5 2
j—2+ln

P
1— 1—2” (B20)

C=0.5772 ... being the Euler constant.

also calculated: B=2(27Tp)7(:ﬁ+7§2*)A§+A§7F(1—53_
—&). In this case, the Fourier transform is nonvanishing
for both positive and negatiieand shows singularities with
the same exponent fér— 0*. The amplitude ratio tends to a

number that, in the free Fermi gas, just depends on the phase
shifts:

A
A

Z(Q+k) _sin(md})
Z(Q-K) sinmé)

= lim (B25)

k—o0*

The asymmetry between the two sides of the singularity is
therefore enhanced when one of the phase shifts gets small.
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APPENDIX C: THE LONG-WAVELENGTH EXPANSION p—0) and we perform the numerical computation ofBlet

The first task is to evaluate the summation present in Ecfor several values oR and 7. The results are reported in
(6.16 at largeR. For simplicity we restrict the analysis to the Fig. 6.
low-density regime. It is easy to verify that the most relevant

contributions to the sum are those arouqe-0. Forr#s APPENDIX D: DERIVATION
this gives the approximate form: OF THE FINITE-SIZE CORRECTIONS
497 In this appendix we sketch the derivation of the general
Ars™~ m[f(qr)— f(ds)], (C)  formula (7.3 for the finite-size corrections in the Bethe an-
roe satz soluble models: Hubbard ahd at J=2t. We closely
where the functiorf(q) is given by follow the procedure detailed by Woynarovich in his work
_ , on the finite-size corrections of the Hubbard model at finite
7 dk el(kR=mIk72) doping?® For the sake of clarity, Hubbard artd) models
f(a)= _.27  k—-q (€2 will be treated separately.
Standard asymptotic expansion leads to 1. Hubbard model
, » dx . ,sinx We consider the Hubbard Hamiltonian oh &ite chain at
i(qR—7J02/2); —iax? . . - L . )
f(q)=e e, (C3  fixed chemical potentigl, and magnetic field (in units of

the hopping amplitude):
wherea=[2z/(1+q2)?]/(2R) andz= —J7/R. In theR—

limit at z=const,a—0 and the problem simplifies. Notice L

that this last limiting procedure requires thats regular and H= _gl > (CiT+1,gCi,a+ CiT,o-Ci+1,o-)+Ui:21 Ni 1N |
therefore that ¥ qz is always positive. This implie$z]| 7

<1/kg (wherekg is the Fermi momentum of the spingn L

which is always satisfied at low density. In general this in- +,ui21 (nip+ni)— hz (ni,;=ni ) (D1)

equality leads tdR>v 47 wherev = Jkg is the spinon veloc-
ity at low density. In the following we will consider only this
regime. In this casey can be set equal to zero in the integral
leading to the final expression:

whereo=1,| is the electron spin index. The Bethe ansatz
equations for the Hubbard chain read

Ns sink; — X
f(q)— ol (AR-7I¢12) (C4) Lkj=27l;+ > 2arctar6 4’TB>,
) =1
g (D2)
which inserted into Eq(C1) gives
ACh g Ne G
il 2 2 arcta 4T
A~ ei(xr+yr2)_ei(xs+y52) ’ c5 =1
=l (Y .
a Mg
wherer ands run over the occupied spinless fermion orbitals :277‘]“+le 2 arcta76 2—0 ) ,
[—v,v] andx=27R/L, y=—272J7/L2. The diagonal ele-
ments require a separate analysis, which gives whereN.=L—1 andNg=N, . The quantum numbets and
2 J, are integers or half odd integers depending on the parities
A, ~ el 0ty g X+ yr} ce Of Ne and Ng: 1;=Ng2mod(1), J,=(Nc+Ns+1)/
2 mod(1). Theexistence of a solution to these equations

requires that each sgtandJ,, consists of mutually different
quantum numbers. Therefore, the distributigris uniquely
defined by the position of the holg. Due to the periodicity
of the Bethe ansatz equations by the substitutienl;+L
o _ andkj—k;+2m we can always assume that the-1 quan-
2sin{ 3[x(r—s)+y (r<=s9)} tum numberd; fill the range[l,+1,l,+L—1]. The impor-

Now it is convenient to express the matAy as the product
of a real matrix B, and other diagonal matrice®,,

=Y |n fact, A=DBD where

s 7(r—s) » TFS, tant low-energy real solutions are found if the quantum
numbers], are chosen as contiguous integéos half odd
X+ 2yr integerg. We denote asl,,, and J,.x the minimum and

By~1-——. (C7)  maximum value of the distribution, respectively. The ground

state corresponds to the most symmetrical distribution
The asymptotic form of th&l-spinon Green functioZ (R, 7) around zero compatible with the quantization rules. It is use-
is then given, besides a global phase factor coming from th&l to introduce the additional quantitids =1,—1/2, I
determinant oD, by the determinant of the reAlXN ma- =l,+L—1/2,J" =J,n— 1/2 andJ™ =J,,,+ 1/2, which, by
trix B,s. For convenience, we fix a finite rath/L=p (even  definition, satisfy the relation.1). Finally, the total energy
if the expressions previously derived are exact only foris expressed in terms of the rapiditiesand\ , by
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NC
E=—22) cok;+ uNc+h(Ng—Ng/2). (D3)
]

The Bethe ansatz equatior®2) can be written as
z.(k;)=1;/L and zy(\,)=J,/L in terms of the functions
z.(k) andzg(\) defined by Eqs(2.6) of Ref. 28. Following

J’k* K N
- pC( )_T!

