
PHYSICAL REVIEW B 15 MARCH 1998-IVOLUME 57, NUMBER 11
Theory of hole propagation in one-dimensional insulators and superconductors
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The dynamical properties of hole motion in an antiferromagnetic background are determined in one-
dimensional models in zero magnetic field, where spin isotropy holds, as well as in an external magnetic field.
The latter case is also relevant, via particle-hole transformation, to the problem of hole propagation in one-
dimensional ‘‘superconductors.’’ The singularities in the spectral function are investigated by means of
bosonization techniques and perturbation theories. Results are then compared with Bethe ansatz solutions and
Lanczos diagonalizations. The formalism also leads to interesting connections to the single impurity problem
in Luttinger liquids. A rich structure is found in the spectral function whenever spin isotropy is broken,
suggesting the presence of exotic momentum dependence in photoemission spectra of~quasi! one dimensional
materials.@S0163-1829~98!04808-5#
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I. INTRODUCTION

The spectral properties of a single hole in a quantum
tiferromagnet still represent an outstanding problem in
physics of strongly correlated electron systems. Althou
more than 25 years elapsed since the seminal work of Br
man and Rice1 ~BR! there is still no consensus on the natu
of hole motion~coherent or incoherent! or on the features o
the long-range distortion induced by the hole on the anti
romagnetic ordering. On the other hand, a full understand
of the dynamics of a single hole is clearly required before
problem of the hole-hole effective interaction, mediated
the magnetic background, can be addressed. This issue
evant in the low doping regime, is a key problem in t
framework of high-temperature superconductivity. Furth
more, recent developments in angle-resolved photoemis
and inverse photoemission experiments,2–4 have made it pos-
sible to extract the momentum-dependent spectral functio
several compounds, including high-temperature superc
ducting materials at stoichiometric composition, which a
good quantum antiferromagnets. The photoemitted elec
leaves a mobile hole in the spin background: therefore th
experimental studies directly address the problem of h
propagation in systems where electron correlations pla
key role.

A widely accepted model to describe the physics o
quantum antiferromagnet is the well-known Hubbard mod5

at half filling ~one electron per site!:

Ĥ52t(
^ i , j &

~cis
† cj s1H.c. !1U(

i
~ni↑2

1
2 !~ni↓2

1
2 !,

~1.1!

wherecis
† (cis) is the creation~annihilation! operator of an

electron with spins at the lattice sitei and the symbolŝi , j &
indicate nearest-neighbor summations over a hypercubic
partite lattice in arbitrary spatial dimensiond. Henceforth
even ~odd! values for i indicate conventionally one of th
570163-1829/98/57~11!/6444~30!/$15.00
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two sublattices. The operatornis5cis
† cis is the number op-

erator of a particle with spins at the given sitei . This model
is defined in a finite lattice withL sites and standard periodi
boundary conditions. When the total number of partic
Nc5N↑1N↓ equals the number of sites,~i.e., at r5Nc /L
51) this Hamiltonian is believed to develop a gap in t
charge excitation spectrum. This is actually rigorous in o
dimension where the exact Lieb and Wu solution6 yields a
finite gap for arbitrary repulsionU.0 and magnetization pe
site m5(N↑2N↓)/2L. A particle hole transformation

ci↑
†→~21! ici↑ ~1.2!

maps the half-filled Hubbard model atU.0 and magnetiza-
tion m into the same model atm850, negative interaction
(U852U) and densityr85122m. This mapping also
shows that the problem of a single hole in an antiferromag
at nonzero magnetic field is relevant to understand the p
toemission spectra in superconductors: in fact, there is q
robust numerical evidence7 that the negative-U model is an
s-wave superconductor ind52, and in one dimension the
exact Bethe ansatz solution predicts quasi-long-range o
in the ground state8.

Although the treatment of a single hole (Nc5L21)
might seem a major simplification, there are only few resu
valid and accepted in more than one dimension. The
gaoka theorem is a remarkable exception, stating that fod
.1 the ferromagnetic state with maximum total spinS
5 1

2 (L21) is the unique ground state of the infinite-U Hub-
bard model, apart for the trivial degeneracy of the 2S11
spin components.9

At strong coupling the Hubbard model at half filling
mapped into a standard Heisenberg model with antife
magnetic superexchangeJ54t2/U. The presence of a singl
hole modifies slightly this mapping: each site is singly occ
pied and the hole hops from site to site, weakening lo
antiferromagnetic correlations. This process is described
the so-calledt-J model:
6444 © 1998 The American Physical Society
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Ĥ52t (
^ i , j &,s

~cis
† cj s1H.c.!1J(

^ i , j &
~SW i•SW j2

1
4 ninj !,

~1.3!

where the constraint of no double occupancy is understo
The exact mapping from Hubbard tot-J also includes a
three-site term, which is neglected here because it is belie
not to change the physics of the model, at least in o
dimension.10,11 The last, density-dependent, contribution
Eq. ~1.3! can be also dropped for our purposes because
effective only when more than one hole is present in
system.

This work extends and develops the analysis presente
a previous Letter12 about the spectral properties of hole m
tion in one-dimensionalmodels of correlated electrons. I
such a case, spin charge decoupling allows one to desc
the low-energy physics with an effective HamiltonianĤ
written as the sum of two commuting partsĤ5Ĥs1Ĥr , the
former governing the spin degrees of freedom~spinons! and
the latter the charge ones~holons!.

This picture is by no means new in the field of on
dimensional electron systems: standard analytical treatm
show that, if the excitation spectrum of the model is gaple
the low-energy physics in both charge and spin sector
described by a Luttinger liquid model13–15for generic micro-
scopic Hamiltonians. The case is different in the Hubb
model for positiveU at half filling or, for negativeU, at zero
magnetic field and arbitrary density: Only one of the tw
sectors is gapless and the renormalization group~RG! equa-
tions of the generic~the so calledg-ology! model flow to
strong coupling. Theg-ology model parametrizes the mo
general low-energy interaction present in one-dimensio
translationally invariant systems of spin one-half electro
The model depends on several coupling constantsgi , with
i 51, . . . ,4,which may also have a spin dependencei and'
for electrons interacting with the same or with oppos
spins, respectively.13 Conventionally,g1 refers to backward
scattering,g2 and g4 to forward scattering, andg3 to Um-
klapp scattering, the latter present only in lattice models
commensurate fillings. When the coupling constantsg’s go
to strong coupling under the RG flow, they should cross
exactly solvable Luther-Emery line leading to a spin gap
g1i,ug1'u and a charge gap for22g2,ug3u. The Hubbard
model at half filling belongs to the first class at negativeU
and to the second at positiveU, thereby providing a mode
Hamiltonian that encompasses the most general strong
pling fixed points. Therefore, understanding the Hubb
model at half filling and arbitrary magnetization would sh
light on the physical behavior at the Luther-Emery fix
point. This would be particularly valuable for the dynamic
properties because the retarded Green function

Gs~p,v!52^Cucps
† ~v2Ĥ1E01 ih!21cpsuC&

~1.4!

of the Luther-Emery model is not exactly known, although
widespread prejudice ascribes no interesting features to
correlation function8,16 due to the presence of a gap in th
excitation spectrum. According to a weak coupling RG a
proach, the Hubbard model at half filling flows towards t
U→` limit and then the low-energy behavior of the Gre
d.
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function can be understood by analyzing the strong coup
fixed point. Here, doubly occupied sites are strictly forbidd
and the concept of a hole motion in a quantum antiferrom
net is easily defined.

A first study of the single hole Green function in quantu
antiferromagnets~QAF! was performed by Brinkman an
Rice1 who calculated the Green function of thet-J model by
neglecting quantum fluctuations, i.e., by replacing the s
exchange interaction by its Ising form:SW i•SW j→Si

zSj
z in Eq.

~1.3!. In the absence of holes, the Ne´el state is the classica
ground state of the model, whereas the lowest spin excita
has a gap;J. This Hamiltonian can be thought of as th
strong coupling limit of a model characterized by a gap b
in the spin and in the charge sectors~say the half-filled Hub-
bard model with uniaxial spin anisotropy!. The problem of
hole motion in this system has been studied in any dim
sion, but its solution ind51 is particularly simple and in-
structive. When the hole hops in the lattice it leaves a de
in the Néel background. As a result, the spectral weig
A(v,p)5(1/p)Im G(p,v) shows ad-function contribution
at the lowest excitation energy with nonzero quasiparti
weight Z, together with an incoherent band separated b
gap. A brief discussion of these results is contained in S
II. The situation is similar in the limit of infinite
dimensions17 where there is no incoherent contribution a
only a series ofd-function peaks at higher energies is le
The inclusion of quantum fluctuations, however, drastica
changes this simple picture due to the presence of gap
excitations in the magnetic background. This is the subjec
the present study, which we organized as follows.

In Sec. III an extremely useful mapping between the o
hole Hamiltonian and an effective spin problem is given
some detail. In Sec. IV we discuss an interesting relati
ship, which emerges from the previous formulation, betwe
hole dynamics and the impurity problem in Luttinger liquid
The main result of the present work can be summarized
the general structure we find in the Green function of all
models we have examined:

G~p,t!5E dQ

2p
Gh~p1Q,t!Zp~Q,t!, ~1.5!

where Gh(k,t) is just a free propagator for the holon
Im Gh(k,v)5pd„v2eh(k)…, eh being the holon dispersion
energy. The functionZ(Q,t) is completely determined by
the spinon gapless excitations, and is highly nontrivial w
momentum-dependent power-law singularities and bra
cuts. This decomposition is introduced in Sec. V, which a
contains a discussion of the analytical properties of the fu
tion Z(Q,t). A few specific examples, i.e., thet-JXY model
and the Bethe ansatz soluble models, are presented in S
VI and VII, respectively. A numerical evaluation of the no
universal features of the spectral function in the Hubb
model is carried out in Sec. VIII while some conclusions a
drawn in Sec. IX.

II. HOLE MOTION IN ISING ANTIFERROMAGNETS

The problem of hole motion in an Ising antiferromagn
can be solved exactly and provides the simplest mode
hole dynamics in a magnetic environment characterized b
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6446 57S. SORELLA AND A. PAROLA
discreteexcitation spectrum. This feature turns out to be
sponsible for the different behavior between the Ising and
XY case, which will be discussed in Sec. VI. The Ham
tonian describing hole hopping in an Ising model is a sim
generalization of thet-J model where only theSz component
of the spins is retained:5

Ĥ52t(
is

@cis
† ci 11s1ci 11s

† cis#1J(
i

Si
zSi 11

z , ~2.1!

with J.0. We consider a chain with an even numberL of
sites and periodic boundary conditions. At half filling th
ground state is a classical Ne´el stateuN&. Out of the two
states obtained by translation of one lattice vector we se
the one with a spin down at the origin. The annihilation
the spin-down electron at the origin defines our starting s
u0&5c0↓uN&. The Hamiltonian~2.1!, when acting onu0&,
generates states, which, in the thermodynamic limit, can
uniquely labeled by the position of the holeuR&. In fact, for
L→`, closed paths of the hole along the ring can be
glected and the retraceable path approximation beco
exact.1 Then, it is easy to check that

ĤuR&52t@ uR21&1uR11&] 1S EN1
J

2D uR&2
J

2
dR,0uR&,

~2.2!

whereEN is the energy of the Ne´el state. The correspondin
eigenvalue equation can be easily solved in this subspac
the thermodynamic limit, the energy spectrum consists o

bound state with energyEb5EN1 1
2 J2 1

2 AJ2116t2 and ex-
ponentially localized wave functioncb(r ). Above the bound
state lies a continuum with energies labeled by the w

vector qP(0,p): Eq5EN1 1
2 J22tcosq. For everyq there

are two degenerate wave functionscq
6 classified according

to their parity. Odd states are unaffected by the perturba
dR,0 in Eq. ~2.2! because the wave function vanishes on s
while even states, which include the bound state, have
on-site probability given by

ucb~0!u25
J

AJ2116t2
,

~2.3!

ucq
1~0!u25

32t2sin2q

L@J2116t2sin2q#
.

The spectral function easily follows from the aforemention
properties of the eigenfunctions. In fact, the Lehmann
composition ofA(p,v) gives

A~p,v!5(
s

z^s,2pucp↓uN& z2d~v2Es!, ~2.4!

where the sum is over all the one-hole statesus,2p& of mo-
mentum2p ~modulo p due to the doubling of the cell in
duced by the antiferromagnetic ordering inuN&). These
states can be quite generally written as Bloch superposit
of eigenstatesus& of the Hamiltonian~2.1!:

us,2p&5
1

AL
(
R

eipRTRus&, ~2.5!
-
e
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where TR is the R sites translation operator. This identit
readily gives the matrix element appearing in Eq.~2.4! in
terms of the on-site value of the eigenfunctioncs(r ) corre-
sponding tous&: ^s,2pucp↓uN&5 1

2 cs(0). Therefore both the
energy levels and the matrix elements are independent op.
This is due to the absence of fluctuations in the classical N´el
state, which leads to a local Green function, as already
ticed by Brinkman and Rice1 in the J→0 limit of this prob-
lem. By substituting this result into Eq.~2.4! and taking into
account the form of the energy spectrum we find that, in
thermodynamic limit, the bound state is singled out beca
of its finite value of the on-site probability and gives rise
a d-function peak. Instead the other states merge into
incoherent band:

A~p,v!5
J

2AJ2116t2
d~v1 1

2AJ2116t2!

1
2

p

A4t22v2

J2116t224v2
Q~4t22v2!, ~2.6!

where v is now measured from the reference valueEN
1 1

2 J andQ(x) is the step function. The incoherent portio
has several interesting properties: it is a regular, even fu
tion of v that vanishes at band edgesv562t for every
nonzero value ofJ. At large J (J.4t) it shows a broad
maximum atv50 while for J,4t it has a minimum atv
50 and two symmetrical maxima appear atv5
6 1

2A16t22J2. In theJ→0 limit the incoherent part develop
square root singularities at band edges in agreement with
BR analysis. The shape of the spectral function for two r
resentative values of the couplingJ is shown in Fig. 1.

In conclusion, the exact Green function of this problem
purely local and then the hole does not propagate in the Is
antiferromagnet. This is conventionally understood on
basis of the ‘‘string’’ defect that the hole creates in the an
ferromagnetic ordering when it hops.1 However, the quasi-
particle weightZ is finite at all nonzero values ofJ: the hole
behaves as a free particle of infinite mass. This is due to
nature of the excitation spectrum of the Ising model, wh
does not allow for gapless modes. In fact we will show th
both features ofA(p,v) will be strongly modified in more
realistic models of hole dynamics.

III. THE EFFECTIVE HOLE HAMILTONIAN

In the following we consider thet-J Hamiltonian ~1.3!
defined onL sites with periodic boundary conditions. Ou
task is to derive an effective spin Hamiltonian describi
how the hole hopping processes perturb the antiferrom
netic background in the particular case of single hole dopi
In classical physics this would correspond to a Galileo tra
formation from the laboratory frame to the reference fra
locally at rest with respect to the hole. This transformati
can be easily generalized to quantum mechanics18 and the
derivation can be performed in arbitrary dimension. As a fi
step we notice that thet-J Hamiltonian~1.3! is translation-
ally invariant and then any one hole state with definite m
mentumk and spin↑ can be written as
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uck&5
1

AL
(
R50

L21

e2 ikRTL
Rc0↓us0&, ~3.1!

whereus0& is asuitablespin state with the spin at the origi
R50 fixed to ↓ and TL is the spin translation operator de
fined by the transformation property

TLSW RTL
215SW R11 , ~3.2!

where periodic boundary conditions~PBC! over theL sites
are assumed in order to define the effect of translation at
rightmost site. The latter relation determines the unitary
eratorTL only up to an arbitrary phase factor. In order to fi
the phase ofTL it is enough to specify the action of th
operator on a reference~‘‘vacuum’’ ! stateuF&. Here we fol-
low the convention to impose that theferromagnetic state
uF& is translationally invariant:TLuF&5uF&. By substituting
the representation~3.1! of the one-hole state into the eige
value equation for thet-J Hamiltonian we find thatuck& is an
exact eigenstate of thet-J Hamiltonian if and only ifus0& is
an eigenstate of the following effectivespin model:

Hk5t@e2 ikTl 1H.c.#1JF (
R51

l 21

SW R•SW R11G , ~3.3!

where the hole-translation operatorTl is defined exactly as
TL ~3.2! but with PBC on a squeezed chain ofl 5L21 sites,
without the originR50 where the hole sits.Hk is indeed
defined onl sites since the hole at the origin is decoupl
from the other sites, namely,Hk commutes with the spin
operatorSW 0 at the origin. In the following we take the con

FIG. 1. Exact spectral functionA(v) ~in units of the hoppingt)
for the single hole in the Ising model for two values ofJ. The heavy
line represents thed contribution and its height is proportional t
the quasiparticle weight.
he
-

vention to set the spin at the origin with down orientatio

S0
z52 1

2 . Notice that the magnetic part, proportional toJ,
represents a Heisenberg model withopen boundary condi-
tion, since all the magnetic bonds connecting the spins w
the hole are obviously suppressed. Instead the hole kin
term K̂ ~i.e., the first term inHk) is written in terms of the
translation operatorTl , which enforces periodic boundar
conditions on the squeezed chain. In this way we effectiv
traced out, with no approximations, the charge degree
freedom reducing the one hole problem to a purely, n
translationally invariant, spin model. The effective Ham
tonian Hk explicitly depends on the momentumk of the
state, showing that the distortion of the antiferromagne
ordering does depend in a nontrivial~and nonlocal! way on
hole motion.

Also the hole dynamics can be conveniently expresse
terms of the eigenstates ofHk . The spectral function of a↓
hole is written, in Lehmann representation, as

A~p,v!5
1

p
ImG~p,v!5(

s
u^sucp↓uC&u2d~v2Es1E0!,

~3.4!

whereuC& is the ground state of the model with no holes a
us& represents a complete set of one-hole intermediate st
The corresponding energies are, respectively,E0 and Es
while the momentum space annihilation operator is defin
by

cp↓5
1

AL
(
R

eipRcR↓ . ~3.5!

Note that with the adopted definitions, the Heisenbe
ground stateuC& has total momentumNp, whereN is the
number of spins up in the squeezed chainN5Sz1l /2, and
Sz is thez component of the total spin. As a consequence,
intermediate statesus& must have momentumNp2p. By
using the general representation~3.1! of one-hole states with
momentumk, Eq. ~3.4! becomes

A~p,v!5(
s

u^ssun0↓uC&u2d~v2Es1E0!, ~3.6!

where now the sum runs over all the eigenstatesuss& of Hk
with k5Np2p. This expression shows that the quasipa
cle weight of the hole is simply expressed as the modu
square of the overlap between the Heisenberg ground s
and eigenstates of the effective hole Hamiltonian.

Equation~3.3!, specialized to the case of a hole of m
mentump, can be equivalently written in a form that make
explicit connection with the problem of a Heisenberg mod
with a local perturbation. In fact, by adding and subtractin
the additional bond operatorĴ5JSW 1•SW l , the magnetic part
of the HamiltonianĤs can be made translationally invarian
~on thesqueezedchain!:

Ĥp5K̂1Ĥs2 Ĵ5t~21!N@eipTl 1H.c.#1JF(
i 51

l

SW i•SW i 11G
2JS1•SW l . ~3.7!
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6448 57S. SORELLA AND A. PAROLA
The only extensive, i.e.,O(L), term in the total hole Hamil-
tonianĤp is Ĥs , which coincides with the usual Heisenbe
model, while the other two contributions induceO(1) cor-
rections to the total energy. Therefore, the physics of
bulk of the spin system is not affected by the presence of
hole, which, at most, acts as aboundary termon the Heisen-
berg antiferromagnet. This can be simply understood in
limiting cases: for a static hole, sincet50 the Hamiltonian
Ĥp becomes a Heisenberg model withopenboundary condi-
tions, while, forJ→0, the last termĴ is irrelevant and the
eigenstates ofĤp are those of a Heisenberg model withpe-
riodic boundary conditions on anl -site chain. A close con-
nection between the presence of the hole and a chang
boundary conditions on the magnetic Hamiltonian th
emerges quite naturally, in every dimension, within this f
malism.

In one dimension we can proceed further by mapping
spin-12 model into a spinless fermion Hamiltonian via sta
dard Jordan-Wigner transformation.8 It is convenient to in-
troduce an additional phase factor in the fermion creat
operatorscn

† in order to obtain the usual sign of the kinet
energy term:

Sn
15~21!ncn

†expF ip(
j 51

n

c j
†c j G . ~3.8!

The magnetic partĤs of the Hamiltonian~3.7! becomes

Ĥs52
J

2 (
i 51

l

~c i
†c i 111H.c.!

1J(
i 51

l

~ 1
2 2c i

†c i !~
1
2 2c i 11

† c i 11!, ~3.9!

where the boundary conditions in the first term are perio
or antiperiodic for even or odd values ofL1N, i.e., c l 11
[(21)N1Lc1. As usual, N is the number of fermions
which is related to the total magnetization of the origin
spin model bySz5N2l /2. Analogously, the bond termĴ is
written as

Ĵ52
J

2
~21!N1L~c1

†c l 1H.c. !1J~ 1
2 2c1

†c1!~ 1
22c l

† c l
!.

~3.10!

In order to express the hole kinetic termK̂ in terms of the
spinless fermion operators we have to relate the spin tr
lation operatorTl to the usual fermion translation operat
Tf , which leaves invariant the fermionic vacuum state a
satisfiesTfc iTf

†5c i 11. Keeping track of the phase factors
the definitions we haveTl 5(21)NTf . The fermion transla-
tion operator is then conveniently expressed in terms of
Fourier transformed operatorsck5l 21/2( j 51,l c je

ik j where
the momentak are quantized according to the choice
boundary condition

Tl 5~21!NTf5expF i(
k

~k1p!ck
†ckG . ~3.11!
e
e

o

in
s
-

is

n

c

l

s-

d

e

By use of Eqs.~3.9! and ~3.11! we can express the Hamil
tonian of a spin-down hole of momentump in the t-J model,
Ĥp ~3.7!, in terms of spinless fermion operators:

Ĥp5texpF ip1 i(
k

kck
†ckG1H.c.2

J

2 (
i 51

l 21

~c i
†c i 111H.c.!

1J (
i 51

l 21

~ 1
2 2c i

†c i !~
1
2 2c i 11

† c i 11!. ~3.12!

This concludes our formal manipulations on the origin
problem. We now have an interacting fermion system t
can be studied by means of the powerful techniques de
oped in the framework of one-dimensional physics, rang
from renormalization-group approaches to bosonizat
methods.13 However, before addressing these issues, it is
structive to dwell on the similarities between the problem
hole motion and the effects of local perturbations in Lu
tinger liquids, which emerge naturally from the structure
the effective Hamiltonian~3.7!.

IV. RELATIONSHIP TO THE IMPURITY PROBLEM

In this section we investigate the close relationship
tween the physics of a single hole in thet-J model and the
impurity problem in Luttinger liquids. The connection be
tween these two different problems becomes apparent w
we take advantage of the previously discussed Galileo tra
formation. The HamiltonianĤp governing the dynamics o
the hole represents a Heisenberg model with open boun
conditions plus the hole kinetic contribution, which involve
the translation operatorTl . Furthermore, note that the ma
trix elements appearing in the spectral function~3.6! are re-
lated, through Eq.~3.1!, to the overlaps between the groun
stateuG& of the unperturbed Hamiltonian (Ĵ5K̂50) on L

sites and that of the perturbed one (ĴÞ0) in the squeezed
chain ofl sites. The difference in the number of sites of t
chain defining the perturbed state can also be thought o
the local perturbation induced by the removal of the tw
bonds connecting the origin in theL-site ring.

Let us focus our attention on the Hamiltonian of a hole
momentump in the L-site t-J model with XY spin anisot-
ropy: thet-JXY chain. In fermion representationĤp is

Ĥp5t expF ip1 i(
k

kck
†ckG1H.c. 2

J

2(i 51

l

@c i
†c i 111H.c.#

1
J8

2
~21!N1L@c l

† c11H.c.#, ~4.1!

whereJ85J represents the perturbation induced by the ho
In order to be specific, we consider the model withN52n
11 fermions ~spinons! in a lattice of L215l sites. The
kinetic operatorK̂ commutes with the magnetic term inĤs

and therefore, atJ850, the eigenvectors ofĤp coincide with
those of theXY model onl sites with PBC while the eigen
values are shifted by 2t cos(p1Q) whereQ is the momen-
tum of the spin state. The physics of hole motion is co
tained in the perturbation term proportional toJ8, therefore it
is convenient to study the effects of the local perturbation
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a function of its strengthJ8. In the static limit (t50) the
hole kinetic termK̂ is suppressed and we recover the Ham
tonian of anXY model with a weak bond. This problem ha
been extensively studied in the past:19,20 the last term in Eq.
~4.1! is a relevant perturbation and at long wavelengths
system behaves as a chain with a missing bond. As a co
quence, the overlapz between the state withJ850 and the
state with finiteJ8 goes to zero in the thermodynamic lim
with a universal exponentX independent of the strength o
the perturbation:

z5^J8uG&}L2X. ~4.2!

According to conformal field theory, the exact value of t
exponentX can be found analytically by taking the diffe
ence between the size corrections of the open and the
odic chain and dividing by 2pvs , wherevs is the spinon
Fermi velocity. In theXY model we getX5m2/411/16
wheremP(21/2,1/2) is the magnetization of theXY model
along thez direction.

The recoil of the hole, embodied in the hole kinetic te
K̂, qualitatively changes this picture as we already ant
pated. The perturbationJ8 is now marginal: it does not drive
the model towards open boundary conditions but instea
changes the boundary conditions of the fermionic mode
Eq. ~4.1! introducing phase shifts for right and left movin
spinons, which depend on the strength of the perturbationJ8
and vanish asJ8→0.

The effect of the kinetic term can be understood by use
first-order perturbation theory in the parameterJ8 in Eq.
~4.1!. For J850 the ground stateuG& is nondegenerate an
can be represented by a Slater determinant of plane w
with PBC. At first order, the ground state becomes

uJ8&5uG&1
J8

2l (
kÞq

~eik1e2 iq!
^k,quck

†cquG&
ek,q

uk,q&,

~4.3!

where the sum runs over the momenta of particle-hole e
tations of the unperturbed system andek,q are the corre-
sponding excitation energies:

ek,q5J@cosq2cosk#12t@cos~p1k2q!2cosp#.
~4.4!

The matrix element in Eq.~4.3! ^k,quck
†cquG& is unity pro-

vided q belongs to the Fermi sea whilek lies outside the
Fermi surface. Perturbation theory fails in the thermod
namic limit due to low-energy excitations that may be
‘‘forward’’ ~i.e.,q;6kF andk;6kF) or ‘‘backward’’ type
~i.e., q;6kF and k;7kF). However, for anytÞ0 the
backward scattering is cut off by the recoil and does
introduce singularities in perturbation theory, as can be e
ily checked by use of Eq.~4.4!. Instead, forward scattering i
always singular, leading to the vanishing of the overlapz
~4.2! in the thermodynamic limit.

In order to better understand the change in the state
duced by the boundary termJ8, let us consider a differen
problem, namely, the way the ground state changes due
weak modification of the boundary conditions. Let us take
the unperturbed state a Slater determinant of plane wa
fq(r )5eiqr l 21/2 with momentum quantization appropria
-
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to PBC: l qj52p j . A change in boundary conditions in
volves the introduction of certain momentum-depend
phase shiftsdk . Therefore, we take as the perturbed st
another Slater determinant of plane wavesck(r ) with the
generalized following momentum quantization rule:l kj
52p( j 1dk). Here and in the following, the phase shifts w
be measured in units of 2p. For weak perturbations, th
phase shifts will be small and we can keep onlyO(dk) terms
in the expansion of the state in the unperturbed basis.
usual, to linear order, only a single particle-hole excitati
uk,q& is allowed and the weight of the corresponding con
bution turns out to be

pdk

l sin~k2q!/2
~4.5!

for kÞq. Again, we see that a change in boundary conditio
leads to singularities only for forward scattering as in t
hole problem when the effect of the recoil is taken into a
count. The comparison can be made quantitative by linea
ing the momentum dependence about the Fermi points
Eqs. ~4.5! and ~4.3! and matching the two expressions. Th
effective phase shifts induced by the perturbationJ8 at long
wavelength in the Hamiltonian~4.1! are then given toO(J8)
by

2pd65
J8coskF

2tsinp7JsinkF
~4.6!

at the Fermi points. The two signs refer to the right and l
moving spinons, which in general have different phase sh
Notice that the resulting phase shifts depend, in general
the density as well as on the total momentump of the hole.
Following the well known analysis of Anderson’s orthog
nality catastrophe,21 we then find that the overlap betwee
the states before and after the perturbation should vanis
the thermodynamic limit with an exponentX5(d1

2 1d2
2 )/2.

Few details are reported in Appendix A.
In conclusion, we can interpret the effects of the prese

of a hole in an antiferromagnetic background as a chang
boundary conditions in the corresponding spin problem
the recoil of the hole is neglected~i.e., t50) both forward
and backward scattering between the holon and the spin
are relevant. In this case, the hole effectively breaks the s
ring and at low energy the model becomes equivalent to
open spin chain~in the hole reference frame!. Instead, fort
Þ0 the backward scattering channel is cut off and the p
turbation induced by the hole becomes marginal. The p
ence of the holon introduces, via the forward scattering ch
nel, phase shifts in the boundary conditions of the spin ch
Spinons can then propagatethrough the site where the hole
sits.

These results have been obtained analytically for anXY
model but, in view of the universality of the Luttinger liqui
description of one-dimensional~1D! correlated systems, we
expect that our picture remains valid for generalXXZ spin
chains, including the isotropic Heisenberg point.
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V. FIELD THEORETICAL ANALYSIS

In this section we address the problem defined by
HamiltonianĤp ~3.12! in fermionic representation by use o
the bosonization method. The bulk termĤs ~3.9! just repre-
sents a Heisenberg model with periodic boundary conditio
which has been extensively studied in the past.13 The
renormalization-group approach applied to such a prob
shows that both backward scattering and Umklapp scatte
terms are marginally irrelevant: at long wavelength t
model is characterized only by the interactions of the f
ward type with nonuniversal coupling constants renorm
ized by the RG flow. This fixed-point Hamiltonian represen
a Luttinger model that can be exactly mapped into a f
bosonic system following the procedure of Mattis a
Lieb,22 the bosons representing density fluctuations. As s
gested by the analysis of Sec. IV, the additional ter
present inĤp slightly modify this picture, appropriate for th
undoped antiferromagnet. The combined effect ofK̂ and Ĵ
on the long-wavelength physics is equivalent to a chang
the boundary conditions of the Luttinger model from pe
odic to skew: Although the original problem~3.7! is not
translationally invariant due to the bond termĴ, the low-
energy fixed-point Hamiltonian develops effective bound
conditions that depend on the nonuniversal parameters c
acterizing the microscopic model. In particular we exp
that the boundary conditions will continuously evolve fro
periodic at smallJ/t to generally skew at finiteJ/t with the
exception of the zero magnetic field case where the boun
conditions at the fixed point remain periodic for anytÞ0
due to the presence of the additional SU~2! spin symmetry,
as will be shown later. The only singular point is att50
where the hole kinetic contribution vanishes andĤp de-
scribes a Heisenberg model with open boundary conditio
In the following, we will exploit this picture extracting quan
titative predictions that will be later compared with the exa
solution in specific models.

On this basis we are led to consider a low-energy prob
defined by a long-wavelength effective HamiltonianĤp sum
of two commuting terms: a Luttinger model with skew
boundary conditions plus the hole kinetic term

K̂5eh~kh!, ~5.1!

kh5p1Q. ~5.2!

Here we have definedkh as theholon momentumand Q is
the spinon momentum, which obeys the quantization ru
appropriatefor the skew boundary conditions ofĤs . Equa-
tion ~5.2! therefore represents momentum conservation
the charge and spin excitations. Generally, we expect tha
renormalization-group flow modifies the effective hole ba
in a nonuniversal way: 2tcos(kh)→eh(kh).

Clearly, such a form of the long-wavelength Hamiltoni
may describe only the low-energy part of the excitation sp
trum of the effective hole Hamiltonian~3.12!. Therefore, an
elementary spin excitation that changes the total spinon
mentumQ must be accompanied by a corresponding va
tion of the total momentump so that the holon momentum
kh is not modified. Otherwise the hole kinetic termK̂ would
e
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contribute a finite amount to the excitation energy and a l
energy excitation in the spin channel would not correspo
to a low-lying excitation of the total Hamiltonian. In othe
words, the low-energy spin excitations described by the
fective spinon Hamiltonian with skew boundary conditio
represent the physical excitation spectrum at fixed holon m
mentumkh . The same low-energy theory also describes c
related electron models when we release the constrain
single occupancy, as in the Hubbard model. In fact, at h
filling, the constraint of single site occupancy is known to
irrelevant at long wavelengths in the renormalization-gro
sense, leading to the same low-energy excitation spectru13

The overall picture of the low-energy physics of the on
hole problem is confirmed by the exact solution of Bet
ansatz models, which also allows for a quantitative analy
of their long-wavelength properties, as will be shown late

As a first step, we now generalize the bosonization p
cedure in Luttinger models with skew boundary conditio
~Sec. V A!, then we analyze in some detail the form of th
hole kinetic operator present in the effective Hamiltonia
the possibleboundary conditions that may occur in micro
scopic models and the corresponding finite-size correcti
to the ground-state energy of this effective model~Sec. V B!.
Finally we discuss some implication of the previously o
tained results including the expected asymptotic form of
hole Green function~Sec. V C!.