[ [ 2
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f“z AU p (V) = 281
27 ), - arctart )ps(M)=1--1,

57
this work we also introduce the boundarlesand\ = of the
rapidity distributions defined by (k™)=1%/L andzy(\™)

=J*/L. The distribution function for the rapidity(k) is

defined as the derivative af(k) with respect tk and, due
to Eq. (7.1, satisfies

(D4)

while the analogous distribution functign(\) obeys Eqs(2.14) of Ref. 28. Following the derivation of Ref. 28 we find the
O(1/L?) correction to the rapidity distributions, which can be expressed in compact notation as

p(K,N)=p(K,\)+

1 [pa(KAK'NT)  py(KN[KTAT)  pa(KNKTNT)  pa(k,AKTAT)

247 pe(k")

wherep, p;, p, are vector functions with two components,

pe(k™)

(DY)

Ps()\+) ps(A\7) ’

(k" kT N NT) = €x(kot+27,Kg Ao, — No)

one referring to charge and the other to spin, and satisfy

equations(2.16),(2.20 of Ref. 28. Notice that in our one-

hole case the functions, are symmetric under the simulta-

neous interchange & —k~ and\*—\~ while the func-

tions p, are antisymmetric. This property leads to the

+ ch(ko)pooc(ko)[(k+ —ko— 277)2
— (k™ —kg)2]+ mv&(No)pas(No)

X[ =N)2+(N"+Xo)?] (D7)

cancellation of the charge contribution to the finite-size cor-

rections of the total energy, which now reads

1
E=Le. (k" kK A" A )——=e€(k" kK, AT ,A7),

12
(D6)

wheree,, and e, are defined by Eq92.23—(2.25 of Ref.
28. In the thermodynamic limk™ —k; (i.e., the holon mo-
mentum and k™ —ky+ 27 while, as usual, the spin rapidi-
ties N are centered symmetrically around the oright
—X\o and N\~ ——\0 By expanding e.(k* k", AT, A7)
around its limiting value for infinite size we get

d6; 96 Pasc(Ko) jzw f 0
S = o TPeck) = —| ~1+ . 71e(K) = |
98, 36

25,

DS 2 \ T

in terms of the chargev (ko) ] and spinv¢(\g)] velocities.
The next step is to express the difference betweérfk*]
and its asymptotic valug [ky] in terms of the known pa-
rameterdN) andD) . To this end we start from the Eqgs.
(D4) and evaluate their derivatives with respectkto and
A~ in the thermodynamic limit. The final expressions fQr
and v coincide with Eqs(2.34 of Ref. 28 in which thek
integration is extended to the full intervgd,27]. Instead,
the equations fob,. and 65 now read

©C k
Ulc(k)) _P ( 0)f)\i arctari4n/U) o15(N) = poc(Ko) Z11,
— A0

w

»c(Ko) * o
okt ok - 2 : Ux Uls(}\)_f Uls()\))Epr(kO)le’
0 — 0

™

pas(ho)( jkzwcrzC(k)— JokocrzC(k)) —pr()\O)arctamm\o/U)— p-s(ho) in arctari4an/U) ops(N) = pos(No) Zan,

98, pudNg)| [ 0 (N (Ng) (A
e _pesiho) f ° (k) — f ook | =220 arctaran g 1) — o) f ® arctari4n/U) ops( N =poc(ho) Zoy
122N 2 —kg ™ ™ o

-2

dd 96 _ Pocs()\o)/

0 —}\O
A > \_1+L0025(7\)_fw Uzs()\))EPws()\o)Zzzl

(D8)
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where the additional functions

ks

dk
es(x)=hs—2f —K;(\—sink)cogk

7 27
o :ﬁpc(s)
1c(s) ok ’ (Dg) f)\o d)\/K o N
L 2R TADED (p1g)
IP¢(s)
O2c(s)= NG Ao dN .
ec(k)zhc—ZcosknLJ EKl(smk—)\)eS(A),

satisfy the equation$2.16), (2.36 of Ref. 28. From their
definitions, it is easy to see that the equations satisfied by the _ _ o _ _
elements of the dressed matrix simplify and giye=1 and  which give the spin and charge excitation energies. Obvi-