A. The long-wavelength Hamiltonian: bosonization

At low energy, the important degrees of freedom for
many fermion system are those close to the Fermi mome
kF

6 for the left and right movers, i.e.,k;1kF
1 in the right

(1) branch andk;2kF
2 in the left (2) branch. As usual,

the two branches are extended to infinity, within the assum
tion that the low-energy physics is not affected by th
approximation.13 This extension allows one to define tw
fieldsc1(x) andc2(x) representing, in the continuum limit
the annihilation operators for spinless fermions on the ri
and left branch. The continuum limit of the original ferm
onic field c†(x) is then given by the linear combination

c†~x!}eikF
1xc1

† ~x!1e2 ikF
2xc2

† ~x!, ~5.3!

where we have kept the distinction between right and
Fermi momentakF

6 , which may in principle differ. The ori-
gin of the fermionic fieldx50 has been chosen to matc
with the first sitei 51 of the squeezed chain of lengthl . As
stated before, the fieldsc6(x) obey skew boundary condi
tions:

c6~x1l !5e2p id6c6~x! ~5.4!

with arbitrary phase shiftsd6 .
The Luttinger model is defined by right and left movin

fermions with kinetic term and interactions of the forwa
type. This allows one to express the effective low-ene
theory in terms of two bosonic fields defined as bilinear co
binations of the fermionic operators. More precisely, follo
ing Mattis and Lieb,22 the Fourier transformN6(q)
5*dxe2 iqxN6(x) of the operatorsN6(x)5c6

† (x)c6(x)
1const satisfies nontrivial commutation rules:
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@N6~q!,N6~2q!#57
l q

2p
. ~5.5!

The above equations suggest the definition of the boson
F(x) and its conjugate momentumP(x) via

N1~x!5c1
† ~x!c1~x!2^c1

† ~x!c1~x!&

5
1

A4p
@P~x!1]xF~x!#,

~5.6!

N2~x!5c2
† ~x!c2~x!2^c2

† ~x!c2~x!&

52
1

A4p
@P~x!2]xF~x!#,

where the averagê &, taken on the reference ground state
the Luttinger model, is introduced in order to regularize t
divergences. These operators obey the following canon
commutation relations:

@F~x!,P~x8!#5 id~x2x8!. ~5.7!

Notice that the densitiesN6(x) satisfy periodic boundary
conditions independently of the phase shiftsd6 , being bilin-
ear combinations of fermionic operators. As a conseque
the fields]xF(x) and P(x) obey periodic boundary condi
tions and the Luttinger Hamiltonian, which can be entire
expressed in terms of the bosonic fields@F(x),P(x)#, has
exactly the same Gaussian structure as for a pure Heisen
model:

Ĥs5
vs

2 E0

l

dxFKsP2~x!1
1

Ks
~]xF!2G1const, ~5.8!

wherevs andKs are the renormalized Fermi velocity and th
dimensionless interaction parameter which characterize
long-wavelength behavior of the Heisenberg model.8

This simple quadratic Hamiltonian can be diagonalized
introducing normal modes and this procedure leads to
familiar Luttinger liquid energy spectrum of the on
dimensional Heisenberg model. However, here we are in
ested in the change in the finite-size corrections to the en
spectrum induced by the presence of the hole. Therefore
normal modes must be carefully defined in thel -site chain.
As a first step note that two quantum numbers labeling
eigenstates can be defined: the two operators

P* 5E
0

l

P~x!dx5ApE
0

l

@N1~x!2N2~x!#dx,

~5.9!

DF5@F~ l !2F~0!#5ApE
0

l

@N1~x!1N2~x!#dx

commutewith each other and also commute withĤs , being
related to the total number of fermions on the two branch
which are conserved quantities in the Luttinger mod
Therefore the diagonalization of the quadratic form~5.8! can
be performed in each sector defined by the pair of quan
numbers (DF, P* ). In particular, the choiceDF5P* 50
identifies the reference state introduced in Eq.~5.6!. The
quantization rules directly follow from the definition~5.9! of
ld
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these operators. At fixed total number of fermions~i.e., at
fixed magnetization in the original model! DF is uniquely
determined. A low-energy excitation in this model corr
sponds to moving a fermion from the left to the right branc
This changes the value ofP* by an even multiple ofAp. On
the other hand, by varying the total magnetization by in
gers, DF changes by integer multiples ofAp while the
model preserves a nondegenerate~degenerate! ground state
for even~odd! l due to a change in the boundary conditio
associated with the Jordan-Wigner transformation. There
we conclude that the possible values ofDF andP* are

DF5Ap~n1g!,
~5.10!

P* 52Ap~m1d!.

Herem andn are integers whileg andd are two nonuniver-
sal real quantities@defined mod~1!#, which characterize the
ground state of the model. Their precise value is determi
by the renormalization-group flow, which connects the m
croscopic model to the Luttinger Hamiltonian. The bosoniz
tion procedure alone does not fix these quantities uniqu
except when additional symmetries are present in the mi
scopic model.

Now we are ready to introduce the normal modes t
diagonalize the quadratic form~5.8!. It is convenient to de-
fine the periodic field

C~x!5F~x!2
x

l
DF. ~5.11!

By substituting into Eq.~5.8! we get

Ĥs5
vs

2 E0

l

dxFKsP2~x!1
1

Ks
~]xC!2G1

vs

2l Ks
~DF!2.

~5.12!

Next we define canonical creation and annihilation bos
operators:

Ck5
1

Al
E

0

l

dxC~x!e2 ikx5A Ks

2uku~
ak

†1a2k!,

~5.13!

Pk5
1

Al
E

0

l

dxP~x!eikx5 iA uku
2Ks

~a2k
† 2ak!,

where the values ofkÞ0 correspond to periodic boundar
conditions and are quantized in units of 2p/l . Finally we
get the low-energy HamiltonianĤs in diagonal form:

Ĥs5E01
vs

2l
S ~DF!2

Ks
1Ks~P* !2D1vs(

kÞ0
ukuak

†ak .

~5.14!

HereE0 is the reference energy of the nondegenerate gro
state of the model withg5d50, which is known, from con-
formal field theory,8 to depend on the lattice sizel as

E05e0l 2vs

p

6l
~5.15!
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if e0 is the Heisenberg ground-state energy per site. No
that wheneverd or g acquires nonzero values only the 1/l
finite-size corrections to the ground-state energy~5.12! are
modified. The quantum numbersg andd then correspond to
energy contributions induced by a change in the bound
conditions of the model. This remark will be made mo
precise in the following.

B. Spinon momentum and skew boundary conditions

In the previous section we investigated the bosoniza
of the bulk part of the spin Hamiltonian in some detail.
the Luttinger fixed point the HamiltonianĤs can be ex-
pressed in terms of bosonic operators in the standard f
~5.8! independently of the presence of skew boundary c
ditions ~5.4!. However, the energy spectrum depends on t
quantum numbers (DF,P* ), which should be somehow re
lated to the particular choice of boundary conditions. In
der to make this relationship more transparent, let us ana
the bosonization form of the momentum operator~i.e., of the
translation operator! appropriate to the chosen boundary co
ditions.

The fermionic translation operator is defined
Tfc(x)Tf

†5c(x11). This unitary transformation can b
split conveniently into two steps: first a conventional tran
lation of left and right moversc6(x)→c6(x11) ~5.17! and

then a rescaling of the fields:c1→e2 ikF
1

c1 and
ic

he
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c2→eikF
2

c2 ~5.16!, in order to take into account the phas
factors in Eq. ~5.3!. The correct form ofTf is then Tf
5T1T2, where

T15expH i E
0

l

dx@kF
1c1

† ~x!c1~x!2kF
2c2

† ~x!c2~x!#J ,

~5.16!

T25expH 2E
0

l

dx@c1
† ~x!]xc1~x!1c2

† ~x!]xc2~x!#J .

~5.17!

There is no overall constant in the definition of the trans
tion operator since the expression~5.17! acts as the identity
on the fermionic vacuum state. Note thatT1 has been already
bosonized via Eq.~5.6!. The other factorT2 is just a conven-
tional translation of the fieldsc6(x) and acts on the bilinea
forms N6(x) as the bosonic translation operator:
P(x)→T2P(x)T2

215P(x11) and F(x)→F(x11).
Therefore

T25expH i

2E0

l

dx@P~x!]xF1]xFP~x!#J . ~5.18!

From the previous analysis is clear how to represent
translation operatorTf within bosonization. By use of the
explicit expressions of the terms inT1, T2, and Eq.~5.6! we
get
Tf5eiP̂,

P̂5Q01
kF

11kF
2

2Ap
P* 1

kF
12kF

2

2Ap
DF1

1

2E0

l

dx@P~x!]xF1]xFP~x!#5Q01S kF
11kF

212p
~n1g!

l
D ~m1d!

1
kF

12kF
2

2
~n1g!1

1

2E0

l

dx@P~x!]xC1]xCP~x!#, ~5.19!
ges
e
x-

m

on
ion

he
where in the last equality we took advantage of the canon
transformation~5.11! and we expressedP* andDF by use
of Eqs. ~5.10!. The additive constantQ0 represents a finite
contribution, which depends on the bandwidth cutoff of t
Luttinger model but not on the chain lengthl and is ob-
tained by the substitution of Eq.~5.6! into Eq. ~5.16!. Its
value is determined by requiring that in the ground staten
5m50) the spinon momentum, in thel →` limit, tends to
kF , i.e., to the momentum of the translationally invaria
case without perturbation induced by the hole@ Ĵ5K̂50 in
Eq. ~3.7!#. This givesQ05kF(122d) for odd l . The total
momentum operatorP̂ commutes with the bulk Hamiltonian
Ĥs and then each spinon state is characterized by a sp
momentumQ that is related to the total momentump and to
the holon momentumkh by Eq. ~5.2!.

Through the bosonized form of the fermion translati
operator it is also possible to relate the phase shiftsd6 ,
which define the boundary condition of the microscop
model to the effective parameters (g,d) entering the low-
al

t

on

energy Hamiltonian. The elementary excitation that chan
the value ofP* corresponds to moving a fermion from th
left to the right branch. In fermionic representation, this e
citation carries momentumkF

21kF
11(2p/l )(d12d2). In-

stead, in bosonic representation, this corresponds ton50
andm51. In order to match the change in total momentu
due to such an excitation we have to identify

g5d12d2 mod~1!. ~5.20!

Analogously, a low-energy and low-momentum excitati
that changes the total spin corresponds to adding one ferm
to the right branch and one fermion to the left branch. T
change in momentum is thenkF

12kF
21(2p/l )(d11d2)

while the quantum numbers aren52 andm50. Matching
the two expressions gives

d5
d11d2

2
mod~1!. ~5.21!
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This concludes the bosonization of the long-wavelen
effective Hamiltonian, which includes the bulk contributio
Ĥs and the hole kinetic termK̂, which is written in terms of
Tf . Collecting the various terms together our final expr
sion for the low-energy spectrum of one hole at moment
p is

Ep5Es1Eh , ~5.22!

Es5e0l 2vs

p

6l
1

2pvs

l
S ~n1g!2

4Ks
1Ks~m1d!2D ,

~5.23!

Eh5eh~kh!, ~5.24!

kh5p1Q, ~5.25!

Q5kF~2m11!1
2p

l
F ~v11n1g!~m1d!1

v2

2
~n1g!G ,

~5.26!

where we have definedv65(kF
16kF

2)(l /2p)~mod 1). In
the thermodynamic limit, the quantization rule of the spin
momentum reduces to the noninteracting result, which,
odd l , reads

Qm5kF~2m11! ~5.27!

but the finite-size corrections of energy and momentum
plicitly depend on the phase shifts. We stress that both
parameters entering the effective, long-wavelength Ham
tonian (vs , Ks , kF

6) and the phase shifts (d6) cannot be
trivially related to the bare lattice Hamiltonian because
RG flow renormalizes all the couplings not protected by c
servation laws. Their value can, however, be uniquely de
mined in the Bethe ansatz soluble model by matching
form of the finite-size corrections of the one-hole energy a
momentum. This program will be pursued in the followin
sections. More information can be gained at zero magnet
tion. In this case, the effective spin model~3.3! has the ad-
ditional SU~2! spin rotational symmetry, which limits th
possible boundary conditions of the Luttinger model. In fa
in spin isotropic models, the allowed boundary conditio
are either open or periodic: nontrivial phase shifts are
compatible with the requirement of spin isotropy. Therefo
according to our basic assumption the hole kinetic term
bilizes the periodic boundary conditions in the effective s
Hamiltonian. This observation leads to a unique determi
tion of the phase shiftsd6 at zero magnetization, which onl
depend on the parity of the number of sitesl . We first note
that thez component of the total spinSz is simply related to
the total number of fermions and then the spin excitations
labeled by the quantum numbern in ~5.10!. By definitionn
50 corresponds to the ground state. Moreover, in zero m
netic field, states with opposite values ofSz are degenerate
For evenl , the ground state is a singlet and then exci
states labeled byn and 2n are degenerate: this impliesg
50 through Eq.~5.23!. For oddl the ground state itself is a
spin doublet that givesg51/2 ~mod 1! by the same argu
ment. For periodic boundary conditions also the total m
mentum is a good quantum number. At fixed magnetizat
excited states of definite momentum are labeled bym in Eq.
h
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e
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e
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~5.10!, the ground state corresponding to the choicem50.
For evenl the ground state is unique and excited states w
opposite momentum are degenerate, givingd50 by Eq.
~5.23! while for odd l the ground state has finite mome
tum, which implies a twofold degeneracy due to parity. Su
a degeneracy is compatible with the form of the energy sp
trum ~5.23! only for d51/2.

As an example of the previous analysis, we plot in Fig
the overlap squareZ between the Heisenberg ground state
a l 5L21 site ring and the ground state of a hole of m
mentump5p/2 in the L site t-J model atJ54t and van-
ishing magnetization. The results have been obtained
Lanczos diagonalizations in chains with evenL<26. Ac-
cording to our analysis we expect that at long waveleng
the single-hole problem in anevenchain is described by an
effective Heisenberg Hamiltonian withd5g51/2, which
correspond toperiodic boundary conditions onL21 sites,
leading to a finite overlap in the thermodynamic limit. Act
ally, the numerical results provide quite strong evidence
favor of this picture showing an overlapZ that increases
with the size of the system.

In conclusion we see that spin isotropy determines
quantization constantg while the occurrence of periodic
boundary conditions in the effective long-wavelength Ham
tonian fixes the value ofd. At finite magnetization, spin isot
ropy is broken and we expect the occurrence of gene
momentum-dependent values forg andd. These phase shifts
will play an important role in determining the singularities
the Green function. This subject will be discussed in t
following section.

For completeness let us briefly extend the previous d
cussion of the energy spectrum of the model to the cas
openboundary conditions. According to our assumption th
case is relevant only when the hole effective hopping am
tude t vanishes. The general form of the bulk Hamiltonia

FIG. 2. Overlap squareZ between the Heisenberg ground sta
on a (l 5L21)-site ring and the ground state of the effective sp
Hamiltonian~3.7! corresponding to a single hole in theL site t-J
model atJ54t andp5p/2. Lanczos diagonalization has been pe
formed on even chains withL<26. The dashed line is a guide to th
eye.
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6454 57S. SORELLA AND A. PAROLA
Ĥs ~5.8! does not depend on the choice of boundary con
tions and is therefore unaltered. However, after having p
formed the canonical transformation~5.11!, the normal
modes are now defined by use of standing waves rather
the previously introduced plane waves~5.13!:

Cn5A2

l
E

0

l

sin~knx!C~x!5AKs

2kn
~akn

† 1akn
!,

~5.28!

Pn5A2

l
E

0

l

sin~knx!P~x!5 iA kn

2Ks
~akn

† 2akn
!,

where nowkn5(2n11)p/2l with n>0. The bulk Hamil-
tonian for open boundary conditions then reads

Ĥs5E01vs(
n>0

knakn

† akn
1

vs

2l Ks
~n1g!2. ~5.29!

The final expression for the energy spectrum of the h
problem att50, i.e., when open boundary conditions app
is then

E5E01
2pvs

l

1

4Ks
~n1g!2, ~5.30!

where now the size scaling of the reference energy is19

E05e0l 2vs

p

24l
. ~5.31!

Again, in the spin isotropic case the values of the ph
shifts are constrained by the SU~2! symmetry, which gives
g50 for evenl andg51/2 for oddl .

Now we conclude this section by expressing the expec
finite-size corrections to the one-hole energy that eme
from our picture. On the basis of the discussion at the be
ning of this section, it is particularly convenient to work
fixed holon momentumkh extracting the size corrections o
the low-energy excitation spectrum obtained by varying
spinon momentum and the magnetization of the mod
These results will be later compared with the exact form
the energy in two Bethe ansatz soluble models. The
dependence of the hole kinetic contribution~5.24! can be
obtained by direct substitution of the explicit form of th
spinon momentum~5.26!, giving a term proportional to the
charge velocity

vc~kh!5
]eh~kh!

]kh
. ~5.32!

Herekh is related toQm and to the total momentump by the
conservation law~5.25!. We also allow for a size dependenc
of the total hole momentump:

p5p01
2pa

l
~5.33!

valid up to o(1/l ) terms. The constanta depends on the
adopted sequence of lattice sizes. By the conservation
kh5p1Q @Eq. ~5.25!# the holon momentum acquires th
finite-size corrections ofp @Eq. ~5.33!# and Q @Eq. ~5.26!#.
Therefore, the holon kinetic term~5.24! will contribute to the
O(1/l ) size corrections of the ground-state energy as
i-
r-

an

e
,

e

d
e

n-

e
l.
f
e

w

DEh5
2pvc

l
@a1~d1m!~g1n!1v1~d1m!

1 1
2 v2~g1n!#. ~5.34!

On the other hand, the spinon term, being described by
conformal field theory that characterizes the Luttinger l
uids, gives rise to the finite-size corrections already obtai
in Eq. ~5.23!.

In conclusion, at fixed holon momentumkh , the finite-
size corrections of the energyEp of the single-hole problem
give rise to a tower of states that depends on two quan
numbers (n,m) and have total momentump5kh2Qm
~5.27!. The size corrections are uniquely determined by th
bulk properties of the system (vc , vs , Ks) and four addi-
tional constants that determine the boundary conditions
the effective spin Hamiltonian (v6 , g, d):

DEp5
2pvc

l
Fa1~d1m!~g1n!1v1~d1m!

1
1

2
v2~g1n!G1

2pvs

l
FKs~d1m!21

1

4Ks
~g1n!2G

2
p

6l
vs . ~5.35!

Through this equation we can in principle evaluate the e
sive spinon phase shiftsd6 by computing the easily acces
sible finite-size corrections of the one-hole energy. T
equation has been obtained in the framework of thet-J
model where no double occupancy is allowed but we w
show that the same structure persists also in the o
dimensional Hubbard model at finiteU. Therefore we be-
lieve that this form of the finite-size scaling is a gene
feature of one-dimensional correlated models.

C. Orthogonality catastrophe and the hole Green function

In this section we relate the previously introduced pha
shifts with the behavior of physical quantities and spec
dynamical correlation functions of the one-hole problem.
particular, we will address first the evaluation of the ho
quasiparticle weight at holon momentumkh and then the
calculation of the asymptotic behavior of the Green functio

The quasiparticle weight is defined as the square of
modulus of the matrix element:

z5^khucp,↓uC&, ~5.36!

where ukh& is the exact one-hole ground state at holon m
mentumkh , uC& is the ground state of the Heisenberg mod
and we have chosen the convention of creating a hole wit↓
spin projection. Momentum conservation implies that in t
ground statekh5p6kF , wherekF is the spinon Fermi mo-
mentum. By use of the Galileo transformation on the h
problem and a further Jordan-Wigner transformation on
‘‘up’’ spins, the problem is reduced to the evaluation of t
overlap between the two fermionic states corresponding
the Heisenberg ground stateuC& on a L site ring and the
ground stateukh& of the effective spin Hamiltonian define
on the lattice ofl 5L21 sites and the same number of u
spins. In order to study the behavior of the quasiparti
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57 6455THEORY OF HOLE PROPAGATION IN ONE- . . .
weight for L→`, we can limit our attention to the long
wavelength form of the effective spin Hamiltonian. Th
problem is therefore to compute the overlap of two eig
states of the same bosonic Hamiltonian~5.8!, with different
boundary conditions: while the reference stateuC& has stan-
dard periodic boundary conditions~i.e., P* 5DF50), the
one-hole ground stateukh& is defined by nonuniversal
momentum-dependent, values of the phase shifts:

P* 52Apd5Ap~d11d2!,
~5.37!

DF5Apg5Ap~d12d2!.

In the continuum limit this overlap is strictly zero becau
the two states are eigenstates of the bosonic Hamilto
with different eigenvalues forDF andP* . This orthogonal-
ity is, however an artifact of the Luttinger extension to
system containing an infinite number of particles and it
clear that in a finite system the overlap between two sta
with different boundary conditions will be in general finit
The solution is to ‘‘regularize’’ the Luttinger branches,
order to be consistent with a tight-binding model where
same phase shiftsd1 andd2 at the Fermi energy are induce
by a local potential that gives no contribution to the bac
ward scattering. In a free Fermi gas,Ks51 and the two
states can be written as Slater determinants of plane w
with suitable phase shifts. In this case, the overlap can
easily calculated giving an asymptotic power-law behav
that only depends on the value of the phase shifts at
Fermi energy of the right and left branches:

z5^khuC&}expF2
1

2
~d1

2 1d2
2 !lnl G;L2X0, ~5.38!

X05
1

2
~d1

2 1d2
2 !5S d21

g2

4 D , ~5.39!

where the last equality in Eq.~5.39! follows from Eq.~5.37!.
The formal calculation of the overlap is contained in Appe
dix A. This formula generalizes the exact result valid f
d15d2 ~Refs. 11 and 23! and agrees with the prediction o
conformal field theory relating the finite-size corrections
the energy to the exponent of the boundary operators.19 In
fact, the explicit expression~5.39! coincides with the term
proportional to 2pvs /l in the final formula Eq.~5.35! for
the finite-size corrections of the one-hole energy.

This formalism can be easily generalized to the caseKs

Þ1: In fact, the overlap does not change upon unitary tra
formations and it is known that the scaling of the boso
fields

P8~x!5AKsP~x!,
~5.40!

F8~x!5
1

AKs

F~x!

maps the interacting problem withKsÞ1 to the one with
Ks51. By the same transformation, the boundary condit
for the one-hole state are modified due to Eqs.~5.9! and
~5.10!: g85g/AKs, d85dAKs, while for the reference stat
-

an

s
s

e

-

es
e
r
e

-

f

s-
c

n

the boundary conditions are unchanged. The effective ph
shifts of the parent noninteracting case then follow imme
ately:

d1
eff5

1

2F2AKsd1
1

AKs

gG ,

~5.41!

d2
eff5

1

2F2AKsd2
1

AKs

gG
leading to the general expression:

X05FKsd21
1

4Ks
g2G ~5.42!

again consistent with the finite-size corrections to the ene
~5.35!.

The relation between the finite-size corrections to the
ergy and the exponentX0 of the orthogonality catastrophe i
a general property of all conformal field theories19 and holds
also in other cases. For instance, the exponent associat
the open boundary fixed point can be determined in term
the finite-size corrections obtained in Eq.~5.30!:

X05
g2

4Ks
1

1

16
, ~5.43!

where use has been made of the known additional contr
tions to the ground-state energy with periodic~5.15! and
open ~5.31! boundary conditions onL- and l -site chains,
respectively.19 This expression, which applies in the limit o
a static hole, yields the exact exponentX053/16 in the iso-
tropic case, whenKs51/2 and g51/2. This has been
checked numerically in Fig. 3 by Lanczos diagonalization

FIG. 3. Overlap squareZ between the Heisenberg ground sta
on anL-site ring and the ground state of the effective spin Ham
tonian ~3.7! of a single hole in theL site t-J model att50 ~static
limit !. Lanczos diagonalization has been performed on even ch
with L<26. The dashed line is a parabolic fit of Lanczos data. T
full line shows the expected asymptotic slope of the curve on
basis of conformal field theory (2X053/8).
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6456 57S. SORELLA AND A. PAROLA
the hole problem in the limit of vanishing hopping amplitu
t.

Now we can proceed to the study of the asymptotic
havior of the retarded single-hole Green function:

Gs~p,t!5 i ^Cucp,s
† e2 i ~Ĥ2 ih!tcp,suC& ~5.44!

valid for t.0 with h501 as convergence factor. As usua
by performing the Galileo transformation and then a Jord
Wigner transformation we can map the problem of the eva
ation of the Green function to the calculation of the pure
fermionic matrix element:

G↑~p,t!5 i ^Cue2 i ~Ĥp2 ih!tn0uC&, ~5.45!

G↓~p,t!5 i ^Cue2 i ~Ĥp2 ih!t~12n0!uC&, ~5.46!

where the effective HamiltonianĤp is defined in Eq.~3.12!
and the fermion projection operatorsn05c0

†c0, (12n0)
5c0c0

† force the spin at the origin of the chain to poi
upwards or downwards, respectively. In the following, w
will first carry out the calculation of the asymptotic behavi
of the trace of the Green function matrix:

G~p,t!5G↓~p,t!1G↑~p,t!5 i ^Cue2 i ~Ĥp2 ih!tuC&,
~5.47!

which is expected to show all the singularities present in
two separate spin projections.

The long-wavelength form of the HamiltonianĤp has
been already studied in the previous section.Ĥp depends on
the total momentump via a functioneh(kh), which repre-
sents the holon dispersion:

Ĥp5eh~p1 P̂!1Ĥs . ~5.48!

Ĥs is a Luttinger liquid Hamiltonian characterized by su
able boundary conditions and commuting with the spin
momentum operatorP̂ defined on the chain ofL21 sites.
Note that the Heisenberg stateuC& instead refers to the
L-site ring with periodic boundary conditions and therefo
is not an exact eigenfunction of the spinon momentum
eratorP̂. It is then convenient to express the stateuC& as the
sum of all its projections into subspaces of definite mom
tum P̂5Q and substitute this representation into the fo
~5.47!:

G~p,t!5
i

l (
Q

Z~Q,t!e2 i @eh~p1Q!2 ih#t, ~5.49!

Z~Q,t!5E
0

l

e2 iQxZ~x,t!dx,

Z~x,t!5^Cuei ~ P̂x2Ĥst!uC&. ~5.50!

This is the general form of the one-hole Green functio
which shows the effects of spin-charge decoupling on
dynamics of the hole. The spinon functionZ(Q,t) provides
a generalization of the quantityZ(Q), which characterizes
the form of the single-hole Green function in theJ→0
-

-
-

e

n

-

-

,
e

limit.11,23 Here, however, nontrivial dynamics of the spin
are induced byĤs as long asvsÞ0.

Let us first discuss the calculation of the matrix eleme
Z(x,t) in the noninteracting limit. In a free Fermi gas wit
arbitrary boundary conditions, the long-wavelength Ham
tonian reduces to the sum of the kinetic terms for the t
branches of right and left moving fermions. In the continuu
limit the Hamiltonian and the momentum operator are giv
by

H5vs~ P̂12 P̂2!1const,

P̂5 P̂11 P̂2 , ~5.51!

P̂656kFE
0

l

dxc6
† ~x!c6~x!1 i E

0

l

dxc6
† ~x!]xc6~x!.

This particular form of the Hamiltonian shows a close re
tionship between energy and momentum operators tha
clearly valid only in the noninteracting limit. However, the
more general interacting Luttinger liquid can be mapped
the free Fermi gas by the previously defined canonical tra
formation ~5.40! leading to the conservation of the numb
of right and left moving fermions at long wavelength. As
consequence, all eigenstates would factorize in the prod
of two states, one for each branch and, via Eq.~5.50!, also
the functionZ(x,t) would split in the product of two terms
Z

6

d6(x7vst) defined in each branch. However, in the micr
scopic model, defined on a lattice, higher-order terms al
the excitation of a fermion from one branch to another~even
for Ks51). Therefore, the functionZ(x,t) will contain con-
tributions corresponding to all these excitations, which
label by the numberm (2m) of extra fermions on the righ
~left! branch:

Z~x,t!5 (
m52`

`

ei ~Qmx2Emt!Z
1

~d1 ,m!
~x2vst!

3Z
2

~d2 ,2m!
~x1vst!

5 (
m52`

`

ei ~Qmx2Emt!^ei „P̂12Q1~m!…~x2vst!&1

3^ei „P̂22Q2~2m!…~x1vst!&2 , ~5.52!

where the average labeled by1 (2) is taken on the ground
state of the right~left! branch in the undoped system and t
intermediate states are constrained to havem (2m) addi-
tional particles on the right~left! branch. Qm5Q1(m)
1Q2(2m) and Em5vs@Q1(m)2Q2(2m)# represent the
reference momentum and energy of the intermediate st
with m-particle excitations, which are explicitly given i
terms of the Fermi momentum of the spinons byQ1(m)
5kF(m11) and Q2(2m)52kF(2m). The functions
Z

6

(d6 ,6m)(x,t) introduced in Eq.~5.52! are well defined also
in the long-wavelength limit where the spinon Hamiltonia
Ĥs can be written in the bosonized form~5.8!. As discussed
in Secs. V A and V B the quantum numberm, which char-
acterizes the interbranch excitations, appears in the l
energy Hamiltonian only through the quantityP* and can be
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57 6457THEORY OF HOLE PROPAGATION IN ONE- . . .
absorbed in the definition of the phase shifts:d̄15d11m,
d̄25d21m @see Eqs.~5.10!, ~5.20!, and~5.21!#. The calcu-
lation of Z(x,t) then reduces to the evaluation of the cont
bution appropriate for each branch with arbitrary phase s
d̄6 . The technical details are discussed in Appendix B, h
we just report the asymptotic behavior in the thermodyna
limit ~B22!:

Z6
d̄ ~x!}~7 ix !2 d̄2

. ~5.53!

By substituting this result into Eq.~5.50!, the spectral weight
A(p,v)5(1/p)Im G(p,v) is written in terms of the (Q,v)
Fourier transform ofZ:

A~p,v!5E dQ

2p
Z@Q,v2eh~p1Q!#, ~5.54!

Z~Q,v!5E
2`

` E
2`

`

dtdxe2 i ~xQ2vt!Z~x,t!

5(
m

CmQ@v1vs~Q2Qm!#

3Q@v2vs~Q2Qm!#

3vs
122Xm@v1vs~Q2Qm!# d̄1

2
21

3@v2vs~Q2Qm!# d̄2
2

21. ~5.55!

In the Fourier transform ofZ(x,t) only the singular contri-
butions have been included.Q(x) represents the step func
tion whose presence is a direct consequence of the Fo
positivity ~negativity! of the functionZ1 (Z2), as discussed
in Appendix B. This property has a simple physical meani
the particle hole excitations within the right branch of a Lu
tinger model can only increase the total momentum w
respect to the ground state, while the excitations on the
branch can only decrease the total momentum of the sys
Therefore the spinon spectral function atQ.0 has contribu-
tions coming only from excitations in the right branch a
vice versa. The constantsCm , which only depend on the
phase shiftsd1 and d2 in a symmetric fashion, can be ex
plicitly calculated in the free Fermi gas with skew bounda
conditions as shown in Eq.~B24! of Appendix B. However,
we expect that in the interacting models these coefficie
will be renormalized in a nonuniversal way that depends
the physical cutoff present in the microscopic model.

By inserting Eq.~5.55! into Eq. ~5.54!, the contribution
coming from each excited statem gives a divergence in the
spectral function as long asd̄1

2 1 d̄2
2 ,1. The singularities

are located along the lines

Dvm5v2eh~p1Qm!50 ~5.56!

in the (p,v) plane and show the asymptotic behavior

A~p,v!}uDvmu2Xm21, ~5.57!

where Xm5 1
2 ( d̄1

2 1 d̄2
2 ). In general, we expect that the

phase shiftsd6 that characterize the singularities of the spe
tral function depend on the holon momentumkh . Therefore,
ft
e
ic

ier

:

h
ft
m.

ts
n

-

A(p,v) will show singularities along the linesv5eh(p
1Qm) with momentum-dependent exponentsXm .

Another unexpected prediction of the present formali
concerns the behavior of the spectral function in a neighb
hood of the singularity: by a direct evaluation of the prefa
tor we find different results according to whether the cha
velocity is larger or smaller than the spin velocity. In fact,
uvcu<vs , there are divergences only forv>eh(p1Qm)
while the spectral weight vanishes on the other side of
singularity line Dvm50 as there are no states with low
energy contributing to the spectral weight:

A~p,v!}
uDvmu2Xm21

~vs1vc!
d̄1

2
~vs2vc!

d̄2
2 . ~5.58!

Instead if uvcu.vs the spectral function diverges on bo
sides of the singularity with the same exponent 2Xm21 but
different prefactor:

A~p,v!}
p

sin~p d̄7
2 !

uDvmu2Xm21

uvs1vcu d̄1
2
uvs2vcu d̄2

2 , ~5.59!

where the upper sign and the lower one refer to6vcDv
.0, respectively. The amplitude ratio can be evaluated fr
Eq. ~5.59!:

A~Dv!

A~2Dv!
5

sin~pd6
2 !

sin~pd7
2 !