£,,=0 while ously, the holon energy is,= — .. The external field$g
and h, are chosen in such a way thef\y)=0 and e(kg)
Ao d\’ ) ) =0. The charge and spin distributions are given by
522()\):1_f Z_Kz()\_ﬂ )E2N"),
_)\0 n
(D10 p (M:F K (A —sink)
ro d)\ S . 47T2 1
k =f —K(sink—X\ ),
k= | | oKl €2 ) v -
—f 5 Ka(A=N")ps(\),
where the kernel¥,(x) and K,(x) are defined byK;(x) AT (D15)

=8U/(U?+ 16x?) andK,(x) =4U/(U%+4x?). Some of the
elements of the additional matrix;; can be related to the

dressed charges; by the algebraic relations

= d(JXOd)\K ink— ) po(N
pc( )—Z-l-CO _)\OE 1(S|n - )Ps( ).

1 The spinon and holon velocities are
Zn=5~ §12(Ko)Z12,

5 1 deg(M)
WUS:— T )
Zo=[2&9(Ng)] 7, D11 ps(No) dA
22=[ 22 \o)] (D1D) "o o1
Zy1+Zy1=— &1 Ko) €22 No), S 1 del(k)
M= " hko) dK |,
while the remaining combinations are expressed in terms of Pelfo ko

715 andos by The cutoff Ay and the holon(dressell momentumk, are

related to the magnetization and to the position of the hole in

1 o0 =\ . . .
Zi=— 5[ J)\ d)\(fls()\)—J Od)\O'ls()\):|, the charge distribution by
0 — o0
Ih kO
) - sinkg 1 r:fo dkpc(k),
- 0
d\ Ns JAO d\p\)
A —= .
+f ° 2—K1(t—)\)ozs()\)}. LS, P
_)\0 ar

D12 Finally, the elements of the dressed charge ma&waluated
(D12) at the cutoffk, and \y) are given by Egs(D10) and the
The two functionsoy(\) and op5(\) satisfy the following —additional matrix is defined by EqeD12) with the help of
equations: Egs.(D13). The finite-size corrections to the energy and the
correlation exponerX; are then given by Eq7.3) in terms
1 ' No dN’ of the above defined quantities.
o1s(N) = EKl()\_Smko)_ J')\OEKZ()\_)\’)UB()\,)’
2. Supersymmetrict-J model

Ao dM’ The expressions for theJ model are quite similar. In
Tas(N)= = 5—Ka(A=Ao)— f_h S K2(A=A)oas(A). particular the formal size correctiofig.3 are the same while
0 (D13) only the definition of the coefficients are different. Also the
procedure closely follows that outlined for the Hubbard
By substituting Eq.(D7) into Eq. (D6) and evaluating the model. Therefore here we will just report the final expres-
quantities in brackets by means of EB8) we get Eq(7.3).  sions in Sutherland’s representafidf’ noting that in this
In conclusion, the relevant equations for the one-holdformalism there is only one “charge’i.e., the holg N.
problem in the Hubbard model are =1.
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The spin and charge excitation energies are given by the

equations

dv’.
S —0(v—v')elv'),

e(v)=hy—20(20)— f”o -
(D18)

—-vg

vo

dv .
——260(2v—2W)eq(v),

(W) =he+ f -

-vg

where hg and h, are chosen in such a wag(vy)=0 and

e(wp)=0. The kernelf(x)=2arctax is defined according
The dot represents derivation with respect to

to Bareset al?’
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| v
—“=f ° dvpe(v) B(2We—20),
L),

1+Ng vo
3 =j dvpg(v).
—vo

(D22)

Other relevant quantities are the dressed charges:
0 dv’.g , ,
r (v—0v")&xn(v"),
(D22)

vo duv .
le(W):J' _27729(2W_2U)§22(U)-
“vp

v

fzz(v)zl_f

the argument. The charge and spin distributions are given bip the following, we will consider the dressed charges evalu-

_ 1. vo dv’. , )
ps(v)—;ﬁ(Zv)—fuogﬁ(v—v )ps(v’), o1

vo dv .
pc(W)=J:v %20(2W—2v)ps(v)

and the spinon and holon velocities are

D 1 deg(v)
0™ b(vg)  du

w0 (20
1 dey(w)
pc(Wo) dw

2TV =—

Wo

The cutoffvy and the holon rapidityv, are related to the
magnetization and to the position of the hole in the charge

distribution by

ated at the cutoff£,o==~&,,(vg) and &1,=¢&;5(Wp). Finally,
the elements of th& matrix are defined by

1 (vo dv
lezi‘f'f _0'1(0)0(2W0_20),

—vg 2T

1
ani

6(2U0_2W0)_ 0(2U0+ 2W0) vo dv
oy _f 501(0)

—-vg

X[B(vg—v)—60(vy+v)] (D23

Z;l_ Z,=0,

where the functiorv;(v) satisfies the following equation:

o dov’.
—0(v—v')o(v').

2
(D24)

v

1.
(Tl(U): ;a(ZU_ZWO)_J

—-vg
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