. ~5.60!

This simple expression, which shows the asymmetry of
spectral weight above and below the singularity, is stric
valid only for the Luttinger model, but is also expected to
qualitatively correct in more general cases. In fact this f
ture originates from the different energy spectrum of the
citations on the left and right branches, which is a comm
property of one-dimensional correlated systems. Notice a
that the prefactors in Eqs.~5.58!, ~5.59! are strongly en-
hanced close to the instability, which sets in when the cha
velocity equals the spin velocity.

When we switch on interactions among spinons the ab
expressions@~5.54!, ~5.55!, ~5.58!, ~5.59!# remain formally
unchanged if the phase shifts are suitably renormalized
Ks analogously to Eq.~5.41! where d6

eff→ d̄6 and d→(d
1m). As a consequence, the exponent of the leading sin
larity ~i.e., that corresponding tom50) X0 exactly repro-
duces the exponent already obtained in the calculation of
overlap z ~5.42!. Moreover, the full set of exponentsXm
agrees with the term proportional to 2pvs /l in the finite-
size correction to the energy of the model~5.35! for the
particular choice of the quantum numbern50. The restric-
tion n50 is due to the fact that the intermediate states
pearing in the rotational invariant Green function~5.47! do
not have definite spin and then, at fixedm, the leading sin-
gularity is related to the smallest phase shift, which cor
sponds ton50. It is, however, clear how to generalize the
expressions for the calculation of the spin up~or spin down!
Green function: the sum over intermediate states in
~5.49! has to be restricted to the states with the correct s
projection. Within bosonization it means states with the a
propriate value of the quantum numbern, which is in fact
related to the total spin of the one-hole intermediate s
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6458 57S. SORELLA AND A. PAROLA
through Eqs.~5.9! and ~5.10!. This procedure in fact repro
duces the full set of critical exponentsXm,n that appear in
Eq. ~5.35!.

Finally, if we want to evaluate the singularities in the ho
density of states we just have to integrate the leading
mentum dependence of the spectral function~5.57!:

N~v!5E dp

2p
A~p,v!}(

m
cmv2Xm~0!21/21const,

~5.61!

wherecm are finite amplitudes,v is measured from the bot
tom of the band, and the exponentXm(0) coincides with the
previously introduced critical exponentXm evaluatedat the
bottom of the holon band, i.e., at a total momentump such
that kh5p1Qm sits at the minimum ofeh(kh). In fact this
region of integration in momentum space gives rise to
leading singularity in the density of states. Note that a div
gence in the density of states occurs only ifXm(0),1/4 for
somem.

VI. SINGLE HOLE IN THE XY MODEL

Here we analyze in some detail the dynamical proper
of a single hole in theXY model on the basis of the Hami
tonian already introduced in Sec. IV in the limit of sma
hole mass:J85J!t. The aim of this study is to check, in
simple model, all the general features of hole motion alre
discussed in Sec. V and to carry out the quantitative eva
tion of exponents and amplitudes for this system.

The Hamiltonian of a hole of momentump in the t-JXY
model ~4.1! has been previously derived in some detail a
reads

Ĥp5t expF ip1 i(
k

kck
†ckG1H.c.

2
J

2 (
i 51

l 21

@c i
†c i 111H.c.#. ~6.1!

Here we consider aspin downhole of momentump in a
chain with an even number of sitesL and an odd number o
up spins@i.e., an odd number of fermions in the represen
tion of Eq. ~6.1!# N52n11 corresponding to az-axis mag-

netization m52 1
2 1N/L. According to the discussion in

Sec. III, the appropriate boundary conditions of the ferm
onic problem are thereforeantiperiodic, N1L being odd,
and the quantization rule for the momenta is

kj5
2p

l
S j 1

1

2D ~6.2!

with l 5L21 as usual. The states that diagonalize the h
kinetic term are states of given spinon momentumQ. In the
J→0 limit the spectrum of the Hamiltonian~6.1! can be
obtained by diagonalizing the magnetic term in the subsp
of fixed spinon momentumQ. This procedure gives rise t
spinon Slater determinants of plane waves. The ground s
is doubly degenerate and corresponds to a set ofN occupied
orbitals of momenta centered aroundk50, while low-energy
excitations can be obtained either by changing the numbe
fermions~i.e., the magnetization! N→N1n or by movingm
o-

e
r-

s

y
a-

d

-

-

le
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te

of

fermions from the left to the right branch of the Fermi su
face. The energy of these excited states can be easily ca
lated by taking the expectation value of the magnetic term
the appropriate spinon Slater determinant. Energy and
mentum are therefore given by

Ep52tcos~p1Q!2J
l 21

l (
j 52n2n1m

n1n1m

cosF2p

l
S j 1

1

2D G ,
~6.3!

Q5 (
j 52n2n1m

n1n1m
2p

l
S j 1

1

2D . ~6.4!

These expressions, being based on perturbation theoryJ
!t, are exact toO(J/t) and toO(1), respectively. By car-
rying out the summations and expanding up toO(1/l ) at
fixed r5N/L, we find

Ep52J~ l 21!
sinpr

p
2J~n1r!cospr12tcos~p1Q!

1
2pJsinpr

l
@~m1 1

2 !21 1
4 ~n1r!2#2Jsinpr

p

6l

1
Jcospr

l
~n1r!, ~6.5!

Q52pr~m1 1
2 !1

2p

l
~n1r!~m1 1

2 !. ~6.6!

In the thermodynamic limit, besides the extensive magn
contribution, the energy of the state depends on the ho
momentumkh5p1Q through the form of the holon ban
eh(k)52tcoskh . The spinon momentum is instead given b
Q52kF(m1 1

2 ) when we recognize that the spinon Ferm
momentum is justkF5pr. The O(1/l ) size corrections to
momentum and energy can be also compared to the gen
expressions~5.26! and ~5.35! if we recall that the spinon
velocity isvs5JsinkF5Jsinpr andKs51 in theXY model.
Equations~6.5! and ~6.6! correctly reproduce the predicte
structure of the size corrections, showing that the hole
namics is described by an underlying conformal field theo
This comparison allows one to determine, to lowest orde
J/t, the values appropriate for thet-JXY model of the non-
universal parameters entering Eq.~5.35!:

d5 1
2 ~d11d2!5 1

2 , g5~d12d2!5r ~6.7!

for the phase shifts and

v15
l

2p
~kF

11kF
2!50, v25

l

2p
~kF

12kF
2!5O~J!

~6.8!

for the shifts of the right and left Fermi wave vectors.
According to Sec. V C the phase shifts~6.7! completely

determine the singularities of the Green function. As a che
let us explicitly evaluate the overlapz ~5.36! in this model.
In fermionic representation this amounts to calculating
overlap between the ground state of Hamiltonian~6.1! and
the ground state of theXY model on aL-site ring with the
same number of fermionsN52n11. In fermion representa
tion the latter state is just a Slater determinant of plane wa
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with momentum quantization corresponding toperiodic
boundary conditions on aL-site ring:

qj5
2p

L
j . ~6.9!

Therefore,z is simply the overlap of two Slater determinan
of plane waves with different quantization rule~6.2!, ~6.9!.
Such an overlap can be calculated as the determinant o
N3N matrix of the overlaps of the two sets of plane wav
defined on the squeezed chain:

zp,↓5detH, ~6.10!

Hrs5^qr uks&5 i
eiks/2

AL~L21!

cos@qr /2#

sin@~ks2qr !/2#
, ~6.11!

with r and s belonging to the interval@2n,n#. Notice that
the quantization rule of the wave vectorskj can be naturally
interpreted in terms of a momentum-dependent phase sh

kj;
2p

L S j 1
1

2
1

j

L D . ~6.12!

Near the Fermi points the phase shifts are then given
d65(16r)/2 in agreement with their determination bas
on the structure of the finite-size corrections to the ene
~6.7!. The known treatment21 of the orthogonality catastro
phe problem thus gives the critical exponent in terms of
phase shift at the Fermi points: 2X05d1

2 1d2
2 , which agrees

with the expression~5.39! derived in Sec. V C. This resul
can be also checked numerically by evaluating the dete
nant ~6.10! for fairly large system sizes. The size scaling
lnz as a function of lnN is shown in Fig. 4 for two magneti
zations (m50 andm51/4) corresponding to the densities
spin upr51/2 andr53/4. The analytical value of the ex
ponentX0 is also shown in the figure. The exponent for t
r51/2 case also agrees with an independent calculation
Pencet al.24

The next task is the evaluation of the spin-down Gre
function ~5.44!, which, via Galileo transformation, takes th
form ~5.46!. In theJ→0 limit, the energy levels can be writ
ten as the sum of a holon parteh(p1Q)52tcos(p1Q),
which just depends on the spinon momentumQ, and a

FIG. 4. Leading exponentX0 of the size dependence of th
overlapz in the t-JXY model as a function of the numberN of up
spins. Lines represent the numerical evaluation of the determi
of the matrix~6.11!. Dots are the analytical prediction based on E
~6.7!.
he
s

t:

y

y

e

i-
f

by

n

spinon term, which is eigenstate of theXY Hamiltonian on
the squeezed chain. Therefore, at fixed total momentump,
the Green function reads

G~p,t!5
i

l (
Q

(
R

e2 iQRe2 i eh~p1Q!tZ~R,t!, ~6.13!

where the spinon term, implicitly depending on the total m
mentump, is

Z~R,t!5^Cue2 iĤ stTl
R~12n0!uC&. ~6.14!

Here Ĥs and Tl respectively represent theXY spinon
Hamiltonian and the translation operator of one lattice sp
ing on the squeezed ring ofl 5L21 sites~origin excluded!
while uC& is the ground state of theXY model on theL-site
ring. Notice that, for the special case of theXY model at
J→0, the decoupling of the Green function in holon a
spinon factors,

G~R,t!5Z~2R,t!Gh~R,t!

5Z~2R,t!i E
2p

p dk

2p
eikRe2 i eh~k!t, ~6.15!

is exact at all distances while, in general, we expect t
decoupling is valid only at low energy and long waveleng
i.e., for R,t@1.

The evaluation of the matrix element in Eq.~6.14! can be
performed because in the spinon representation the
states are Slater determinants~without phase shifts! and the
unitary operator acting on them is a one-body operator. T
projection operator (12n0) implies that the origin is an
empty site that amounts to exclude the origin in the eval
tion of the overlap matrix. Therefore,Z(R,t)5detA(R,t)
where the overlap matrix~of linear dimension 2n11) can be
easily calculated by inserting a complete set of orbitals t
do not place particles in the origin. A useful choice is the
of eigenstates of the spinon HamiltonianĤs corresponding
to an odd number of spinons, i.e., with momenta~6.2!. The
resulting form of the overlap matrix is

Ars~R,t!5
cos~qr /2!cos~qs/2!

L~L21!

3 (
j 52L/211

L/221
ei ~kjR1tJcoskj !

sin@~kj2qr !/2#sin@~kj2qs!/2#
.

~6.16!

The sum can be performed analytically only in the sta
limit t50 where the numerical computation ofZ(R,0) and
of its Fourier transformZ(Q) can be pushed to fairly large
system sizes. A comparison between two different size
fixed magnetization (m50 and m51/4) is shown in Fig.
5~a! where we can see thatZ(Q) does not vanish outside th
‘‘spinon Fermi surface’’ even if it is strongly suppresse
The singularity at the Fermi momentumkF5pr appears to
be present on both sides of the spinon Fermi surface. A lo
rithmic plot of the singularity ofZ(Q) whenQ approaches
kF is shown in Fig. 5~b! where it is compared to the analyt
cal value of Eqs.~6.7! and ~B24!. The ratio of the two am-

nt
.
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6460 57S. SORELLA AND A. PAROLA
plitudes on both sides of the singularity is in rather go
quantitative agreement with expression~5.60!.

Now we examine in some detail the asymptotic form
the dynamical spinon Green function of thet-JXY model
~6.14!. As noted before, the exact calculation ofZ(R,t) in a
finite system reduces to the evaluation of the determinan
the matrixArs(R,t) defined in Eq.~6.16!. The exact calcu-
lation can be performed only numerically and the direct
terpretation of the data is obscured by finite-size effe
However, we can address the problem of the long dista
and long time behavior ofZ(R,t) by performing the
asymptotic expansion of the matrix elementsArs themselves.
This expansion can be carried out rather easily in the lo
density limit where, according to expectations of conform
field theory, it should be characterized by phase shiftsd1

5d251/2 ~6.7!. The details are reported in Appendix C.
According to bosonization, the spinon Green functi

should behave as Eq.~5.53!,

Z~R,t!}
eikFR

~R2vst!1/4~R1vst!1/4
1

e2 ikFR

~R2vst!1/4~R1vst!1/4
,

~6.17!

FIG. 5. ~a! Spinon termZ(Q) for the t-JXY model computed as
the determinant of the matrix~6.16! at t50 for magnetizationm
50 ~squares! and m51/4 ~triangles!. Two cases corresponding t
about 400 and 800 particles are shown by open and full symb
respectively.~b! Logarithmic plot ofZ(Q) near the singularity. The
lines indicate the slope predicted on the basis of the finite
corrections to the energy~6.7!.
f

of

-
s.
ce

-
l

where vs5JkF and this expression is valid foruvstu,R.
From this analysis we expect that the functionZ(R,t) at
long wavelength behaves as

Z0~R,t!}
cos~kFR!

~R2vst!1/4~R1vst!1/4
. ~6.18!

In Fig. 6 we plot the numerically evaluated rat
udetA(R,t)u/Z0(Rt) as a function ofR2vst for N5100 and
m521/4, which belongs to the low-density regime. Th
ratio has no oscillations~meaning that the phase factor h
been correctly determined! and it is approximately constan
over a wide range of values ofR2vst. Clearly the region
R;vst cannot be well represented by the bosonized fo
that would predict a spurious divergence in the Green fu
tion, which instead is bound to have modulus less than un

The analysis of this section shows in a simple exam
that all the features of hole propagation in a magnetic ba
ground derived with field theoretical formalism are contain
in such a microscopic model. This detailed calculation s
ports the assumptions introduced in our general study of
long-wavelength hole dynamics. Atm50 the samet-JXY
model has been studied in Ref. 26 where consistent res
have been obtained by a different method. More interes
systems can now be investigated.

VII. BETHE ANSATZ MODELS

In this section we consider two Bethe ansatz solva
models, the repulsive Hubbard model6 and thet-J model at
J52t,27 where the finite-size corrections to the energy c
be found analytically, leading to a formal expression for t
critical exponent that appears in the one-hole Green funct
We analyze both models at arbitrary magnetization so
our results can be extended to the attractive Hubbard m
via the well-known canonical transformation.

The calculation of the finite-size corrections to th

ls,

e

FIG. 6. Asymptotic behavior of the dynamical quasipartic
weight Z(R,t) in the t-JXY model atm521/4 calculated as the
determinant of the matrix~C7! in a system of 201 particles
Z0(R,t) is defined in Eq.~6.18!. Data refer to more than a thousan
different points in the (R,t) plane.
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57 6461THEORY OF HOLE PROPAGATION IN ONE- . . .
ground-state energy closely follows the original derivati
by Woynarovich for the Hubbard model at finite density28

Here we consider a chain ofL sites andL21 electrons,
among whichN↓ have spin down. The Bethe ansatz soluti
is characterized by two sets of rapidities: for the Hubb
case we haveNs5N↓ rapiditiesla andNc5L21 rapidities
kj , while for thet-J model~in Sutherland representation! we
haveNs5N↓11 rapiditiesva andNc51 rapidityw0. These
rapidities are related to the quantum numbersJa and I j ,
respectively, through the Bethe ansatz equations. In
ground state, the two sets of quantum numbers define
compact distributions bounded byJ6 and I 6, respectively.
The explicit expressions ofJ6 and I 6 are

J12J25Ns , J11J252Ds ,
~7.1!

I 12I 25Nc , I 11I 252Dc ,

where Ns and Nc have been previously defined while th
‘‘centers’’ of the distributionsDs and Dc specify the spin
and charge state, respectively. In the ground state, at fi
total momentump, Ds is the smallest integer~or half integer!
l a

x
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rd
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compatible with the quantization rules forJa . Instead,Dc
5I h1L/2 for the Hubbard model andDc5I h for t-J, where
I h defines the position of the hole in the distribution
charge rapidities and is related to the momentum of the
lon. Following Woynarovich, we define the four ‘‘densities
as theL→` limit of nc(s)5Nc(s) /L anddc(s)5Dc(s) /L, so
that Dc(s)2dc(s)L andNc(s)2nc(s) are finite forL→`. If a
hole of momentump and spin down is created, the tot
momentum of the state is given by

2p52p01
2p

L
@~Ns2nsL !~Ds2dsL !1~Nc2ncL !

3~Dc2dcL !#, ~7.2!

where2p052p(DcNc1DsNs)/L is the momentum in the
thermodynamic limit. Analogously, the size corrections
the ground-state energyE for the single-hole problem can b
expressed in terms of the above-defined quantities,
charge ~spin! velocity vc(s) , the elements of the dresse
charge matrixj i j and of the additional matrixZi j as
L~E2Le`!52
p

6
vs12pvcXc12pvsX, ~7.3!

Xc52~Nc2ncL !F ~Dc2dcL !1j12~Ds2dsL !2DZ21

~Ns2nsL !2j12~Nc2ncL !

2j22
G ,

X5j22
2 @~Ds2dsL !2Z12~Nc2ncL !#21F ~Ns2nsL !2j12~Nc2ncL !

2j22
G2

,

t of
rmi
rre-
mon-
wheree` is the ground-state energy per site of the mode
half filling and Nc2ncL521 for the Hubbard case~where
Nc5L21) and Nc2ncL51 for the t-J model ~where Nc
51). The diagonal element of the dressed charge matri
simply related to the correlation exponent of the Heisenb
model introduced in Sec. V by the well-known expressi
Ks5j22

2 .16 This general formula is valid both in the Hubba
and in thet-J model. The basic steps for the formal deriv
tion of Eq. ~7.3! together with the precise definitions of th
quantities appearing in it are reported in Appendix D. He
we only stress the decoupling of the charge and the s
terms in the finite-size corrections, in agreement with o
starting assumptions: The long-wavelength Hamiltonian
the sum of a charge part that does not give any singularit
the correlation functions and a spin part, which instead gi
rise to critical exponents. Most importantly, this rather co
plicated, exact, expression~7.3! perfectly matches the predic
tions of the bosonization method~5.35!.

From Eq.~7.2! we find that the size scaling of the tot
momentum is characterized by the amplitude~5.33! a5
2(Ns2nsL)(Ds2dsL)2(Nc2ncL)(Dc2dcL) while from
the magnetic contribution in Eq.~7.3! we easily identify the
quantum numbers (m,n) and the phase shifts (d,g). The
other parameters appearing in Eq.~5.35! then follow from
the charge part of Eq.~7.3! leading to
t

is
g

e
in
r
s
in
s
-

a52~Ns2nsL !~Ds2dsL !2~Nc2ncL !~Dc2dcL !,

m5Ds2
1

2
,

n5~Ns2nsL !,

d5
1

2
2Z12~Nc2ncL !, ~7.4!

g52j12~Nc2ncL !,

v150,

v25
DZ21~Nc2ncL !

j22
12Z12~Nc2ncL !,

where we used that in the ground stateDs51/2 and then
ds50. Note the vanishing ofv1 that occurs in all the mod-
els we have examined and is probably related to a sor
Luttinger theorem that forces the volume of the spinon Fe
surface to be unaffected by interactions. This exact co
spondence between bosonization and Bethe ansatz de
strates the validity of our approach in the Hubbard andt-J
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6462 57S. SORELLA AND A. PAROLA
models and allows for the analytical determination of t
phase shiftsd6 governing the singularities of the one ho
Green function.

In general, the coefficients appearing in Eq.~7.3! are non-
universal quantities that depend on the coupling constan
the model as well as the average magnetization per sitm
and the holon momentum. Therefore, we expect that the
ponentX is a function of all the parameters that define t
hole Hamiltonian, including the total momentump. How-
ever, some important exceptions must be mentioned. At z
magnetic field the spin Hamiltonian possesses the additi
SU~2! symmetry both in the Hubbard andt-J models. At this
particular point, the exponentX is universal. In fact, the el-
ements of the matricesj andZ acquire analytic values inde
pendent of the total momentum of the state and of the c
pling constants:j2251/A2, j1251/2, andZ1250. Another
simple case is theU→` limit of the Hubbard model where
Z1250 and the dressed charge matrix can be expresse
terms of the magnetization per sitem5(N↑2N↓)/2L: j12

51/22m, while Ks5j22
2 as a function ofm is shown in Fig.

1 of Ref. 12. Also in this limit the exponents do not depe
on the total momentum of the state. Finally, when the h
sits at the bottom of the band, i.e., if we are at the one-h
ground state, the equations simplify because the holon
mentum is alwayskh5p and sovc50. Again Z1250 and
our expression for the finite-size corrections coincides w
the zero dopinglimit of the known form valid at finite den
sity. This proves the continuity between the physics of
single-hole problem and that of finite doping in 1D.

At arbitrary magnetization and momentum no analyti
expression for the phase shifts is available. However,
integral equations reported in Appendix D can be solv
numerically. Few examples are reported in Fig. 7 where
show the critical exponentsXm ~5.42! as a function of the
momentum for several magnetizations in the Hubb
model. The lociv5eh(p1Qm) in the (p,v) plane where

FIG. 7. Critical exponentsX0 ~full squares! and X21 ~open
squares! as a function of the momentum of the holep for several
magnetizationsm520.4,20.3,20.2,20.1,0.1,0.2,0.3,0.4 from~a!
to ~h!, respectively, in the Hubbard model atU54t.
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the occurrence of the divergence is predicted by our the
are instead shown in Fig. 8 for a couple of choices of
parameters. The presence of 2kF zero-energy excitations in
the spinon spectrum gives rise to a remarkable symm
property of these curves: at a given energyv, if a singularity
occurs at momentump it will also show up, with possibly
different exponents, at momentum2p12kF .

As a check on the theory of Sec. V we have numerica
evaluated the overlap of Eq.~5.36! by Lanczos diagonaliza
tion in the t-J model atJ52t in chains up to 32 sites a
magnetizationm561/4. The results are well fitted by
power-law behavior inL ~5.38! with an exponentX that
clearly depends on the momentum of the hole, in agreem
with the bosonization analysis. A comparison between
numerically determined exponent and the prediction of E
~7.3! is shown in Fig. 9~a!. An analogous computation ha
also been performed in thet-J model at the generic noninte
grable pointJ5t andm51/4. The numerical results are als
shown in Fig. 10~b! but in this case the comparison with th
analytical predictions based on the Bethe ansatz solutio
not available. However, a quite similar momentum dep
dence of the overlap exponentX emerges, showing that th
above features are not special to the exactly integra
points.

VIII. THE SHAPE OF THE SPECTRAL FUNCTION

In this section we finally discuss the global shape of
spectral function of one hole in a correlated background
fact, the bosonization method developed in Sec. V only c
cerns the long-wavelength, critical properties of the Gre
function and gives no information on its short-waveleng
features. The exact calculation of a Green function in
interacting system, at all length scales, has been achie

FIG. 8. Loci of the singularities of the spectral function in th
(p,v) plane~5.56! for the Hubbard model atU54t. Energies are
measured from the bottom of the holon band. Two magnetizati
are shown:m50 and m51/4. Full ~dashed! lines correspond to
critical exponentsX smaller ~larger! than 1/2. In the latter case
according to Eq.~5.57!, the divergence disappears.
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57 6463THEORY OF HOLE PROPAGATION IN ONE- . . .
only recently30 by use of extremely sophisticated metho
for the Calogero-Sutherland model31 while no results are
available in other interacting systems. Our task is twofold
understand the physical nature of the low-lying excitatio
that contribute to the spectral function and to develop a u
ful numerical method for the approximate determination
the spectral functionA(p,v), which can be applied to ge
neric one-dimensional models. The purpose is to overco
the severe finite-size effects present in Lancz
diagonalizations32,33 without resorting to the delicate ex
trapolations of simulation data34 necessary for the computa
tion of dynamical correlation functions.

Here, we formulate a simple approximation for the on
hole Green function that captures most of the features of
exact result and can be usefully applied to interesting co
lated models, in one dimension, like Hubbard. A similar a

FIG. 9. Leading exponentXm of the finite-size scaling of the
overlapz defined in Eq.~5.36! as a function of the hole momentum
p. Data refer to thet-J model atm561/4 andJ52t in panel~a!
andJ5t in panel~b!. Solid lines: analytical results obtained from
the finite-size corrections to the energy in the Bethe ansatz solu
Full ~open! dots: Power-law fit of Lanczos data form51/4 (m5
21/4). Numerical data~full squares! obtained with the same fit fo
the nonintegrable pointJ5t, are shown for comparison only in th
m51/4 case. The dashed line connecting these points is a guid
the eye. Diagonalizations have been performed on rings witL
58,16,24,32.

FIG. 10. Breakdown of the completeness condition~8.3! in the
single spinon approximation for thet-JXY model at two magnetiza
tions.L is the length of the chain.
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proximation has been discussed by Pencet al.23 in the strong
coupling limit of the model. For clarity, we introduce th
method in the framework of the previously discussedt-JXY
Hamiltonian in theJ→0 limit ~see Sec. VI! leaving the study
of the Hubbard model as a final example.

The starting, exact, expression for the 1D Green funct
of the t-JXY model is Eq.~6.13! where the spinon function
Z(R,t) is defined by Eq.~6.14!. The spinon termZ in fact
contains all the interesting correlation effects as previou
pointed out. However, its direct evaluation proved rath
hard even in the simple case of theXY model where the
exact ground state is a Slater determinant, while the m
realistic case of a Hubbard model cannot be tackled by th
methods. As an approximate way to evaluate the matrix
ment ~6.14! we can assume that the most relevant contri
tion to the intermediate states comes from thesingle spinon

states, i.e., from the exact eigenstates ofĤs in the squeezed
chain with only one spinon excitation. In fact, withHs being
an antiferromagnetic Hamiltonian defined in an odd ch
with periodic boundary conditions, it gives rise to a fru
trated problem. Then, its ground state contains a free sp
and it is rather natural to assume that a set of low-ene
states can be built by giving a finite momentumQ to such a
‘‘quasiparticle.’’ These single spinon statesuQ& can be there-
fore labeled by the momentumQ, which lies outside the
spinon Fermi surface, and have energyes(Q) given by the
spinon band:es(Q)5JcosQ for the XY model, whereuQu
.kF andkF5pr is the spinon Fermi momentum. The sing
spinon approximation to the functionZ(R,t) therefore reads

Z~R,t!;
1

l (
uQu.kF

e2 i es~Q!teiQRz^Qu~12n0!uC& z2

5
1

l (
uQu.kF

e2 i es~Q!teiQRZ~Q!, ~8.1!

whereuC& is the ground state of the undoped model and
have introduced the spinon functionZ(Q):

Z~Q!5(
R

e2 iQR^CuTl
R~12n0!uC&. ~8.2!

This approximation therefore entirely resides in the assum
tion that only the single spinon intermediate states giv
finite contribution toZ(R,t). As a consequence, the tim
dependence ofZ(R,t) is greatly simplified but still not
trivial due to the complex structure that can be presen
Z(Q).

The value of this approximation is that the time depe
dence ofZ(R,t) is given analytically in terms of the known
spinon excitation spectrum of the model and that only
small O(l ) number of matrix elements is necessary for t
evaluation of the fullZ(Q). The exact calculation in fac
would require the insertion of a complete set of intermedi
states leading to an exponentially large number of terms
the sum of Eq.~8.1!. A consequence of the single spino
approximation is the presence of a sharp Fermi surface in
function Z(Q), which is in fact predicted to vanish ident
cally for uQu,kF . This property is well satisfied in the qua
siparticle weight for theJ→0 limit of the t-J model11,23even
if both the numerical calculation ofZ(Q) in the t-JXY model

n.
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@see Fig. 5~a!# and its density matrix renormalization-grou
evaluation in the strong coupling limit of the Hubbard mod
show that this is not an exact feature of one-dimensio
systems.35

We now proceed to the evaluation ofZ(Q) in single-
spinon approximation for the exactly solublet-JXY model, in
order to provide a check on the quality of this approximatio
The completeness condition of the intermediate states th
obeyed by the exact quasiparticle weight reads

(
Q

Z~Q!5l ~12r!. ~8.3!

In order to computeZ(Q) in the t-JXY model on aL-site ring
and 2n11 spinons, we first recall that the ground state of
XY model is a Slater determinant of 2n11 plane waves with
momentum quantization~6.9! and then the occupied orbita
are uqs& with sP@2n,n#. The intermediate states are al
Slater determinants of plane waves but with different qu
tization rule ~6.2!. If the spinon momentum isQr5(2p/

l )(r 1 1
2 ), the first 2n single-particle intermediate statesukj&

fill the spinon Fermi seaj P@2n,n21# while the remaining
spinon is placed outside this interval, atj 5r . As noted be-
fore, the overlap between two Slater determinants is just
determinant of the matrix of the overlapsBs j5^qsukj& and
the quasiparticle weightZ(Qr) is the modulus square of suc
a determinant. The numerical evaluation of the completen
sum rule~8.3! in single spinon approximation is plotted i
Fig. 10 for two magnetizations. The data show that the s
rule is violated in the thermodynamic limit and therefore t
single spinon states do not represent a complete set of i
mediate states as expected. However, Fig. 10 also shows
the breakdown of the sum rule is very small and shows u
considerably large system size. This approximation ac
rately reproduces the short-wavelength properties of
model while it fails in catching the long-wavelength featur
~i.e., critical exponents and amplitudes!, which we already
discussed by use of bosonization methods in Sec. V. Th
fore, we expect that the single-spinon approximation can
successfully applied to the study of the global shape of
one-hole spectral function in one-dimensional models. As
example we now briefly discuss the case of the Hubb
model.

Analogously to thet-JXY model, the Green function is
expressed in terms of the dynamical quasiparticle weigh
Eq. ~6.13!, which is approximately evaluated as in Eq.~8.1!:

G~p,t!5 i(
Q

e2 i eh~p1Q!te2 i es~Q!tz^Qucp,↓uC& z2.

~8.4!

The remaining problem is to compute the functionZ(Q)
5l u^Qucp,↓uC&u2 for the Hubbard model. The numerica
calculation can be carried out by Lanczos diagonalizati
by exploiting the negligible size dependence of this quan
already verified in the previous examples. The ground s
uC& of the half-filled Hubbard model at magnetizationm5
2 1

2 1(2n11)/L can be numerically obtained in chains up
L516 sites. The remaining problem is to select the o
spinon statesuQ&, which contribute toZ(Q). The procedure
we have adopted takes advantage of the continuity of
l
al
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one-spinon states between the weak and the strong cou
limit. At U→` the one-spinon stateuQ& is in one-to-one
correspondence with the ground state of momentumQ of the
Heisenberg chain in an (l 5L21)-site ring. This follows
from the factorization property of the Hubbard eigenfun
tions discussed in Refs. 10 and 11. These spinon states
be therefore identified by performing Lanczos diagonali
tion on thel -site Heisenberg model in the symmetry su
space of total momentumQ. Now, having determined the
one-spinon states atU5`, we adiabatically lower the inter
action parameterU ~in practice this is quite an easy proc
dure within the Lanczos method! following the ‘‘evolution’’
of the eigenstate of spinon momentumQ from U5` down
to the desired value ofU. In this way, starting from an exac
eigenstate of the Heisenberg model we first find an eigens
of the Hubbard model atU5` and then a sequence of eige
states of thel -site Hubbard model corresponding to smal
and smaller interaction parameters. This procedure has b
devised because the spinon momentumQ is a good quantum
numberonly at U5` and then we need a method to sele
the exact one-spinon states out of the full set of eigenst
of the Hubbard Hamiltonian. As usual, a simple check on
validity of the single-spinon approximation comes from t
completeness condition of the intermediate states, analog
to Eq. ~8.3!, which now reads

1

l (
Q

Z~Q!5^Cucp,↓
† cp,↓uC&[n↓~p!, ~8.5!

i.e., the momentum distribution of the spin-down electrons
half filling. The amount of violation of this sum rule quant
fies the weight of all the other states in the Hilbert space t
have been neglected in our approximation.

In Figs. 11 and 12 we show results from Lanczos diag
nalization in chains up to 16 sites. The functionZ(Q) for
two values of the momentump of the hole and of the mag
netizationm is reported. In all the cases we have conside
the completeness condition~8.5! is very well satisfied, show-
ing that one-spinon states account for more than the 98%
the weight of the full Hilbert space of intermediate states36

This allows one to reconstruct the full spectral function f
the Hubbard model. On the other hand, the available d
also show weak size dependence, suggesting that finite
effects are not relevant at high energies. A plot of the p
dicted spectral function is shown as a function ofv in Fig.
13 for a typical, intermediate coupling (U54t) and a two
hole momentap.

IX. SUMMARY AND DISCUSSION

In this work we have analyzed in some detail the dynam
cal properties of a hole in an antiferromagnet. Due to
mapping between the attractive Hubbard model at arbitr
density and the half-filled repulsive Hubbard model in
magnetic field, our analysis directly applies also to the m
general case of hole propagation in correlated o
dimensional models with a gap either in the charge or in
spin spectrum. Most of the known quasi-one-dimensio
materials in fact belong to these classes and then the pre
study may be helpful in the interpretation of the availab
photoemission spectra of quasi-1D systems.37 First we found
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57 6465THEORY OF HOLE PROPAGATION IN ONE- . . .
the exact spectral function of a single hole in the Isi
model, which is characterized by a gap both in the cha
and in the spin channel. As a result, the quasiparticle we
is finite also ind51 andA(p,v) has ad contribution. How-
ever, due to the absence of spin fluctuations the hole dis
sion relation is flat and the hole cannot propagate. Then,
focused on the singularities of the hole spectral functi
which occur because of the presence of othergaplessdegrees
of freedom~spinons!. This spinon gas behaves as a Lutting

FIG. 11. Spinon functionZ(Q) for the Hubbard model atm
50 according to the single spinon approximation.~a! refers toU
54t andp5pF ; ~b! to U58t andp5pF ; ~c! to U54t and hole
momentump50; ~d! to U58t andp50. The hole Fermi momen
tum pF5p/2 corresponds to the bottom of the~down! hole band.
Z(Q) vanishes inside the spin-up Fermi sphere. Symbols repre
Lanczos data for different system sizes:L56 ~open circles!, L
510 ~open squares!, L514 ~full circles!.

FIG. 12. Same as Fig. 11 at magnetizationm51/4 correspond-
ing to pF5p/4. Symbols represent Lanczos data for different s
tem sizes:L58 ~open circles!, L512 ~open squares!, L516 ~full
circles!.
e
ht

r-
e
,

r

liquid which gives rise to the typical critical exponents
one-dimensional physics that show up in the hole dynam
properties. Among the results we have obtained, we stre
few general features ofA(p,v) that characterize hole propa
gation in one dimension:

~1! The main singularities in the spectral function occ
along lines in the (p,v) plane with the dispersion relatio
determined by the form of the holon band,v(p)5eh(p
6kF), while the spinon excitation induced by the hole
created at the Fermi points6kF . This is a consequence o
spin charge decoupling, which occurs in one dimension
gives rise to divergences inA(p,v) also above the bottom o
the band. In this case, the divergence may occur on b
sides ofv(p) with different amplitudes. The existence o
two branches of singularities in the spectral function~see
Fig. 8! can be interpreted as due to the presence of a sha
band.23

~2! The singularities are characterized by critical exp
nents that can be explicitly calculated in integrable mode
In the isotropic antiferromagnet the SU~2! symmetry forces
the exponent to be exactlyX51/4 for all microscopic Hamil-
tonians. Instead, when spin isotropy is broken, or when
system has a spin gap, the critical exponentX in general
depends on the parameters of the modeland on the momen-
tum of the hole.

~3! Away from the SU~2! isotropic point, the tunneling
density of states has either a divergence or a zero at
bottom of the spectrum according to the value of the criti
exponentX, i.e. according to the parameters of the mod
Remarkably, the density of states shows at most weak lo
rithmic singularities in the isotropic case.

~4! At the bottom of the band the critical exponent coi
cides with the known exponent characterizing the spec

nt

-

FIG. 13. Hole spectral function in the Hubbard model atU
54t as a function of frequency measured from the bottom of
holon band. Energy is in units of the hoppingt and the calculation
has been performed in single-spinon approximation. Panel~a! cor-
responds top50 and m50, ~b! to p50 and m51/4, ~c! to p
5pF andm50, ~d! to p5pF andm51/4. Vertical lines show the
location of singularities. Dashed lines identify the divergences
duced by band-structure effects; dotted lines show the frequen
of the nontrivial singularities reported in Fig. 8.



en
si
lo

on
th
o
n
th
en
to
et
ith
te

e
ov

e
b
ity
at
ws
f
he
c
g
nd
g
en
t

to
,
n
he
le
b
n

rk
tie
tia

M
tt
m
C

r-

y

o
y

les

r-

ese

ix

of

ns-

ting
efi-
s
n
on-
he

-
ft

nt

6466 57S. SORELLA AND A. PAROLA
weight in doped systems when the zero doping limit is tak
This provides a demonstration of the continuity of the phy
cal behavior of the degrees of freedom which do not deve
a gap in the excitation spectrum as doping vanishes.

All these features should be experimentally detectable
quasi-one-dimensional materials.

A problem posed by this analysis concerns the relati
ship between our results and the zero doping limit of
generally accepted Luttinger liquid picture of the Hubbard
t-J model. In fact, the continuity between the single hole a
the low doping physics apparently breaks down when
hole momentum does not coincide with the Fermi mom
tum of the doped model, i.e., when we are above the bot
of the holon band. In this case, standard bosonization m
ods would predict singularities in the spectral function w
the momentum-independent critical exponent uniquely de
mined by the physics at the Fermi points38 while the accurate
analysis of the single-hole problem reveals the presenc
momentum-dependent critical exponents when we m
away from the Fermi level.

From a methodological point of view, this study of th
single-hole motion demonstrates a close relationship
tween the physics of hole motion and the single impur
problem in Luttinger liquids. This mapping is provided,
strong coupling, by the Galileo transformation, which allo
one to eliminate the hole degree of freedom in favor o
nontranslationally invariant spin system. The recoil of t
hole, embodied in the hole kinetic contribution of the effe
tive spin HamiltonianĤp , cuts off the backward scatterin
terms in the impurity problem and generates effective bou
ary conditions that allow the propagation of spinons throu
the impurity site. This idea can be extended to higher dim
sions. The Galileo transformation, in fact, is not restricted
d51 and the single-hole problem can be always mapped
pure spin Hamiltonian. Generalizing what we found here
is tempting to assume that also ind.1 the hole acts as a
effective boundary condition placed at the origin of t
d-dimensional spin lattice. The emerging picture resemb
and generalizes that of the dipolar distortion proposed
Shraiman and Siggia39 based on the semiclassical treatme
of a particular choice of boundary condition. More wo
along these directions may eventually clarify the proper
of hole motion in a correlated background in arbitrary spa
dimensions.
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APPENDIX A: FORMAL CALCULATION
OF THE OVERLAP IN A LUTTINGER LIQUID

In this appendix we give a formal derivation of the ove
lap

O6~d6!5^d6uc6& ~A1!

between two free particle states
.
-
p

in

-
e
r
d
e
-
m
h-

r-

of
e

e-

a

-

-
h
-

o
a

it

s
y
t

s
l

.
i.

^d6u5 )
7n>0

dn
†u0&, ^c6u5 )

7n>0
cn

†u0& ~A2!

on a given branch of a Luttinger liquid, here identified b
(6). In order to simplify the notation we drop the label6
from the operatorsc and d whenever it does not lead t
ambiguities. The operatorsd are defined with skew boundar
conditions ~i.e., with nonvanishing phase shifts! while the
operatorsc correspond to periodic boundary conditions:

cn
†5

1

Al
E

2l /2

l /2

ei ~2p/l !nxc6
† ~x!

dn
†5

1

Al
E

2l /2

l /2

ei ~2p/l !~n1d!xc6
† ~x!, ~A3!

wherec6(x) identifies the fermion field in the right (1) or
left (2) branch. The relationship between the operatorsd
andc is easily found using canonical anticommutation ru
for the fieldsc6 :

cm
† 5 (

n52`

`

sd~n2m!dn
† , ~A4!

where

sd~n!5~21!n
sin~pd!

p~n1d!
. ~A5!

The overlapO6(d) is given by the determinant of the ove
lap matrix Dn,m(d)5sd(n2m) with the restriction on the
allowed indicesn,m>0 for the left branch andn,m<0 for
the right one, which selects the occupied orbitals. From th
definitions we get the symmetry property

O1~d!5O2~2d!, ~A6!

which follows from the transformation rule of the matr
Dn,m(d) under the mapping (n,m)→(2n,2m), which
changes the left into the right branch. A further property
the determinantsO6(d) derives from the definition of
the matrix D(d): Dn,m(d)5sd(n2m)5s2d(m2n)
5Dm,n(2d), which gives

O6~d!5O6~2d! ~A7!

as the determinant of a matrix is equal to that of its tra
pose. In the continuum limit the determinantO6 is not well
defined and a cutoff procedure is required before evalua
the overlap. Some care should be taken in the explicit d
nition of the cutoff. In fact, by restricting the matrix indice
(n,m) to a finite interval we would effectively introduce a
unphysical doubling of the Fermi surface. Instead, let us c
sider a system with both left and right branches with t
same finite phase shiftsd15d25 d̄, and finite but large
number of particlesN symmetrically distributed in the posi
tive and negative branch. In this limit it is clear that the le
and right branch decouple and the total overlapO(d) is
given by the product of the two left and right compone
O( d̄);O1( d̄)O2( d̄). The overlapO(d) can be exactly
computed in a finite lattice with a given~large! number of
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particlesN ~Ref. 11! and is formally given by the previousl
introduced determinant with matrix indices belonging to t
interval @1,N#:

O~ d̄ !5det
sin~pd̄!

p~n2m1 d̄ !
5Ad̄N2 d̄2

, ~A8!

whereAd̄ is a finite numerical constant. Then, by use of t
relations~A6!, ~A7! and the previous result we finally get

uO1~ d̄ !u25uO2~ d̄ !u25O~ d̄ !5Ad̄N2 d̄2
, ~A9!

which gives uO6(d)u}l 2(1/2)d2
where we expressed th

number of particlesN as a fractionr of the number of sites
l .

APPENDIX B: THE DYNAMICAL
QUASIPARTICLE WEIGHT

In Eq. ~5.52! we showed how the dynamical quasipartic
weightZ(x,t) splits into the product of contributions comin
from the right and left fermion branches. Now we have
evaluate the generic matrix element appearing in the for
expression ofZ(x,t) for a noninteracting Fermi gas chara
terized by given phase shiftsd6 at the two Fermi points:

Z6
d ~x!5^c6ueix~ P̂62Q6!uc6&, ~B1!

where the statesuc6& are defined in Appendix A andP̂6

represents the total momentum operator for the fermion
the right 1 or left 2 branch, defined in Eq.~5.51!, with
fermionic operatorsc1 andc2 obeying skew boundary con
ditions ~5.4!. Here Q1 is the minimum momentum of the
right branch ofd electrons~i.e., electrons with a defined
value of the momentumP̂), as excitations in the rightd
branch can only increase the momentum by 2p j /l , with
positive integerj . Conversely,Q2 is the maximum allowed
momentum in the left branch ofd electrons, as excitations i
the leftd branch can only decrease the momentum by 2p j /l
with negative integerj . Though in a Luttinger liquidQ6 are
infinite constants, the functionsZ1(x) andZ2(x) are finite
also in the continuum limit and have an important proper
referred to in the following as the Fourier positivity~nega-
tivity !. By inserting a complete set of the mentioned exci
tions with definite momentum in the right-hand side of E
~B1! we get

Z1
d ~x!5 (

n>0
(

j
u^c1udj ,n&u2ei ~2pn/l !x, ~B2!

where j in udj ,n& labels all the possible excited statesudj ,n&
with momentumQ112pn/l . Such a spectral decompos
tion of Z1

d implies that the Fourier coefficientsZ1
d (n)

5*0
l e2 i2pnx/l Z1

d (x)dx are nonvanishing~and positive defi-
nite! only for n>0 ~Fourier positivity!. Analogously
Z2

d (n).0 only for n<0 ~Fourier negativity!.
In terms of thed operators~A3! the momentum on eac

branchP̂6 is diagonal and reads

P̂65(
n

~kn1kF
6!dn

†dn , ~B3!
al

in

,

-
.

where kn5(2p/l )(n1d) and kF
656kF . Using the same

particle hole transformation discussed in Appendix A~i.e.,
the transformationn→2n) we obtain the analog of Eq
~A6!:

Z6
d ~x!5Z7

2d~2x!. ~B4!

Having discussed the general symmetry properties
Z6

d (x), we now turn to the explicit evaluation of the functio

Zd~x!5^CueiP̂xuC& ~B5!

in a free Fermi gas ofN particles, whereuC& is the ground
state with periodic boundary conditions while the moment
operatorP̂ refers to a system withskewboundary conditions.
Following Appendix A, we carry out the calculation for
model of fermions with constant phase shiftd throughout the
Brillouin zone and then we relate the result toZ6

d (x) by use
of the symmetry properties previously discussed. In parti
lar, if we keep only the most relevant singularity, the facto
ization property proved in Eq.~5.52! gives

Zd~x!5eiQxZ1
d ~x!Z2

d ~x!5eiQxZ1
d ~x!Z1

2d~2x!, ~B6!

where use has been made of the symmetry~B4! and Q
5Q11Q2 is the reference momentum of the intermedia
states.

In a free Fermi gas, both the ground stateuC& and the
intermediate states are Slater determinants built with the
ferent fermionic operatorscn anddn, respectively@see Eqs.
~A2! and ~A3!#. The translation operator exp(iP̂x) with P̂

5 P̂11 P̂2 ~B3! is a one-body unitary operator that maps t
Slater determinant with plane waves single-particle orbita

fn~r !5
1

Al
ei ~2p/l !nr ~B7!

into another Slater determinant with orbitals

cm~r !5
1

Al
(

j
sd~ j 2m!eik j ~x1r !, ~B8!

where sd(n) is defined in Eq.~A5!. The overlap between
these two Slater determinants is just the determinant of
N3N matrix Mnm of the overlaps between the occupied o
bitals:

Mnm5zd(
j

sd~ j 2m!sd~ j 2n!zj ~B9!

giving explicitly

Mnm55 ~21!n2meipd
sinpd

p

zn2zm

n2m
for nÞm

znF11 iueipd
sinpd

p G for n5m,
~B10!

where we have introduced the phase factorz5eiu with u
52px/l . The matrix Mnm can be written as the produc
three diagonal matrices@with diagonal elements (21)n, zn,



a

e

low
tio

ti-

m

rty
so

oth

e

,
tia-

ad-

nt

be

ng

a
hase

is
all.

6468 57S. SORELLA AND A. PAROLA
and (21)m#, which contribute to the determinant with
phase factor and the Toeplitz matrixTn2m given by

Tn5E
0

2p du

2p
C~u!e2 iun,

C~u!511Q~u2u!~ei2pd21!, ~B11!

whereQ is the step function. The leading singularity of th
determinant ofT might be extracted by means of Szego¨’s
theorem,25 which would give

detT5expH Ng01 (
n>1

ng2ngnJ ~B12!

with

gn5E
0

2p du

2p
e2 inu lnC~u!. ~B13!

By performing the Fourier transform,gn is simply evaluated:

g05 idu,

gn5~d/n!~12e2 iun! for nÞ0. ~B14!

However, this theorem holds only for continuousC(u) and
does not apply directly to our case. However, one can fol
the same regularization applied in an analogous calcula
for the Ising model25 by noting that the Hilbert matrix of
elementsHn2m defined by

Hn5
sinpd

p~n1d!
~B15!

has the same kind of singularity shown byT. In fact, the
coefficients ḡn that characterizeH are just given bygn
5d/n for nÞ0 andg050. Therefore, following Ref. 25, we
can apply Szego¨’s theorem to the ratio of determinants:

detT

~detH !2 5expH Ng01 (
n>1

nFg2ngn1
2d2

n2 G J . ~B16!

Finally, the determinant of a Hilbert matrix can be analy
cally evaluated, as shown in Eq.~A8!, giving, to leading
order,

Zd~x!5detT5eiQxg1~x!g1~2x!, ~B17!

where the overall phase factor depends on the reference
mentum of the intermediate statesQ5(nkn ~for kn,kF) and

g1~x!5AdN2d2
expFd2(

n>1

eiun

n G ~B18!

5Ad@N~12eir !#2d2
. ~B19!

Ad is the same numerical constant appearing in Eq.~A8! and
is given explicitly by

lnAd52d2~11C!1(
j 51

`

j Fd2

j 2 1 lnS 12
d2

j 2 D G . ~B20!

C50.5772 . . . being the Euler constant.
n

o-

The Fourier positivity property ofg1(x) can be easily
proved by expanding the exponential in Eq.~B18!. By com-
paring Eq.~B17! and Eq.~B6! we find

g1~x!/Z1
d ~x!5g1~2x!/Z1

2d~2x!, ~B21!

where the left-hand side has the Fourier positivity prope
~as the ratio of two function satisfying this property al
satisfies the Fourier positivity property!, while the right hand
side has the Fourier negativity property. Therefore b
terms of this equation have to be constant inx, implying that
Z1

d (x)}g1(x). The overall proportionality constant can b
determined by noting that then50 Fourier coefficient in Eq.
~B2! coincides with the square of the overlapuO1(d)u2,
which has been explicitly calculated in Eq.~A9!. On the
other hand, then50 Fourier component ofg1(x) can be
read off from Eq.~B18! yielding Z1

d (x)5g1(x).
In the thermodynamic limit (l →` at fixed x and fixed

density of fermionsr5N/L) Eq. ~B19! simplifies:

Z1
d ~x!5Ad~2pr!2d2

~2 ix1e!2d2
~B22!

where e;O(x2/l 2) is a vanishingly small positive term
which defines the branch cut for the nonintegral exponen
tion of the complex number (2 ix1e). Taking the Fourier
transform, we get~for 0,d,1)

Z6
d ~k!5~2pr!2d2

Ad2sin~pd2!G~12d2!Q~6k!~6k!d221.
~B23!

The asymptotic evaluation of the two functionsZ6
d (x) for

a Fermi gas with arbitrary phase shift also provides the le
ing singularity for Z

6

(d6 ,6m)(x)5Z
6

(d61m)(x) entering the
spectral function of the interacting model with differe
phase shifts on the two branchesd6 . In particular, for t
50, the Fourier transform ofZ(x,0) in Eq.~5.52! splits into
the sum of terms with different phase shiftsd̄15d11m and
d̄25d21m each given by

Z~Q1k!5Bsin~p d̄1
2 !k d̄1

2
1 d̄2

2
21 for k.0

Z~Q1k!5Bsin~p d̄2
2 !~2k! d̄1

2
1 d̄2

2
21 for k,0

~B24!

if Q is the average spinon momentum. The prefactor can

also calculated: B52(2pr)2( d̄1
2

1 d̄2
2 )A d̄1

A d̄2
G(12 d̄1

2

2 d̄2
2 ). In this case, the Fourier transform is nonvanishi

for both positive and negativek and shows singularities with
the same exponent fork→06. The amplitude ratio tends to
number that, in the free Fermi gas, just depends on the p
shifts:

A1

A2
5 lim

k→01

Z~Q1k!

Z~Q2k!
5

sin~p d̄1
2 !

sin~p d̄2
2 !

. ~B25!

The asymmetry between the two sides of the singularity
therefore enhanced when one of the phase shifts gets sm
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APPENDIX C: THE LONG-WAVELENGTH EXPANSION

The first task is to evaluate the summation present in
~6.16! at largeR. For simplicity we restrict the analysis to th
low-density regime. It is easy to verify that the most releva
contributions to the sum are those aroundkj;0. For rÞs
this gives the approximate form:

Ars;
4eiJt

L~qr2qs!
@ f ~qr !2 f ~qs!#, ~C1!

where the functionf (q) is given by

f ~q!5E
2p

p dk

2p

ei ~kR2tJk2/2!

k2q
. ~C2!

Standard asymptotic expansion leads to

f ~q!5ei ~qR2tJq2/2!i E
2`

` dx

2p
e2 iax2 sinx

x
, ~C3!

wherea5@z/(11qz)2#/(2R) andz52Jt/R. In theR→`
limit at z5const,a→0 and the problem simplifies. Notic
that this last limiting procedure requires thata is regular and
therefore that 11qz is always positive. This impliesuzu
,1/kF ~where kF is the Fermi momentum of the spinon!,
which is always satisfied at low density. In general this
equality leads toR.vst wherevs5JkF is the spinon veloc-
ity at low density. In the following we will consider only thi
regime. In this case,a can be set equal to zero in the integr
leading to the final expression:

f ~q!5
i

2
ei ~qR2tJq2/2!, ~C4!

which inserted into Eq.~C1! gives

Ars;
eiJti

p~r 2s!
@ei ~xr1yr2!2ei ~xs1ys2!#, ~C5!

wherer ands run over the occupied spinless fermion orbita
@2n,n# andx52pR/L, y522p2Jt/L2. The diagonal ele-
ments require a separate analysis, which gives

Arr ;eiJtei ~xr1yr2!F12
x12yr

p G . ~C6!

Now it is convenient to express the matrixArs as the product
of a real matrix Brs and other diagonal matricesDrr

5ei (xr1yr2)/2. In fact, A5DBD where

Brs;2
2sin$ 1

2 @x~r 2s!1y ~r 22s2!#%

p~r 2s!
, rÞs,

Brr ;12
x12yr

p
. ~C7!

The asymptotic form of theN-spinon Green functionZ(R,t)
is then given, besides a global phase factor coming from
determinant ofD, by the determinant of the realN3N ma-
trix Brs . For convenience, we fix a finite ratioN/L5r ~even
if the expressions previously derived are exact only
q.

t

-

l

e

r

r→0) and we perform the numerical computation of deB
for several values ofR and t. The results are reported i
Fig. 6.

APPENDIX D: DERIVATION
OF THE FINITE-SIZE CORRECTIONS

In this appendix we sketch the derivation of the gene
formula ~7.3! for the finite-size corrections in the Bethe a
satz soluble models: Hubbard andt-J at J52t. We closely
follow the procedure detailed by Woynarovich in his wo
on the finite-size corrections of the Hubbard model at fin
doping.28 For the sake of clarity, Hubbard andt-J models
will be treated separately.

1. Hubbard model

We consider the Hubbard Hamiltonian on aL site chain at
fixed chemical potentialm and magnetic fieldh ~in units of
the hopping amplitudet):

H52(
i 51

L

(
s

~ci 11,s
† ci ,s1ci ,s

† ci 11,s!1U(
i 51

L

ni ,↑ni ,↓

1m(
i 51

L

~ni ,↑1ni ,↓!2
1

2
h(

i 51

L

~ni ,↑2ni ,↓!, ~D1!

wheres5↑,↓ is the electron spin index. The Bethe ansa
equations for the Hubbard chain read

Lkj52pI j1 (
b51

Ns

2 arctanS 4
sinkj2lb

U D ,

~D2!

(
j 51

Nc

2 arctanS 4
la2sinkj

U D
52pJa1 (

b51

Ns

2 arctanS 2
la2lb

U D ,

whereNc5L21 andNs5N↓ . The quantum numbersI j and
Ja are integers or half odd integers depending on the par
of Nc and Ns : I j5Ns/2 mod(1), Ja5(Nc1Ns11)/
2 mod(1). Theexistence of a solution to these equatio
requires that each setI j andJa consists of mutually different
quantum numbers. Therefore, the distributionI j is uniquely
defined by the position of the holeI h . Due to the periodicity
of the Bethe ansatz equations by the substitutionI j→I j1L
andkj→kj12p we can always assume that theL21 quan-
tum numbersI j fill the range@ I h11,I h1L21#. The impor-
tant low-energy real solutions are found if theNs quantum
numbersJa are chosen as contiguous integers~or half odd
integers!. We denote asJmin and Jmax the minimum and
maximum value of the distribution, respectively. The grou
state corresponds to the most symmetrical distribut
around zero compatible with the quantization rules. It is u
ful to introduce the additional quantitiesI 25I h21/2, I 1

5I h1L21/2, J25Jmin21/2 andJ15Jmax11/2, which, by
definition, satisfy the relations~7.1!. Finally, the total energy
is expressed in terms of the rapiditieskj andla by
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E522(
j

Nc

coskj1mNc1h~Ns2Nc/2!. ~D3!

The Bethe ansatz equations~D2! can be written as
zc(kj )5I j /L and zs(la)5Ja /L in terms of the functions
zc(k) andzs(l) defined by Eqs.~2.6! of Ref. 28. Following
s,
is
-
-

he
or

i-
this work we also introduce the boundariesk6 andl6 of the
rapidity distributions defined byzc(k

6)5I 6/L and zs(l
6)

5J6/L. The distribution function for the rapidityrc(k) is
defined as the derivative ofzc(k) with respect tok and, due
to Eq. ~7.1!, satisfies
e

E
k2

k1

rc~k!5
Nc

L
,

2
1

2S E
k2

2p

rc~k!2E
2p

k1

rc~k! D 2
1

2pEl2

l1

2 arctan~4l/U !rs~l!5
Dc

L
21, ~D4!

while the analogous distribution functionrs(l) obeys Eqs.~2.14! of Ref. 28. Following the derivation of Ref. 28 we find th
O(1/L2) correction to the rapidity distributions, which can be expressed in compact notation as

r~k,l!5r`~k,l!1
1

24L2S r1~k,luk1l1!

rc~k1!
2

r1~k,luk2l2!

rc~k2!
1

r2~k,luk1l1!

rs~l1!
2

r2~k,luk2l2!

rs~l2! D , ~D5!
.

wherer, r1, r2 are vector functions with two component
one referring to charge and the other to spin, and sat
equations~2.16!,~2.20! of Ref. 28. Notice that in our one
hole case the functionsr1 are symmetric under the simulta
neous interchange ofk1→k2 andl1→l2 while the func-
tions r2 are antisymmetric. This property leads to t
cancellation of the charge contribution to the finite-size c
rections of the total energy, which now reads

E5Le`~k1,k2,l1,l2!2
1

12L
e2~k1,k2,l1,l2!,

~D6!

wheree` and e2 are defined by Eqs.~2.23!–~2.25! of Ref.
28. In the thermodynamic limitk2→k0 ~i.e., the holon mo-
mentum! and k1→k012p while, as usual, the spin rapid
ties l are centered symmetrically around the origin:l1

→l0 and l2→2l0. By expanding e`(k1,k2,l1,l2)
around its limiting value for infinite size we get
fy

-

e`~k1,k2,l1,l2!5e`~k012p,k0 ,l0 ,2l0!

1pvc~k0!r`c~k0!@~k12k022p!2

2~k22k0!2#1pvs~l0!r`s~l0!

3@~l12l0!21~l21l0!2# ~D7!

in terms of the charge@vc(k0)# and spin@vs(l0)# velocities.
The next step is to express the difference betweenl6 @k6#
and its asymptotic valuel0 @k0# in terms of the known pa-
rametersNc(s) andDc(s) . To this end we start from the Eqs
~D4! and evaluate their derivatives with respect tok6 and
l6 in the thermodynamic limit. The final expressions fornc

and ns coincide with Eqs.~2.34! of Ref. 28 in which thek
integration is extended to the full interval@0,2p#. Instead,
the equations fordc andds now read
]dc

]k1 52
]dc

]k21r`c~k0!52
r`c~k0!

2 S 211E
k0

2p

s1c~k!2E
0

k0
s1c~k! D 2

r`c~k0!

p E
2l0

l0
arctan~4l/U !s1s~l![r`c~k0!Z11,

]ds

]k1 52
]ds

]k2 52
r`c~k0!

2 S E
l0

`

s1s~l!2E
2`

2l0
s1s~l! D[r`c~k0!Z12,

]dc

]l1 52
r`s~l0!

2 S E
k0

2p

s2c~k!2E
0

k0
s2c~k! D 2

r`s~l0!

p
arctan~4l0 /U !2

r`s~l0!

p E
2l0

l0
arctan~4l/U !s2s~l![r`s~l0!Z21

1 ,

]dc

]l2 5
r`s~l0!

2 S E
22p

2k0
s2c~k!2E

2k0

0

s2c~k! D 2
r`s~l0!

p
arctan~4l0 /U !2

r`s~l0!

p E
2l0

l0
arctan~4l/U !s2s~l![r`s~l0!Z21

2 ,

]ds

]l1 5
]ds

]l2 52
r`s~l0!

2 S 211E
l0

`

s2s~l!2E
2`

2l0
s2s~l! D[r`s~l0!Z22, ~D8!
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where the additional functions

s1c~s!5
]rc~s!

]k1
,

~D9!

s2c~s!5
]rc~s!

]l1

satisfy the equations~2.16!, ~2.36! of Ref. 28. From their
definitions, it is easy to see that the equations satisfied by
elements of the dressed matrix simplify and givej1151 and
j2150 while

j22~l!512E
2l0

l0 dl8

2p
K2~l2l8!j22~l8!,

~D10!

j12~k!5E
2l0

l0 dl

2p
K1~sink2l!j22~l!,

where the kernelsK1(x) and K2(x) are defined byK1(x)
58U/(U2116x2) andK2(x)54U/(U214x2). Some of the
elements of the additional matrixZi j can be related to the
dressed chargesj i j by the algebraic relations

Z115
1

2
2j12~k0!Z12,

Z225@2j22~l0!#21, ~D11!

Z21
1 1Z21

2 52j12~k0!/j22~l0!,

while the remaining combinations are expressed in term
s1s ands2s by

Z1252
1

2F E
l0

`

dls1s~l!2E
2`

2l0
dls1s~l!G ,

DZ21[Z21
1 2Z21

2 5E
2sink0

sink0
dtF 1

2p
K1~ t2l0!

1E
2l0

l0 dl

2p
K1~ t2l!s2s~l!G .

~D12!

The two functionss1s(l) ands2s(l) satisfy the following
equations:

s1s~l!5
1

2p
K1~l2sink0!2E

2l0

l0 dl8

2p
K2~l2l8!s1s~l8!,

s2s~l!52
1

2p
K2~l2l0!2E

2l0

l0 dl8

2p
K2~l2l8!s2s~l8!.

~D13!

By substituting Eq.~D7! into Eq. ~D6! and evaluating the
quantities in brackets by means of Eq.~D8! we get Eq.~7.3!.

In conclusion, the relevant equations for the one-h
problem in the Hubbard model are
he

of

e

es~l!5hs22E
2p

p dk

2p
K1~l2sink!cos2k

2E
2l0

l0 dl8

2p
K2~l2l8!es~l8!,

ec~k!5hc22cosk1E
2l0

l0 dl

2p
K1~sink2l!es~l!,

~D14!

which give the spin and charge excitation energies. Ob
ously, the holon energy iseh52ec . The external fieldshs
and hc are chosen in such a way thate(l0)50 ande(k0)
50. The charge and spin distributions are given by

rs~l!5E
2p

p dk

4p2 K1~l2sink!

2E
2l0

l0 dl8

2p
K2~l2l8!rs~l8!,

~D15!

rc~k!5
1

2p
1coskE

2l0

l0 dl

2p
K1~sink2l!rs~l!.

The spinon and holon velocities are

2pvs5
1

rs~l0!

des~l!

dl U
l0

,

~D16!

2pvc52
1

rc~k0!

dec~k!

dk U
k0

.

The cutoff l0 and the holon~dressed! momentumk0 are
related to the magnetization and to the position of the hole
the charge distribution by

I h

L
5E

0

k0
dkrc~k!,

~D17!

Ns

L
5E

2l0

l0
dlrs~l!.

Finally, the elements of the dressed charge matrix~evaluated
at the cutoffk0 and l0) are given by Eqs.~D10! and the
additional matrix is defined by Eqs.~D12! with the help of
Eqs.~D13!. The finite-size corrections to the energy and t
correlation exponentXs are then given by Eq.~7.3! in terms
of the above defined quantities.

2. Supersymmetrict-J model

The expressions for thet-J model are quite similar. In
particular the formal size corrections~7.3! are the same while
only the definition of the coefficients are different. Also th
procedure closely follows that outlined for the Hubba
model. Therefore here we will just report the final expre
sions in Sutherland’s representation29,27 noting that in this
formalism there is only one ‘‘charge’’~i.e., the hole!: Nc
51.
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The spin and charge excitation energies are given by
equations

es~v !5hs22u̇~2v !2E
2v0

v0 dv8

2p
u̇~v2v8!es~v8!,

~D18!

ec~w!5hc1E
2v0

v0 dv
2p

2u̇~2v22w!es~v !,

where hs and hc are chosen in such a waye(v0)50 and
e(w0)50. The kernelu(x)52arctanx is defined according
to Bareset al.27 The dot represents derivation with respect
the argument. The charge and spin distributions are given

rs~v !5
1

p
u̇~2v !2E

2v0

v0 dv8

2p
u̇~v2v8!rs~v8!,

~D19!

rc~w!5E
2v0

v0 dv
2p

2u̇~2w22v !rs~v !

and the spinon and holon velocities are

2pvs5
1

rs~v0!

des~v !

dv U
v0

,

~20!

2pvc52
1

rc~w0!

dec~w!

dw U
w0

.

The cutoff v0 and the holon rapidityw0 are related to the
magnetization and to the position of the hole in the cha
distribution by
e

by

e

I h

L
5E

2v0

v0
dvrs~v !u~2w022v !,

~D21!

11Ns

L
5E

2v0

v0
dvrs~v !.

Other relevant quantities are the dressed charges:

j22~v !512E
2v0

v0 dv8

2p
u̇~v2v8!j22~v8!,

~D22!

j12~w!5E
2v0

v0 dv
2p

2u̇~2w22v !j22~v !.

In the following, we will consider the dressed charges eva
ated at the cutoff:j22[j22(v0) and j12[j12(w0). Finally,
the elements of theZ matrix are defined by

Z115
1

2
1E

2v0

v0 dv
2p

s1~v !u~2w022v !,

Z125
1

2Fu~2v022w0!2u~2v012w0!

2p
2E

2v0

v0 dv
2p

s1~v !

3@u~v02v !2u~v01v !#G ~D23!

Z21
1 2Z21

2 50,

where the functions1(v) satisfies the following equation:

s1~v !5
1

p
u̇~2v22w0!2E

2v0

v0 dv8

2p
u̇~v2v8!s1~v8!.

~D24!
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